

Trenco 818 Soundside Rd Edenton, NC 27932

Re: ELV A CP 3CG EB Roof A CP EB 3C

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I64153317 thru I64153342

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 12,2024

Liu, Xuegang IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A01	Common	10	1	Job Reference (optional)	164153317

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:27 ID:Be0VNTHUdJV1PMEhy0ydXfzIBVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A01GA	Hip Supported Gable	1	1	Job Reference (optional)	l64153318

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:29 ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A01GA	Hip Supported Gable	1	1	Job Reference (optional)	l64153318
Builders FirstSource (Apex, NC),	Apex, NC - 27523,	Run: 8.63 S Nov 1	2023 Print: 8.	630 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 11 10:15:29	Page: 2

ID:s1rkApFfouah?fL3epONnXzIBUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Apex, NC), Apex, NC - 27523,

- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 31, 35 lb uplift at joint 34, 34 lb uplift at joint 35, 32 lb uplift at joint 36, 38 lb uplift at joint 37, 15 lb uplift at joint 38, 123 lb uplift at joint 39, 76 lb uplift at joint 40, 35 lb uplift at joint 28, 35 lb uplift at joint 27, 32 lb uplift at joint 26, 38 lb uplift at joint 25, 15 lb uplift at joint 24, 114 lb uplift at joint 23 and 70 lb uplift at joint 22.
- 13) N/A
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-10=-46, 10-12=-60, 12-21=-46, 41-44=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A03	Common	3	1	Job Reference (optional)	164153319

19-4-8

6-3-3

Builders FirstSource (Apex, NC), Apex, NC - 27523

11-8-3

Scale = 1:75.6

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

0-4-9 ∏

6-9-4

6-9-4

7x10

5x8=

0-11-0

0-11-0

Plate Offsets (X, Y): [1:0-1-1,Edge], [1:0-0-8,Edge], [10:Edge,0-2-0]

(psf)

20.0

10.0

0.0

10.0

2x4 SP No.2 *Except* 1-3:2x4 SP No.1

2-2-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 1=-38 (LC 16), 10=-32 (LC 17)

(Ib) - Maximum Compression/Maximum

1-2=-2246/178, 2-4=-2063/197,

4-5=-1544/225, 5-6=-1536/226,

1-15=-182/1978, 13-15=-43/1716,

11-13=-16/1589, 10-11=-96/1795

5-13=-119/1178, 8-10=-1807/112,

6-13=-618/170, 6-11=-12/436,

Max Grav 1=1551 (LC 29), 10=1476 (LC 30)

6-8=-2091/203, 8-9=-480/80, 9-10=-371/75

8-11=-207/159, 2-15=-212/148, 4-15=-4/385,

Structural wood sheathing directly applied or

1=0-3-8, 10= Mechanical

8-10, 6-13, 4-13

13.2/20.0

2x4 SP No.1

2x4 SP No.3

Left: 2x6 SP DSS

bracing, Except:

1 Row at midpt

(size)

Tension

2-2-0 oc bracing: 1-15

Max Horiz 1=226 (LC 15)

13-1-5

6-4-1

712 71

15

2-0-0

1.00

1.15

YES

4)

5)

6)

7)

8)

4x6 =

3x6 🦼

3

2x4

2

9-10-13

8-11-13

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 11 10:15:30 ID:iC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

31-6-2

6-1-4

25-4-14

6-0-6

Page: 1

37-10-0

6-3-14

5x6= 5 4x6 💋 4x6 2' 22 6 3x6 7 4x6 8 9 10<mark>0</mark> ċ 23 14 13 1224 25 11 $8 \times 10 =$ MT20HS 3x10 = 3x6= 4x6 =4x8= 19-4-8 28-5-8 37-10-0 9-5-11 9-1-0 9-4-8 CSI DEFL in l/defl L/d PLATES GRIP (loc) TC 0.93 Vert(LL) -0.34 13-15 >999 240 MT20 244/190 BC 0.95 Vert(CT) -0.61 13-15 >742 180 MT20HS 187/143 WB 0.59 Horz(CT) 0.09 10 n/a n/a IRC2015/TPI2014 Matrix-MS Weight: 219 lb FT = 20% 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for slope. Unbalanced snow loads have been considered for this design. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 1 SP No.1 crushing capacity of 565 psi. 10) Refer to girder(s) for truss to truss connections. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 1 and 32 lb uplift at joint 10. 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and nin manual and R802.10.2 and referenced standard ANSI/TPI 1. and a second and a second s LOAD CASE(S) Standard SEAL

NOTES

WFBS

Unbalanced roof live loads have been considered for 1) this design

4-13=-630/176

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1111 March 12,2024

GANG

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A03GA	Hip Supported Gable	1	1	Job Reference (optional)	l64153320

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:31 ID:G9akxTit4GFRxLgAJ5Y3mKzIBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69.1 Plate Offsets (X, Y): [11:0-3-0,0-1-12], [13:0-3-0,0-1-12], [20:0-1-8,0-1-8]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3, 2	1, 2 , 1										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.19 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 278 lb	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, 2-0-0 oc purlins (Rigid ceiling direc bracing, 1 Row at midpt	heathing directly appli except end verticals, a 10-0-0 max.): 11-13. :tly applied or 6-0-0 oc 13-33, 12-34, 10-39 9-37, 14-31	ed or ind FORCES 5, TOP CHORD	Max Grav 24=11. 26=15 28=22 30=22 33=23 35=24 38=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=22 40=21 40=21 40=42 40 40 40 40 40 40 40 40 40 40 40 40 40	2 (LC 12), 2 (LC 38), 4 (LC 38), 4 (LC 38), 3 (LC 31), 6 (LC 22), 5 (LC 38), 1 (LC 38), 9 (LC 46), compressie =-6/171, 4 18/203, 7- 0=-117/27	25=319 (LC 27=239 (LC 29=228 (LC 31=243 (LC 31=243 (LC 37=233 (LC 39=229 (LC 41=255 (LC 41=255 (LC 43=350 (LC 43=350 (LC 5=0/191, 8=-50/225, 4.	30), 38), 38), 38), 37), 38), 38), 38), 2)	1) Unt this 2) Wir Vas II; E and Eun 3) Tru only see or c 4) ** T	palanceo design. d: ASCI ad=91mp cxp B; El I C-C Ex osed ; e mbers an hber DO uss desig /. For st Standa onsult q CLL: AS	t roof li E 7-10; bh; TCI nclosed terior (nd veri nd forc L=1.60 gned fo uds ex rd Indu ualified SCE 7-	velight: 278 if ve loads have b Vult=115mph (DL=6.0psf; BCD d; MWFRS (env 2) zone; cantile tical left and rigl es & MWFRS fc) plate grip DOL or wind loads in posed to wind (stry Gable End b building design (0; Pr=20.0 psf	een considere 3-second gust L=6.0psf; h=3 elope) exterior ver left and rig tt exposed;C-(pr reactions sh =1.33 the plane of th normal to the Details as app ner as per AN! (roof live load	d for) Oft; Cat. r zone ht C for iown; ie truss face), olicable, SI/TPI 1. : Lumber
	(3)26) 24=30 26=36 30=36 33=36 33=36 33=36 40=36 42=36 Max Horiz 43=20 Max Uplift 24=-14 26=-15 28=-32 30=-35 34=-10 38=33 40=-35 42=-66	11-0, 22=36-11-0, 11-0, 22=36-11-0, 11-0, 31=36-11-0, 11-0, 34=36-11-0, 11-0, 37=36-11-0, 11-0, 37=36-11-0, 11-0, 41=36-11-0, 11-0, 41=36-10, 11-0, 41=36-11-0, 11-0, 41=36-11-	BOT CHORD 17), 17), 17), 17), 16), 16), 16), 16), 17), 10), 1	$\begin{array}{c} 10\text{-}11\text{=-}109/227,\\ 12\text{-}13\text{=-}108/227,\\ 12\text{-}13\text{=-}108/2251,\\ 14\text{-}15\text{=-}86/271,\\ 16\text{-}17\text{=-}36/252,\\ 11\text{-}21\text{-}22\text{=-}140/316,\\ 1\text{-}43\text{=-}159/63,\\ 42\text{-}42\text{-}233/126,\\ 39\text{-}40\text{=-}233/126,\\ 31\text{-}33\text{=-}233/126,\\ 31\text{-}33\text{=-}233/126,\\ 25\text{-}26\text{=-}233/126,\\ 25\text{-}26\text{=-}233/126,\\ 13\text{-}33\text{=-}193/1,\\ 12\text{-}37\text{=-}193/65,\\ 8\text{-}640\text{=-}184/58,\\ 5\text{-}2\text{-}43\text{=-}217/63,\\ 14\text{-}530\text{=-}184/59,\\ 17\text{-}28\text{=-}185/56,\\ 19\text{-}26\text{=-}122/47,\\ 22\text{-}24\text{=-}172/324\end{array}$	$\begin{array}{l} 11-12=-10\\ 13-14=-12\\ 5-16=-54\\ 7-18=-53\\ 9-21=-94\\ 22-23=-12\\ -43=-233\\ 40-41=-22\\ 38-39=-22\\ 38-39=-22\\ 33-34=-22\\ 30-31=-22\\ 28-29=-22\\ 28-29=-22\\ 28-29=-22\\ 28-29=-22\\ 28-29=-22\\ 28-29=-22\\ 28-29=-22\\ 33=-48\\ 40-41=-22\\ 33=-48\\ 40-41=-22\\ 33=-48\\ 40-41=-22\\ 33=-22\\ 3$	08/251, 20/277, /260, /243, /250, 7/7, 23-24=-1 /126, 33/126,	170/71 ⁴ 206/0, 3/57, 9/69,	DO sno DO Exp surf 5) Roc slop	L=1.15 F w); Ps= L=1.15 F B; Fully ace of design be.	Plate D varies Plate D r Exp.; a snow	OL=1.00); Pf=2 (min. roof snow OL=1.00) see la Ct=1.10; Unobs load has been VH C SEA 282	0.0 psf (flat ro =13.2 psf Lum vad cases; Car tructed slipper reduced to acc	of iber tegory II; Y :ount for

NOTES

Continued on page 2

WARNING

March 12,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A03GA	Hip Supported Gable	1	1	Job Reference (optional)	l64153320
Builders FirstSource (Apex, NC),	Apex, NC - 27523,	Run: 8.63 S Nov 1	2023 Print: 8.	630 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 11 10:15:31	Page: 2

ID:G9akxTit4GFRxLgAJ5Y3mKzIBU3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Apex, NC), Apex, NC - 27523.

- 6) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding. Gable studs spaced at 2-0-0 oc. 7) 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 145 lb uplift at joint 24, 10 lb uplift at joint 34, 41 lb uplift at joint 37, 33 Ib uplift at joint 38, 32 lb uplift at joint 39, 35 lb uplift at joint 40, 24 lb uplift at joint 41, 66 lb uplift at joint 42, 7 lb uplift at joint 43, 32 lb uplift at joint 31, 35 lb uplift at joint 30, 33 lb uplift at joint 29, 32 lb uplift at joint 28, 37 lb uplift at joint 27, 15 lb uplift at joint 26 and 93 lb uplift at joint 25.

13) N/A

- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00

Uniform Loads (lb/ft) Vert: 1-11=-46, 11-13=-60, 13-23=-46, 24-44=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	A03H	Common	9	1	Job Reference (optional)	164153321

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon.Mar.11 10:15:32 ID:jNLPutSCt6pqdISQQ1DRE6zIBWz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	B01GR	Common Girder	1	3	Job Reference (optional)	164153322

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:33 ID:0qSBIjUG6KjQ1vAirZaJCRzIBIj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.2

Plate Offsets (X, Y):	[4:0-4-0,Edge], [8:0-4-0,Edge],	[13:0-3-8,0-5-4], [1	14:0-6-0,0-6-0], [15:0-3-8,0-5-4]
-----------------------	---------------------------------	----------------------	-----------------------------------

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.36 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.05	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS 1) 3-ply truss (0.131"x3") Top chords staggered Bottom cho staggered Bottom cho	2x6 SP No.2 2x8 SP DSS 2x4 SP No.3 *Except Left 2x6 SP DSS - 2 2-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=-199 (L0 Max Grav 1=10051 (22) (lb) - Maximum Com Tension 1-3=-11818/0, 3-5=- 6-7=-8166/0, 7-9=-10 1-16=0/8779, 15-16= 12-13=0/8387, 11-12 3-16=0/2044, 3-15=- 5-14=-3720/0, 6-14= 7-13=0/4033, 9-13=- 9-12=-340/1809 to be connected toget) nails as follows: s connected as follows at 0-9-0 oc. prds connected as follows at 0-4-0 oc. ected as follows: 2x4 - mber 3-16 2x4 - 2 row	t* 14-6:2x4 SP No.2 -6-0, Right 2x6 SP D athing directly applied applied or 10-0-0 oc 1=0-3-8, (req. 0-3-9) C 6) (LC 21), 11=10637 (L pression/Maximum 10347/0, 5-6=-8167/(0177/0, 9-11=-11442 -0/8779, 13-15=0/4388, 0/10042, 7-14=-3426 871/485, ther with 10d :: 2x6 - 2 rows ows: 2x8 - 2 rows 1 row at 0-9-0 oc, is staggered at 0-6-0	2) SSS 3) d or 4) () 5) .C () () () () () () () () () ()	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp B; End cantilever left right exposed TCLL: ASCE DOL=1.15 PI snow); Ps=10 DOL=1.00); (Unobstructed Roof design : slope. This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an WARNING: F than input be than input be (I) This truss is of International R802.10.2 ar	considered equally da as front (F) or b titon. Ply to ply cor istribute only loads vise indicated. roof live loads hav 7-10; Vult=115mp ; TCDL=6.0psf; Bi closed; MWFRS (et and right expose t; Lumber DOL=1. 7-10; Pr=20.0 psf ate DOL=1.00); Pl 0.1 psf (roof snow: Category II; Exp B d slippery surface snow load has been s been designed fi d nonconcurrent v as been designed fi d nonconcurrent v as been designed in chord in all areas y 2-00-00 wide wil y other members. Required bearing s aring size. are assumed to be 50 psi. designed in accord Residential Code ind referenced stan	y applied ack (B) i nection is noted is e been of h (3-sec CDL=6.0 enveloped d ; end v 60 plate (roof liv i=20.0 p Lumber ; Fully E en reduct or a 10.0 vith any for a liv is where il fit betw ize at jo SP DS dance w sections dard AN	d to all plies, face in the LC s have been as (F) or (B), considered fo xond gust) Dpsf; h=30ft; () exterior zor vertical left an grip DOL=1.: e load: Lumb sf (flat roof r DOL=1.15 P xp.; Ct=1.10; ed to account 0 psf bottom other live loae e load of 20.0 a rectangle veen the bottot int(s) 11 grea S crushing ith the 2015 i R502.11.1 a ISI/TPI 1.	DAD r Cat. he; d 33 er Plate t for ds. Dpsf om tter	12) Har prov lb d 4-0- 8-0- 12-(dow 44 l 24-(con LOAD (1) De Inc Ur Cc	rided sub ided sub own and 12, 166 0-12, 166 0-12, 166 0-12, 166 0-12, 160 0-12, 100 0-12, 100 0	r othe fficien: 1 44 lb 2 lb dc 2 lb dc 62 lb c 56 lb c 4 lb up 22-0-1 bottom (bi 1.00) Sta now (bi 1.00)	r connection dev to support conc up at 2-0-12, 16 wm at 6-0-12, 1 wm at 10-0-12, lown at 14-0-12 lown and 14-15 lown and 44 lb u to at 20-0-12, and 2, and 1459 lb c in chord. The dess (s) is the respon ndard alanced): Lumbe b/ft) 6-11=-40, 17-21 ads (lb) 7 (B), 23=-1222 27=-1307 (B), 2 30=-1307 (B), 3 33=-1219 (B), 3 CAR SEA 2822	ice(s) shall be entrated load(s) 1 i62 lb down at 1662 lb down at 1456 lb down at own and 42 lb up ign/selection of s sibility of others. r Increase=1.15, =-20 (B), 25=-1219 (B) B=-1307 (B), 1=-1307 (B), 4=-1219 (B)	1456 56 lb nd 2 at such Plate
υς.												Marc	IG n 12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	B02	Common	1	1	Job Reference (optional)	164153323

5x6= 4

13-4-12

6-6-9

6-10-3

6-10-3

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:33 ID:c5Td3hHYNCYRSqJ3fFsTmlzIBPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26-9-8

6-10-3

19-11-5

6-6-9

Page: 1

					10 ¹² 3 4x6 ¢ 3 2 20 21	5x4 *		22 8 4x6	2x4 3x4 5 6 7 7 7 7 7 7 7 7 7	24		4x12	" 7 6=		
			1-ð-*Ť 0-11-0 ──	2	9-0-6		17-9-2			25-10-8		26-9	-8 1		
	Scale = 1:76.4		0-11-0 0-1-1	7 2	7-11-10	•	8-8-12			8-1-6		0-11	-0		
!	Plate Offsets (X, Y): [1:0-6-0,0-0-12], [7:Edge,0-0-8], [7:	0-0-8,Edge	9]										
	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.71 0.90 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.40 0.04	(loc) 8-10 8-10 7	l/defl >999 >782 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
	BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr Vind: ASC Vasd=91m II; Exp B; I and C-C E exposed ; members a Lumber DO	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x10 SP DSS Structural wood she 3-11-2 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, ' Max Horiz 11=-216 (Max Uplift 7=-10 (LC Max Grav 7=1135 (I (Ib) - Maximum Corr Tension 1-2=-451/104, 2-4=- 4-6=-1150/236, 6-7= 1-11=-50/248, 10-11 7-8=-29/885 4-8=-126/598, 6-8=- 2-10=-289/233, 2-11 ed roof live loads have b CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er ixterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	athing directly applie applied or 10-0-0 oc 2-11 11=0-3-8 (LC 10) 2 15), 11=-10 (LC 14 LC 26), 11=1112 (LC apression/Maximum 1173/233, =-1246/122 =-81/1013, 8-10=0/6 298/226, 4-10=-118/ 1=-926/41 been considered for (3-second gust) DL=6.0psf; h=30ft; C invelope) exterior zon ever left and right ght exposed; C-C for for reactions shown; DL=1.33	4) ed or 5) 5 6) 7) 8) 9) 575, LC 629, - Cat. e	snow); Ps=1 DOL=1.00); Unobstructed Roof design slope. This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 5 Provide mec bearing plate 7 and 10 lb u This truss is International R802.10.2 a	0.1 psf (roof sn Category II; Exi d slippery surfa snow load has as been designe an chord in all an by 2-00-00 wide ny other membe are assumed to 655 psi. thanical connect e capable of wit uplift at joint 11. designed in acc Residential Co nd referenced s Standard	ow: Lumber o B; Fully E ce been reduc ed for a 10.0 nt with any ned for a 10.0 nt with any reas where e will fit betw ers, with BC b be SP No. tion (by oth hstanding 1 cordance w de sections standard AN	• DOL=1.15 F xp.; Ct=1.10; ed to accour 0 psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0psi 2 crushing ers) of truss t 0 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Plate It for Ids. Opsf om f. No oint				SE 282 HUEGA Mar	ARO SIO AL 228 NEEPUU NG LIUU ch 12,2024	A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRA
•		IING - Verify design parameter					MII-7473 rov 1	/2/2023 BEFORE	USE				ENCINE	EDINC BY	

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	B02GA	Hip Supported Gable	1	1	Job Reference (optional)	164153324

Continued on page 2

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon.Mar.11.10:15:34 ID:j3iheV1NJluQRbC1wL_YQKzIBPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 12,2024

The second se

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	B02GA	Hip Supported Gable	1	1	Job Reference (optional)	l64153324
Builders FirstSource (Apex, NC).	Run: 8.63 S Nov 1.2	023 Print: 8.0	530 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 11 10:15:34	Page: 2	

ID:j3iheV1NJluQRbC1wL_YQKzIBPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Apex, NC), Apex, NC - 27523,

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 27, 58 lb uplift at joint 28, 31 lb uplift at joint 29, 146 lb uplift at joint 30, 103 lb uplift at joint 31, 71 lb uplift at joint 22, 58 lb uplift at joint 21, 33 lb uplift at joint 20, 138 Ib uplift at joint 19 and 83 lb uplift at joint 18.

13) N/A

- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-8=-40, 8-10=-60, 10-17=-40, 32-35=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	CP01	Common	5	1	Job Reference (optional)	164153325

 I
 Job Reference (optional)

 Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:34

 ID:YJ08J4HIsFB04A9F2T_s5gzd29o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [1:0-2-8,Edge], [1:0-0-8,Edge], [3:0-2-8,Edge], [3:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI201	CSI TC BC WB Matrix-MS	0.33 0.28 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 4-14 4-14 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=29 (LC Max Horiz 1=29 (LC Max Grav 1=533 (LC (lb) - Maximum Com Tension	athing directly applie applied or 10-0-0 oc 3=0-3-0 16) : 12), 3=-26 (LC 13) : 2), 3=533 (LC 2) pression/Maximum	5) Unbala design. 6) This tru- chord li 7) * This tr on the l 3-06-00 chord a 8) All bear capacit 9) Provide bearing 1 and 2 10) This tru Interna R802.1 LOAD CAS	nced snow loads have ss has been designe ve load nonconcurre uss has been design pottom chord in all ar tall by 2-00-00 wide nd any other membe ings are assumed to y of 565 psi. mechanical connect plate capable of with 6 lb uplift at joint 3. ss is designed in acc ional Residential Co 0.2 and referenced s E(S) Standard	ve been cor ed for a 10.0 mt with any ned for a liv reas where e will fit betw ers. b be SP No. tion (by oth hstanding 2 cordance wi de sections standard AN	asidered for the psf bottom other live load of 20.1 a rectangle veen the bottom 2 crushing ers) of truss to 6 lb uplift at joint the 2015 R502.11.1 a ISI/TPI 1.	his ads. Opsf om to joint				Weight: 47 lb	FT = 20%	
TOP CHORD BOT CHORD WEBS	1-2=-700/124, 2-3=- 1-4=-58/617, 3-4=-58 2-4=0/215	700/124 8/617											
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; I and C-C E exposed; Lumber Du 3) TCLL: ASC DOL=1.15 snow); Ps: DOL=1.00 Unobstruc 4) Roof desig slope.	ed roof live loads have DE 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en ixterior (2) zone; cantil- end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =17.2 psf (roof snow: L); Category II; Exp B; F ted slippery surface gn snow load has been	been considered for (3-second gust) DL=6.0psf; h=30ft; C welope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 PI Fully Exp.; Ct=1.10; reduced to account	at. e er ate for						. and the second second	and the second second	SEA 2822	L L L L L L L L L L L L L L L L L L L	

March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	CP01G	Common Supported Gable	1	1	Job Reference (optional)	164153326

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:35 ID:Q4Gf9RKGwUhqYoT0HJ2oGWzd29k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

		i											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.19	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Ps/Pf)	17.2/20.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 50 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 8=11-2-0, 11=11-2-0 Max Horiz 12=29 (LC Max Uplift 8=-34 (LC 11=-16 (L Max Grav 8=306 (LC 10=309 (L 12=306 (LC))	athing directly applied applied or 6-0-0 oc 9=11-2-0, 10=11-2-0 0, 12=11-2-0 C 16) C 12), 9=-15 (LC 13), C 12), 12=-33 (LC 16 C 34), 9=122 (LC 2), LC 2), 11=122 (LC 2), LC 23)	3) 4) d or 5) 5) 5) 7) 8) 7) 8) 9)	Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI Snow); Ps=1 DOL=1.00; 1 Unobstructed Roof design Slope. Unbalanced design. Gable studs This truss ha chord live loa * This truss ha on the bottor	hed for wind loads dids exposed to wind d Industry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.00); Pf 7.2 psf (roof snow: Category II; Exp B; d slippery surface snow load has bee snow loads have b spaced at 2-0-0 oc s been designed fr d nonconcurrent v ias been designed n chord in all areas	in the pl d (norm nd Deta signer as (roof liv =20.0 p Lumber ; Fully E en reduc been cor been cor c. or a 10.0 vith any for a liv s where	ane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun isidered for th 0 psf bottom other live loa e load of 20.0 a rectangle	uss), ble, PI 1. er Plate t for his ds. Dpsf					
TOP CHORD	(Ib) - Maximum Com Tension 1-2=-32/253, 2-3=-5	/239, 3-4=0/243,	10)	3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) All bearings are assumed to be SP No.2 crushing									
BOT CHORD	4-5=0/243, 5-6=-5/2 1-12=-213/46, 11-12 10-11=-213/46, 9-10 7-8=-213/46	39, 6-7=-32/253 2=-213/46,)=-213/46, 8-9=-213/4	11) 46,	capacity of 5 Provide mec bearing plate 11, 33 lb upli	65 psi. hanical connection capable of withsta ft at joint 12, 15 lb	(by oth anding 1 uplift at	ers) of truss t 6 lb uplift at j joint 9 and 34	o oint 4 lb				TH CA	RO
WEBS	4-10=-256/30, 3-11= 5-9=-108/56, 6-8=-1	=-108/56, 2-12=-187/6 87/63	53, 12	uplift at joint	8.						3	EESS	ion Alter
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; and C-C E exposed ; members Lumber D	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; DL=1.33	at.	This truss is International R802.10.2 ar AD CASE(S)	designed in accorc Residential Code s nd referenced stan Standard	dance w sections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	ind		. ethilityee	A A A A A A A A A A A A A A A A A A A	SEA 2822 HUEGAN March	EEF.R

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	G01	Common	3	1	Job Reference (optional)	164153327

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:35 ID:u8TZMNQp8Y0oyef?k_ppizylLdt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Plate Offsets ((X, Y): [1:0-0-12,Edge], [1:0-0-8,Edge], [5:0	0-0-12,Edg	ge], [5:0-0-8,Ec	lge], [6:0-4-0,0-3-	4]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 17.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.91 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.31 0.05	(loc) 6-11 6-11 5	l/defl >999 >880 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp B; and C-C E exposed ; members Lumber D 3) TCLL: AS DOL=1.16 snow); Ps DOL=1.00 Unobstrue	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 4-1-5 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 5 Max Horiz 1=50 (LC Max Uplift 1=-43 (LC Max Uplift 1=-43 (LC Max Grav 1=910 (LC (lb) - Maximum Com Tension 1-2=-1697/262, 2-3= 3-4=-1304/164, 4-5= 1-5=-194/1564 3-6=0/523, 2-6=-446 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (ic 5 Plate DOL=1.00); Pf= =17.2 psf (roof snow: L b); Category II; Exp B; Fi	athing directly applie applied or 10-0-0 oc 5=0-3-8 16) : 12), 5=-43 (LC 13) C 2), 5=910 (LC 2) pression/Maximum -1304/164, -1697/262 5/152, 4-6=-446/152 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right pht exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof - umber DOL=1.15 PI Fully Exp.; Ct=1.10;	4) 5) 6) 7) d or 8) 9) 10 LC Cat. e	Roof design slope. Unbalanced design. This truss ha chord live loa * This truss f on the bottor 3-06-00 tall th chord and ar All bearings is capacity of 5 Provide mec bearing plate 1 and 43 lb u This truss is International R802.10.2 ar DAD CASE(S)	snow load has be snow loads have is been designed ad nonconcurrent has been designer in chord in all area yy 2-00-00 wide w hy other members are assumed to be 65 psi. hanical connections e capable of with plift at joint 5. designed in accor Residential Code nd referenced star Standard	en reduc been cor for a 10. with any d for a liv as where ill fit betv e SP No. n (by oth tanding 4 rdance w e sections ndard AN	ed to accoun nsidered for th 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 3 lb uplift at j ith the 2015 s R502.11.1 a ISI/TPI 1.	nt for his his ds. Dpsf om oint nd			and the second sec	SEA 2822		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 12,2024

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	G01G	Common Supported Gable	1	1	Job Reference (optional)	164153328

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:35 ID:mvi4BkTKCmXERFzmzqtlspylLdp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	G02	Common	2	1	Job Reference (optional)	164153329

4-1-11

q-7-14

Scale = 1:41.2

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 11.10:15:36 ID:u8TZMNQp8Y0oyef?k_ppizylLdt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

⁴-3

3x6 =

21-10-0

0-11-0

5-4-8 10-5-8 15-9-4 21-10-0 5-4-8 5-1-0 5-3-12 6-0-12 4x6 = 1<u>2</u> 4 2x4 -2x4 = 18 17 3 5 3x4 = 2 3x8 II 7 5x8 = 4x6 II 10-5-8 20-11-0 10-5-8 10-5-8 Plate Offsets (X, Y): [1:0-3-8,Edge], [6:0-3-0,0-1-8], [6:0-0-8,Edge], [7:0-4-0,0-3-4]

Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 тс 0.54 Vert(LL) -0.15 7-10 >999 240 MT20 244/190 Snow (Ps/Pf) 17.2/20.0 Lumber DOL 1.15 BC 0.92 Vert(CT) -0.33 7-10 >803 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.29 0.05 6 n/a n/a BCLL 0.0 IRC2015/TPI2014 Matrix-MS Code BCDL 10.0 Weight: 94 lb FT = 20% LUMBER 4) Roof design snow load has been reduced to account for TOP CHORD 2x4 SP No.2 slope. BOT CHORD 2x4 SP No.2 5) Unbalanced snow loads have been considered for this WEBS 2x4 SP No.3 design. WEDGE Right: 2x4 SP No.3 6) This truss has been designed for a 10.0 psf bottom Left 2x4 SP No.3 -- 2-5-0 chord live load nonconcurrent with any other live loads. SLIDER * This truss has been designed for a live load of 20.0psf 7) BRACING on the bottom chord in all areas where a rectangle TOP CHORD Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom 4-0-14 oc purlins. chord and any other members. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc 8) All bearings are assumed to be SP No.2 crushing bracing. capacity of 565 psi. REACTIONS (size) 1=0-3-8, 6=0-3-8 Provide mechanical connection (by others) of truss to 9) Max Horiz 1=-55 (LC 17) bearing plate capable of withstanding 37 lb uplift at joint Max Uplift 1=-37 (LC 12), 6=-43 (LC 13) 1 and 43 lb uplift at joint 6. Max Grav 1=835 (LC 2), 6=912 (LC 2) 10) This truss is designed in accordance with the 2015 FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-3=-1621/259, 3-4=-1308/166, LOAD CASE(S) Standard 4-5=-1312/165, 5-6=-1704/263 BOT CHORD 1-6=-195/1570 WEBS 4-7=0/530, 3-7=-442/147, 5-7=-444/152 NOTES Annun Unbalanced roof live loads have been considered for 1) this design The second se 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.33 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=17.2 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

ANG

11111 March 12,2024

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	M01	Monopitch	5	1	Job Reference (optional)	164153330

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:36 ID:FGBX_2FOsuFQj57pPv3N7uzc1wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.8

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

					-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.46	Vert(LL)	-0.05	3-8	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.11	3-8	>728	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER			6)	* This truss h	nas been designed	d for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2			on the bottor	n chord in all area	as where	a rectangle						
BOT CHORD	2x4 SP No.2			3-06-00 tall b	oy 2-00-00 wide w	ill fit betv	veen the bott	tom					
NEBS	2x4 SP No.3			chord and ar	ny other members								
WEDGE	Left: 2x4 SP No.3		7)	Bearings are	assumed to be:	Joint 1 Sl	P No.2 crush	ing					
BRACING				capacity of 5	65 psi, Joint 3 SP	No.3 cru	ushing capac	ity of					
TOP CHORD	Structural wood she	athing directly applie	d or	565 psi.									
	6-0-0 oc purlins. ex	cept end verticals.	8)	Bearing at jo	int(s) 3 considers	parallel	to grain value	Э					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		using ANSI/1	FPI 1 angle to grai	in formul	a. Building						
	bracing.			designer sho	build verify capacity	y of bear	ing surface.						
REACTIONS	(size) 1=0-3-8, 3	3=0-1-8	9)	Provide mec	nanical connectio	n (by oth	ers) of truss	to					
	Max Horiz 1=54 (LC	15)	10	Deaning place	banical connectio	n (hy oth	ore) of truce	to					
	Max Uplift 1=-20 (LC	2 12), 3=-21 (LC 16)	10	bearing plate	canable of withst	tanding (20 lb unlift at	ioint					
	Max Grav 1=307 (LC	C 2), 3=233 (LC 23)		1 and 21 lb i	nlift at joint 3	tanuing 2	to ib upint at	joint					
FORCES	(lb) - Maximum Com	pression/Maximum	11) This truss is	designed in accor	rdance w	ith the 2015						
	Tension			International	Residential Code	sections	R502.11.1	and					
TOP CHORD	1-2=-124/39, 2-3=-1	55/75		R802.10.2 a	nd referenced sta	ndard AN	NSI/TPI 1.						
BOT CHORD	1-3=-78/122		LC	DAD CASE(S)	Standard								
NOTES					otandara								
1) Wind AS(CE 7-10: Vult-115mph	(3-second quet)											
Vasd=91n	nph: TCDI =6 0psf: BC	DI = 6 Opsf h = 30 ft C	at									minin	un.
II: Exp B:	Enclosed: MWERS (en	velope) exterior zon	e									I'L CA	Pall
and C-C E	Exterior (2) zone: cantil	ever left and right										a/	0/11
exposed ;	end vertical left and rig	ght exposed;C-C for									5.	OY .: ESS	10: 11 1
members	and forces & MWFRS	for reactions shown;									24	X P	An J -
Lumber D	OL=1.60 plate grip DO	L=1.33											
2) TCLL: AS	CE 7-10; Pr=20.0 psf (roof live load: Lumbe	er							-		0	
DOL=1.15	5 Plate DOL=1.00); Pf=	20.0 psf (flat roof									:	SEA	L : =
snow); Ps	=18.7 psf (roof snow: L	_umber DOL=1.15 Pl	ate							=		2823	28
DOL=1.00)); Category II; Exp B; I	Fully Exp.; Ct=1.10;									6	2022	
Unobstruc	ted slippery surface										2	N	1 8
 Koot designation 	gn snow load has been	reduced to account	tor								5	·. 60.	-A. :
slope.	ad a second a second a la second		-								14	LGIN	EFILLS
+) Unbalance	eu snow loads nave be	en considered for th	15								11	705-	CIP II
aesign.	has been designed for	r a 10.0 pcf bottom									~~~	1, SGAN	Guin
j mis iruss	nas been designed for	i a 10.0 psi bollom										111111	

- JU); F snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

mmm

March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	M01G	Monopitch Supported Gable	1	1	Job Reference (optional)	l64153331

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Mon Mar 11 10:15:36 ID:bE_Q1IJWgQujqs?mCTfYqxzc1wt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.3	
Plate Offsets (X, Y):	[1:0-6-0,0-0-4]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=5-10-0, 8=5-10-0 Max Horiz 1=54 (LC Max Uplift 1=-9 (LC (LC 12) Max Grav 1=216 (LC (LC 22), 8	athing directly applie cept end verticals. applied or 10-0-0 oc 4=5-10-0, 5=5-10-0, 15), 8=54 (LC 15) 12), 5=-35 (LC 16), 8 2 2), 4=31 (LC 22), 5 ==216 (LC 2)	3) 4) d or 5) 5 6) 7) 8 8 -9 -296 9)	TCLL: ASCE DOL=1.15 Pl snow); Ps=11 DOL=1.00; (Unobstructed Roof design slope. Unbalanced design. Gable studs : This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an All bearings a	7-10; Pr=20.0 psf late DOL=1.00); Pl 8.7 psf (roof snow: Category II; Exp B d slippery surface snow load has been snow loads have b spaced at 2-0-0 of s been designed find nonconcurrent w has been designed find nonconcurrent w as been designed find nonconcurre	(roof liv f=20.0 p Lumbe ; Fully E en reduc been cor or a 10.0 with any for a liv s where Il fit betv s SP No.	e load: Lumbi sf (flat roof r DOL=1.15 P xp.; Ct=1.10; ed to account asidered for th 0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing	er late for is ds. psf m					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=91r	(lb) - Maximum Com Tension 1-2=-65/44, 2-3=-33, 1-5=-24/26, 4-5=-24, 2-5=-216/119 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC	pression/Maximum /23, 3-4=-27/16 /26 (3-second gust) DL=6.0psf: h=30ft; C	10 11 12 Cat. LC	capacity of 5)) Provide mecl bearing plate 1, 35 lb uplift) N/A)) This truss is - International R802.10.2 ar DAD CASE(S)	to psi. hanical connectior capable of withsta at joint 5 and 9 lb designed in accord Residential Code nd referenced stan Standard	a (by oth anding 9 uplift at dance w sections dard AN	ers) of truss to I b uplift at joi joint 1. ith the 2015 i R502.11.1 a ISI/TPI 1.	o nt nd			N.V.	CH CA	ROLAN

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

10 mm "HULLING WORKS GANG mmm March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

28228

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	M02	Monopitch	1	1	Job Reference (optional)	164153332

5-10-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:36 ID:FYjyYsS2s6O0Giw4v_tNJTzc1wh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.1

Plate Offsets (X, Y): [1:Edge,0-1-6], [1:0-3-4,Edge]

	, .). [sgs,s . s]	,[
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.43 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.02	(loc) 3-6 3-6 1	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n II; Exp 8; 1 and C-C E exposed ; members ; Lumber DD 2) TCLL: ASC DOL=1.05 Snow); Ps: DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalance design. 5) This truss chord live	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-10-0 oc purlins, e Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=51 (LC Max Uplift 1=-14 (LC Max Grav 1=228 (L (lb) - Maximum Con Tension 1-2=-153/40, 2-3=-1 1-3=-88/149 CE 7-10; Vult=115mpf nph; TCDL=6.0psf; BC Enclosed; MWFRS (e Exterior (2) zone; canti end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf is Plate DOL=1.00); Pf =18.7 psf (roof snow: 0); Category II; Exp B; ted slippery surface gn snow loads have but has been designed for load nonconcurrent w	eathing directly applie except end verticals. y applied or 10-0-0 oc 3=0-1-8 (15) C 12), 3=-21 (LC 16) C 2), 3=233 (LC 23) hpression/Maximum (53/80 (3-second gust) CDL=6.0psf; h=30ft; C hvelope) exterior zond lever left and right ght exposed; C-C for for reactions shown; DL=1.33 (roof live load: Lumbe =20.0 psf (flat roof Lumber DOL=1.15 Pl Fully Exp.; Ct=1.10; n reduced to account een considered for thi er a 10.0 psf bottom ith any other live load	 6) * This truss on the botto 3-06-00 tall chord and a 7) Bearings ar capacity of 565 psi. 8) Bearing at j using ANSI/ designer sh 9) Provide me bearing plat 10) Provide me bearing plat 10) Provide me bearing plat 11) This truss is Internationa R802.10.2 a LOAD CASE(S) 	has been designe m chord in all area by 2-00-00 wide v ny other members e assumed to be: 565 psi, Joint 3 SF coint(s) 3 considers TPI 1 angle to gra ould verify capacit chanical connectic e at joint(s) 3. chanical connectic e capable of withs uplift at joint 3. designed in acco I Residential Code and referenced sta) Standard	ed for a liv as where vill fit betw s. Joint 1 Sf No.3 cru s parallel t ain formula ty of bear on (by oth standing 1 or (by oth standing 1 or dance w e sections andard AN	e load of 20. a rectangle veen the both P No.2 crush ishing capac o grain value a. Building ng surface. ers) of truss 4 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf tom ing ity of e to joint and				SEA 2822 HUEGAN March	EFF. 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	P01	Monopitch	12	1	Job Reference (optional)	164153333

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:37 ID:3Ap?JDGLaUK7G_D2E4krwQzIBJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26

Plate Offsets (X, Y): [1:0-4-0,Edge], [1:0-0-8,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TF	PI2014	CSI TC BC WB Matrix-MP	0.70 0.55 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.01	(loc) 3-8 3-8 1	l/defl >966 >451 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=911 II; Exp 8; and C-C f exposed ; members Lumber D 2) TCLL: AS DOL=1.1(snow); Ps DOL=1.0(Unobstruc 3) Roof desi slope.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=63 (LC Max Uplift 1=-24 (LC Max Grav 1=365 (LC (lb) - Maximum Com Tension 1-2=-89/45, 2-3=-19 1-3=-91/109 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (er end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (5 Plate DCL=1.00); Pf= =18.7 psf (roof snow: L)); Category II; Exp B; 1 cted slippery surface gn snow load has beer ed snow loads have be	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-1-8 15) 2 12), 3=-25 (LC 16) C 2), 3=279 (LC 23) apression/Maximum 0/87 (3-second gust) DL=6.0psf; h=30ft; C twelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; JL=1.33 roof live load: Lumber 20.0 psf (flat roof Lumber DOL=1.15 PI Fully Exp.; Ct=1.10; n reduced to account en considered for th r a 10.0 psf bottom	6) * or 3- cr 7) Bi (7) Bi (8) Bi (8) Bi (9) Pi (9) Pi (9) Pi (10) Pi	This truss h n the botton -06-00 tall b hord and an iearings are apacity of 56 65 psi. iearing at joi sing ANSI/T esigner sho trovide mect earing plate rovide mect earing plate and 25 lb u his truss is o tremational 2802.10.2 ar D CASE(S)	as been designe h chord in all area y 2-00-00 wide w y other members assumed to be: 55 psi, Joint 3 SP nt(s) 3 considers PI 1 angle to gracit hanical connection at joint(s) 3. hanical connection at joint(s) 4. hanical connection	d for a liv as where vill fit betw Joint 1 SF No.3 cru parallel t in formula y of beari n (by oth- tanding 2 rdance wi s sections ndard AN	e load of 20. a rectangle veen the bott P No.2 crushi ishing capac o grain value a. Building ng surface. ers) of truss i 4 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om ing ity of to to joint and			Annual	SEA 2822	EER.

- Unobstructed slippery surface 3) Roof design snow load has been reduced to account for slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

March 12,2024

EGANG 111111111

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	P01G	Monopitch Supported Gable	2	1	Job Reference (optional)	164153334

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:37

Page: 1

ID:01EREAwuPbw7N5X5gvHzOlyBGjL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 7-11-8 2x4 ı 12 3 □ 2x4 II 4 2x4 I 3 11 2 2-4-0 2-4-0 -4-2 Lo 5 7 6 3x4 = 2x4 ı 2x4 II 2x4 II 7-11-8 Scale = 1:23.2 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL TCLL (roof) 20.0 1.00 TC 0.77 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Ps/Pf) BC Lumber DOL 1 15 18 7/20 0 0 77 Vert(TL) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 5 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MP BCDL 10.0 Weight: 30 lb FT = 20%LUMBER 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof TOP CHORD 2x4 SP No.2 snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate BOT CHORD 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; WFBS Unobstructed slippery surface OTHERS 2x4 SP No.3 4) Roof design snow load has been reduced to account for BRACING slope. TOP CHORD Structural wood sheathing directly applied or Unbalanced snow loads have been considered for this 5) 6-0-0 oc purlins, except end verticals. design. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Gable studs spaced at 2-0-0 oc. 6) bracing This truss has been designed for a 10.0 psf bottom 7) **REACTIONS** (size) 5=6-8-8, 6=6-8-8, 7=6-8-8 chord live load nonconcurrent with any other live loads. Max Horiz 7=63 (LC 15) * This truss has been designed for a live load of 20.0psf 8) Max Uplift 5=-4 (LC 16), 6=-287 (LC 2), 7=-40 on the bottom chord in all areas where a rectangle (LC 12) 3-06-00 tall by 2-00-00 wide will fit between the bottom 5=143 (LC 22), 6=-5 (LC 12), Max Grav chord and any other members. 7=771 (LC 2) All bearings are assumed to be SP No.2 crushing FORCES (lb) - Maximum Compression/Maximum capacity of 565 psi. Tension 10) Provide mechanical connection (by others) of truss to TOP CHORD 1-2=-83/64, 2-3=-71/11, 3-4=-31/33, bearing plate capable of withstanding 4 lb uplift at joint 4-5=-88/32 5, 287 lb uplift at joint 6 and 40 lb uplift at joint 7. BOT CHORD 1-7=-50/100. 6-7=-27/30. 5-6=-27/30 11) N/A and a second and a WFBS 3-6=0/122, 2-7=-429/129 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and NOTES R802.10.2 and referenced standard ANSI/TPI 1. Wind: ASCE 7-10; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) exterior zone The second se and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. ANG 11111 March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V01	Valley	1	1	Job Reference (optional)	164153335

Scale = 1:64.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

WFBS

NOTES

this design

bracing.

Snow (Ps/Pf)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:37 ID:E0Zd81oG80YGhiU5ulFJBDzlBZ6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

WEBS	1 Row at	midpt 4-10
REACTIONS	(size)	1=22-11-3, 7=22-11-3, 8=22-11-3,
		9=22-11-3, 10=22-11-3,
		11=22-11-3, 13=22-11-3
	Max Horiz	1=-182 (LC 10)
	Max Uplift	1=-33 (LC 10), 8=-91 (LC 15),
		9=-123 (LC 15), 11=-123 (LC 14),
		13=-95 (LC 14)
	Max Grav	1=145 (LC 26), 7=118 (LC 28),
		8=356 (LC 26), 9=472 (LC 26),
		10=423 (LC 28), 11=471 (LC 25),
		13=360 (LC 25)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-182/	/167, 2-3=-136/133, 3-4=-135/161,
	4-5=-135/	153, 5-6=-92/89, 6-7=-156/122
BOT CHORD	1-13=-104	4/148, 11-13=-104/144,
	10-11=-10	04/144.9-10=-104/144.

8-9=-104/144, 7-8=-104/144

5-9=-277/173, 6-8=-237/134

1) Unbalanced roof live loads have been considered for

4-10=-221/0, 3-11=-277/173, 2-13=-239/136,

- only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 123 lb uplift at joint 11, 95 lb uplift at joint 13, 123 lb uplift at joint 9 and 91 lb uplift at joint 8.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 12,2024

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V02	Valley	1	1	Job Reference (optional)	164153336

Scale = 1:59.2

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

BOT CHORD

WEBS

NOTES

this design.

1)

Snow (Ps/Pf)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:37 ID:IC7?LNpuvKg7Js3HSTnYjRzIBZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=20-1-10, 7=20-1-10, 8=20-1-10,
		9=20-1-10, 10=20-1-10,
		11=20-1-10, 13=20-1-10
	Max Horiz	1=-159 (LC 10)
	Max Uplift	1=-42 (LC 10), 7=-4 (LC 11), 8=-66
		(LC 15), 9=-126 (LC 15), 11=-126
		(LC 14), 13=-71 (LC 14)
	Max Grav	1=111 (LC 26), 7=90 (LC 28),
		8=277 (LC 2), 9=423 (LC 26),
		10=389 (LC 28), 11=423 (LC 25),
		13=277 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
TOP CHORD	1-2=-175/	/131, 2-3=-164/102, 3-4=-154/142,
	4-5=-154/	137. 5-6=-127/63. 6-7=-140/90

1-13=-63/123 11-13=-63/123

5-9=-282/174. 6-8=-215/123

Unbalanced roof live loads have been considered for

7-8 = -63/123

10-11=-63/123, 9-10=-63/123, 8-9=-63/123,

4-10=-174/4, 3-11=-282/174, 2-13=-216/124,

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 1, 4 lb uplift at joint 7, 126 lb uplift at joint 11, 71 lb uplift at joint 13, 126 lb uplift at joint 9 and 66 lb uplift at joint 8
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 12,2024

AMITEKA Affilia 11 AMITEKA Affilia 11 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V03	Valley	1	1	Job Reference (optional)	164153337

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:38 ID:n_DfTBQyMVZ6OSI2IcAz9hzIBX?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.5											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC 0.28 BC 0.18 WB 0.30 Matrix-MS	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r II; Exp B; and C-C E exposed ; members Lumber D 3) Truss der only. For see Stanc or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=17-4-0, 7=17-4-0, Max Horiz 1=-137 (L Max Uplift 1=-14 (LC 9=-137 (L Max Grav 1=111 (LC 6=475 (LC 9=478 (LC (lb) - Maximum Com Tension 1-2=-126/230, 2-3=- 4-5=-105/194 1-9=-151/116, 7-9=- 5-6=-151/114 3-7=-329/0, 2-9=-30 ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (or Exterior (2) zone; cantil	athing directly applied applied or 6-0-0 oc 5=17-4-0, 6=17-4-0, 9=17-4-0 C 10) C 10), 6=-134 (LC 15) C 14) C 26), 5=102 (LC 30), C 26), 7=488 (LC 25), C 25) pression/Maximum 24/170, 3-4=-13/164, 151/114, 6-7=-151/11 5/175, 4-6=-304/174 been considered for (3-second gust) DL=6.0psf; h=30ft; C welope) exterior zone ever left and right ght exposed;C-C for for reactions shown; u=1.33 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI	 4) TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00;; Unobstructe. d or 5) Roof design slope. 6) Gable requir 7) Gable studs 8) This truss h chord live loa 9) * This truss h on the bottor 9) * This truss h chord and ar 10) All bearings capacity of 5 11) Provide mec bearing plate 1, 137 lb upl 12) This truss is International 14, R802.10.2 a LOAD CASE(S) 	7-10; Pr=20.0 psf (roof I Plate DOL=1.00); Pf=20.0 0.1 psf (roof snow: Lumb Category II; Exp B; Fully d slippery surface snow load has been redu res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10 ad nonconcurrent with an has been designed for a 10 ad nonconcurrent with an has been designed for a 10 by 2-00-00 wide will fit be hy other members, with B are assumed to be SP No 565 psi. shanical connection (by ot e capable of withstanding lift at joint 9 and 134 lb up designed in accordance of I Residential Code section nd referenced standard A Standard	ve load: Lumbe osf (flat roof ar DOL=1.15 Pli Exp.; Ct=1.10; ced to account ord bearing. .0 psf bottom / other live load ve load of 20.0p e a rectangle ween the bottor CDL = 10.0psf. .2 crushing hers) of truss to 14 lb uplift at joint 6. vith the 2015 s R502.11.1 an NSI/TPI 1.	r ate for s. osf m int d			and the second se	SEA 2822	EER.

- d; MWFRS (envelope) ext and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm March 12,2024

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V04	Valley	1	1	Job Reference (optional)	164153338

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:38 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=14-6-7, 5=14-6-7, 6=14-6-7,
		7=14-6-7, 8=14-6-7
	Max Horiz	1=-114 (LC 10)
	Max Uplift	1=-15 (LC 10), 6=-111 (LC 15),
		8=-113 (LC 14)
	Max Grav	1=113 (LC 26), 5=95 (LC 2), 6=369
		(LC 26), 7=386 (LC 25), 8=372 (LC
		25)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-136/	/121, 2-3=-101/102, 3-4=-84/90,
	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SP N BRACING TOP CHORD Structural 6-0-0 oc [BOT CHORD Rigid cell bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=-136/

TOP CHORD 1-2=-136/121, 2-3=-101/102, 3-4=-84/90, 4-5=-111/92 BOT CHORD 1-8=-65/113, 7-8=-65/83, 6-7=-65/83, 5-6=-65/86 WEBS 3-7=-219/0, 2-8=-263/153, 4-6=-261/152

NOTES

Scale = 1:43.7

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Ps/Pf)

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 113 lb uplift at joint 8 and 111 lb uplift at joint 6.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 12,2024

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V05	Valley	1	1	Job Reference (optional)	l64153339

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:38 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 💊

Page: 1

11-8-13

2x4 🛛

Scale	=	1:41	.3

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MS	.18 .12 .06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-8-1 7=11-8-1 Max Horiz 1=-91 (LC (LC 15), 1 Max Grav 1=78 (LC (LC 26), 25)	eathing directly applie y applied or 10-0-0 oc 3, 5=11-8-13, 6=11-8 3, 8=11-8-13 C 10) C 10), 5=-4 (LC 11), 6 8=-99 (LC 14) 26), 5=61 (LC 25), 6 7=238 (LC 2), 8=313	4) TCLL: ASC DOL=1.15 F snow); Ps= DOL=1.00); Unobstructe d or 5) Roof design slope. 6) Gable studs 7) Gable studs 8) This truss h chord live lc 9) * This truss on the botto 3-06-00 tall chord and a capacity of	E 7-10; Pr=20.0 psf (rod Plate DOL=1.00); Pf=20 10.1 psf (roof snow: Lur Category II; Exp B; Fu ed slippery surface n snow load has been re res continuous bottom s spaced at 4-0-0 oc. as been designed for a ad nonconcurrent with has been designed for m chord in all areas wh by 2-00-00 wide will fit iny other members. are assumed to be SP 565 psi.	of live .0 ps nber ly E educ chore 10.0 a live ere betw No.2	e load: Lumbrid f (flat roof DOL=1.15 P xp.; Ct=1.10; ed to account d bearing.) psf bottom other live load e load of 20.0 a rectangle reen the bottoc 2 crushing	er late for ds. psf om					
FORCES	(lb) - Maximum Con Tension 1-2=-97/83, 2-3=-14	npression/Maximum 2/86, 3-4=-139/82,	bearing plat bearing plat 1, 4 lb uplift uplift at join	chanical connection (by le capable of withstandi at joint 5, 99 lb uplift at t 6.	ng 2 joint	7 lb uplift at jo 8 and 96 lb	pint					
BOT CHORD	4-5=-77/55 1-8=-24/67, 7-8=-21 5-6=-21/67	/67, 6-7=-21/67,	12) This truss is Internationa R802 10 2 2	s designed in accordance Il Residential Code sect and referenced standard	ions	th the 2015 R502.11.1 a SI/TPL1	nd				mmm	000
WEBS	3-7=-151/0, 2-8=-26	61/159, 4-6=-260/158	LOAD CASE(S	Standard		0/1111.					"TH CA	ROUL
NOTES			(-,	,						5	DY FSS	in Inter
1) Unbalanc	ed roof live loads have	been considered for								32	Villa o	NIN F
 Wind: AS Vasd=91r II; Exp B; and C-C F exposed; members Lumber D Truss dei only. For see Stanc 	CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (el Exterior (2) zone; canti end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC signed for wind loads i studs exposed to wind dard Industry Gable Er	(3-second gust) CDL=6.0psf; h=30ft; C hvelope) exterior zon lever left and right ght exposed;C-C for for reactions shown; JL=1.33 n the plane of the tru: d (normal to the face) d Details as applicable ioner as our ANSI/TE	Cat. e ss , le, 1 1						. off Hite.	in the second seco	SEA 2822 HUEGAN	EER.

Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

tunn March 12,2024

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V06	Valley	1	1	Job Reference (optional)	164153340

4-5-10

4-5-10

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:39 ID:FAn1hXRa6ohz?btEsJiChvzIBX_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-7-1

4-1-8

8-11-3 0-4-2

8-11-3

Scale = 1:32.1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.24 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-11-3 oc purlins. Rigid ceiling directly bracing. (size) 1=8-11-3	eathing directly applied / applied or 6-0-0 oc , 3=8-11-3, 4=8-11-3	4) or 5) 6) 7) 8)	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructee Roof design slope. Gable studs This truss ha chord live loo	7-10; Pr=20.0 p late DOL=1.00); 0.1 psf (roof snor Category II; Exp d slippery surface snow load has b es continuous bc spaced at 4-0-0 as been designed ad nonconcurren	sf (roof liv Pf=20.0 p w: Lumbe B; Fully E een reduc ttom chor oc. I for a 10.0 t with any	re load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ced to accour rd bearing. 0 psf bottom other live loa	per Plate ht for hds.					
FORCES	Max Horiz 1=-69 (LC Max Uplift 1=-30 (LC 4=-58 (LC Max Grav 1=60 (LC (LC 2) (lb) - Maximum Con	C 12) C 30), 3=-30 (LC 29), C 14) S 29), 3=60 (LC 30), 4= npression/Maximum	9) 676 10	* This truss H on the bottor 3-06-00 tall H chord and an) All bearings capacity of 5	nas been designe m chord in all are by 2-00-00 wide v ny other member are assumed to b 65 psi.	ed for a liv as where will fit betw s. be SP No.	re load of 20. a rectangle veen the bott 2 crushing	Opsf om					
TOP CHORD BOT CHORD WEBS NOTES	Tension 1-2=-75/286, 2-3=-7 1-4=-221/115, 3-4= 2-4=-503/135	75/286 -221/115	11 12) Provide mec bearing plate 1, 30 lb uplifi) This truss is International 	characteristics with the capable of with the capable of with the tat joint 3 and 58 designed in according to the capable code capable code capable code capable capabl	on (by oth standing 3 b b uplift a ordance w e sections	ers) of truss 30 lb uplift at j at joint 4. ith the 2015 5 R502.11.1 a	to oint and					
1) Unbalance	ed roof live loads have	been considered for		R802.10.2 a	nd referenced sta	andard AN	NSI/TPI 1.					IIIIII	1111

this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. LOAD CASE(S) Standard

March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V07	Valley	1	1	Job Reference (optional)	164153341

2-6-15

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:39 ID:Ok_LxAhg?8Sx9nNkZcV2ZQzIBSo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-1-10

Scale = 1:27.4

Loading TCLL (roof) Snow (Ps/Pf) TCDL	(psf) 20.0 10.1/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	5/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-1-10 oc purlins. Rigid ceiling directly bracing. (size) 1=6-1-10, Max Horiz 1=-46 (LC Max Uplift 4=-22 (LC Max Grav 1=66 (LC	athing directly applied applied or 6-0-0 oc 3=6-1-10, 4=6-1-10 2 10) 2 14) 2 9), 3=66 (LC 30), 4	5) 6) 7) 8) d or 9) 10 =394	Roof design slope. Gable require Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an) All bearings a capacity of 5) Provide mecl bearing plate	snow load has bee es continuous botto spaced at 4-0-0 oc. s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. are assumed to be 65 psi. nanical connection capable of withsta	n reduc om chor or a 10.0 ith any for a liv where fit betw SP No. (by oth nding 2	ed to accound d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 2 lb uplift at j	ds. Opsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber Dt 3) Truss des only. For see Stand. or consult 4) TCLL: ASC DOL=1.00 Unobstruc	(b) - Maximum Com Tension 1-2=-57/138, 2-3=-5 1-4=-109/64, 3-4=-1 2-4=-265/63 ed roof live loads have b. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig CE 7-10; Pr=2.0.0 psf (is Plate DOL=1.00); Pf= =10.1 psf (roof snow: L u); Category II; Exp B; I ted slippery surface	pression/Maximum 7/138 09/64 been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; IL=1.33 n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe :20.0 psf (flat roof .umber DOL=1.15 Pl Fully Exp.; Ct=1.10;	12 LC at. a ss le, l1. r ate	4.) This truss is i International R802.10.2 ar DAD CASE(S)	designed in accord Residential Code s nd referenced stand Standard	ance wi sections dard AN	th the 2015 R502.11.1 a ISI/TPI 1.	und		. AND DAYS	and the second second	SEA 2822	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof A CP EB 3C	
ELV A CP 3CG EB	V08	Valley	1	1	Job Reference (optional)	164153342

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 10:15:39 ID:h4v?PZm4MIKyVsP4Ta7hLuzIBSh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

3-4-0

3x4 🍬

3x4 💊

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ;	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood sheat 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-0, 3 Max Horiz 1=-24 (LC Max Uplift 1=-2 (LC Max Uplift 1=-2 (LC Max Grav 1=133 (LC (lb) - Maximum Com Tension 1-2=-175/21, 2-3=-1: 1-3=-10/131 ed roof live loads have CE 7-10; Vult=115mph rph; TCDL=6.0psf; BC Enclosed; MWFRS (en ixterior (2) zone; cantil end vertical left and rig	athing directly applied applied or 10-0-0 oc 3=3-4-0 14), 3=-2 (LC 15) 2), 3=133 (LC 2) pression/Maximum 75/21 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right ght exposed;C-C for	 6) Gable requir 7) Gable studs 8) This truss has chord live lo d or 9) * This truss on the botto 3-06-00 tall chord and a 10) All bearings capacity of 5 11) Provide mean bearing plate and 2 lb upli 12) This truss is Internationa R802.10.2 a LOAD CASE(S) 	res continuous botto spaced at 4-0-0 oc. as been designed fo ad nonconcurrent wi has been designed fo m chord in all areas by 2-00-00 wide will ny other members. are assumed to be 565 psi. chanical connection e capable of withstar ft at joint 3. designed in accorda Residential Code s nd referenced stand Standard	m chor ith any for a liv where fit betw SP No. (by oth nding 2 ance w ections lard AN	d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botto 2 crushing ers) of truss to lb uplift at joi ith the 2015 iR502.11.1 at ISI/TPI 1.	ds. psf m nt 1 nd				TH CA	FT = 20%
members a Lumber DO 3) Truss des only. For s see Standa or consult 4) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruc: 5) Roof desig slope.	and forces & MWFRS DL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =10.1 psf (roof snow: L); Category II; Exp B; F ted slippery surface gn snow load has been	for reactions shown; L=1.33 to the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof live load: Lumbe 20.0 psf (flat roof Lumber DOL=1.15 Pli- Fully Exp.; Ct=1.10; to reduced to account	ss le, 1. r ate for						. annual and a second sec	A A A A A A A A A A A A A A A A A A A	SEA 2822 HUEGAN March	EER. GLUUIIIIII 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

