

RE: J0124-0188 Lot 2 Jenkins Street Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0124-0188

Lot/Block: Model: Address: Subdivision: City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-10 Wind Speed: 130 mph Floor Load: N/A psf Roof Load: 40.0 psf

This package includes 5 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	160957479	A1	9/22/2023
2	160957480	A2	9/22/2023
3	160957481	A3	9/22/2023
4	160957482	A4	9/22/2023
5	160957483	A6	9/22/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

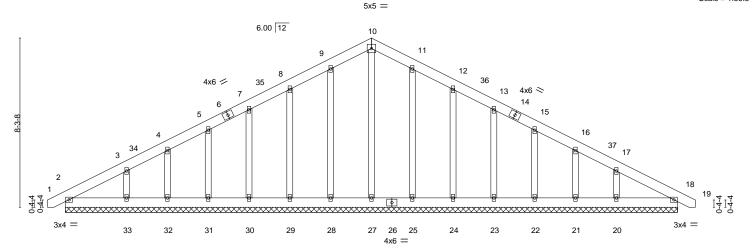
Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

September 22, 2023


8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Sep 22 07:28:04 2023 Page 1 ID:0VD9uz?SnXiBPVWUQ3HTFUztiQ5-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

30-10-8 0-10-8 30-0-0 0-10-8 15-0-0 15-0-0

Scale = 1:56.5

30-0-0												
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	18	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	18	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	18	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S	` ′					Weight: 234 lb	FT = 20%

TOP CHORD

BOT CHORD

30-0-0

LUMBER-BRACING-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 **OTHERS**

2x4 SP No.2

REACTIONS. All bearings 30-0-0. Max Horz 2=-159(LC 17) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 25, 24, 23, 22, 21 except 33=-123(LC 12),

20=-118(LC 13)

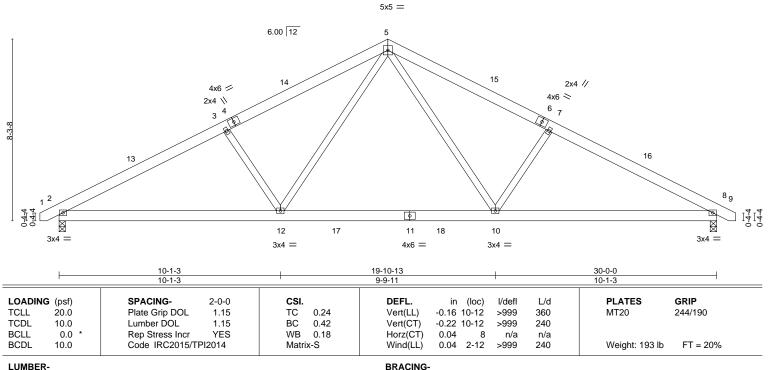
All reactions 250 lb or less at joint(s) 2, 18, 27, 28, 29, 30, 31, 32, 33, 25, 24, 23, 22, 21, 20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 8-9=-91/267, 9-10=-108/311, 10-11=-108/312, 11-12=-91/268

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-10 to 3-8-3, Exterior(2) 3-8-3 to 15-0-0, Corner(3) 15-0-0 to 19-4-13, Exterior(2) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 28, 29, 30, 31, 32, 25, 24, 23, 22, 21 except (jt=lb) 33=123, 20=118.



September 22,2023

Job	Truss	Truss Type	Qty	Ply	Lot 2 Jenkins	Street	
							160957480
J0124-0188	A2	COMMON	6	1			
					Job Reference	e (optional)	
Comtech, Inc, Fayettev	ville, NC - 28314,			8.430 s Ja	n 6 2022 MiTe	ek Industries, Inc. Fri Sep 22 07:28:05 202	3 Page 1
		II	D:0VD9uz?SnXiBP	VWUQ3H	TFUztiQ5-RfC1	PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi	7J4zJC?f
-ρ-10-8	7-7-12	15-0-0	ı	22-4-4		30-0-0	30-10-8
o-10-8	7-7-12	7-4-4		7-4-4		7-7-12	0-10-8

Scale = 1:52.6

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.2 WEBS

REACTIONS.

2=0-3-8, 8=0-3-8 (size) Max Horz 2=-102(LC 10) Max Uplift 2=-83(LC 12), 8=-83(LC 13) Max Grav 2=1240(LC 1), 8=1240(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1995/456, 3-5=-1793/476, 5-7=-1793/476, 7-8=-1995/456 TOP CHORD

BOT CHORD 2-12=-300/1720, 10-12=-94/1162, 8-10=-299/1681

WEBS 5-10=-119/725, 7-10=-402/265, 5-12=-119/725, 3-12=-402/265

NOTES-

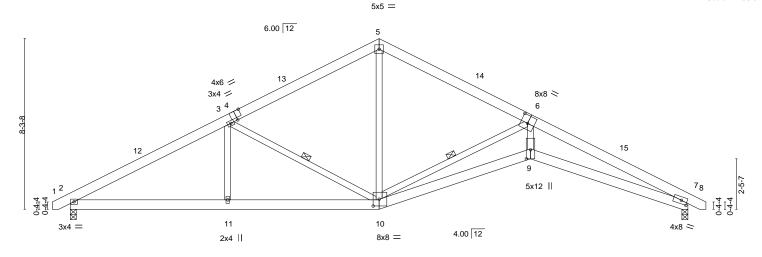
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

Structural wood sheathing directly applied or 5-3-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 22,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ID:0VD9uz?SnXiBPVWUQ3HTFUztiQ5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 30-0-0 30-10-8 0-10-8 22-4-4 -0-10-8 0-10-8 7-4-4 7-4-4 7-7-12

Scale = 1:56.0

	<u> </u>	7-7-12 7-7-12		15-0			22-4 7-4-			+	30-0-0	
Plate Offse	ets (X,Y)	[4:0-3-0,Edge], [6:0-4-0,0	-4-8], [7:0-3-	7-4 6,0-2-0], [9:0-5		0:0-3-8,0-4-0]	7-4-	-4			7-7-12	
LOADING	i (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.27	9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.54	9-10	>665	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.32	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix	:-S	Wind(LL)	0.18	9	>999	240	Weight: 198 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

> (size) 2=0-3-8, 7=0-3-8 Max Horz 2=103(LC 11)

Max Uplift 2=-83(LC 12), 7=-83(LC 13) Max Grav 2=1240(LC 1), 7=1240(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2036/433, 3-5=-1408/405, 5-6=-1371/402, 6-7=-4593/848 **BOT CHORD** 2-11=-279/1700, 10-11=-279/1700, 9-10=-690/4077, 7-9=-700/4144 WFBS 3-11=0/327, 3-10=-648/219, 5-10=-123/716, 6-10=-3095/641, 6-9=-338/2706

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

Structural wood sheathing directly applied or 3-1-1 oc purlins.

3-10, 6-10

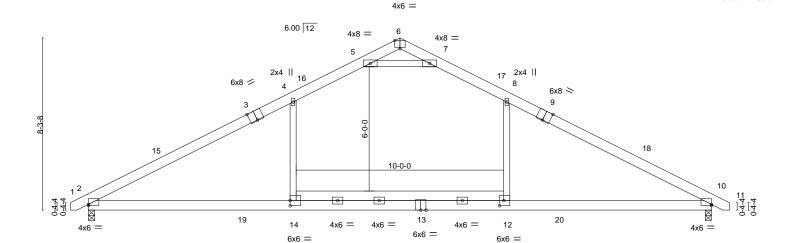
Rigid ceiling directly applied or 9-4-14 oc bracing.

1 Row at midpt

September 22,2023

Job Truss Truss Type Qty Ply Lot 2 Jenkins Street 160957482 J0124-0188 **A4** COMMON 9 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Sep 22 07:28:08 2023 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:0VD9uz?SnXiBPVWUQ3HTFUztiQ5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

30-0-0


15-0-0

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc bracing.

30-10-8 0-10-8

Scale = 1:55.5

Plate Offsets (X,Y)	[2:0-0-0,0-0-11], [3:0-4-0,Edge], [6:0-3-	0,Edge], [9:0-4-0,Edge], [10:0-0-0,0-0-11], [12:0-2-8,0-3-0], [14:0-0-0,0-3-0]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.97 BC 0.66 WB 0.84 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.47 10-12 >753 360 Vert(CT) -0.67 10-12 >533 240 Horz(CT) 0.06 10 n/a n/a Wind(LL) 0.26 2-14 >999 240	PLATES GRIP MT20 244/190 Weight: 197 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP 2400F 2.0E *Except* TOP CHORD

1-3,9-11: 2x6 SP No.1

BOT CHORD 2x6 SP No.1

0-10-8

WEBS 2x4 SP No.2 *Except*

12-14: 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=-102(LC 10)

Max Uplift 2=-83(LC 12), 10=-83(LC 13) Max Grav 2=1541(LC 2), 10=1541(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

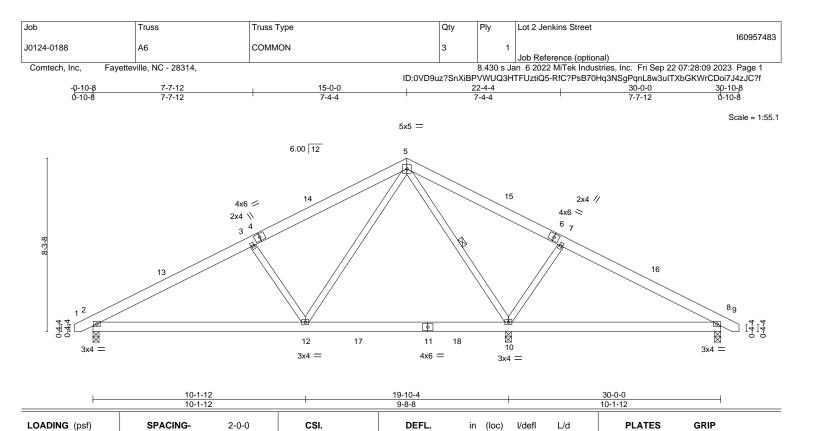
TOP CHORD 2-4=-2470/382, 4-5=-1923/451, 5-6=-356/2009, 6-7=-356/2009, 7-8=-1923/451,

8-10=-2471/382

BOT CHORD 2-14=-182/2021, 12-14=-185/2023, 10-12=-182/2021

WEBS 4-14=0/850, 8-12=0/851, 5-7=-4267/875

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


15-0-0

- 4) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10

September 22,2023

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

WEBS

TOP CHORD

BOT CHORD

I/defl

>999

>999

>999

n/a

360

240

n/a

240

Rigid ceiling directly applied or 6-0-0 oc bracing.

-0.14 10-12

-0.15 10-12

8

1 Row at midpt

0.01

0.03 2-12

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

20.0

10.0

0.0

10.0

REACTIONS.

8=0-3-8, 10=0-3-8, 2=0-3-8 (size)

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

Max Horz 2=-102(LC 10)

Max Uplift 8=-44(LC 13), 10=-58(LC 13), 2=-69(LC 12) Max Grav 8=376(LC 24), 10=1371(LC 2), 2=787(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1048/262, 3-5=-829/280, 5-7=0/281 TOP CHORD

BOT CHORD 2-12=-131/915, 10-12=0/317

WEBS 3-12=-435/274, 5-12=-126/755, 5-10=-856/202, 7-10=-474/283

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TC

ВС

WB

Matrix-S

0.27

0.33

0.33

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15

1.15

YES

- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10, 2.

244/190

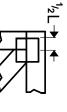
FT = 20%

MT20

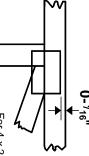
Structural wood sheathing directly applied or 6-0-0 oc purlins.

5-10

Weight: 193 lb


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

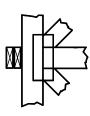
edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

₹

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

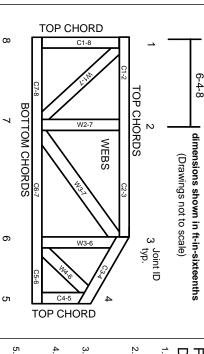
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-22: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.