

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 69 FaNC CALLAWAY 4

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

* FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
Truss Drawing End Indicat		
END OF TRUSS AS SHOWN OF		
		Fab Type FF FF
NDS		2 Net Qty 2
		N Plies

Truss Connector Total LisQtyProductManuf16THA422Simpso	ligidLam DF LVL 1-3/4 x 18 20' 0" FB2-2	tigidLam DF LVL 1-3/4 x 14 20' 0" FB1-2	Product Length PlotIE	Products	
al List Ianuf npson	⁻ B2-2	-B1-2	PlotID		

25'

ထ္ခ

** GIRDERS MUST BE FULLY CONNECT	TED TOGETHER PRIOR TO ADDING ANY LOADS.	IMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	SS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE		
Scale: NTS Date: 3/18/2024 Designer: ND Project Number: 24030128 Sheet Number:	DRB HOMES CALLAWAY ELV 4 69 FARM AT NEILLS CREEK COMPONENT PLACEMENT PLAN	A Division of the Carter Lumber Company	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	00/00/00 Name 00/00/00 Name 00/00/00 Name 00/00/00 Name	00/00/00 Name

20	2	Qty	Trus
LUS26	HTU26-2	Product	s Connector
Simp	Simp	Man	. Total Lis

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** GIRDERS MUST BE FULLY CONNECT	ED TOGETHER PRIOR TO ADDING ANY LOADS.	IENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	S TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE				
Scale: NTS Date: 3/18/2024 Designer: ND Project Number: 24030128 Sheet Number:	DRB HOMES CALLAWAY ELV 4 69 FARM AT NEILLS CREEK COMPONENT PLACEMENT PLAN	A Division of the Carter Lumber Company	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	00/00/00 Name	00/00/00 Name	00/00/00 Name	Revisions 00/00/00 Name

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24030128 DRB GROUP - 69 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I64309060 thru I64309106

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 19,2024

Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A01	Common	4	1	Job Reference (optional)	164309060

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Mar 18 12:32:00 ID:ceT4Ppv_NNZ_bb0_JPrLzCz5RA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76 Plate Offsets (X, Y): [6:0-4-0,0-2-4]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.43 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.12 0.03	(loc) 12-14 12-14 10	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 1 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-260 (L Max Uplift 2=-87 (LC Max Grav 2=1240 (L (lb) - Maximum Com Tension 1-2=0/27, 2-4=-1390 6-8=-1303/270, 8-10 2-14=-208/1148, 12- 10-12=-46/1013 6-12=-189/717, 8-12 6-14=-189/717, 4-14	t* 12-8,14-4:2x4 SP 1-6-0, Right 2x4 SP N athing directly applie applied or 10-0-0 oc 10=0-3-8 C 12) 2 14), 10=-87 (LC 15) C 28), 10=1240 (LC pression/Maximum N/153, 4-6=-1303/270 p=-1390/153, 10-11=0 -14=0/783, 2=-344/285, 1=-344/285	3 No.3 4 d or 6 ; 6 ; 7 25) 8), 8 0/27 9) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) This truss ha load of 12.0 overhangs n) This truss ha chord live loa) This truss ha chord live loa) * This truss ha chord and ar) One H2.5A S recommende UPLIFT at jt(only and doe) This truss is International R802.10.2 at (ADC CASE(S) 	57-16; Pr=20.0 psf (.15); Pf=20.0 psf (L .15); Pf=20.0 psf (L ls=1.0; Rough Cat E =1.10 snow loads have be as been designed fo psf or 1.00 times fla on-concurrent with of seven designed fo ad nonconcurrent with as been designed fo	roof LL um DC 3; Fully een cor r great t roof le bother lin r a 10.0 th any or a liv where fit betw with BC conne- tif betw vith BC conne- o bear nnnectif al force annec w ections lard AN	: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof and of 20.0 p ve loads. 0 psf bottom other live load e load of 20.1 a rectangle veen the botth DL = 10.0psi ctors ng walls due on is for upliff es. th the 2018 .R502.11.1 <i>e</i> ISI/TPI 1.	1.15 e 9; his f live ssf on ads. Opsf com f. e to t				TH CA	Roring	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B0	been considered for (3-second gust) CDL=6.0psf; h=25ft;									A A	SEA	A.	

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-5 to 2-3-11, Interior (1) 2-3-11 to 9-9-8, Exterior(2R) 9-9-8 to 15-9-8, Interior (1) 15-9-8 to 23-3-5, Exterior(2E) 23-3-5 to 26-3-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CHARDEN MARTIN 2. Community T. MILLIN March 19,2024

023594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A01T	Roof Special	7	1	Job Reference (optional)	164309061

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:01 ID:ceT4Ppv_NNZ_bb0_JPrLzCz5RA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-8-4	13-6-8	18-9-11	23-3-8	25-7-0	
	6-8-4	6-10-4	5-3-3	4-5-13	2-3-8	
Scale = 1:79.6						
ate Offsets (X, Y): [2:0-2-12,0-1-8], [3:0-3-0,0-3-4], [5:0-3-0,0-3-4], [6:0-2-3,0-2-0], [12:0-2-8,0-2-8]						

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.43 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.06	(loc) 13-14 13-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 185 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep No.3, 12-6:2x6 SP N 2x4 SP No.3 *Excep Structural wood sheat 3-10-9 oc purlins, e: Rigid ceiling directly bracing. 1 Row at midpt (size) 8-0-3-8, 1 Max Horiz 15-300 (L Max Grav 8=1095 (L (lb) - Maximum Com	t* 13-12,10-9:2x4 SF lo.2 t* 12-4:2x4 SP No.2 athing directly applie xcept end verticals. applied or 10-0-0 oc 3-12 (5=0-3-8 (C 13) : 15), 15=-91 (LC 14 (C 22), 15=1095 (LC pression/Maximum	2) d or : 3) 21) 4) 5)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(2-1-8 to 9-9+1 15-9-8 to 23- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ba	7-16; Vult=130mp bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-1 8, Exterior(2E) 9-9- 5-8, Exterior(2E) 2 t and right exposec d;C-C for members shown; Lumber DC 5-7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); shown loads have b sheen designed for	h (3-sea 8CDL=6 RS (env RS (env 8 to 15 3-5-8 to 3 and fo DL=1.6 (roof LI Lum DC B; Fully een col	cond gust) .0psf; h=25ft elope) exterior -1-8, Interior -9-8, Interior -26-5-8 zone ertical left ar trees & MWFF -) plate grip .: Lum DOL= 	; or (1) (1) ;; nd RS 9; his f live						
TOP CHORD BOT CHORD	Tension 1-2=0/39, 2-4=-1209 6-7=0/45, 2-15=-103 14-15=-298/430, 13- 11-12=0/1024, 10-12	0/199, 4-6=-1432/211 5/148, 6-8=-1096/13 14=0/78, 12-13=0/1 1=0/1020, 6-10=0/95	, 34 6) 18, 3. 7)	load of 12.0 p overhangs no This truss ha chord live loa * This truss h	psf or 1.00 times fla on-concurrent with is been designed fo ad nonconcurrent w has been designed	at roof l other li or a 10. vith any for a liv	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20 (sfon ads. Opsf						
WEBS NOTES 1) Unbalance this desigr	9-10=-10/102, 8-9=- 3-14=-78/142, 3-12= 5-12=-533/217, 2-14 12-14=-106/830, 6-9 ed roof live loads have n.	56/205 318/204, =0/674, 4-12=-121/6 I=-153/46, 5-11=0/32 been considered for	994, 23 8) 9) LC	on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(only and doe This truss is International R802.10.2 ar AD CASE(S)	m chord in all areas by 2-00-00 wide wil y other members. Simpson Strong-Tie dto connect truss is) 15 and 8. This c is not consider late designed in accord Residential Code s nd referenced stan Standard	where I fit betw connection onnection ral force lance w sections dard AN	a rectangle veen the bott ing walls due on is for uplif ss. ith the 2018 i R502.11.1 a ISI/TPI 1.	om e to t		1.4.1111111		SEA 0235	ROL 1	Mulmanning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A02	Common	6	1	Job Reference (optional)	164309062

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:02 ID:?gANzj248FK5nZuyY0VJV1z5R62-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.8

Plate Offsets (X, Y):	[7:0-3-4,Edge]
-----------------	--------	----------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.49 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.15 0.04	(loc) 14-27 14-16 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she. 5-8-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-260 (L Max Grav 2=1298 (L (lb) - Maximum Com Tension 1-2=0/27, 2-4=-1478 6-7=-196/87, 7-8=-11 10-12=-1478/0, 12-1 2-17=-142/1197, 16- 12-14=-1/1069 8-19=-71/708, 14-19 10-14=-302/308, 17- 6-18=-71/707, 4-17= 18-20=-1/5, 19-20=- ad roof live loads have h.	1-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 12=0-3-8 (C 12) (C 24), 12=1298 (LC pression/Maximum 3/0, 4-6=-1371/91, 96/87, 8-10=-1372/9 13=0/27 -17=0/951, 14-16=0/ 9=-81/696, -18=-80/696, -302/308, 6-8=-811/ 1/5, 16-20=0/28 been considered for	2) No.3 ed or 5 (25) (4) (5) (1, 6) (951, 7) (997, 8) (7) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	 Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 2-3-11 to 9-9 15-9-8 to 23 cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15; I CS=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end This truss ha chord live load * This truss hs on the bottor 3-06-00 tall the chord and ar This truss is International R802.10.2 ar 	7-16; Vult=130mp bh; TCDL=6.0psf; f 5; Enclosed; MWFI C Exterior(2E) -0-8 -8, Exterior(2E) 9- 3-5, Exterior(2E) 2 t and right exposed t;C-C for members shown; Lumber Di 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15);	h (3-see BCDL=6 RS (env -5 to 2- 9-8 to 1 3-3-5 tt 6 ; end v s and foi OL=1.60 f (roof LL Lum DC B; Fully been cor or great at roof k the bott points, 1 or a 10. with any for a liv s where ll fit betw with BC dance w sections dard AN	and gust) 1.0psf; h=25fi 1.0psf; h=25fi 1.1nterior 26-3-5 zone vertical left ar ces & MWFI 0 plate grip .: Lum DOL= 1.15 Plate Exp.; Ce=0. asidered for t er of min roo oad of 20.0 p ve loads. om chord, 12 5-0-0 apart. 0 psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps it the 2018 a R502.11.1 a ISI/TPI 1.	t; or (1) ;; nd RS =1.15 e 9; this f live psf on 2-9-8 ads. 0psf tom f. and				SEAL 02359 ON R. March	RO 4 E.P. H.P. 19,2024	
WARN	IING - Verify design paramete	ers and READ NOTES ON	THIS AND IN	ICLUDED MITEK RI	EFERENCE PAGE MII-7	7473 rev. 1	/2/2023 BEFOR	E USE.				ENGINEERI	NG BY	

R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A03	Common	1	1	I64 Job Reference (optional)	4309063

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:02 ID:5P1sK7rHswRz3zzOOcsyp1z5QiU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.9

Plate Offsets (X, Y): [6:0-3-0,0-3-0], [12:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.15 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing. 1 Row at (size)	o.2 o.2 o.3 o.3 *Excep I wood shea purlins, exc ing directly midpt 18=25-7-0	t* 26-9:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 9-26, 8-27, 7-28, 10 11-23 , 19=25-7-0, 20=25	2 ed or 0-25,	TOP CHORD	1-2=0/37, 2-3=-51/k 1-5=-55/88, 5-7=-11 3-9=-210/350, 9-10 10-11=-173/308, 11 13-14=-190/206, 14 15-16=-42/59, 16-1 16-18=-71/83 32-33=-107/119, 31 30-31=-211/225, 22 28-29=-211/225, 22 23-25=-211/225, 22 21-22=-209/224, 22 1-22=-209/224, 22 1-22=	105/111, 7-8=-173/286, 50, 71/257, 24/225, 2-33=-104/12 11/225, 11/225, 11/225, 11/225, 11/225, 11/225, 29/224,	,	 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf o overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. 							
	EACTIONS (size) 18=25-7-0, 19=25-7-0, 20=25-7-0, 21=25-7-0, 22=25-7-0, 23=25-7-0, 25=25-7-0, 26=25-7-0, 27=25-7-0, 28=25-7-0, 29=25-7-0, 30=25-7-0, 31=25-7-0, 32=25-7-0 Max Horiz 32=-299 (LC 12) Max Uplift 18=-392 (LC 13), 19=-323 (LC 10), 20=-81 (LC 15), 21=-71 (LC 15), 22=-75 (LC 15), 23=-86 (LC 15), 25=-64 (LC 15), 26=-15 (LC 12), 27=-59 (LC 14), 28=-86 (LC 14), 29=-83 (LC 14), 30=-40 (LC 14),				WEBS	21-22=-209/224, 20-21=-209/224, 19-20=-209/224, 18-19=-209/224 BS 3-33=-269/198, 15-18=-424/377, 9-26=-378/167, 8-27=-230/83, 7-28=-169/111, 6-29=-134/103, 5-30=-122/82, 4-31=-157/153, 3-32=-121/101, 10-25=-230/88, 11-23=-169/110, 12-22=-134/99, 13-21=-125/94, 14-20=-143/108, 15-19=-292/299 TES Unbalanced roof live loads have been considered for					 All plates are 2x4 M120 unless otherwise indi Gable requires continuous bottom chord bear Truss to be fully sheathed from one face or subraced against lateral movement (i.e. diagona Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf b chord live load nonconcurrent with any other 					
FORCES	Max Grav (Ib) - Max	 av 18=463 (LC 10), 19=369 (LC 13), 20=182 (LC 25), 21=165 (LC 25), 22=174 (LC 25), 23=209 (LC 22), 25=270 (LC 22), 26=393 (LC 14), 27=270 (LC 21), 28=209 (LC 21), 31=221 (LC 24), 30=164 (LC 21), 31=221 (LC 24), 32=233 (LC 25) avimum Compression/Maximum Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-9-14 to 2-2-2, Exterior(2P 2-2-2 to 9-9-8, Corner(3R) 9-9-8 to 15-9-8, Exterior(2P 15-9-8 to 23-4-14, Corner(3E) 23-4-14 to 26-4-14 zon cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL = 16 0 plate aris 		447 (EC 10) 2) 969 (LC 13), 2) 969 (LC 25), Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f 209 (LC 22), Cat. II; Exp B; Enclosed; MWFRS (envelope) exteri 209 (LC 21), 209 (LC 21), 209 (LC 21), 209 (LC 21), 209 (LC 21), 2-2-2 to 9-9-8, Corner(3E) -0-9-14 to 2-2-2, Exterior 209 (LC 21), 2-2-2 to 9-9-8, Corner(3R) 9-9-8 to 15-9-8, Exterior 203 (LC 25), 15-9-8 to 23-4-14, Corner(3E) 23-4-14 to 26-4-14 z 203 (LC 25), cantilever left and right exposed; end vertical left a 203 (LC 25), right exposed; C-C for members and forces & MWF 64 (LC 21), right exposed; C-C for members and forces & MWF		E 7-16; Vult=130mph (3-second gust) mp; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B; Enclosed; MWFRS (envelope) exterior -C Corner(3E) -0-9.14 to 2-2-2, Exterior(2N) 8-8, Corner(3E) 9-9-8 to 15-9-8, Exterior(2N) 3-4-14, Corner(3E) 23-4-14 to 26-4-14 zone; eft and right exposed ; end vertical left and ed;C-C for members and forces & MWFRS so the two the two				Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f Cat. II; Exp B; Enclosed; MWFRS (envelope) exteri zone and C-C Corner(3E) -0-9-14 to 2-2-2, Exterior 2-2-2 to 9-9-8, Corner(3R) 9-9-8 to 15-9-8, Exterior 15-9-8 to 23-4-14, Corner(3E) 23-4-14 to 26-4-14 z cantilever left and right exposed; end vertical left a right exposed;C-C for members and forces & MWF	N) N) ne; I S		Contraction of the second	10	SEA 0235	L 94
	Iension				DOL=1.60	,							NY R.	MILLERIN		

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Association) (wow shearc and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A03	Common	1	1	Job Reference (optional)	164309063

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18, 26, 27, 28, 29, 30, 31, 32, 25, 23, 22, 21, 20, and 19. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Mon Mar 18 12:32:02 ID:5P1sK7rHswRz3zzOOcsyp1z5QiU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A04		1	1	Job Reference (optional)	164309064

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:02 ID:p5q9?pEdvkWRW489bESk3byi_A?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-5-0,0-3-0], [7:0-5-0,0-3-0], [11:0-0-0,0-0-0]

Scale = 1:74.2

f) Spacing 0 Plate Grip DOL	2-0-0 1.15		CSI TC	0.32	DEFL Vert(LL)	in -0.07	(loc) 13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190		
0 Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.16	15	>999	180				
0 Rep Stress Incr	YES		WB	0.30	Horz(CT)	0.04	11	n/a	n/a				
0* Code	IRC2018	3/TPI2014	Matrix-MSH										
0										Weight: 207 lb	FT = 20%		
ccept* 16-6,13-7:2x4 SF	2) ? No.2	Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-0 2-3-11 to 7-2	7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior(2E) -0-8- 14. Exterior(2B) 7	n (3-sec CDL=6 S (enve 5 to 2-3	ond gust) .0psf; h=25ft elope) exterio 3-11, Interior	; or (1)							
3 1-6-0, Right 2x4 SP	NO.3	(1) 18-4-2 to	o 23-3-5, Exterior(2E) 23-3-5 to 26-3-5 zone;										
1-6-0 (1) 18-4 Structural wood sheathing directly applied or i-2-3 oc purlins, except right exits for reac 2-0-0 oc purlins (6-0-0 max.): 6-7. DOL=1. Rigid ceiling directly applied or 10-0-0 oc 3)				; end v and for DL=1.60	ertical left ar ces & MWFF plate grip	and FRS							
ectly applied or 10-0-0 o	TCLL: ASCE Plate DOL=1	/-16; PT=20.0 psf (root LL: Lum DOL=1.15 .15); Pf=20.0 psf (Lum DOL=1.15 Plate s=1 0: Bourds Cat B: Fully Eyrs : Ca=0.9:											
-8, 11=0-3-8 6 (LC 12) 31 (LC 47), 11=1431 (LC	Cs=1.00; Ct= Unbalanced	s=1.0; Rough Call 1.10 snow loads have be	een cor	sidered for t	9; his								
Compression/Maximum	5)	This truss ha	s been designed fo	r greate	er of min root	f live sf on							
1668/0, 4-6=-1575/109, -9=-1576/109, 9-11=-16	68/0, 6)	overhangs non-concurrent with other live loads. 200.0lb AC unit load placed on the bottom chord, 12-9-8 from left end supported at two points. 5-0-0 apart											
, 15-16=0/961, 13-15=0	/961, 7) 8)	Provide adeo This truss ha	uate drainage to p s been designed fo	revent v or a 10.0	vater pondin) psf bottom	g.				A CA	illin,		
6-17=-77/813, 7-18=-77/813, 9-13=-390/305, 17-19=- 19=0/30	9) -2/8,	chord live loa * This truss h on the botton 3-06-00 tall b	d nonconcurrent w as been designed f n chord in all areas y 2-00-00 wide will	ith any for a liv where fit betv	other live loa e load of 20. a rectangle veen the bott	ads. Opsf om		1		OHTHCA	A. M.		
ave been considered fo	or 10 11 LC	chord and an) This truss is of International R802.10.2 ar) Graphical pu or the orienta bottom chord DAD CASE(S)	y other members, u designed in accord Residential Code s ad referenced stand fin representation o tion of the purlin al Standard	with BC ance w sections dard AN does no ong the	DL = 10.0ps th the 2018 R502.11.1 a ISI/TPI 1. t depict the s top and/or	f. and size		THILLING ST		SEA 02359	ER. FR.	WWWWWWWW	
	f) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Code ccept* 16-6,13-7:2x4 SF 3 1-6-0, Right 2x4 SP sheathing directly appli , except (6-0-0 max.): 6-7. actly applied or 10-0-0 c i+8, 11=0-3-8 i6 (LC 12) 31 (LC 47), 11=1431 (Lt Compression/Maximum 1668/0, 4-6=-1575/109, -9=-1576/109, 9-11=-16 , 15-16=0/961, 13-15=0 6-17=-77/813, 7-18=-77/813, 9-13=-390/305, 17-19=- 19=0/30 iave been considered for	f) Spacing 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES O* Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Code IRC2018 Sheathing directly applied or , (c6-0-0 max.): 6-7. 3) Compression/Maximum 5) 1668/0, 4-6=-1575/109, -9 -9=-1576/109, 9-11=-1668/0, 6) 6) ', 15-16=0/961, 13-15=0/961, 7) 8) 6-17=-77/813, 7 9) 9-13=-390/305, 17-19=-2/8, 9) 19=0/30 10 Nave been considered for 10	f) Spacing 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014 2) Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C 2-3-11 to 7-2 (1) 18-4-2 to cantilever leff right exposed for reactions DOL=1.60 3) TCLL: ASCE Plate DOL=1 DOL=1.15); I Compression/Maximum 1668/0, 4-6=-1575/109, -9=-1576/109, 9-11=-1668/0, (15-17=-77/813, 7-18=-77/813, 9-13=-390/305, 17-19=-2/8, 19=0/30 Nave been considered for 1-2 Plate DOL=1 DOL=1.15); I Compression/Maximum 100 This truss ha chord live loag 9) * This truss ha chord live loag 9) * This truss ha chord live loag 100 This truss is of 100 This truss is of 110 This truss is of 1110 Graphical puil 1110 Graphical puil 1110 Graphical puil 1110 Graphical puil 1110 Graphical puil 1110 CASE(S)	f) 0Spacing Plate Grip DOL Lumber DOL Lumber DOL Code2-0-0 1.15 BC WB Matrix-MSH0* 0* 0* 0* 0*CodeTC BC WB Matrix-MSH2)Wind: ASCE 7-16; Vult=130mpt Vasd=103mpt, TCDL=6.0psf, B Cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior(2E) -0-8 cat. II; Exp B; Enclosed; MWFR zone and C-C for members for reactions shown; Lumber DO DOL=1.15); Is=1.0; Rough Cat II Cs=1.00; Ct=1.1031 (LC 47), 11=1431 (LC 49) r, 15-16=0/961, 13-15=0/961, r, 15-16=0/961, 13-15	f) 0Spacing Plate Grip DOL Lumber DOL Lumber DOL Rep Stress Incr YESCSI TC O.32 BC O.48 WB WS 	f) 	f) 	f) 0Spacing Plate Grip DOL 1.15 Rep Stress Incr2-0-0 1.15 Rep Stress IncrCSI TCDEFLin (loc) Vert(CT)0.01.15 Rep Stress IncrRC2018/TPI2014TC0.32 BC $Vert(CT)$ 0.0411100.15 Vert(CT)0.04110.0713 Vert(CT)0.04110.1000.040.0713 Vert(CT)0.04110.10000.040.0713 Vert(CT)0.04110.10.10000.04110.0713 Vert(CT)0.04110.10.100000.04110.04110.10.1000	f) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02-0-0 1.15 TC C 0.48 WB WB WATK-MSHDEFL 1 in (loc) 1/defl Vert(L1) 0.07 13 > 5999 Vert(CT) 0.16 15 > 5999 Vert(CT) 0.04 11 11 n/a0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*1.15 Rep Stress Incr YES Code 1RC2018/TPI2014TC TC TC 0.040.30 Wert(L1) -0.07 13 > 5999 Vert(CT) Vert(L1) -0.16 15 > 5999 Vert(CT) 0.0411 n/a0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*110 1.15 Matrix-MSH21 Wind: ASCE 7-16; Vult=130mph (3-second gust) VascE 102L=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; IWFRS for evelope) exterior 2-3-11 to 7-2-14, Exterior(2R) 7-2-14 to 18-4-2, Interior (1) 18-4-2 to 23-3-5, Exterior(2R) 7-2-3-5 to 25-3-5 cone; cantilever left and right exposed; c-0 vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 DDL=1.6015 0 <b< td=""><td>f) 0 Spacing 0 2-0-0 Plate Grip DOL CSI 1.15 EC DEFL 0.32 Color in (loc) i/deft L/d Vert(LL) Lumber DOL 1.15 Rep Stress Incr YES WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft Sepsite 251 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH Deft Sepsite 251 Discopsite 251</td><td>D Spacing 0 2-0-0 1 Plate Grip DOL Lumber DOL 2. CSI 1.5 DEFL 1.0 in (loc) i/deft L/deft PLATES WT20 0 0 1.5 BC 0.48 0.33 Ver(L) -0.07 13 >999 140 0 0 0 0.04 II n/a n/a N/a 0 0 0 0.04 II n/a n/a N/a 0 0 0 0.04 II n/a n/a N/a N/a 0 0 0.04 II n/a N/a</td><td>no Spacing 2-0-0 CSI n n (noc) i/def Lumber DOL 1.15 Lumber DOL 1.15 BC 0.48 0.48 Vert(C1) -0.07 13 >-999 240 Motion Code IRC2018/TFI2014 Motion-MSH Vert(C1) -0.07 13 >-999 180 Vert(C1) -0.04 11 n/a n/a N/a Vert(C1) -0.04 11 n/a N/a Vert(C1) -0.04 11 n/a n/a N/a Vert(C1) -0.04 11 n/a N/a N/a Vert(C1) -0.04 11 N/a N/a</td></b<>	f) 0 Spacing 0 2-0-0 Plate Grip DOL CSI 1.15 EC DEFL 0.32 Color in (loc) i/deft L/d Vert(LL) Lumber DOL 1.15 Rep Stress Incr YES WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft L/d 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH DEFL in (loc) i/deft Sepsite 251 0* Code IRC2018/TPI2014 WB 0.30 Matrix-MSH Deft Sepsite 251 Discopsite 251	D Spacing 0 2-0-0 1 Plate Grip DOL Lumber DOL 2. CSI 1.5 DEFL 1.0 in (loc) i/deft L/deft PLATES WT20 0 0 1.5 BC 0.48 0.33 Ver(L) -0.07 13 >999 140 0 0 0 0.04 II n/a n/a N/a 0 0 0 0.04 II n/a n/a N/a 0 0 0 0.04 II n/a n/a N/a N/a 0 0 0.04 II n/a N/a	no Spacing 2-0-0 CSI n n (noc) i/def Lumber DOL 1.15 Lumber DOL 1.15 BC 0.48 0.48 Vert(C1) -0.07 13 >-999 240 Motion Code IRC2018/TFI2014 Motion-MSH Vert(C1) -0.07 13 >-999 180 Vert(C1) -0.04 11 n/a n/a N/a Vert(C1) -0.04 11 n/a N/a Vert(C1) -0.04 11 n/a n/a N/a Vert(C1) -0.04 11 n/a N/a N/a Vert(C1) -0.04 11 N/a N/a	

818 Soundside Road Edenton, NC 27932

M. M. MIL March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A05		1	1	Job Reference (optional)	164309065

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 18.12:32:02 ID:0NDkr40qlv2aeguQicbDWbyi 7i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?1

Page: 1

NOTES

WEBS

Scale = 1:67.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES

TOP CHORD

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

16-17=0/9, 13-17=0/27

14-15=-51/747, 5-15=-42/758,

4-14=-373/296, 6-16=-42/758,

Max Horiz 2=-205 (LC 12)

Tension

9-10=0/27

9-11=-2/1136

Max Uplift 2=-1 (LC 14), 9=-1 (LC 15)

Max Grav 2=1386 (LC 45), 9=1386 (LC 45)

5-6=-957/110, 6-7=-1452/98, 7-9=-1606/10,

2-14=-107/1214, 13-14=0/963, 11-13=0/963,

11-16=-51/747, 7-11=-373/296, 15-17=0/9,

(Ib) - Maximum Compression/Maximum

1-2=0/27, 2-4=-1606/10, 4-5=-1452/98

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

overhangs non-concurrent with other live loads

from left end, supported at two points, 5-0-0 apart.

Provide adequate drainage to prevent water ponding.

chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.

* This truss has been designed for a live load of 20.0psf

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

200.0lb AC unit load placed on the bottom chord, 12-9-8

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Con and a second humming SEAL 3594 MI "Inninini March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters with Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4)

5)

6)

8)

9)

desian.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A06	Roof Special	1	1	Job Reference (optional)	164309066

Loading

Snow (Pf)

LUMBER

BRACING

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WFBS

NOTES

1)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 18 12:32:03 ID:PpltcoXQVCkh6sijxTDI22yhzyi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A07	Roof Special	1	1	Job Reference (optional)	164309067

Scale = 1:64.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

TCDL

BCLL

BCDL

WEBS

BRACING

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 18 12:32:03 ID:L0SvjwAg0UQAz?FvY5gkiDyhzxt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BOT CHORD WEBS REACTIONS	2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-10 (size) 9=0-3-8, 13=0-3-8	3)	(1) 18-8-0 to 23-5-8, Exterior(2E) 23-5-8 to 26-5-8 zon- cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.1 Plate DOL=1.15): Pf=20.0 psf (lum DOL=1.15) Plate
	Max Horiz 13=-244 (LC 12)		DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
	Max Uplift 9=-80 (LC 15), 13=-125 (LC 14)		Cs=1.00; Ct=1.10
FORCES	Max Grav $9=1210 (LC 37), 13=1231 (LC 49)$	4)	Unbalanced snow loads have been considered for this
FURCES	(ib) - Maximum Compression/Maximum	C)	design.
TOP CHORD	1-2=0/39, 2-3=-1306/163, 3-4=-1055/176, 4-5=-952/205, 5-6=-1221/224, 6-7=-392/142,	5)	load of 12.0 psf or 1.00 times flat roof load of 20.0 psf or overhangs non-concurrent with other live loads.
	7-8=0/39, 2-13=-1104/179, 7-9=-401/151	6)	Provide adequate drainage to prevent water ponding.
BOT CHORD	12-13=-254/638, 10-12=-78/1173, 9-10=-24/923	7)	This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
WEBS	2-12=-89/724, 6-9=-1052/61, 3-12=0/476, 4-12=-278/93, 4-10=-850/215,	8)	* This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle
	5-10=-171/1102, 6-10=-214/215		3-06-00 tall by 2-00-00 wide will fit between the bottom
NOTES			chord and any other members, with BCDL = 10.0psf.
A)	al an efficient e sub-la sub-la sub-la sub-la sub-la sub-ficient	0)	One H2 54 Simpson Strong-Tie connectors

1) Unbalanced roof live loads have been considered for this design.

- has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads.
- s has been designed for a live load of 20.0psf ttom chord in all areas where a rectangle all by 2-00-00 wide will fit between the bottom any other members, with BCDL = 10.0psf.
- 5A Simpson Strong-Tie connectors 9) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 9. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A08		1	1	Job Reference (optional)	164309068

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:03 ID:xFM3oLInjETMjNw7MAX_eLyhzx7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [3:0-3-0,0-2-1], [5:0-2-8,0-1-6], [6:0-4-0,0-1-4], [12:0-6-0,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.72 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.04	(loc) 10-11 10-11 10	l/defl >999 >922 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 5-0-2 oc purlins, exi 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. (size) 10=0-3-8, Max Horiz 14=-226 (Max Uplift 10=-76 (L Max Grav 10=1272 (athing directly applied cept end verticals, and -0 max.): 3-4, 5-6. applied or 10-0-0 oc 14=0-3-8 LC 12) C 15), 14=-124 (LC 1/ (LC 43), 14=1272 (LC	2) or d 3) 4) 43) 4)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 2-1-8 to 8-1-(11-10-0 to 15 (2E) 23-5-8 t exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct	7-16; Vult=130mp bh; TCDL=6.0psf; B; Enclosed; MWFf C Exterior(2E) -0-1 0, Interior (1) 8-1-0 B-6-0, Interior (1) 1 0 26-5-8 zone; car d vertical left and id d forces & MWFRS =1.60 plate grip D .7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Nough Cat =1.00 pads base b	h (3-sec 3CDL=6 RS (env 0-8 to 2 to 11-1 9-6-0 to titlever li- ight exp S for rea OL=1.60 (roof LL Lum DC B; Fully	oond gust) .0psf; h=25ft elope) exterior -1-8, Exterior 0-0, Exterior(23-5-8, Exte eft and right ioosed;C-C for ctions shown) : Lum DOL= Exp.; Ce=0.9	; cr (2R) (2R) rior r 1.15 9; bis						
FORCES	(lb) - Maximum Com	pression/Maximum	· +)	design.				i live						
TOP CHORD	1-2=0/63, 2-3=-517/ 4-5=-1111/194, 5-6= 7-8=-331/110, 8-9=0 8-10=-356/127	194, 3-4=-1230/175, 841/204, 6-7=-1236/ //39, 2-14=-585/196,	5) 206, 6) 7)	load of 12.0 p overhangs no Provide adec This truss ba	s been designed f psf or 1.00 times fl on-concurrent with quate drainage to p s been designed f	or greate at roof lo other liv prevent v or a 10 0	or of fill roof bad of 20.0 p ve loads. vater ponding	sf on g.						
BOT CHORD	13-14=-118/866, 11-	13=-114/1391,	() ()	chord live loa	ad nonconcurrent v	vith any	other live loa	ids. Opef				minin	ing.	
WEBS	3-14=-982/109, 7-10 4-13=-390/98, 3-13= 6-11=-78/477, 5-11=	=-1162/75, :0/636, 4-11=-894/203 :-67/429, 7-11=-225/1	8) 92	on the botton 3-06-00 tall b chord and an	n chord in all areas by 2-00-00 wide wil by other members.	where fit betw	a rectangle veen the botto	om			111	OPTH CA	ROLL	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	9) 10	Une H2.5A S recommende UPLIFT at jt(only and doe) This truss is	simpson Strong-Tie ed to connect truss s) 14 and 10. This is not consider late designed in accord	to bear connec ral force lance w	ctors ing walls due tion is for upli es. ith the 2018	to ift		and the second		SEA 0235	L 94	- Alexandre

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A09		1	1	Job Reference (optional)	164309069

7-4-13

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:03

Page: 1

1	9-4-9	17-1-14	25-7-0
Γ	9-4-9	7-9-5	8-5-2
ale = 1:54.3			

Plate Offsets (X, Y): [3:0-3-4,0-2-4], [4:0-2-8,Edge], [5:0-3-0,0-2-1], [6:0-3-4,0-1-6], [9:Edge,0-3-8]

											_			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.79 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.42 0.03	(loc) 12-13 12-13 9	l/defl >999 >715 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. (size) 9=0-3-8, Max Horiz 13=-194	ot* 3-4,6-8:2x4 SP N ot* 13-2,9-7:2x4 SP I eathing directly appli- iccept end verticals, a 7-13 max.): 3-4, 5-6. 7 applied or 10-0-0 o 13=0-3-8 (LC 12)	2) lo.1 No.2 ed or and ic 3)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(2-1-8 to 6-5 (2R) 10-2-13 Exterior(2E) : right exposed for members Lumber DOL TCLL: ASCE Plate DOL=145-1	7-16; Vult=130mpl bh; TCDL=6.0psf; E 5; Enclosed; MWFF C Exterior(2E) -0-11 13, Interior (1) 6-5- to 21-1-3, Interior 23-5-8 to 26-5-8 zc d; end vertical left : and forces & MWF =1.60 plate grip DC 7-16; Pr=20.0 psf (1 -5); Pf=20.0 psf (1	h (3-sec 3CDL=6 RS (env 0-8 to 2 13 to 10 (1) 21-1 one; car and righ FRS for DL=1.60 (roof LL Lum DC	ond gust) .0psf; h=25ft elope) exterio -1-8, Exterio -2-13, Exterio -3 to 23-5-8, titlever left an t exposed;C- reactions sho) .: Lum DOL= L=1.15 Plate	; or (2R) or -C own; 1.15						
FORCES TOP CHORD	Max Uplift 9=-65 (LC Max Grav 9=1264 ((lb) - Maximum Con Tension 1-2=0/63, 2-3=-418, 4-5=-2504/354, 5-6 6-7=-1348/176, 7-8 7-9=-1146/185	(2012) 215), 13=-119 (LC 1 LC 53), 13=1224 (LC npression/Maximum /69, 3-4=-1970/219, =-955/200, =0/39, 2-13=-460/97	14) C 53) 4) 5) 7, 6) 7)	DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs no Provide adec The Fabricat	s=1.0; Rough Cat l :1.10 snow loads have b s been designed fo osf or 1.00 times fl on-concurrent with µate drainage to p ion Tolerance at joi on Tolerance at joi	B; Fully een cor or greate at roof le other liv revent v int 7 = 8	Exp.; Ce=0. sidered for the er of min roof bad of 20.0 p: ve loads. vater ponding %	9; his f live sf on g.						
BOT CHORD WEBS	12-13=-126/921, 10 9-10=-193/557 3-13=-1152/142, 7- 4-12=-1852/312, 5- 3-12=-63/1266, 5-1	-12=-32/1071, 10=-111/756, 12=-219/1744, 0=-279/96, 6-10=0/4	8) 9) 59	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	s been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members	or a 10.0 vith any for a liv where I fit betv with BC) psf bottom other live loa e load of 20.0 a rectangle veen the botto DI = 10 0pst	ads. Opsf om f				HTH CA	ROLIN	
1) Unbalance this design	ed roof live loads have n.	been considered fo	or 10 11 12	 One H2.5A S recommende UPLIFT at jt(only and doe This truss is International R802.10.2 ar Graphical pu or the orienta bottom cheer 	standard memory of the memory of the memory of the second	connections onnections ance w sections dard AN does no long the	on is for uplifies. R502.11.1 a R502.11.1 a R502.11.1 a R502.11.1 a R502.11.1 a R502.11.1 a R502.11.1 a	to t and size		THUR AND		SEA 02359	ER. R.	

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

A MILLIN

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	A10	Roof Special Girder	1	2	Job Reference (optional)	164309070

TOP CHORD

BOT CHORD WEBS

NOTES

Continued on pa

1)

ber Increase=1.15, Plate

-60, 5-6=-60, 6-8=-60, =-20

MBER P CHORD 2x4 SP No.2 T CHORD 2x6 SP No.2 TS 2x4 SP No.3	All loads are considered equally applied to a except if noted as front (F) or back (B) face CASE(S) section. Ply to ply connections ha provided to distribute only loads noted as (F	all plies, 13) Graphical purlin representation of in the LOAD or the orientation of the purlin al ive been bottom chord. F) or (B), 14) Use Simpson Strong-Tie HTU26
ACING P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5, 6-8. IT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. ACTIONS (size) 12=0-3-8, 17=0-3-8	unless otherwise indicated. Unbalanced roof live loads have been cons this design. Wind: ASCE 7-16; Vult=130mph (3-second Vasd=103mph; TCDL=6.0psf; BCDL=6.0ps Cat. II; Exp B; Enclosed; MWFRS (envelope zone; cantilever left and right exposed ; end cond cipth exposed is under the pole of the pole	14-10d Truss, Single Ply Girder) sidered for 13-1-8 oc max. starting at 5-7-8 18-9-0 to connect truss(es) to fruit gust) 15) Use Simpson Strong-Tie LUS26 sf, h=25ft; Truss, Single Ply Girder) or equitor e) exterior oc max. starting at 19-6-4 from t d vertical left 5ill oll mode block (es) to from t face of
Max Horiz 17=-163 (LC 10) Max Uplift 12=-477 (LC 13), 17=-364 (LC 12) Max Grav 12=3054 (LC 41), 17=1934 (LC 40)	DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lu Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1	m DOL=1.15 10 Pin an nain noise where hanger is 17) "NAILED" indicates 3-10d (0.144 (0.148"x3.25") toe-nails per NDS 15 Plate I OAD CASE(S) Standard
RCES (Ib) - Maximum Compression/Maximum Tension	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp Cs=1.00; Ct=1.10	b.; Ce=0.9; 1) Dead + Snow (balanced): Lum
P CHORD 1-2=0/63, 2-3=-281/102, 3-4=-3321/543, 4-5=-3321/543, 5-6=-3700/505, 6-7=-2760/378, 7-8=-2760/378, 8-9=-3326/486, 9-10=-681/201, 10-11=0/63, 2-17=-358/108, 10-12=-643/177	Unbalanced snow loads have been consider design. This truss has been designed for greater of load of 12.0 psf or 1.00 times flat roof load of overbange non-concurrent with other live lo	ared for this Uniform Loads (lb/ft) f min roof live 8-10=-60, 10-11=-60, 12-17= of 20.0 psf on Concentrated Loads (lb)
T CHORD 16-17=-305/1360, 15-16=-651/4527, 13-15=-337/2578, 12-13=-266/2247	Provide adequate drainage to prevent wate This truss has been designed for a 10.0 psf	r ponding.
EBS 9-12=-2767/282, 4-16=-316/123, 5-16=-1582/149, 3-16=-338/2537, 5-15=-2288/460, 6-15=-249/1684, 6-14=-141/622, 7-14=-436/124, 8-14=-247/315, 8-13=-343/1774, 9-13=-95/436, 3-17=-1995/323	 chord live load nonconcurrent with any other this truss has been designed for a live load on the bottom chord in all areas where a red 3-06-00 tall by 2-00-00 wide will fit between chord and any other members. One H2.5A Simpson Strong-Tie connectors 	ad of 20.0psf ctangle the bottom
2-ply truss to be connected together with 10d	recommended to connect truss to bearing w UPLIFT at jt(s) 12 and 17. This connection i only and does not consider lateral forces	valls due to 023
(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.	only and does not consider lateral forces. 2) This truss is designed in accordance with th International Residential Code sections R5(R802.10.2 and referenced standard ANSI/T	ne 2018 02.11.1 and IPI 1.
ontinued on page 2		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckting of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		DRB GROUP - 69 FaNC	164200070		
24030128	A10	Roof Special Girder	1	2	Job Reference (optional)	164309070		

Vert: 3=-39 (F), 13=-398 (F), 19=-39 (F), 24=-16 (F), 25=-16 (F), 26=-233 (F), 27=-1252 (F), 28=-282 (F), 29=-366 (F)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:03 ID:tWO1iaOAKzY7sWbAv0sSqAyi_ws-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	B01		3	1	Job Reference (optional)	164309071

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:04 ID:AbnFcAGuguIXf_qFJwg5Q3yi_x0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-5-4	12-10-8
6-5-4	6-5-4

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:47.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.35 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 Cat. II; Ex zone and i 2-1-8 to 3 9-8-12 to exposed ; members Lumber D 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (4) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce Structural wood sh- except end vertical Rigid ceiling directl bracing. (size) 5= Mech Max Horiz 7=169 (L Max Uplift 5=-33 (L Max Grav 5=584 (L (lb) - Maximum Con Tension 1-2=0/39, 2-3=-579 2-7=-592/173, 4-5= 6-7=-226/357, 5-6= 3-6=0/252, 2-6=-10 ed roof live loads have n. CE 7-16; Vult=130mp mph; TCDL=6.0psf; E p B; Enclosed; MWFF C-C Exterior(2E) -0-1 -5-4, Exterior(2R) 3-5 12-8-12 zone; cantiler end vertical left and r and forces & MWFRS OL=1.60 plate grip DI CE 7-16; Pr=20.0 psf =1.15); Pf=20.0 psf (5); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b	pt* 7-2,5-4:2x4 SP Not eathing directly applie s. y applied or 10-0-0 oc hanical, 7=0-3-8 .C 11) C 15), 7=-52 (LC 14) .C 22), 7=649 (LC 21) mpression/Maximum 0/134, 3-4=-569/126, 528/126 98/240 07/249, 4-6=-57/220 e been considered for h (3-second gust) 3CDL=6.0psf; h=25ft; RS (envelope) exterior (Net to 9-8-12, Exterior(ver left and right right exposed;C-C for S for reactions shown; OL=1.60 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 even considered for th	5) This truss load of 12 overhang; o.2 6) This truss chord live ad, 7) * This trus on the bol 3-06-00 ta chord and 8) Refer to g 9) Provide m bearing pl 5. 10) One H2.5 recommet UPLIFT a does not o 11) This truss Internation R802.10.2 LOAD CASE(r 1) 2E)	has been designed f o. 0 psf or 1.00 times f is non-concurrent with has been designed tom chord in all area II by 2-00-00 wide wi any other members. irder(s) for truss to tr echanical connection ate capable of withst A Simpson Strong-Ti nded to connect truss jt(s) 7. This connect is designed in accor nal Residential Code e and referenced star S) Standard	for great for great lat roof I for a 10. with any d for a liv s where ill fit betv uss conne s to bear cion is fo s. dance w sections ndard AN	er of min roof pad of 20.0 ps ve loads. D psf bottom other live load e load of 20.0 a rectangle veen the botto mections. ers) of truss to 3 lb uplift at jo ctors ing walls due r uplift only an ith the 2018 s R502.11.1 at JSI/TPI 1.	live sf on ds.)psf pm o pint to nd nd				SEA 0235	L 94 MILL 19,2024
WARN Design V	NING - Verify design parame valid for use only with MiTel	ters and READ NOTES ON k® connectors. This design	THIS AND INCLUDED MITEI is based only upon paramet	KREFERENCE PAGE MII- ers shown, and is for an in	7473 rev. 1 Idividual bi	/2/2023 BEFORE	USE. t, not				ENGINEER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	B02		1	1	Job Reference (optional)	164309072

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:04 ID:AbnFcAGuguIXf_qFJwg5Q3yi_x0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-3-4,0-1-8], [3:0-3-4,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-MSH	0.93 0.35 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR BOT CHOR REACTION FORCES TOP CHOR BOT CHOR WEBS NOTES 1) Unbalai this des 2) Wind: A Vasd=1 Cat. II; zone ar (2R) 3- zone; c and rigi MWFR3 grip DC 3) TCLL: A Plate D DOL=1 Cs=1.0	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she. 1-7-8 oc purlins, ex D Rigid ceiling directly bracing. S (size) 4= Mecha Max Horiz 6=-156 (L Max Uplift 4=-32 (LC Max Grav 4=585 (LC (Ib) - Maximum Com Tension D 1-2=-571/128, 2-3=-3-4=-529/126 D 5-6=-182/284, 4-5=-2-5=0/249, 1-5=-55/2 nced roof live loads have ign. SCE 7-16; Vult=130mph (TCDL=6.0psf; Bt Exp B; Enclosed; MWFR; bd C-C Exterior(2E) 0-1-1 1-12 to 9-8-12, Exterior(2) antilever left and right exp te exposed; C-C for memb S for reactions shown; Lu L=1.60 NSCE 7-16; Pr=20.0 psf (L 15); Is=1.0; Rough Cat B D; Ct=1.10 	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 6= Mechanica C 12) : 15), 6=-32 (LC 14) C 21), 6=585 (LC 20) pression/Maximum 571/128, 1-6=-529/1 97/238 232, 3-5=-58/232 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio 2 to 3-1-12, Exterior E) 9-8-12 to 12-8-12 bosed ; end vertical I ers and forces & mber DOL=1.60 pla troof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	5) 1 6) * 6) * 7 8) F 8) F 9) 1 9) 1 1 9) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	This truss ha chord live loa This truss h on the botton 3-06-00 tall b chord and an Refer to gird Provide mech bearing plate 6 and 32 lb u This truss is a international R802.10.2 ar D CASE(S)	s been designed fo d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta plift at joint 4. designed in accord Residential Code nd referenced stan Standard	or a 10.0 with any for a liv s where Il fit betw uss conr (by oth anding 3 dance w sections dard AN	D psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss 1 i2 lb uplift at j ith the 2018 i R502.11.1 <i>a</i> ISI/TPI 1.	ids. Opsf om ioint and				SEA 0235	L 94
 Unbala design. 	Unbalanced snow loads have been considered for this design.												

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	B03		1	1	Job Reference (optional)	164309073

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:04 ID:iO5fzScJHS_SK?4CLuE0Pvyhzqs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.08 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%	
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BTACING 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 10=12-10-8, 11=12-10-8, 14=12-10-8, 14=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-8, 16=12-10-2, 12=20, 1C 14), 15=-125 (LC 14), 11=-122 (LC 15), 12=-63 (LC 14), 15=-125 (LC 14), 16=-66 (LC 15), 14=270 (LC 24), 11=226 (LC 25), 12=270 (LC 22), 13=200 (LC 15), 14=270 (LC 21), 15=230 (LC 28), 16=184 (LC 25)				2 d or 3 (4), (5), (5), (5), (6), (28), (6), (1), (1), (1), (1), (1), (1), (1), (1	 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-5-4, Exterior(2R) 3-5-4 to 9-5-4, Interior (1) 9-5-4 to 10-9-0, Exterior(2E) 10-9-0 to 13-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overbanos non-concurrent with other live loads 							ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.	t		
FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 2-16=-14i 3-4=-96/1 6-7=-95/1 8-10=-14 15-16=-8:	imum Com 8/109, 1-2= 52, 4-5=-1 53, 7-8=-1 1/101 2/89, 14-15	pression/Maximum =0/39, 2-3=-113/105, 42/238, 5-6=-142/238 03/93, 8-9=0/39, 5=-82/89, 13-14=-82/8	Maximum overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom								1111	OBTH CA	ROLLA	
12-13=-82/89, 11-12=-82/89, 10-11=-82/89 WEBS 5-13=-232/79, 4-14=-232/111, 3-15=-167/133, 6-12=-232/108, 7-11=-167/132 NOTES 1) Unbalanced roof live loads have been considered for this design.				89 [°] 1. 1	 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16, 10, 14, 15, 12, and 11. This connection is for uplift only and does not consider lateral forces. 								EER.ER		

- Unbalanced roof live loads have been considered for 1) this design.
 - connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	C01	Jack-Closed Girder	1	2	Job Reference (optional)	164309074

3-9-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:04 ID:2M1mSXKPk7oz8b81YII2avyi_wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-7-4

Page: 1

Scale = 1:47.7

Plate Offsets (X, Y): [1:0-3-12,0-0-4]

-								-	-				A			
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.19	Vert(LL)	-0.01	5-6	>999	240	MT20	244/190			
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	-0.02	5-6	>999	180					
TCDL	10.0	Rep Stress Incr	NO		WB	0.24	Horz(CT)	0.00	5	n/a	n/a					
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MP											
BCDL	10.0											Weight: 107 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3		3)	Wind: ASCE Vasd=103mp Cat. II; Exp B zone; cantile	7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR ver left and right e	n (3-sed CDL=6 S (env posed	cond gust) .0psf; h=25ft; elope) exterio ; end vertical	r left	Co	Vert: 1-4 oncentra Vert: 6=	l=-60, ted Lo: -564 (l	5-7=-20 ads (lb) 3), 13=-564 (B), 1	14=-565 (B)			
SLIDER	Left 2x6 SP No.2 -	1-6-0		and right exp	osed; Lumber DOL	.=1.60	plate grip									
BRACING TOP CHORD	Structural wood sh 6-0-0 oc purlins, e	eathing directly applie xcept end verticals.	d or 4)	DOL=1.60 TCLL: ASCE Plate DOL=1	7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L	(roof LL um DC	.: Lum DOL=1 DL=1.15 Plate	1.15								
BOT CHORD	Rigid ceiling direct bracing.	y applied or 10-0-0 oc	;	Cs=1.00; Ct=	:1.10	5, Fully	Exp., Ce-0.8	,								
REACTIONS	(size) 1=0-3-8. Max Horiz 1=193 (I Max Uplift 1=-74 (L Max Grav 1=1207	5= Mechanical .C 11) C 12), 5=-138 (LC 12) (LC 18), 5=1272 (LC 1	 Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) This true between the sum of the live loads. 													
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	.,	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom												
TOP CHORD	1-3=-1225/86, 3-4=	-131/76, 4-5=-157/53		chord and an	y other members.											
BOT CHORD	1-6=-157/988, 5-6=	-135/988	8)	Refer to girde	er(s) for truss to trus	ss conr	nections.									
WEBS	3-6=-62/1175, 3-5=	-1300/194	9)	Provide mech	nanical connection	(by oth	ers) of truss t	0								
 WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided t unless oth 	3-6=-62/11/5, 3-5= s to be connected tog ") nails as follows: is connected as follow ords connected as follow ords connected as follows: 2x4 are considered equall toted as follows: 2x4 are considered equall toted as front (F) or b section. Ply to ply con o distribute only load terwise indicated.	-1300/194 ether with 10d /s: 2x4 - 1 row at 0-9-0 llows: 2x6 - 2 rows - 1 row at 0-9-0 oc. / applied to all plies, ack (B) face in the LO inections have been s noted as (F) or (B),	9) 10) 0 AD 12) 13) LO 1)	Provide mect bearing plate joint 5. One H2.5A S recommende UPLIFT at jt(does not con This truss is « International R802.10.2 ar Use Simpsor Truss, Single oc max. start connect truss Fill all nail ho AD CASE(S) Deat + Snc Increase=1. Uniform Loz	anical connection capable of withstal impson Strong-Tie d to connect truss t s) 1. This connectic sider lateral forces. Jesigned in accord: Residential Code s d referenced stance strong-Tie LUS26 Ply Girder) or equi ing at 1-8-0 from th c(es) to back face o les where hanger is Standard w (balanced): Lum 15 dds (lb/ft)	(by oth nding 1 conne- to bear on is for ance w sections dard AN (4-10c ivalent be left e f bottor s in cor ber Inc	ers) of truss to 38 lb uplift at ctors uplift only an ith the 2018 i R502.11.1 a ISI/TPI 1. I Girder, 3-10 spaced at 2-0 nd to 5-8-0 to n chord. itact with luml rease=1.15, F	o to d nd d -0 ber. Plate		Thursday.	and a second second	SEA 0235	L 94			

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC			
24030128	C02	Jack-Closed	1	1	Job Reference (optional)	164309075		

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:ECfUBUFe9H2pQggtCVedLeyi_x2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-7-4

Scale	= '	1·42 F	ì

N

Loading FCLL (roof) Snow (Pf) FCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.77 0.71 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.00	(loc) 4-5 4-5 4	l/defl >512 >256 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
UMBER OP CHORD 30T CHORD VEBS BRACING OP CHORD BOT CHORD FORCES FOP CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=212 (LC Max Uplift 4=-72 (LC Max Grav 4=418 (LC (lb) - Maximum Com Tension 2-5=-345/156, 1-2=0 3-4=-345/123 4-5=-208/258 2-4=-184/163	athing directly applie cept end verticals. applied or 10-0-0 or nical, 5=0-3-8 C 11) : 14), 5=-24 (LC 14) C 21), 5=418 (LC 21 pression/Maximum //34, 2-3=-170/186,	5) 6) c 8) 9) 10) 11	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Refer to gird Provide mec bearing plate 4. 0) One H2.5A S recommende UPLIFT at jt(does not cor) This truss is International R802.10.2 ar	is been designed as been designe n chord in all area by 2-00-00 wide w y other members are assumed to 25 psi. er(s) for truss to th hanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 5. This connect isider lateral force designed in accoo Residential Code nd referenced sta Standard	for a 10.0 with any d for a live as where ill fit betw e User D russ conr n (by oth tanding 7 ie conned s to bear tion is for is. rdance w e sections ndard AN) psf bottom other live load e load of 20. a rectangle veen the bott efined crushi nections. ers) of truss i 2 lb uplift at j ctors ng walls due uplift only at stors 1.1.1 a R502.11.1 a ISI/TPI 1.	ads. Opsf om ng ioint to nd						
NOTES) Wind: ASC Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B0	(3-second gust) CDL=6.0psf; h=25ft;												

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-2-9, Exterior(2R) 3-2-9 to 7-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	C03		1	1	Job Reference (optional)	164309076

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:ECfUBUFe9H2pQggtCVedLeyi_x2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-1-4	7-7-4
5-1-4	2-6-0

Scale = 1:37.7 Plate Offsets (X, Y): [3:0-4-4.0-2-4]

	(,, ,): [e:e : :,e = :]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.77 0.20 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10; Cat. II; Ex zone and 2.1-8 to 5 cantilever right expo for reactio DOL=1.6(3) TCLL: AS Plate DOI DOL=1.10;	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=160 (LC Max Uplift 5=-62 (LC Max Grav 5=302 (LC (lb) - Maximum Com Tension 1-2=0/53, 2-3=-273/, 4-5=-102/36, 2-7=-4 6-7=-157/190, 5-6=- 3-6=0/185, 3-5=-283 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf p B; Enclosed; MWFR: C-C Exterior(2E) -0-10 3-0, Exterior(2E) 5-3-C 1eft and right exposed sed;C-C for members : ins shown; Lumber DO 0 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Reugh Cat E	athing directly applie cept end verticals, ar applied or 10-0-0 oc 13, 7=0-3-8 C 13) C 11), 7=-44 (LC 14) C 35), 7=493 (LC 36) pression/Maximum 48, 3-4=-54/79, 52/149 51/179 3/59, 2-6=-8/165 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior La to 2-1-8, Exterior(10 7-5-8 zone; cend vertical left and and forces & MWFR: L=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	4) 5) nd or 6) nd 7) 5 8) 9) 10 11 12 12 13 12 12 13 12 13 13 13 13 13 13 13 13 14 13 13 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate 5. One H2.5A S recommende UPLIFT at jt(does not cor) This truss is International R802.10.2 a) Graphical pu or the orienta bottom chord DAD CASE(S)	snow loads have as been designed psf or 1.00 times on-concurrent wit yuate drainage to as been designed ad nonconcurrent has been designed y 2-00-00 wide w ny other members er(s) for truss to t hanical connectio e capable of withs Simpson Strong-trus sider lateral force designed in accor Residential Code nd referenced sta riln representation ation of the purlin t. Standard	been cor for great flat roof k h other lin prevent' for a 10.1 with any d for a 10.1 with any d for a liv as where vill fit betw s. russ common (by oth tanding 6 Tie conne is to bear rition is for s. rdance w e sections indard AN n does n along the	esidered for t er of min roo oad of 20.0 p e loads. vater pondin 0 psf bottom other live loa e load of 20.0 psf bottom other live loa e load of 20.0 a rectangle veet load of 20.0 a rectangle veet he bott nections. ers) of truss 2 lb uplift at uplift only an the 2018 R502.11.1 a ISI/TPI 1. ot depict the e top and/or	his f live sf on g. ads. Opsf com to joint to and size				SEA 0235	ROLL B4	annannanna,

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

T. MILIN

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC			
24030128	C04		1	1	Job Reference (optional)	164309077		

Special

2-9-0

2-9-0

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:WYb8ftK1VRwqmljD6TGH76yi_wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

7-7-4

4-10-4

NAILED

Page: 1

2-7-4 7-7-4 2-7-4 L 5-0-0

Scale = 1:35.7

Plate Offsets (X, Y): [3:0-4-4,0-2-4]

				-		-											
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	:	20.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)	-0.02	5-6	>999	240	MT20	244/190			
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.04	5-6	>999	180					
TCDL		10.0	Rep Stress Incr	NO		WB	0.16	Horz(CT)	0.00	5	n/a	n/a					
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MP											
BCDL		10.0										Weight: 44 lb	FT = 20%				
LUMBER				5) This truss ha	as been designed	for great	er of min root	f live		Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20						
TOP CHORD	2x4 SP No.2				load of 12.0	psf or 1.00 times	flat roof l	oad of 20.0 p	sf on	C	oncentra	ted Lo	ads (lb)				
BOT CHORD	2x4 SP No.2				overhangs n	on-concurrent wit	h other li	ve loads.			Vert: 3=	-19 (F), 6=0 (F), 8=-9 (F	F), 9=-16 (F), 10=0			
WEBS	2x4 SP No.3			e) Provide adeo	quate drainage to	prevent	water ponding	g.		(F), 11=	0 (F)					
BRACING				7) This truss ha	is been designed	for a 10.	0 psf bottom									
TOP CHORD	Structural wo	ood shea	athing directly applie	dor	chord live loa	ad nonconcurrent	with any	other live loa	ads.								
	6-0-0 oc purli	ins, exc	cept end verticals, ar	nd ک) ^ I his truss r	has been designe	d for a liv	e load of 20.	Upst								
	2-0-0 oc purli	ins: 3-4				n chord in all area	ill fit botu	a reclangle	om								
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	;	chord and ar	by 2-00-00 wide w		veen the bott	om								
	bracing.			ç) Refer to gird	er(s) for truss to t	,. russ conr	nections.									
REACTIONS	(size) 5=	Mecha	nical, 7=0-3-8	1	0) Provide mec	hanical connectio	n (by oth	ers) of truss	to								
	Max Horiz 7=	100 (LC	;9) 	、 、	bearing plate	e capable of withs	tanding 1	59 lb uplift a	t								
	Max Uplift 5=	-159 (L	C 9), 7=-123 (LC 12))	joint 5.	•	Ũ										
	Max Grav 5=	-386 (LC	33), 7=448 (LC 34)) 1	1) One H2.5A S	Simpson Strong-T	ïe conne	ctors									
FORCES	(lb) - Maximu	ım Com	pression/Maximum		recommended to connect truss to bearing walls due to												
			100 0 4- 00/05		UPLIFT at jt(s) 7. This connec	tion is fo	r uplift only a									
TOP CHORD	1-2=0/00, 2-0	5=-342/ 2_7=_1'	120, 3-4=-32/23,		does not con	isider lateral force	es.	the sheet 0040									
BOT CHORD	6-7=-97/61 5	5-6=-13	5/266	1	 I his truss is 	designed in accol	rdance w	Ith the 2018	and								
WEBS	3-6=0/142 3-	-5=-292	/131 2-6=-100/291		R802 10 2 a	nd referenced sta	ndard AN	ISI/TPI 1	anu								
NOTES	0 0 0, 1 12, 0	0 202		1	 Graphical pu 	Ind representation	n does n	ot depict the	size					11.			
1) Unbalance	ed roof live load	te havo	heen considered for		or the orienta	ation of the purlin	along the	top and/or	0.20					1111			
this design	n	13 Have	been considered for		bottom chore	ı.	5	•					THUA	ROUT			
2) Wind: AS(CE 7-16: Vult=1	130mph	(3-second gust)	1	4) "NAILED" ind	dicates 3-10d (0.1	48"x3") d	or 3-12d					ON FECO	in state			
Vasd=103	Smph; TCDL=6.	Opsf; BO	CDL=6.0psf; h=25ft;		(0.148"x3.25	i") toe-nails per NI	DS guidli	nes.				22	COFFIL	Mr. B.			
Cat. II; Ex	p B; Enclosed;	MWFR	S (envelope) exterior	r 1	Hanger(s) or	other connection	device(s) shall be				->		Can-			
zone; can	tilever left and r	right exp	osed ; end vertical le	eft	provided suf	ficient to support of	concentra	ated load(s) 1	42				· •				
and right e	exposed; Lumbe	er DOL=	=1.60 plate grip		Ib down and	97 lb up at 2-9-0	on top c	hord, and 31	lb		=		SEA	L 1 1			
DOL=1.60)				down and 45 w Up at 2-9-0 on bottom chord. The design/selection of such connection device(s) is the								0225	04 : =			
3) TCLL: AS	CE 7-16; Pr=20).0 pst (i	roof LL: Lum DOL=1	.15										94 : :			
Plate DOL	_=1.15); PT=20.0	U pst (Li	um DOL=1.15 Plate	. 1	6) In the LOAD	nnlied to the					1 S - S						
Cs=1 00	Ct=1 10	jii Gat B	, Fully Exp., Ce=0.9;	,	of the truss a	are noted as front	(F) or ba	ck (B).				-	N. 6.	ain S			
 4) Unbalance 	ed snow loads h	have he	en considered for thi	is L	OAD CASE(S)	Standard	()	(-).				11	GIN	EFICAS			
design.				1) Dead + Sno	ow (balanced): Lu	mber Inc	rease=1.15.	Plate			11	Mr.	an Levis			
				Increase=1.15							MILIN						

- 4) Unbalanced snow loads have been considered for this design.
 - Increase=1.15 Uniform Loads (lb/ft)

Martin

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	D01	Monopitch	11	1	Job Reference (optional)	164309078

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:cgtnZkfsbsrp2k1B4pfmO?z8?mZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.5

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	0.09	8-11	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.09	8-11	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.02	7	n/a	n/a		
BCLL		0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 43 lb	FT = 20%
LUMBER				5)	This truss ha	s been designed fo	or a 10.) psf bottom						
TOP CHORD	2x4 SP No.2			,	chord live loa	ad nonconcurrent v	vith any	other live loa	ds.					
BOT CHORD	2x4 SP No.2			6)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
WEBS	2x4 SP No.3				on the bottor	n chord in all areas	s where	a rectangle						
BRACING					3-06-00 tall b	y 2-00-00 wide wil	ll fit betv	veen the botte	om					
TOP CHORD	Structural wo	ood shea	athing directly applie	d or	chord and ar	y other members.								
	5-3-11 oc pu	rlins. ex	cept end verticals.	7)	Refer to gird	er(s) for truss to tru	uss conr	nections.						
BOT CHORD	Rigid ceiling bracing.	directly	applied or 5-6-4 oc	8)	Provide mech bearing plate	hanical connection capable of withsta	i (by oth anding 1	ers) of truss t 54 lb uplift at	0					
REACTIONS	(size) 2=	-0-3-8.7	′= Mechanical		joint 7.									
	Max Horiz 2=	101 (LC	2 13)	9)	One H2.5A S	Simpson Strong-Tie	e conne	ctors	4-					
	Max Uplift 2=	-175 (L	C 10). 7=-154 (LC 10))	recommende	ed to connect truss	to bear	ing walls due	to					
	Max Grav 2=	513 (LC	21), 7=532 (LC 21)	- /	UPLIFI at jt(s) 2. This connecti sider lateral forces	ion is to	r upliπ only ar	ומ					
FORCES	(lb) - Maximi	ım Com	pression/Maximum	10) This trues is		hanco w	ith the 2018						
1 011020	Tension		proceden/maximam	10	International	Residential Code	sections	R502 11 1 a	nd					
TOP CHORD	1-2=0/13. 2-3	3=-1063	/1023. 3-4=-90/66.		R802 10 2 a	nd referenced stan	dard AN	JSI/TPI 1	ind					
	4-5=-6/0, 4-7	-178/8	8	10		Standard	aara / a							
BOT CHORD	2-8=-998/10	11, 7-8=	-998/1011, 6-7=0/0		AD CASE(0)	Standard								
WEBS	3-8=-313/212	2, 3-7=-*	1021/1049											
NOTES														
1) Wind: AS	CE 7-16; Vult=1	130mph	(3-second gust)											
Vasd=103	3mph; TCDL=6.	0psf; B0	CDL=6.0psf; h=25ft;											111.
Cat. II; Ex	p B; Enclosed;	MWFR	S (envelope) exterior	•									A LINE	DUL
zone and	C-C Exterior(28	E) -0-10-	-8 to 2-1-8, Interior (7	1)									THUA	HOI III
2-1-8 to 7	-0-8, Exterior(2	E) 7-0-8	to 10-0-8 zone;									5	02:200	in Allen
cantilever	left and right e	xposed	; end vertical left and	1									-01-	NE SI
right expo	sed; porch left	and righ	it exposed;C-C for									10	- 11	malle
members	and forces & M		for reactions snown;											
	OL= 1.60 plate	grip DO		15							=		SEA	L 1 1
2) TOLL: AS	-1 15): PI=20	0 psi (i 0 psf (l i	um DOI =1 15 Plata	.15							-	:	0005	o4 : =
	5): Is=1 0: Roug	o por (Ll ih Cat B	: Fully Eyn : Ce=0.9								=	:	0235	94 : :
Cs=1.00	Ct=1 10	, Oat D	, i any Exp., 00-0.3,								-			1 2
3) Unbalanc	ed snow loads l	have be	en considered for thi	is								-	·	al 3
design.				-								21	NGINI	EENAN
4) This truss	has been desig	gned for	greater of min roof I	ive								11,	Un	14.5
load of 12	2.0 psf or 1.00 ti	- mes flat	roof load of 20.0 pst	fon									IN R I	MILLIN

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	D02	Monopitch	2	1	Job Reference (optional)	164309079

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Mar 18 12:32:05 ID:Ujejzww1fJUr3z8DokXhkRz8?mE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.5

-

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.43	Vert(LL)	0.11	12-16	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.12	12-16	>958	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.01	9	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 46 lb	FT = 20%
LUMBER				3) TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP No.2	2			Plate DOL=1	.15); Pf=20.0 psf (L	um DC	DL=1.15 Plate	•					
BOT CHORD	2x4 SP No.2	2			DOL=1.15);	s=1.0; Rough Cat I	B; Fully	Exp.; Ce=0.9	€;					
WEBS	2x4 SP No.3	3			Cs=1.00; Ct=	=1.10								
OTHERS	2x4 SP No.3	3		4) Unbalanced	snow loads have be	een cor	nsidered for th	nis					
BRACING				_	design.									
TOP CHORD	Structural w	ood shea	athing directly applie	d or 5) This truss ha load of 12.0	s been designed to osf or 1.00 times fla	or great at roof l	er of min roof bad of 20.0 p	live sf on					
BOT CHORD	Rigid ceiling	directly	applied or 5-7-7 oc	F	overhangs n	on-concurrent with	other li	ve loads.						
	bracing.			7) This truss ha	s been designed fo	ora 10 i) psf bottom						
REACTIONS	(size) 2	=0-3-8, 9	= Mechanical		chord live loa	ad nonconcurrent w	ith any	other live loa	ds.					
	Max Horiz 2	=101 (LC	; 13) 2 40) - 454 (10 4)	. ε) * This truss h	as been designed	for a liv	e load of 20.0	Opsf					
	Max Uplift 2	=-1/5 (L	C 10), 9=-154 (LC 10	J)	on the bottor	n chord in all areas	where	a rectangle						
	Max Grav 2	=513 (LC	21), 9=532 (LC 21)		3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om					
FORCES	(lb) - Maxim	um Com	pression/Maximum		chord and ar	y other members.								
		2- 076/	000 0 4- 046/000	ç) Refer to gird	er(s) for truss to tru	ss conr	nections.						
TOP CHORD	1-2=0/13, 2-	5-613	929, 3-4=-940/932, 154 6-7=-6/0	1	 Provide mec 	nanical connection	(by oth	ers) of truss t	0					
	6-9=-135/95	3-043/ 5	54, 0-70/0,		icint 0	capable of withsta	naing	54 ib upilit at						
BOT CHORD	2-12=-909/9	, 925. 11-1	2=-909/925.	1	1) One H2 54 S	Simpson Strong-Tie	conne	ctors						
	10-11=-909/	/925. 9-1	0=-909/925, 8-9=0/0) '	recommende	d to connect truss	to hear	ing walls due	to					
WEBS	10-13=-118/	/44, 4-11	=-337/262, 3-12=-81	/50,	UPLIFT at it(s) 2. This connection	on is fo	uplift only ar	nd					
	4-13=-990/1	016, 9-1	3=-951/978, 5-13=-6	69/52	does not con	sider lateral forces.							minin	11111
NOTES				1	2) This truss is	designed in accord	ance w	ith the 2018					"TH CA	Ro."
1) Wind: AS	CE 7-16; Vult=	130mph	(3-second gust)		International	Residential Code s	ections	s R502.11.1 a	ind			5	R	Link
Vasd=103	8mph; TCDL=6	.0psf; B0	CDL=6.0psf; h=25ft;		R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.				SA	FER	ani Mari
Cat. II; Ex	p B; Enclosed	; MWFR	S (envelope) exterior	· L	OAD CASE(S)	Standard						57		Milling .
zone and	C-C Exterior(2	2E) -0-10	-8 to 2-1-8, Interior (1)							-		2	S
2-1-8 to 7	-0-8, Exterior(2	2E) 7-0-8	to 10-0-8 zone;	_									SEA	1 1 1
cantilever	left and right e	exposed	; end vertical left and	1							=	:	JLA	5 : E
right expo	sed; porch left	and righ	t exposed;C-C for								=		0235	94 : =
members	and forces & N		for reactions snown;								-			1 3
2) Truce der	OL= 1.00 plate	i yrip DO	L-1.00	20								1	1	1 I S
	studs exposed	to wind	(normal to the face)	55								2	X SNOW	Etias
see Stand	lard Industry G	able End	Details as applicab	le.								1	OA	1. 6.8
or consult	qualified build	lina desic	mer as per ANSI/TP	I 1.								1	VY DI	ALLEN

- zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-0-8, Exterior(2E) 7-0-8 to 10-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

T. MILLIN March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F01	Floor	14	1	Job Reference (optional)	164309080

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:kw0_lcw3LxOch2qP7ECb61yyC0k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.83 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.51 -0.71 0.11	(loc) 15-16 15-16 13	l/defl >598 >429 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 131 lb	GRIP 187/143 244/190 ET = 20%F 11%F
DODL	5.0	Code	11(02010/11/12014	Matrix-MOTT							Weight. 101 lb	TT = 20 /01 , TT /0L
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)											
TOP CHORD	Structural wood she	athing directly applie	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	2									
REACTIONS	(size) 13=0-3-8, Max Grav 13=925 (L	19=0-3-8 _C 1), 19=925 (LC 1))									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	1-19=-69/0, 12-13=- 2-3=-2815/0, 3-4=-2 5-6=-4147/0, 6-7=-4 9-10=-2815/0, 10-11	69/0, 1-2=-3/0, 815/0, 4-5=-4147/0, 153/0, 7-9=-4153/0, 1-2815/0, 11-123/	/0									
BOT CHORD	18-19=0/1609, 16-1	8=0/3648, 15-16=0/4	1284,									
WEBS	14-15=0/3646, 13-1. 11-13=-1813/0, 2-19 2-18=0/1369, 10-14 9-14=-943/0, 4-18=- 4-16=0/567, 7-15=-1 6-15=-148/0, 6-16=-	4=0/1609)=-1813/0, 11-14=0/ [,] =-163/0, 3-18=-162/0 945/0, 9-15=0/576, I71/0, 5-16=-150/0, 162/0	1369,),									Politic
NOTES										1	BIL	nolity.
 All plates a All plates a This truss Internation R802.10.2 Recomme 10-00-00 c (0.131" X 3 at their out 	are MT20 plates unless are 1.5x3 MT20 unless is designed in accorda al Residential Code s 2 and referenced stand md 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks ter ends or restrained S) Standard	s otherwise indicated ance with the 2018 ections R502.11.1 at lard ANSI/TPI 1. In edge, spaced at th truss with 3-10d to be attached to with by other means.	d. I. alls							AN A	SEA 0235 NGINI	L 94 MILLER MILLER

R. Million R.

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F02	Floor Girder	1	1	Job Reference (optional)	164309081

2-1-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-6-0

0-1-8

Н

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [17:0-3-0,Edge], [21:0-1-8,0-0-8], [22:0-1-8,0-0-8]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.72 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.67 0.12	(loc) 16-17 16-17 14	l/defl >635 >455 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS Weight: 189 lb	GRIP 244/190 187/143 FT = 20%F, 11%I	E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) *E: 2400F 2.0E(flat) 2x4 SP No.1(flat) *E: 2400F 2.0E(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shee	xcept* 1-5,9-1:2x4 S xcept* 18-14:2x4 SF athing directly applie	5) 5P 6) 7) 1) ed or	Use Simpsor Truss) or equ connect truss Fill all nail ho In the LOAD of the truss a DAD CASE(S) Dead + Flor Plate Increa	a Strong-Tie THA4 ivalent at 4-0-12 s(es) to front face les where hanger CASE(S) section, re noted as front (Standard or Live (balanced) ase=1.00	22 (6-16 from the of top ch is in con loads ap (F) or ba : Lumber	d Girder, 6-1 left end to ord. ttact with lum oplied to the f ck (B).	0d ber. face 00,						
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc	;	Uniform Loa Vert: 14-2 Concentrate	ads (lb/ft) 20=-7, 1-13=-67 ed Loads (lb)									
REACTIONS	(size) 14=0-3-8, Max Grav 14=1116 (20=0-3-8 (LC 1), 20=1964 (LC	; 1)	Vert: 23=	-1231 (F)									
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-20=0/6, 13-14=-76 3-4=-6325/0, 4-6=-64 7-8=-5850/0, 8-10=-4 11-12=-3698/0, 12-1	5/0, 1-2=0/0, 2-3=-63 844/0, 6-7=-6855/0, 5850/0, 10-11=-3698 3=-4/0	825/0, 8/0,											
BOT CHORD	19-20=0/4091, 17-19 15-16=0/4920, 14-19	9=0/6605, 16-17=0/6 5=0/2054	6476,											
WEBS	12-14=-2292/0, 12-1 10-15=-1373/0, 10-1 6-17=-215/0, 7-16=- 3-19=-928/0, 4-19=- 7-17=0/437, 2-20=-4	5=0/1848, 11-15=-1 6=0/1045, 8-16=-20 703/0, 2-19=0/2486, 312/0, 4-17=0/267, 531/0	79/0, 7/0,									OB OFESS	ROLIN	
1) All plates	are MT20 plates unless	s otherwise indicated	d.							E		SFA		1

- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4)
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F03	Floor	3	1	Job Reference (optional)	164309082

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:05 ID:V0ZtZzRPSrhfkV2Ta3zSptyyC04-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.6

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge]

- ((, , , , , , , , , , , , , , , , , , ,	1.1										
Loading	(nsf)	Spacing	1-4-0	CSI		DEEL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCU	40.0	Plate Grin DOI	1 00	TC	0.36	Vert(LL)	-0 27	14-15	>936	360	MT20HS	187/143
TCDI	10.0	Lumber DOI	1.00	BC	0.81	Vert(CT)	-0.37	13-14	>678	240	MT20	244/190
BCU	0.0	Ren Stress Incr	YES	WB	0.50	Horz(CT)	0.07	10 11	n/a	n/a	11120	211/100
BCDI	5.0	Code	IRC2018/TPI2014	Matrix-MSH	0.00	11012(01)	0.01	12	n/a	n/a	Weight [,] 111 lb	FT = 20%F 11%F
	0.0	0000		Manx Morr							Wolght. TTT lb	
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	C									
	bracing.											
REACTIONS	(size) 12=0-3-8,	, 18= Mechanical										
	Max Grav 12=770 (I	LC 1), 18=775 (LC 1)									
FORCES	(lb) - Maximum Com	pression/Maximum										
		60/0 1 2-0/0										
TOP CHORD	2-3=-2235/0 3-4=-2	235/0 4-5=-2992/0										
	5-6=-2992/0 6-7=-2	200/0, 4-0-2002/0 , 9992/0 7-9=-2235/0										
	9-10=-2235/0, 10-11	1=-3/0										
BOT CHORD	17-18=0/1316, 15-1	7=0/2780. 14-15=0/2	2992.									
	13-14=0/2780, 12-1	3=0/1315	,									
WEBS	10-12=-1481/0, 2-18	3=-1486/0, 10-13=0/	1044,									
	2-17=0/1043, 9-13=	-163/0, 3-17=-162/0	,									11.
	7-13=-618/0, 4-17=-	618/0, 7-14=-80/425	5,								UNIL CA	
	4-15=-80/425, 5-15=	=-115/0, 6-14=-115/0)								TH UA	HOIL
NOTES										5	000000	in All
1) Unbalance	ed floor live loads have	e been considered fo	or							3×	OF C	20.17
this design	n. Ara MT20 miatan umian	e ethemulae indicate.	ام						-	- /	and the second	Them -
 All plates a Defente a 	are MT20 plates unles	s otherwise indicate	u.						-			1 1 1
 A) This truck 	is designed in accord	anco with the 2018							=	:	SEA	
4) Internation	al Residential Code s	ections R502 11 1 a	nd						=		02350	A : =
R802 10 2	and referenced stand	ard ANSI/TPI 1	ild ild						-		0233	
5) Recomme	end 2x6 strongbacks, o	on edge, spaced at									1 .	1 E -
10-00-00	oc and fastened to eac	ch truss with 3-10d								1	S.En.	Rici
(0.131" X	3") nails. Strongbacks	s to be attached to w	alls							21	GINE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
at their ou	ter ends or restrained	by other means.								1	WV -	all bener
6) CAUTION	l, Do not erect truss ba	ackwards.									11, R. N	MILLIN
LOAD CASE	S) Standard										· · · · · · · · · · · · · · · · · · ·	ma
											March	19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F04	Floor	6	1	Job Reference (optional)	164309083

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:06 ID:szMlchVXGNJxqGwRNcYdWxyyC0?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.1

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.42 0.83 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.39 0.07	(loc) 14-15 15-17 12	l/defl >901 >654 n/a	L/d 360 240 n/a	PLATES MT20HS MT20	GRIP 187/143 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		(-)					Weight: 112 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)											
TOP CHORD	Structural wood she	athing directly applie	ed or									
BOT CHORD	6-0-0 oc purlins, exc Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc										
REACTIONS	(size) 12=0-3-8,	18=0-3-8	N									
FORCES	Max Grav 12=781 (L (lb) - Maximum Com Tension	.C 1), 18=781 (LC 1 pression/Maximum)									
TOP CHORD	1-18=-69/0, 11-12=-(2-3=-2276/0, 3-4=-22 5-6=-3069/0, 6-7=-3(9-10=-2276/0, 10-11	69/0, 1-2=-3/0, 276/0, 4-5=-3069/0, 069/0, 7-9=-2276/0, =-3/0										
BOT CHORD	17-18=0/1336, 15-17 13-14=0/2840, 12-13	7=0/2840, 14-15=0/3 3=0/1336	3069,									
WEBS	10-12=-1504/0, 2-18 2-17=0/1067, 9-13=- 7-13=-640/0, 4-17=-(4-15=-71/459, 5-15=	=-1504/0, 10-13=0/ 162/0, 3-17=-162/0, 640/0, 7-14=-71/459 -136/0, 6-14=-136/0	1067,),								TH CA	BO
NOTES										S.	R	in Links
 Unbalance this design All plates a All plates a All plates a This truss i Internation. R802.10.2 Recommer 10-00-00.0 (0.131" × 3 at their out LOAD CASE(S) 	d floor live loads have ire MT20 plates unless ire 1.5x3 MT20 unless is designed in accorda al Residential Code se and referenced stand ind 2x6 strongbacks, oi c and fastened to eac er ends or restrained to 5) Standard	been considered for s otherwise indicated otherwise indicated ince with the 2018 sections R502.11.1 at ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to way oy other means.	r J. I. nd alls							and the second s	SEA 02359	ER. FR.

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F05	Floor	1	1	Job Reference (optional)	164309084

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:06 ID:LzVQXT791MsZ3FvQQXUpdvyyC?B-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

1-5-12

Page: 1

Scale = 1:39.1

1-6-0

Plate Offsets (X, Y): [4:0-1-8,Edge], [16:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.46 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.14 0.02	(loc) 17-19 15-16 14	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%F, 11	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she	athing directly applie	 5) Recommen 10-00-00 oc (0.131" X 3' at their oute 6) CAUTION, LOAD CASE(S) ed or 	d 2x6 strongbacks, c and fastened to ea ") nails. Strongback er ends or restrained Do not erect truss b) Standard	on edge ach truss (s to be d by othe packward	e, spaced at s with 3-10d attached to w er means. ds.	valls						
BOT CHORD	Rigid ceiling directly bracing. (size) 13=0-3-8, Max Uplift 13=-620 (Max Grav 13=-67 (L 20=548 (J	cept end verticals. applied or 6-0-0 oc 14=0-3-8, 20=0-3-8 LC 3) C 4), 14=1558 (LC 1	1),										
FORCES	(Ib) - Maximum Com	pression/Maximum											
TOP CHORD	1-20=-71/0, 12-13=- 2-3=-1383/0, 3-4=-1 5-6=-1500/0, 6-7=-7 8-10=0/1515, 10-11=	45/0, 1-2=0/0, 383/0, 4-5=-1500/0, 18/0, 7-8=-718/0, =0/1515, 11-12=-2/0											
BOT CHORD	19-20=0/883, 17-19=	=0/1500, 16-17=0/15 5=-227/0_13-14=-77	500, 22/0										
WEBS	10-14=-158/0, 8-14= 8-15=0/1064, 2-19= 3-19=-177/0, 6-15=- 6-16=0/349, 4-17=-1 11-13=0/1001, 11-14	1461/0, 2-20=-997/ D/567, 7-15=-171/0, 634/0, 4-19=-265/92 32/34, 5-16=-54/12, 4=-1058/0	20, 2,							and a start	ORTH CA	ROLIN	
NOTES 1) Unbalance this design	ed floor live loads have	been considered fo	r						11111		SEA	L	ALL DAY

- All plates are 3x5 M 120 unless otherwise indicated.
 One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral
- forces.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F06	Floor	1	1	Job Reference (optional)	164309085

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:06 ID:hCqk8_Oyr7eRieafj9tzWYyyC_r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

Loading	-	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		40.0	Plate Grip DOL	1.00		TC	0.50	Vert(LL)	-0.07	17-18	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.00		BC	0.34	Vert(CT)	-0.11	17-18	>999	240		
BCLL		0.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.01	16	n/a	n/a		
BCDL		5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 139 lb	FT = 20%F, 11%E
		0.00		3)	One H2.5A S	Simpson Strong-Tie	e conne	ctors	4.0					
TOP CHORD	2x4 SP No	o.2(flat)			recommende	ed to connect truss	to bear	ing walls due	t0 mad					
BOT CHORD	2x4 SP No	o.2(flat)			UPLIFI al ji	s) 23. This connec	uon is io	or upint only a	and					
WEBS	2x4 SP No	0.3(flat)		4)	One RT84 M	liTek connectors re		nded to conn	ect					
UTHERS	2X4 5P NO	0.3(IIat)		4)	truss to hear	ing walls due to LIF	PLIFT at	it(s) 15 This						
BRACING	<u>.</u>				connection is	for unlift only and	does no	of consider la	, teral					
TOP CHORD	Structural 6-0-0 oc pi	wood shea urlins, exc	athing directly applied cept end verticals.	or	forces.		00031		torai					
BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 6-0-0 oc	5)	International	Residential Code	sections	R502.11.1 a	ind					
REACTIONS	(size)	15=0-3-8, 23=0-3-8	16=0-3-8, 22=0-3-8,	6)	Recommend	2x6 strongbacks,	on edge	s, spaced at						
	Max Uplift Max Grav	15=-475 (l 15=-25 (L 22=1198 (LC 6), 23=-349 (LC 6) C 5), 16=1303 (LC 4), LC 3), 23=27 (LC 5)) ,	10-00-00 oc (0.131" X 3") at their outer	and fastened to ea nails. Strongback ends or restrained	ch truss s to be by othe	with 3-10d attached to w er means.	alls					
FORCES	(lb) - Maxir	mum Com	pression/Maximum	()	CAUTION, L	o not erect truss b	ackward	IS.						
	Tension		F	L	DAD CASE(S)	Standard								
TOP CHORD	1-23=-71/0), 14-15=-4	42/0, 1-2=-3/0,											
	2-3=0/1092	2, 3-4=0/1	092, 4-5=-683/0,											
	5-6=-683/0	0, 6-7=-102	26/0, 7-8=-1026/0,											
	8-10=-645	/0, 10-11=	-645/0, 11-12=0/1174	1,										
	12-13=0/1	174, 13-14	l=-2/0											11.
BOT CHORD	22-23=-70	9/0, 21-22	=-143/79, 19-21=0/10	026,									UNICA	D''''
	18-19=0/10	026, 17-18	3=0/996, 16-17=-134/ ⁻	1,									TH UA	HOM
	15-16=-56	7/0	150/0 11 10 1005/	•								and the	AT .: HO	in Ala. MI
WEBS	3-22=-123	/0, 12-16=	-159/0, 11-16=-1225/	0,								YA		Star SI.
	4-22=-119	6/0, 11-17	=0/831, 4-21=0/798,								/		10	man
	10-17=-17	0/0, 5-21=	-179/0, 8-17=-400/0,										:4	N 1 2
	7-18-0/26	2-23-0/8	01 2-22-666/0	,							-		SEA	
	13-16=-85	, <u>2-20-0</u> ,0 9/0 13-15	=0/752								E		0005	
NOTES	10 10 00	0/0, 10 10	011 02								=		0235	94 : =
1) Unholono	d floor live k	aada haya	haan annaidarad far								-		•	1 2
this design		uaus nave	been considered for									1	·	01 3
2) All plates	1. aro 3v5 MT21	م ععمامیں ۵	therwise indicated									2.	2. SNGING	ENCAS
		0 0111035 0	and white indicated.									11	OA	1.4.8
												-	INY R I	MLL
													11111	and the second s

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F07	Floor	1	1	Job Reference (optional)	164309086

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:06 ID:I5EPI6aMJkWJ?xEX5ofUdiyyC_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [14:Edge,0-1-	8], [17:0-1-8,Edge], [1	[8:0-1-8,Edge]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.39 0.04	(loc) 18-20 18-20 15	l/defl >967 >679 n/a	L/d 360 240 n/a	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8 Max Uplift 14=-898 Max Grav 14=-141 21=667 ((lb) - Maximum Cor Tension 1-21=-68/0, 13-14=	eathing directly applie xcept end verticals. y applied or 6-0-0 oc 3, 15=0-3-8, 21=0-3-8 (LC 3) (LC 4), 15=1999 (LC (LC 3) mpression/Maximum -42/0, 1-2=-3/0.	5) This trus Internation R802.10 6) Recomm 10-00-00 (0.131*) at their of 7) CAUTIO LOAD CASE	s is designed in acco onal Residential Code 2 and referenced sta end 2x6 strongbacks oc and fastened to e (3") nails. Strongbac uter ends or restraine N, Do not erect truss (S) Standard	rdance w e sections indard AN i, on edge each truss ks to be ed by othe backward	ith the 2018 is R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means. ds.	nd					
BOT CHORD	2-31850/0, 3-4=- 5-6=-2143/0, 6-7=-2 9-10=-673/0, 10-11 12-13=-2/0 20-21=0/1122, 18-2 16-17=0/1539, 15-1 11-15=-165/0, 10-1 10-16=0/1408, 2-20 3-20=-152/0, 7-16= 7-17=0/738, 4-18=- 6-17=-24/0, 12-14	12:0; 12:0;	67, 2143, 51/0 54/0, , 2, 8/0						1		H CA	ROJAN
NOTES 1) Unbalance this design 2) All plates a 3) All plates a 4) Provide m bearing pla joint 14.	6-1/=-244/0, 12-14 ed floor live loads hav n. are MT20 plates unles are 1.5x3 MT20 unles echanical connection ate capable of withsta	=0/1393, 12-15=-151 e been considered fo ss otherwise indicated so otherwise indicated (by others) of truss to anding 898 lb uplift at	8/0 r d. l. o						10111111111	A. A	SEA 02359	94 FER. 19,2024
WARN	IING - Verify design paramet	ters and READ NOTES ON	THIS AND INCLUDED MIT	EK REFERENCE PAGE MII	-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINEERI	NG BY

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

nt. 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F08	Floor	1	1	Job Reference (optional)	164309087

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 18.12:32:06 ID:Px0oyr7DUsJnX0INnSTHUPyyBzu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-6-0 2-4-8 1-6-8 0-1-8 0-0-2 14-0-14 1-5-8 3x5 = 3x6 = 3x5 II 3x5= 3x6 FP 9 13 16 2 3 4 5 6 8 101 12 14 15 17 1-6-0 35 Ø 34B 32 31 30 29 28 27 26 25 24 23 22 21 20 3x6= 3x6 = 3x5 u 3x6 FP 3x6 =<u>22-4</u>-0 7-9-2 15-0-9 25-7-0 7-9-2 7-3-7 7-3-7 3-3-0 Scale = 1:45.1 Loading 1-4-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL 40.0 Plate Grip DOL 1.00 TC 0.28 Vert(LL) -0.01 34-35 >999 360 MT20 244/190 TCDI 10.0 Lumber DOL 1 00 BC 0.23 Vert(CT) -0.05 34-35 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.21 Horz(CT) 0.00 32 n/a n/a BCDL 5.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 129 lb FT = 20%F, 11%E LUMBER WEBS 4-32=-409/0, 16-20=-143/0, 5-31=-225/0, 2x4 SP No.2(flat) 6-29=-229/0, 7-28=-222/0, 8-27=-223/0, TOP CHORD 2x4 SP No.2(flat) 9-26=-222/0, 10-25=-222/0, 12-24=-222/0, BOT CHORD 13-23=-222/0, 14-22=-226/0, 15-21=-216/0, 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) 2-35=-399/0, 2-34=-70/59, 3-33=-181/0, OTHERS 4-33=0/440, 17-19=-84/14, 17-20=-123/0 BRACING NOTES TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. 1) Unbalanced floor live loads have been considered for BOT CHORD Rigid ceiling directly applied or 6-0-0 oc this design. 2 All plates are 1.5x3 MT20 unless otherwise indicated. bracing, Except: 10-0-0 oc bracing: 34-35,33-34. Truss to be fully sheathed from one face or securely 3) braced against lateral movement (i.e. diagonal web). **REACTIONS** (size) 19=0-3-8, 20=14-6-14, 21=14-6-14, 4) Gable studs spaced at 1-4-0 oc. 22=14-6-14, 23=14-6-14, This truss is designed in accordance with the 2018 24=14-6-14, 25=14-6-14,

- 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Load case(s) 1 has/have been modified. Building 6)
- designer must review loads to verify that they are correct for the intended use of this truss 7)
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

26=14-6-14, 27=14-6-14,

28=14-6-14, 29=14-6-14,

Max Grav

Tension

17-18=-2/0

FORCES

TOP CHORD

BOT CHORD

31=14-6-14, 32=14-6-14, 35=0-3-8

19=103 (LC 4), 20=244 (LC 1),

21=215 (LC 3), 22=237 (LC 7),

23=230 (LC 3), 24=232 (LC 7),

25=231 (LC 3), 26=231 (LC 7),

27=232 (LC 3), 28=231 (LC 7),

29=238 (LC 3), 31=234 (LC 7),

32=416 (LC 1), 35=268 (LC 3)

(Ib) - Maximum Compression/Maximum

2-3=-342/0, 3-4=-342/0, 4-5=0/47, 5-6=0/47,

6-7=0/47, 7-8=0/47, 8-9=0/47, 9-10=0/47,

34-35=0/357, 33-34=0/342, 32-33=-47/0, 31-32=-47/0, 29-31=-47/0, 28-29=-47/0, 27-28=-47/0, 26-27=-47/0, 25-26=-47/0, 24-25=-47/0. 23-24=-47/0. 22-23=-47/0. 21-22=-47/0, 20-21=-47/0, 19-20=-11/65

10-12=0/47, 12-13=0/47, 13-14=0/47, 14-15=0/47, 15-16=0/47, 16-17=0/47,

1-35=-68/0, 18-19=-40/0, 1-2=-3/0,

- Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 19-35=-7, 1-4=-67, 4-16=-167, 16-18=-67

Page: 1

0-1-8

 \bigotimes

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F09	Floor	2	1	Job Reference (optional)	164309088

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:06 ID:LbgzxLM8?ij5Jxi1PyJkmPyyBzb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offeete ((X V) [2.0-1-8 Edge	1 [3·0-1-8 Edge] [10	·0_1_8 Eda	o] [17·0_1_8 Ec									
	, T). [2.0-1-0,Euge], [5.0-1-6,⊵dge], [10	.0-1-0,Eug	ej, [17.0-1-0,E0	igej							1	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.58 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.04	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 14=0-3-i Max Uplift 23=-97 (Max Grav 14=627 22=402	eathing directly appli xcept end verticals. y applied or 6-0-0 oc 3, 20=0-4-14, 23=0-3 LC 4) LC 7), 20=1159 (LC	3 ed or 5 -8 6 8), L	One H2.5A S recommended UPLIFT at jt(does not cor This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, E CAD CASE(S)	Simpson Strong-T dot connect trus s) 23. This conne sider lateral force designed in accor Residential Code nd referenced sta 2x6 strongbacks and fastened to e nails. Strongback ends or restraine to not erect truss Standard	ie conne s to bear ection is fe s. rdance w e sections ndard AN , on edge ach truss ks to be ed by othe backward	ctors ing walls due or uplift only ith the 2018 is R502.11.1 a ISI/TPI 1. a, spaced at s with 3-10d attached to v er means. ds.	e to and and valls					
FORCES TOP CHORD BOT CHORD	23=193 (lb) - Maximum Co Tension 1-23=-98/0, 13-14: 2-3=-193/314, 3-4: 5-6=-1389/0, 6-7=- 9-10=-1985/0, 10-' 11-12=-1695/0, 12- 22-23=-314/193, 2 20-21=-314/193, 1	(LC 3) mpression/Maximum =-69/0, 1-2=-4/0, =0/898, 4-5=0/898, 1389/0, 7-9=-1985/0, 1=-1695/0, 1=-1695/0, 1-22=-314/193, 8-20=0/543,	,										
WEBS NOTES 1) Unbalance this design 2) All plates a	17-18=0/1858, 16- 14-15=0/1041 4-20=-162/0, 3-20= 2-22=-110/0, 3-21= 12-14=-1171/0, 5- 6-18=-166/0, 11-15 10-15=-415/5, 7-17 10-16=-87/73 ed floor live loads hav n. are 1.5x3 MT20 unles	17=0/1985, 15-16=0/ -780/0, 2-23=-212/3 -0/138, 5-20=-1401/0 8=0/1000, 12-15=0/7 -181/0, 7-18=-568/('=-73/323, 9-17=-59/(re been considered for ss otherwise indicated	1985, 55, 742, 0, 6, or d.									SEA 0235	HO H H H H H H H H H H H H H

818 Soundside Road Edenton, NC 27932

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F11	Floor	6	1	Job Reference (optional)	164309089

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:eybdPkSXMrb5e?kNJwxNYuyyBzU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

[3:0-1-8,Edge], [10:0	0-1-8,Edge],	[17:0-1-8,Ed	ge]									
Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/T	TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 1 ²	1%E
athing directly applied cept end verticals. ' applied or 6-0-0 oc	4) 1 F 5) F (d or 6) C LOA	This truss is of International R802.10.2 an Recommend 10-00-00 oc a (0.131" X 3") at their outer CAUTION, D AD CASE(S)	designed in accord Residential Code s Id referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b Standard	lance wi sections dard AN on edge ch truss s to be by othe ackward	th the 2018 R502.11.1 a ISI/TPI 1. , spaced at with 3-10d attached to w er means. Is.	and valls						
, 20=0-3-8, 23=0-3-8 (LC 4) LC 7), 20=1406 (LC 1 C 3)	I),											
pression/Maximum												
70/0, 1-2=-4/0, 1536, 4-5=0/1536, 3/0, 7-9=-1858/0, I=-1627/0, I3=-3/0												
22=-694/26, 20=-160/0, 17-18=0/1 6=0/1858, 14-15=0/1	557, 004									TH CA	Bolly	
1110/0, 2-23=-25/78)/272, 5-20=-1568/0, 3=0/1161, 12-15=0/7(=-199/0, 7-18=-731/0, 7=0/461, 9-17=-133/0 e been considered for s otherwise indicated. connectors o bearing walls due t ion is for uplift only ar	1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							A STRUCTURE		SEA 0235		Manning
	(3:0-1-8,Edge], [10:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code athing directly applie cept end verticals. ⁷ applied or 6-0-0 oc , 20=0-3-8, 23=0-3-8 (LC 4) LC 7), 20=1406 (LC 1 C 3) 1pression/Maximum -70/0, 1-2=-4/0, (1536, 4-5=0/1536, 23/0, 7-9=-1858/0, 1=-1627/0, 13=-3/0 22=-694/26, 20=-160/0, 17-18=0/1 6=0/1858, 14-15=0/7 (=-199/0, 7-18=-731/0 7=0/461, 9-17=-133/0 e been considered for s otherwise indicated connectors to bearing walls due to ion is for uplift only an	[3:0-1-8,Edge], [10:0-1-8,Edge], Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/ 4) - 5) - *athing directly applied or 6) *cept end verticals. 6) * applied or 6-0-0 oc LOA *20=0-3-8, 23=0-3-8 LCC 4) LC 7), 20=1406 (LC 1), C 3) 1pression/Maximum - -70/0, 1-2=-4/0, (1536, 4-5=0/1536, 23/0, 7-9=-1858/0, 13=-3/0 22=-694/26, 20=-1568/0, 20=-1668/0, 3=0/1161, 12-15=0/1004 - -1110/0, 2-23=-25/781, 0/272, 5-20=-2568/0, 3=0/1161, 12-15=0/707, =-199/0, 7-18=-731/0, 7=0/461, 9-17=-133/0, 2=	, [3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge], [17:0-1,2,2], [[3:0-1-8, Edge], [10:0-1-8, Edge], [17:0-1-8, Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 Attix-MSH 4) This truss is designed in accord International Residential Code s R802.10.2 and referenced stands 5) Recommend 2x6 strongbacks, (10:00-00 oc and fastened to ea (0.131" X 3") nails. Strongback at their outer ends or restrained 6) CAUTION, Do not erect truss b: LOAD CASE(S) Standard 7, 20=0-3-8, 23=0-3-8 (LC 4) LC 7), 20=1406 (LC 1), C 3) 1pression/Maximum -70/0, 1-2=-4/0, (1536, 4-5=0/1536, 23/0, 7-9=-1858/0, 1=-1627/0, 13=-3/0 22=-694/26, 20=-160/0, 17-18=0/1557, 6=0/1858, 14-15=0/1004 -1110/0, 2-23=-25/781, 0/272, 5-20=-1568/0, 8=0/1161, 12-15=0/707, =-199/0, 7-18=-731/0, 7=0/461, 9-17=-133/0, e been considered for s otherwise indicated. connectors to bearing walls due to ion is for uplift only and	[3:0-1-8,Edge], [10:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 Attix-MSH ************************************	[3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 Matrix-MSH 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANS/ITPI 1. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to w at their outer ends or restrained by other means. •applied or 6-0-0 oc •CAUTION, Do not erect truss backwards. •20=0-3-8, 23=0-3-8 (LC 4) •CAUTION, Do not erect truss backwards. LC 7), 20=1406 (LC 1), C 3) •CAUTION, Do not erect truss backwards. •1336, 4-5=0/1536, 5:3/0, 7-9=-1858/0, 1=-1627/0, 13=-3/0 •CAUTION, Do not erect truss backwards. •22=-694/26, 20=-1680/0, 3=-0/1557, 6=-0/1588, 1.415=0/1004 •CAUTION, Do not erect truss backwards. •20=0-1406 (LC 1), C -3) = -199/0, 7-18=-731/0, 7=0/1461, 9-17=-133/0, •CAUTION, Do not erect trus backwards. •20=0/486, 1.415=0/1004 •CAUTION, Do not erect truss backwards. •20=0-01680/0, 1-21=-130/0, •CAUTION, Do not erect truss backwards. •20=0-1680/0, 3=-0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586, 1.415=0/1557, 6=-0/1586,	[3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES WB 0.55 Code IRC2018/TPI2014 Matrix-MSH 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131*X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. athing directly applied or cept end verticals. rapplied or 6-0-0 oc 6) .20=0-3-8, 23=0-3-8 (LC 4) LOAD CASE(S) LC 7), 20=1406 (LC 1), C 3) Standard .20=0-3-8, 23=0-3-8 (LC 4) LOAD CASE(S) Standard Standard .20=0-3-8, 23=0-3-8 (LC 4) LOAD CASE(S) Standard Standard .20=0-3-8, 23=0-3-8 (LC 4) LOAD CASE(S) Standard .20=-64/26, .20=-694/26, .20=-160/0, 17-18=0/1557, 6=0/1358, 14-15=0/1004 .11010, 2-23=-25/781, .0272, 5-20=-1568/0, .20=-168/0, 19-17=-133/0, e been considered for s otherwise indicated. connectors t	[3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 Matrix-MSH Horz(CT) 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 co and fastened to each truss with 3-10d (0.131* X3') nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 70/0, 1-2=-4/0, 1536, 4-5=0/1536, 130, 7-9=-1686/0, 1260/0, 17-18=0/1557, 6=0/1856, 14-15=0/1004 -1110/0, 2-23-25/781, 0227, 5-20-3-1568/0, 3=0/1161, 12-15=0/707, =-199/0, 7-8=-731/0, 7=0/461, 9-17=-133/0, e been considered for s otherwise indicated. connectors to bearing walls due to ion is for uplift only and	[3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TPI 1. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer of so restrained by other means. athering directly applied or 60-00 oc . 20=0-3-8, 23=0-3-8 (LC 4) . LC 7), 20=1406 (LC 1), 23) . 300, 7-9-1580, 1-1.557, 6-017536, 330, 79-91580, 1-1.557, 6-017557	[3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 Matrix-MSH Vert(C1) Octa IRC2018/TPI2014 Atrix-MSH Vert(C1) Octa IRC2018/TPI2014 Atrix-MSH Vert(C1) Octa IRC2018/TPI2014 Atrix-MSH Vert(C1) Octa International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. Streamed 2x6 strongbacks, on edge, spaced at 10-00-00 c and fastened to each truss with 3-10d (0.131* X 3*) naits. Strongbacks to be attached to walls at their outer ends or restrained by other means. Applied or 6-0-0 cc CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard .20=0-3.8, 23=0-3.8 (1C 4). CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard .22=-694/26, Standard .22=-694/26, Standard .22=-694/26, Standard .22=-694/26, Standard .22=-694/26, Standard .22=	[3:0-1-8,Edge], [10:0-1-8,Edge] Spacing 1-4-0 Plate Grip DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014 BC 0.65 Vert(LL) -0.15 17.18 Code IRC2018/TPI2014 WB WB 0.55 Horz(CT) 0.03 14 n/a n/a Vert(T) -0.22 17.18 >999 240 WB 0.55 Horz(CT) 0.03 14 n/a n/a Vert(T) -0.22 17.18 >999 240 Weight: 135 lb 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.102 and referenced standard ANSI/TP1 1. 5) Resommed 2x6 strongbacks to be each truss with 3-10d (0.131*X*3) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. (b CAUTION Do not erect truss backwards. LOAD CASE(S) Standard 1C 7). 20=1406 (LC 1). C7). 20=1406 (LC 1). C7 .20=1406 C1 .21 C2 Standard 130.4 5=50/1536, 10.00, 7-18=0/1557, 60/1536, 14-15-0/1004 Standard SEA </td <td>[8:01-14.Edge]. [110:01-18.Edge] Spacing 14-40 Plate Grip DOL 1.00 BC 0.77 BC 0.77 Vert(LL) -0.15 Vert(LL) -0.15 Vert(LL) -0.16 Rep Stress Incr YES Code IRC2018/TPI/2014 Watrix-MSH Hor2(CT) Vert(LL) -0.15 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(L1) -0.16 Vert(L2) -0.16 Vert(L2) <</td>	[8:01-14.Edge]. [110:01-18.Edge] Spacing 14-40 Plate Grip DOL 1.00 BC 0.77 BC 0.77 Vert(LL) -0.15 Vert(LL) -0.15 Vert(LL) -0.16 Rep Stress Incr YES Code IRC2018/TPI/2014 Watrix-MSH Hor2(CT) Vert(LL) -0.15 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(LL) -0.16 Vert(L1) -0.16 Vert(L2) -0.16 Vert(L2) <

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F12	Floor	5	1	Job Reference (optional)	164309090

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:T5yufnWIxhLFMwBXfB2nn9yyBzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

[~] - - -.

Scale = 1:45.1													
Plate Offsets ((X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:	0-1-8,Edge],	[17:0-1-8,Ed	ge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-306 (Max Grav 14=608 (L 23=99 (L 23=99 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 20=0-3-8, 23=0-3-8 LC 4) .C 7), 20=1406 (LC	4) - 5) ed or 6) - LOA	This truss is i International R802.10.2 ar Recommend 10-00-00 cc; (0.131" X 3") at their outer CAUTION, D AD CASE(S)	designed in accord Residential Code Id referenced star 2x6 strongbacks, and fastened to et nails. Strongback ends or restrained o not erect truss b Standard	dance wi sections idard AN on edge ach truss (s to be a d by othe ackward	th the 2018 R502.11.1 at ISI/TPI 1. , spaced at with 3-10d attached to wa r means. Is.	nd					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-23=-89/0, 13-14=- 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11 11-12=-1627/0 12-1	70/0, 1-2=-4/0, 1536, 4-5=0/1536, 3/0, 7-9=-1858/0, =-1627/0, 3=-3/0											
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2 16-17=0/1858, 15-16	2=-694/26, 20=-160/0, 17-18=0/1 6=0/1858, 14-15=0/1	1557, 004									WTH CA	Bo
WEBS	4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=0 12-14=-1130/0, 5-18 6-18=-168/0, 11-15= 10-15=-396/11, 7-17 10-16=-70/56	1110/0, 2-23=-25/78 //272, 5-20=-1568/0, =0/1161, 12-15=0/7 -199/0, 7-18=-731/0 =0/461, 9-17=-133/0	1, 07, ,),							1 Summe	all a	SEA	
1) Unbalance	ed floor live loads have	been considered fo	r							Ξ		0235	94 : 5
this design	n.											N	1 1 E
 All plates One RT8A truss to be connection forces. 	are 1.5x3 M120 unless A MiTek connectors rec earing walls due to UPL n is for uplift only and d	connerwise indicated commended to conne LIFT at jt(s) 23. This loes not consider lat	ect eral								in the second seco	NY R. N	AILLER IN

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F13	Floor	1	1	Job Reference (optional)	164309091

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:MtBPV9Zo?wshrYVIu07jy?yyBzK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

-												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.61	Vert(LL)	-0.26	12-13	>907	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.93	Vert(CT)	-0.37	12-13	>631	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.06	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		,					Weight: 102 lb	FT = 20%F, 11%E
		1									-	
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING	.											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOLCHORD	Rigia celling airectly	applied or 10-0-0 oc										
	2.2.0 oc bracing: 14	15										
DEACTIONS	2-2-0 00 bracing. 14	17-0.2.0										
REACTIONS	(SIZE) 11=0-3-6, Max Cray 11=714 (I	, 17=0-3-0 10 1) 17=714 (10 1))									
		LC I), 17-714 (LC I)									
FORCES	(Ib) - Maximum Com	npression/Maximum										
		69/0 1 2- 2/0										
TOP CHORD	2 2 - 2012/0 2 4 - 2	00/0, 1-23/0, 0013/0, 4 = 2519/0										
	5-6=-2518/0 6-7=-2	2013/0, 4-3=2010/0, 000000000000000000000000000000000										
	9-10=-3/0	.023/0, 7-32023/0,										
BOT CHORD	15-17=0/1206 14-1	5=0/2518 13-14=0/2	2518									
201 0110112	12-13=0/2464, 11-1	2=0/1210										
WEBS	9-11=-1363/0, 2-17=	-1357/0, 9-12=0/924	4,									
	2-15=0/916, 7-12=-1	155/0, 3-15=-187/16,										1111
	6-12=-498/0, 4-15=-	684/0, 6-13=-166/32	25,								IN TH CA	Rolle
	4-14=-39/113, 5-13=	=-95/11								1	Alicia	in Alate
NOTES										3	FFP	Millin's
1) Unbalance	ed floor live loads have	e been considered fo	r							: >	0000////	han
this desigr	ז.								-		8	5 1 2
2) All plates a	are 1.5x3 MT20 unless	s otherwise indicated	l.						-	:	SEA	1 1 1
3) This truss	is designed in accorda	ance with the 2018							=	:	JLA	- : -
Internation	nal Residential Code s	ections R502.11.1 a	nd						=		0235	94 : =
R802.10.2	and referenced stand	lard ANSI/TPI 1.							-			
4) Recomme	nd 2x6 strongbacks, o	on edge, spaced at							-	1	1. A.	- 1 - S
10-00-00 0	oc and fastened to eac	ch truss with 3-10d	alla							1	X SNOW	Ettas
(U.IST X)	o jinalis. SuonyDacks	by other means	allo							1	OA	10 A S
		by other means.								1	YY R I	ALL
LUAD CASE(5) Standard										1111.1.1	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F15	Floor	1	1	Job Reference (optional)	164309092

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:3ooBbah4e?6G24GDU7I3M6yyBzA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:32
---------	------

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.29	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.14	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 37 lb	FT = 20%F, 11%E

LUNDER

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 5=0-3-8, 8=0-3-8
	Max Grav 5=212 (LC 1), 8=208 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0,
TOP CHORD	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0
TOP CHORD	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0 7-8=0/258, 6-7=0/258, 5-6=0/258
TOP CHORD BOT CHORD WEBS	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0 7-8=0/258, 6-7=0/258, 5-6=0/258 3-5=-290/0, 2-8=-287/0, 2-7=-58/86,
TOP CHORD BOT CHORD WEBS	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0 7-8=0/258, 6-7=0/258, 5-6=0/258 3-5=-290/0, 2-8=-287/0, 2-7=-58/86, 3-6=-62/82

NOTES

- Unbalanced floor live loads have been considered for this design.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F16	Floor	9	1	Job Reference (optional)	164309093

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:j3yvx9VnXaNJIzs7V992czyWBk5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.1

Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.35	Vert(LL)	0.00	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.07	Vert(CT)	-0.01	5-6	>999	360		
BCLL	0.0	Rep Stress Incr	NO		WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018	/TPI2014	Matrix-MP							Weight: 35 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 5-3-8 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 6-0-0 oc	1) d or	Dead + Flo Plate Increa Uniform Lo Vert: 5-7 Concentrate Vert: 1=-	or Live (balanced ase=1.00 ads (lb/ft) =-7, 1-4=-67 ed Loads (lb) 258): Lumbe	r Increase=1.	00,					
REACTIONS	(size) 5= Mecha Max Uplift 5=-67 (LC Max Grav 5=43 (LC	anical, 6=0-3-8 3) 4), 6=591 (LC 1)											
	(lb) - Maximum Com Tension	pression/Maximum	70										
BOT CHORD	3-4=0/0 6-7=0/0, 5-6=-174/0	1-2-0/270, 2-3-0/21	0,										
WEBS	1-6=-398/0, 3-6=-28	5/0, 2-6=-57/0, 3-5=0	0/196										
NOTES													
 Unbalance this design Refer to gi Provide me bearing pla This truss Internation R802.10.2 Load case designer n correct for Recomme 10-00-00 c (0.131" X ci at their oul CAUTION LOAD CASE(5) 	ad floor live loads have a floor live loads have trider(s) for truss to trus echanical connection (ate capable of withstar is designed in accorda hal Residential Code s and referenced stand (s) 1 has/have been m nust review loads to ve the intended use of th nd 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks ter ends or restrained b, Do not erect truss ba S) Standard	been considered for as connections. (by others) of truss to hding 67 lb uplift at jo ance with the 2018 ections R502.11.1 at lard ANSI/TPI 1. nodified. Building erify that they are is truss. In edge, spaced at th truss with 3-10d to be attached to wa by other means. ckwards.	nd alls							1. annual		SEA 0235	ROUTER 194

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F17	Floor Girder	1	1	Job Reference (optional)	164309094

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:I3uRdHC2WCX9ih2UVfa8bAyyByV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Page: 1

THA422 THA422

1-6-0

Scale = 1:25.4													
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.74	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.52	Vert(CT)	-0.04	4-5	>999	240			
BCLL	0.0	Rep Stress Incr	NO	WB	0.41	Horz(CT)	0.01	4	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 34 lb	FT = 20%F, 11%E	
LUMBER													
TOP CHORD	2x4 SP No.2(flat)												
BOT CHORD	2x4 SP No.2(flat)												
WEBS	2x4 SP No.3(flat)												

vv		JU		
	•	~	ĸ.	~

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	4-7-0 oc j	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4=0-3-8, 5= Mechanical
	Max Grav	4=1233 (LC 1), 5=1275 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

	Tension
TOP CHORD	1-5=-429/0, 3-4=-387/0, 1-2=0/0, 2-3=0/0
BOT CHORD	4-5=0/1372
WEBS	2-4=-1605/0, 2-5=-1605/0

NOTES

1) Refer to girder(s) for truss to truss connections.

- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-8 oc max. starting at 0-10-12 from the left end to 3-6-12 to connect truss(es) to back face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 4-5=-7, 1-3=-67
 - Concentrated Loads (lb)

Vert: 2=-730 (B), 6=-730 (B), 7=-730 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institution and information Component dependent description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F18	Floor	1	1	Job Reference (optional)	164309095

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:f_7WUTxN2ewCcVc1cjoU3ZyWBjX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.1

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.56 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 5-3-8 oc purlins, exx Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 10-0-0 oc	8) 9) LC d or 1)	Recommend 10-00-00 oc : (0.131" X 3") at their outer CAUTION, D AD CASE(S) Dead + Floo Plate Increa Uniform Loc Vert: 6-10	2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b Standard or Live (balanced): use=1.00 ads (lb/ft))=-7, 1-5=-67 ad Loads (lb)	on edge ach truss is to be I by othe ackward Lumber	e, spaced at with 3-10d attached to wai er means. ds. Increase=1.00	lls),					
REACTIONS	(size) 6=3-11-8, 9=3-11-8 Max Uplift 6=-1 (LC 3 Max Grav 6=26 (LC (LC 4), 9=	7=3-11-8, 8=3-11-8, 3), 8=-195 (LC 3) 4), 7=152 (LC 1), 8= 400 (LC 1)	-65	Vert: 1=-	91								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-10=-62/0, 5-6=-27/ 3-4=0/0, 4-5=0/0	/0, 1-2=0/0, 2-3=0/0,											
BOT CHORD	9-10=0/0, 8-9=0/0, 7	-8=0/0, 6-7=0/0 3-8=-8/96 4-7=-118	8/0										
NOTES	2-3241/0, 1-3-0/0,	, 0-00/30, 4-7110	,0										
 Unbalance this design Truss to b braced ag Gable sturd One H2.5, recommer UPLIFT at and does Non Stand This truss Internation R802.10.2 Load case designer r correct for 	ed floor live loads have n. e fully sheathed from c ainst lateral movement ds spaced at 1-4-0 oc. A Simpson Strong-Tie - nded to connect truss to t jt(s) 6 and 8. This con not consider lateral for- lard bearing condition. is designed in accorda nal Residential Code se 2 and referenced stand a(s) 1 has/have been m rust review loads to ve the intended use of th	been considered for one face or securely t (i.e. diagonal web). connectors o bearing walls due t nection is for uplift or ces. Review required. ance with the 2018 ections R502.11.1 an ard ANSI/TPI 1. hodified. Building rify that they are is truss.	o nly nd								and the second s	SEA 0235	ROLL 94

- 5) Non Standard bearing condition. Review required.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

R. Million R. MI

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F19	Floor	1	1	Job Reference (optional)	164309096

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:07 ID:Gk?51JonsgoKXTOxtflRzLyWBvK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-8

Scale =	1:25.7
---------	--------

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

	(, 1). [2:0-1-0,Euge],	[0.0-1-0,Euge]											
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.32	Vert(LL)	-0.02	7-8	>999	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.19	Vert(CT)	-0.03	7-8	>999	360			
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	5	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 40 lb	FT = 20%F, 11%E	
LUMBER													
TOP CHORD	2x4 SP No.2(flat)												
BOT CHORD	2x4 SP No.2(flat)												
	Over CD Ne Office)												

WEBS OTHERS	2x4 SP N 2x4 SP N	o.3(flat) o.3(flat)
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc j	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-8, 8= Mechanical
	Max Grav	5=242 (LC 1), 8=246 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-8=-81/0), 4-5=-79/0, 1-2=0/0, 2-3=-316/0,
	3-4=-4/0	
BOT CHORD	7-8=0/31	6. 6-7=0/316. 5-6=0/316
		-,

WEBS 3-5=-351/0, 2-8=-355/0, 2-7=-22/49, 3-6=-20/50

NOTES

- Unbalanced floor live loads have been considered for this design.
- 2) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F20	Floor	1	1	Job Reference (optional)	164309097

1-2-8

5x6 II

2

5x6 II

11

3

2-6-0

3x6 II

10

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-6-0

(psf)

40.0

10.0

0.0

5.0

2x4 SP No.1(flat)

2x4 SP No.1(flat) 2x4 SP No.3(flat)

2x4 SP No.3(flat)

bracing

Tension

3-6=-45/135

(size)

Code

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 18.12:32:07 ID:7XSwdkb?yRkl4LumfjzX2myWByB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8

1.5x3 =

1-6-0

3x6 u

GRIP

244/190

FT = 20%F, 11%E

ANNIN THEFT

6 7 1.5x3 u 3x10 = 1.5x3 II 3x8 = 6-11-8 6-11-8 Plate Offsets (X, Y): [2:0-3-0,Edge], [3:0-3-0,Edge], [9:0-1-8,0-0-8] PLATES 1-4-0 CSI DEFL in l/defl L/d Spacing (loc) Plate Grip DOL 1.00 тс 0.98 Vert(LL) -0.08 7-8 >975 480 MT20 Lumber DOL 1.00 BC 0.77 Vert(CT) -0.10 7-8 >783 360 Rep Stress Incr NO WB 0.80 Horz(CT) 0.02 5 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 49 lb 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 5-8=-7, 1-4=-337 Concentrated Loads (lb) Vert: 2=-500, 1=-1300, 10=-500 (F), 11=-450 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc 5=0-3-8, 8= Mechanical Max Grav 5=1717 (LC 1), 8=3315 (LC 1) (lb) - Maximum Compression/Maximum 1-8=-2105/0, 4-5=-524/0, 1-2=0/0, 7-8=0/2582, 6-7=0/2582, 5-6=0/2582 3-5=-2849/0, 2-8=-2874/0, 2-7=-113/67, Unbalanced floor live loads have been considered for Refer to girder(s) for truss to truss connections This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and Contraction of the

R802.10.2 and referenced standard ANSI/TPI 1. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

2-3=-2582/0, 3-4=-25/0

CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 500 Ib down at 0-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

In the LOAD CASE(S) section, loads applied to the face 7) of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Scale = 1:25.9

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

3)

FORCES

LUMBER

TOP CHORD

BOT CHORD

Edenton, NC 27932

munni

SEAL

3594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	F21	Floor Girder	1	1	Job Reference (optional)	164309098

0-7-12

Specia

8x12 =

2-3-12

THA422

1-1-0

0-1-8 Н

8

0-9-I

1-4-0

1.00

1.00

NO

1)

3x6 II

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon.Mar.18.12:32:07 ID:h49DhDEUZ7prME3A2NICXXyWBn0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WEBS NOTES

Scale = 1:36.5

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

FORCES

LUMBER

TOP CHORD

BOT CHORD

Plate Offsets (X, Y): [1:0-1-8,0-0-8]

Spacing

Code

Structural wood sheathing directly applied or

5= Mechanical, 7=0-3-8

1-8=-10/0, 4-5=-182/0, 1-2=0/173, 2-3=0/171,

5-3-8 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

Max Grav 5=1093 (LC 4), 7=2946 (LC 1)

(Ib) - Maximum Compression/Maximum

7-8=0/0, 6-7=0/1835, 5-6=0/1835

1-7=-238/0, 2-7=-178/0, 3-6=-28/0, 3-5=-2042/0, 3-7=-3226/0

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

40.0

10.0

0.0

5.0

2x4 SP No.2(flat) 2x4 SP No.2(flat)

2x4 SP No.3(flat)

2x4 SP No.3(flat)

bracing

Tension

3-4=0/0

(size)

- Unbalanced floor live loads have been considered for 1) this design.
- 2) Refer to girder(s) for truss to truss connections
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards. 6)
- 7) Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent at 3-9-12 from the left end to connect truss(es) to front face of top chord.
- 8) Fill all nail holes where hanger is in contact with lumber.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	FW01	Floor Supported Gable	1	1	Job Reference (optional)	164309099

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

25-7-0

Scale = 1:45.1

Plate Offsets (X, Y): [10:0-1-8.Edge], [30:0-1-8.Edge]

	(,, ,). [.e.	,_age], [00:0 : 0, ⊑ ugo]												
Loading		(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		40.0	Plate Grip DOL	1.00		тс	0.84	Vert(LL)	n/a	· -	n/a	999	MT20	244/19	0
TCDI		10.0	Lumber DOI	1 00		BC	0.02	Vert(TL)	n/a	-	n/a	999			
BCU		0.0	Ren Stress Incr	YES		WB	0.13	Horiz(TL)	0.00	21	n/a	n/a	1		
		5.0	Codo		19/10/14	Motrix MSH	0.10		0.00	21	n/a	n/a	Woight: 110	Ib ET - 20	0%E 11%E
BCDL		5.0	Code	INCZU	10/11/2014	Maultx-MOLT		-					Weight. 119	10 + 1 - 20	J70F, TT70⊑
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing	o.2(flat) o.2(flat) o.3(flat) o.3(flat) I wood shea purlins, exc ing directly	athing directly app cept end verticals. applied or 10-0-0	olied or	TOP CHORD BOT CHORD	1-41=-105/26, 2(2-3=-5/1, 3-4=-5 6-7=-5/1, 7-8=-5 10-11=-14/3, 11- 14-15=-7/2, 15-1 17-18=-7/2, 18-1 40-41=-1/5, 39-3 34-35=-1/5, 32-3 30-31=-1/5, 29-3	0-21=-160/ (1, 4-5=-5/ (1, 8-9=-5/ 12=-14/3, 6=-7/2, 16 9=-7/2, 19 0=-1/5, 38 7=-1/5, 31 0=-3/14, 2	43, 1-2=-5/1, 1, 5-6=-5/1, 1, 9-10=-5/1, 12-14=-14/3, -17=-7/2, -20=-7/2, -39=-1/5, -36=-1/5, -32=-1/5, 8-29=-3/14,		8) Re 10 (0. at 9) Ha pro 10 up 10 10	commen 00-00 od 131" X 3 heir oute nger(s) c wided su down and at 2-11- down and up at 8-1	d 2x6 s c and fa ") nails or other fficient d 162 ll 8, 519 d 162 ll 1-8, 5	strongbacks, of astened to ear Strongbacks or restrained r connection d t to support co b up at 1-0-4, lb down and b up at 6-11-{ 19 lb down an	on edge, spa ch truss with s to be attack by other me evice(s) sha ncentrated l 519 lb dowr 162 lb up at 3, 519 lb dow d 162 lb up	iced at . 3-10d hed to walls ians. ill be oad(s) 520 n and 162 lb 4-11-8, 519 wn and 162 at 10-11-8,
REACTIONS	Max Uplift	21=25-7-0 24=25-7-0 30=25-7-0 37=25-7-0 37=25-7-0 21=-41 (L1 23=-99 (L1 23=-99 (L1 23=-39 (L1 23=-126 (U1 31=-42 (L1 34=-124 (U1 34=-124 (U1 36=-113 (U1 38=-39 (L1) 38=-39 (L1) 38=-39 (L1)), 22=25-7-0, 23=2), 25=25-7-0, 26=2), 28=25-7-0, 32=2), 31=25-7-0, 32=2), 35=25-7-0, 36=2), 38=25-7-0, 39=2), 41=25-7-0 C 8), 22=-122 (LC C 8), 24=-127 (LC C 8), 26=-113 (LC LC 8), 30=-122 (L C 8), 32=-113 (LC LC 8), 35=-40 (LC LC 8), 37=-124 (LC C 8), 37=-124 (LC C 8), 39=-115 (LC) LC 8), 41=-25 (LC) LC 8), 41	25-7-0, 25-7-0, 25-7-0, 25-7-0, 25-7-0, 25-7-0, 25-7-0, 25-7-0, 28, 8), 8), 8), 8), C 8), 8), C 8), 8), 8), 8), 8, 8), 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	27-282/7, 26-272/7, 25-262/7, 24-252/7, 24-252/7, 24-252/7, 24-252/7, 24-252/7, 21-222/7 519 lb down and 162 lb up at 12-11- WEBS 2-40498/138, 3-39435/120, 4-38=-220/45, 5-37465/129, 6-36431/119, 7-35221/45, 8-34464/129, 9-32431/119, 10-31230/47, 11-30465/129, 12-29428/118, 13-28219/44, 14-27471/131, 15-26429/118, 16-25219/44, 17-24477/133, 18-23381/104, 19-22477/133, 18-23381/104, 19-22477/133, 18-23381/104, 19-22477/133, 18-23381/104, 19-22477/128, 10-303/13 519 lb down and 162 lb up at 12-11- NOTES 1) Unbalanced floor live loads have been considered for this design. 1) Unbalanced floor live loads have been considered for this design. 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1,5x3 MT20 unless otherwise indicated. 27-282/7, 22-232/7, 22-232/7, 22-232/7, 24-6-12 on top chord. The design/se connection device(s) is the responsite 100 lin the LOAD CASE(S) Standard								2-11-8, 519 vn and 162) up at 18-11 and 519 lb () down and gn/selection onsibility of (oads appliec) or back (B Lumber Incr	lb down and lb up at 1-8, 519 lb down and 162 lb up at of such others. 1 to the face .). rease=1.00,	
FORCES	Max Grav (Ib) - Max Tension	21=164 (L 23=390 (L 25=228 (L 27=480 (L 29=437 (L 31=239 (L 34=473 (L 36=439 (L 38=229 (L 38=229 (L 40=508 (L imum Com	C 3), 22=483 (LC C 3), 22=483 (LC C 3), 24=486 (LC C 3), 28=228 (LC C 3), 30=465 (LC C 3), 30=465 (LC C 6), 32=440 (LC C 3), 35=230 (LC C 3), 37=474 (LC C 6), 39=444 (LC C 6), 39=444 (LC pression/Maximur	3), 3), 3), 6), 3), 3), 6), 3), 3), 6) 7)	 Gable required Truss to be braced aga Gable studies Gable studies One H2.5A recommend UPLIFT at 30, 29, 28, for uplift on This truss in International R802.10.2 	ires continuous bo fully sheathed fro inst lateral mover s spaced at 1-4-0 Simpson Strong- ded to connect tru t(s) 41, 21, 40, 35 27, 26, 25, 24, 23 ly and does not co s designed in acco al Residential Coc and referenced st	ottom chor om one fac nent (i.e. d oc. Tie conner ss to beari 0, 38, 37, 3 , and 22. onsider lat ordance w le sections andard AN	d bearing. e or securely iagonal web). ctors mg walls due t 6, 35, 34, 32, This connectio eral forces. th the 2018 R502.11.1 ar ISI/TPI 1.	o 31, n is nd				SE 023	AL 594 NEER. MILL rch 19,20	R

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company depresent depresent on properts and presents on the properts on the properties of the structure Building Company. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	10/00000
24030128	FW01	Floor Supported Gable	1	1	Job Reference (optional)	164309099

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Vert: 21-41=-7, 1-20=-67 Concentrated Loads (lb)

Vert: 3=-192 (B), 6=-192 (B), 9=-192 (B), 12=-192 (B), 12=-192 (B), 15=-192 (B) 18=-192 (B) 44=-193 (B) 45=-192 (B) 18=-192 (B

(B), 15=-192 (B), 18=-192 (B), 44=-193 (B), 45=-192 (B), 46=-192 (B), 47=-192 (B), 48=-192 (B), 48=-192 (B), 49=-192

(B), 50=-193 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	J02	Jack-Closed Girder	1	2	Job Reference (optional)	164309100

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:WYb8ftK1VRwqmljD6TGH76yi_wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUS26

2-7-4

Scale = 1:30.9

													_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	D-0 CSI DEFL in 15 TC 0.06 Vert(LL) 0.00 15 BC 0.12 Vert(CT) 0.00 D WB 0.00 Horz(CT) 0.00 C2018/TPI2014 Matrix-MR							PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) 2-ply truss Top chord follows: 22 2) All loads a except ifn CASE(S) : provided t unless oth 3) Wind: ASG Vasd=1.60 4) TCLL: ASI	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 2-7-4 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=79 (LC Max Uplift 3=-44 (LC Max Grav 3=253 (LC (lb) - Maximum Com Tension 1-4=-110/22, 1-2=-70 3-4=-27/33 sto be connected toget is connected with 10d (64 - 1 row at 0-9-0 oc. ords connected with 10d (65 - 2 rows staggered a are considered equally loted as front (F) or bar section. Ply to ply com envise indicated. CE 7-16; Vult=130mph imph; TCDL=6.0ps; B0 p B; Enclosed; MWFR tilever left and right exp exposed; Lumber DOL: 0 CE 7-16; Pr=20.0 psf (I	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4=0-3-8 11) : 9), 4=-32 (LC 12) C 18), 4=566 (LC 18) pression/Maximum 6/33, 2-3=-94/35 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails as at 0-9-0 oc. applied to all plies, ck (B) face in the LOA rections have been noted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior bosed ; end vertical le =1.60 plate grip	 5) Unbalanced design. 6) This truss h chord live lo 7) * This truss son the botto 3-06-00 tall chord and a 8) All bearings capacity of 4 9) Refer to gird 10) Provide met bearing plat 3. 11) One H2.5A recommend UPLIFT at ji does not co 12) This truss is Internationa R802.10.2 at 13) Use Simpson to chord. ND 14) Fill all nail h LOAD CASE(S) 1) Dead + Sn Increase=* Uniform Lo Vert: 1-2 Concentra ft Vert: 5= 	snow loads have to as been designed f ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide winy other members. are assumed to be 425 psi. der(s) for truss to tru- chanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 4. This connect insider lateral forces designed in accord I Residential Code and referenced stan on Strong-Tie LUS2 e Ply Girder) or equi connect truss(es) to oles where hanger) Standard ow (balanced): Lun 1.15 pads (lb/ft) 2=-60, 3-4=-20 ted Loads (lb) -570 (F)	veen cor or a 10.0 with any for a liv s where Il fit betw User D uss conre (by oth anding 4 e conne to bear fon is for s. dance w sections dard AN 6 (4-100 is in cor nber Inc	nsidered for th 0 psf bottom other live load re load of 20.0 a rectangle veen the botto efined crushir nections. ers) of truss t 14 lb uplift at ju- ctors ing walls due r uplift only an ith the 2018 s R502.11.1 a USI/TPI 1. 4 Girder, 3-100 at 0-8-0 from the of bottom ntact with luml rease=1.15, F	nis ds.)psf om ng ooint to nd d the ber. Plate				SEA 0235	ROLL 94	
Plate DOL DOL=1.15 Cs=1.00; (Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10												

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	J02A		2	1	Job Reference (optional)	164309101

2-7-4

2-7-4

8 F

Special

3

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:WYb8ftK1VRwqmljD6TGH76yi_wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-8-13 2x4 II 2-8-13 2 1-0-0 P K 5 \bigotimes 4 2x4 II Special 2-7-4

Scale = 1:34.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	(psf) Spacing 2-0-0 CSI DEFL in 20.0 Plate Grip DOL 1.15 TC 0.17 Vert(LL) 0.00 20.0 Lumber DOL 1.15 BC 0.10 Vert(CT) 0.00 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 0.0* Code IRC2018/TPI2014 Matrix-MR - - - 2x4 SP No.2 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle - -								GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-7-4 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=70 (LC Max Uplift 3=-64 (LC Max Grav 3=99 (LC (LC 21) 	athing directly applied cept end verticals. applied or 10-0-0 oc anical, 4= Mechanical 14) 214), 4=-19 (LC 14) 21), 4=68 (LC 7), 5=3	6) * This truss on the botto 3-06-00 tall chord and a 7) Bearings are crushing car 8) Refer to gird 9) Provide met bearing plat (1) This truss is Internationa R802.10.2 a 11) Hanger(s) o provided suf down and 40	has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw ny other members. e assumed to be: , Joint 5 I pacity of 425 psi. der(s) for truss to truss con chanical connection (by oth e capable of withstanding 6 uplift at joint 4. designed in accordance w I Residential Code sections and referenced standard AM I rother connection device(s fficient to support concentr. 6 Ib up at 2-6-8 on top cho	re load of 20.0psf a rectangle ween the bottom Jser Defined inections. It is to 50 54 lb uplift at joint with the 2018 is R502.11.1 and USI/TPI 1. is) shall be ated load(s) 69 lb rd, and 23 lb					
TOP CHORE BOT CHORE	(Ib) - Maximum Con Tension) 2-5=-230/90, 1-2=0/) 4-5=0/0	1pression/Maximum 53, 2-3=-74/39	down and 1 design/selec responsibilit 12) In the LOAD	7 lb up at 2-6-8 on bottom ction of such connection de y of others. 0 CASE(S) section, loads a	chord. The evice(s) is the pplied to the face					
 NOTES 1) Wind: AS Vasd=10 Cat. II; E zone and exposed members Lumber I 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00; 3) Unbaland design. 4) This truss load of 1: overhang 	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR 1 C-C Exterior(2E) zone ; end vertical left and ri s and forces & MWFRS DOL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat B ; Ct=1.10 ced snow loads have be s has been designed fo 2.0 psf or 1.00 times fla gs non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed;C-C for for reactions shown; DL=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for thi r greater of min roof li t roof load of 20.0 psf other live loads.	.15 is is is is is is is is is is	are noted as front (F) of ba) Standard ow (balanced): Lumber Inc 1.15 pads (lb/ft) 2=-60, 2-3=-60, 4-5=-20 ted Loads (lb) -34 (B), 4=-11 (B)	יניג (ם). rease=1.15, Plate				SEA 0235	ROL 94

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

R. Million R. M

March 19,2024

ONY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	J02B		3	1	Job Reference (optional)	164309102

-0-10-8

2-0-0

2-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:ECfUBUFe9H2pQggtCVedLeyi_x2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Loading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.24 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	GRIP 244/190 FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 2-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=71 (LC Max Uplift 3=-52 (LC Max Grav 3=64 (LC 21)	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 14) 14), 4=-11 (LC 14) 21), 4=34 (LC 7), 5=	 6) * This truss on the botto 3-06-00 tall chord and a 7) Bearings ar crushing ca 8) Refer to gird 9) Provide me- bearing plat 4 and 52 lb 10) This truss is Internationa R802.10.2 a 230 	has been designed m chord in all areas by 2-00-00 wide wil ny other members. e assumed to be: , pacity of 425 psi. Jer(s) for truss to tru- chanical connection e capable of withsta uplift at joint 3. designed in accord I Residential Code s and referenced stand) Standard	for a liv where I fit betv Joint 5 L uss con (by oth anding 1 lance w sections dard AN	e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 1 lb uplift at R502.11.1 a ISI/TPI 1.	0psf com to joint and					
FORCES	(Ib) - Maximum Com Tension 2-5=-208/78 1-2=0/6	pression/Maximum										
BOT CHORD	4-5=0/0	2,20,00										
NOTES												
 Wind: ASC Vasd=103 Cat. II; Ex zone and i exposed; members Lumber D TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph smph; TCDL=6.0psf; B(p B; Enclosed; MWFR3; C-C Exterior(2E) zone; end vertical left and ric and forces & MWFRS; OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (i =-1.15); Pf=20.0 psf (i =-1.15);	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri hft exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. um DOL=1.15 Plate	ght .15					1	-0	SEA	ROLIN	-
 DOL=1.15 Cs=1.00; (Unbalance design. This truss load of 12 	b); IS=1.0; Rough Cat B Ct=1.10 ed snow loads have be has been designed for .0 psf or 1.00 times flat	en considered for thi greater of min roof I t roof load of 20.0 ps	is ive f on					THUR A		0235	94	
5) This truss chord live	has been designed for load nonconcurrent wi	a 10.0 psf bottom th any other live load	ls.						11	WY R. I	MILLIN	

- 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

R. MI R. MILLIN March 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	J02C		1	1	Job Reference (optional)	164309103

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:iODtPqGGwbAg2qF3mC9stryi_x1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.08 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER 10.0 11.0 11.1															
 WEBS NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; (3) Unbalanco design. 4) This truss load of 12 overhangs 	2-4=-38/1 CE 7-16; Vul mph; TCDL: p B; Enclose C-C Exterior end vertical and forces & OL=1.60 pla OL=1.60 pla OL=1.60 pla CE 7-16; Pr= =1.15; Pf= 5; Is=1.0; Rc Ct=1.10 ed snow load has been de .0 psf or 1.00 s non-concur	t=130mph =6.0psf; Bud; MWFR3 (2E) zone; Left and rig MWFRS te grip DO =20.0 psf (20.0 psf (20.0 psf d bugh Cat E ds have be esigned for 0 times flat rrent with c	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. Im DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi r greater of min roof I r roof load of 20.0 pst ther live loads.	ght 15 s ive f on							1 Contractions		SEA 0235	RO I 94 94	A MARINIA MARINA

CINEEDING

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	J03		1	1	Job Reference (optional)	164309104

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 ID:iODtPqGGwbAg2qF3mC9stryi_x1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	-0.01	4-5	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL		10.0		_									Weight: 17 lb	FT = 20%
LUMBER				5)	This truss ha	s been designed fo	or a 10.0) psf bottom						
TOP CHORD	2x4 SP No.3	2		,	chord live loa	d nonconcurrent w	ith any	other live loa	ids.					
BOT CHORD	2x4 SP No.2	2		6)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
WEBS	2x4 SP No.3	3			on the botton	n chord in all areas	where	a rectangle						
BRACING					3-06-00 tall b	y 2-00-00 wide will	fit betv	een the bott	om					
TOP CHORD	Structural w	ood shea	athing directly applie	d or	chord and an	y other members.	aint C I	lear Defined						
	3-0-9 oc pu	rlins, exc	cept end verticals.	()	crushing can	assumed to be: , J	oint 5 t	iser Delined						
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc	8)	Refer to girde	er(s) for truss to trust	iss con	nections						
	bracing.			. 9)	Provide mec	nanical connection	(by oth	ers) of truss t	to					
REACTIONS	(size) 3	= Mecha	nical, 4= Mechanical	l, -,	bearing plate	capable of withsta	nding 3	7 lb uplift at j	oint					
	5 Max Hariz 5	=0-4-11 -68 (LC	14)		3.									
	Max I Inlift 3	-00 (LC 37 (LC	(14) $(1-6)(1-14) = 5$) One H2.5A S	impson Strong-Tie	conne	ctors						
	(I	C 14)	14), 40 (LC 14), 3	22	recommende	d to connect truss	to bear	ng walls due	to					
	Max Grav 3	=94 (LC :	21), 4=58 (LC 7), 5=	348	UPLIFT at jt(s) 5 and 4. This col	nnectio	h is for uplift	only					
	(1	_C 2Ì)	<i>I</i> , (<i>I</i> ,	14	This trues is		rces.	th the 2019						
FORCES	(lb) - Maxim	um Com	pression/Maximum	1	International	Residential Code s	ance w	R502 11 1 s	nd					
	Tension				R802 10 2 ar	nd referenced stand	dard AN	ISI/TPI 1						
TOP CHORD	2-5=-319/10	08, 1-2=0	/67, 2-3=-80/34	L	DAD CASE(S)	Standard								
BOT CHORD	4-5=-111/38	3		_		otanidara								
WEBS	2-4=-40/116	6												
NOTES														11.
1) Wind: ASC	CE 7-16; Vult=	130mph	(3-second gust)										AD IN THE	Dille
Vasd=103	Smph; TCDL=6	6.0psf; BC	CDL=6.0psf; h=25ft;									N	THUA	HOIL
Cat. II; Ex	p B; Enclosed	; MWFR	5 (envelope) exterior	aht								N	285	in NO'L
zone anu	end vertical le	ft and ric	the exposed C-C for	gn								3	ei O'	Mila:
members	and forces & I	MWFRS 1	for reactions shown:								2		:0	
Lumber D	OL=1.60 plate	arip DO	L=1.60										-	
2) TCLL: AS	CE 7-16; Pr=2	0.0 psf (r	roof LL: Lum DOL=1	.15								:	SEA	L : =
Plate DOL	.=1.15); Pf=20	.0 psf (Li	um DOL=1.15 Plate								- E		0235	94 : 3
DOL=1.15	5); Is=1.0; Rou	gh Cat B	; Fully Exp.; Ce=0.9;										0200	1 5
Cs=1.00; 0	Ct=1.10													1 3
3) Unbalance	ed snow loads	have be	en considered for thi	IS								1	X.ENO	ERIAS
4) This trues	has been dee	ianed for	areater of min roof l	ive								11	O, GIN	5 6 S
load of 12	0 psf or 1 00	times flat	roof load of 20.0 nst	fon								1	VY D	ALLENN
overhands	s non-concurre	ent with o	ther live loads.										1111.1	
	overhangs non-concurrent with other live loads.													

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 69 FaNC	
24030128	V03		1	1	Job Reference (optional)	164309105

3-4-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 $ID:iODtPqGGwbAg2qF3mC9stryi_x1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

2x4 🍫

3-4-6

Scale = 1.22.9

00010 1.22.0														
Loading	(p	osf)	Spacing	2-0-0		CSI	0.45	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	20	0.0	Plate Grip DOL	1.15			0.18	Vert(LL)	n/a	-	n/a	999	м120	244/190
Show (Pf)	20	0.0	Lumber DOL	1.15 VEC		BC	0.22	Vert(IL)	n/a	-	n/a	999		
RCU		0.0	Codo			Notrix MD	0.00	HONZ(TL)	0.00	3	n/a	n/a		
BCDI	10	0.0	CODE	IRC201	0/1112014	IVIAUIX-IVIP							Weight: 13 lb	FT - 20%
		0.0					-						Weight. 13 lb	11-2070
LUMBER				7)	This truss ha	as been designed	d for a 10.0	0 psf bottom						
TOP CHORD	2x4 SP No.2				chord live loa	ad nonconcurren	it with any	other live loa	ds.					
BOT CHORD	2x4 SP No.2			8)	* This truss I	has been designe	ed for a liv	e load of 20.0)psf					
WEBS	2x4 SP No.3				on the bottor	m chord in all are	eas where	a rectangle						
BRACING					3-06-00 tall t	by 2-00-00 wide v	will fit betv	veen the botto	om					
TOP CHORD	Structural woo	d shea	athing directly applie	d or a	Provide med	banical connecti	s. on (by oth	ore) of trues t	0					
	3-4-6 oc purlins	s, exc	cept end verticals.	9)	bearing plate	e capable of with	standing 9	b uplift at io	int					
BOT CHORD	 Kigia ceiling di 	rectly	applied or 10-0-0 oc		1.			apint at jo						
DEACTIONS	(cizo) 1-2	162	-316	10) One H2.5A \$	Simpson Strong-	Tie conne	ctors						
REACTIONS	(SIZE) 1-3- Max Horiz 1-60	-4-0, 3 0/1 C	11)		recommende	ed to connect true	ss to bear	ing walls due	to					
	Max I Inlift 1=-0		(1)		UPLIFT at jt	(s) 3. This conne	ction is for	r uplift only ar	d					
	Max Grav 1=18	82 (1 C	20) 3=182 (LC 20)		does not cor	sider lateral forc	es.	the the e 0040						
FORCES	(lb) - Maximum		nression/Maximum	11) This truss is	Designed in acco	ordance w	Ith the 2018	nd					
	Tension	1 00111	procolori/maximum		R802 10 2 a	nd referenced st	andard AN	ISI/TPI 1	nu					
TOP CHORD	1-2=-243/69, 2	2-3=-12	20/52	10	DAD CASE(S)	Standard	undund / li							
BOT CHORD	1-3=-63/194			_`		otandara								
NOTES														
1) Wind: AS	CE 7-16; Vult=130	0mph	(3-second gust)											
Vasd=10	3mph; TCDL=6.0p	psf; B0	DL=6.0psf; h=25ft;											
Cat. II; E>	<pre>kp B; Enclosed; M</pre>	IWFR	6 (envelope) exterior											
zone and	C-C Exterior(2E)	zone;	cantilever left and ri	ght									minin	11111
exposed	; end vertical left a	and rig	Int exposed;C-C for										I'L'H CA	Rall
Lumber D	$\Omega = 1.60$ plate ar	in DO										1	a	OL MAN
2) Truss de	signed for wind lo	ads in	the plane of the true									S.	OFESS	10: NY
only. For	studs exposed to	wind	(normal to the face).	5								25	nie l	. 7 -
see Stand	dard Industry Gab	le End	Details as applicab	e,							-	10	10 11	1 T
or consul	t qualified building	g desig	ner as per ANSI/TP	1.									CEA	1 1 2
3) TCLL: AS	SCE 7-16; Pr=20.0) psf (r	oof LL: Lum DOL=1	15							=	:	SEA	·L : =
Plate DO	L=1.15); Pf=20.0	psf (Lu	um DOL=1.15 Plate								=		0235	94 : =
DOL=1.1	5); Is=1.0; Rough	Cat B	; Fully Exp.; Ce=0.9;								-			1 3
Cs=1.00;	Ct=1.10			_									1	
4) Unbaianc	eu snow loads ha	ave pe	en considered for thi	S								2	X SNOW	EEP. Q.S
5) Gable rec	nuires continuous	bottor	n chord bearing									11	OANNIN	50 8 8
 Gable stu 	ids spaced at 4-0-	-0 oc.											INY R	MILLIN
.,	F												"Innin	in the second se

March 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty		DRB GROUP - 69 FaNC	
24030128	V05		1	1	Job Reference (optional)	164309106

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 12:32:08 $ID:iODtPqGGwbAg2qF3mC9stryi_x1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

5-10-6

Scale = 1:29.7

Scale - 1.29.7													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.33 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-6 oc purlins, e Rigid ceiling directly bracing. (size) 1=5-10-6, Max Horiz 1=129 (LC Max Uplift 1=-28 (LC 5=-101 (L Max Grav 1=62 (LC 5=469 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 4=5-10-6, 5=5-10-6 C 11) C 12), 4=-28 (LC 11), C 14) 11), 4=190 (LC 20), C 20)	4) 5) 6) 7) ed or 8) ; 9) 10)	Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1. One H2.5A S recommende UPLIFT at jt(and does no	snow loads have es continuous bo spaced at 4-0-0 d is been designed n chord in all area by 2-00-00 wide v ny other members hanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 4 and 5. This of t consider lateral	been cor ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv s. on (by oth standing 2 Fie conne ss to bear connectio forces.	sidered for the d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 8 lb uplift at ju- ctors ng walls due n is for uplift of	his ds.)psf om o pint to only					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-148/187, 2-3=- 1-5=-58/66, 4-5=-45 2-5=-436/261	npression/Maximum 129/100, 3-4=-157/4 /66	11) 8 LO A	This truss is International R802.10.2 a AD CASE(S)	designed in acco Residential Code nd referenced sta Standard	rdance w e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd					
	2-3430/201												
 Wind: AS: Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D Truss dee only. For see Stanc or consult TCLL: AS Plate DOI DOL=1.15 Cs=1.00; 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi cp B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS 00L=1.60 plate grip DC signed for wind loads ir studs exposed to wind lard Industry Gable En- it qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed; C- C for for reactions shown; JL=1.60 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 as; Fully Exp.; Ce=0.9	r ight ss , le, , 11. .15 ;								and a state of the	SEA 0235	L 94 MILLER MILLER

NGINEERING

818 Soundside Road Edenton, NC 27932

March 19,2024

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.