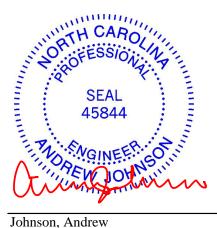


	Conne	Nail Information				
Sym	Sym Product Manuf Qty Supported Member		Header Truss			
	HUS26	USP	P 25 NA		16d/3-1/2"	16d/3-1/2"
3	3THDH210-3USP1Varies		16d/3-1/2"	16d/3-1/2"		

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

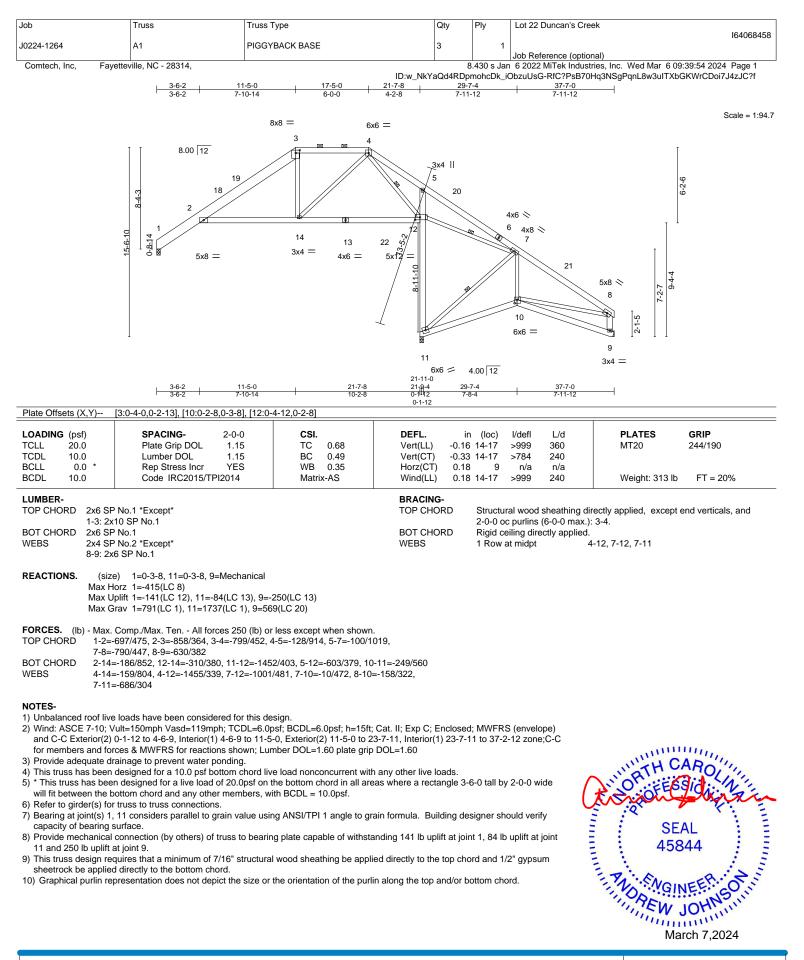
(BASED	ART FOR JACK STUDS ED ON TABLES R502.5(1) 4 (b)) ACK STUDS REQUIRED @ EA END OF		BUILDER New Home, Inc.		CITY / CO. Lillington / Harnett		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
0) Dis For Momenter	HEADER/GIRDER	TION TO TO TO TO TO TO TO TO TO TO TO TO TO	JOB NAME	Lot 22 Duncan's Creek	ADDRESS	327 Beacon Hill Road	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
END REAU (UP T REQ'D STU (2) PLY H	END REAG (UP T (UP T (3) PLY H	END REA (UP 1 (UP 1 (4) PLY H	PLAN	The Guilford - Traditional "B"	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 3400 2 5100 3	2550 1 5100 2 7650 3	3400 1 6800 2 10200 3	SEAL DATE	10/31/23	DATE REV.	03/06/24	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS Reilly Road Industrial Park
6800 4 8500 5 10200 6	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE #		DRAWN BY	Jonathan Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#. Jonathan Landry	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9			JOB #	J0224-1264	SALES REP.	Paul Hawkins	SignatureJonathan Landry	Fax: (910) 864-4444

Trenco 818 Soundside Rd Edenton, NC 27932

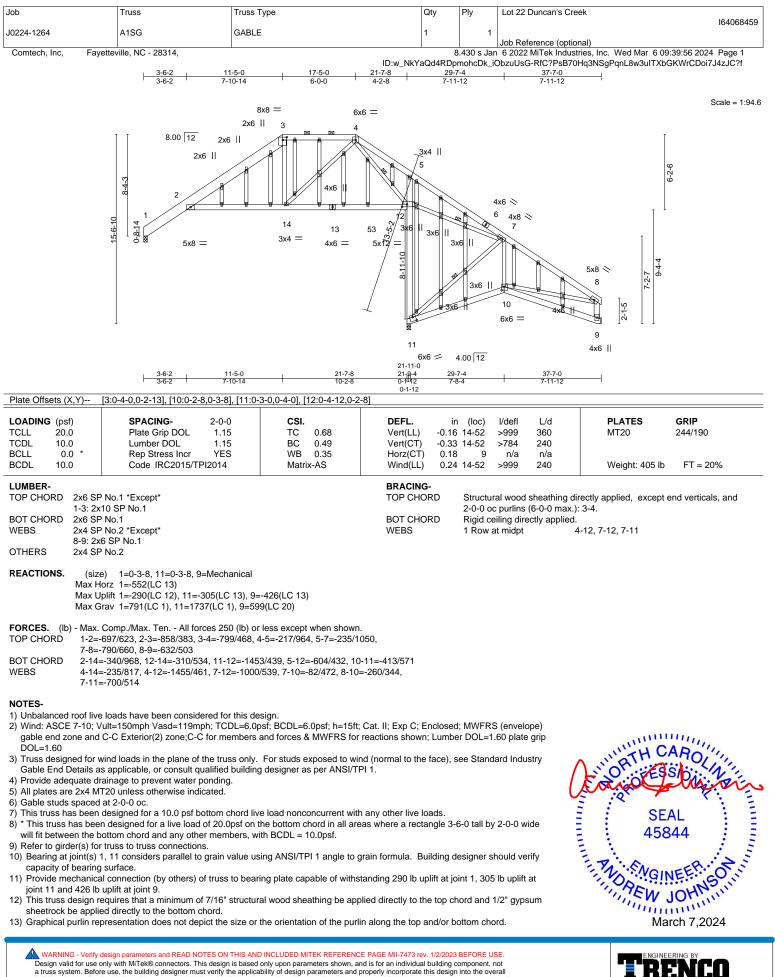

Re: J0224-1264 Lot 22 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

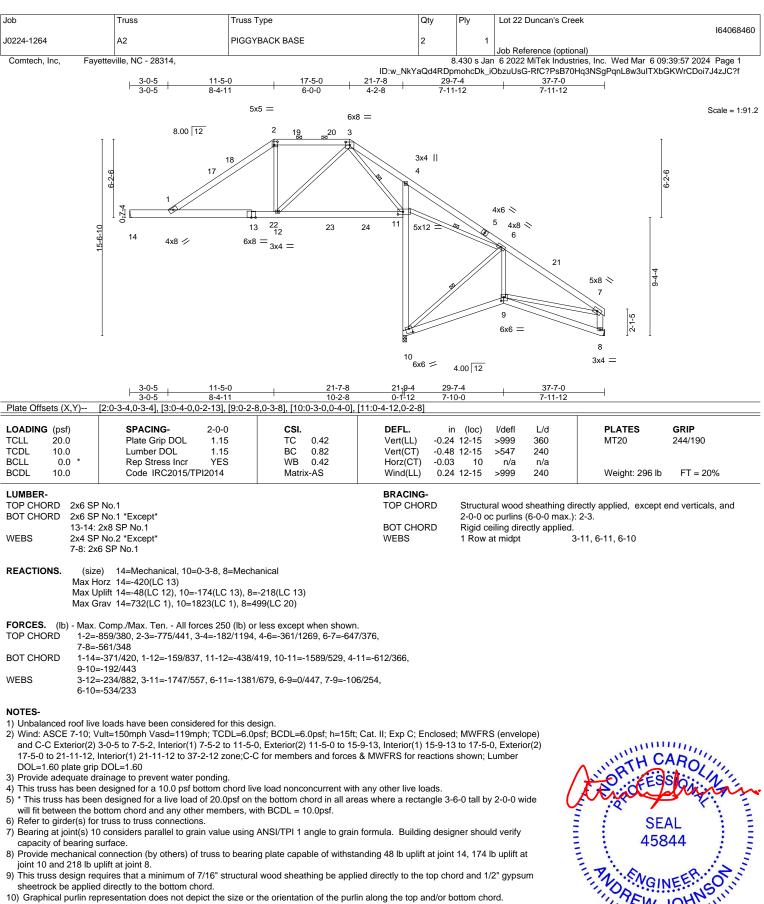
Pages or sheets covered by this seal: I64068458 thru I64068492


My license renewal date for the state of North Carolina is December 31, 2024.

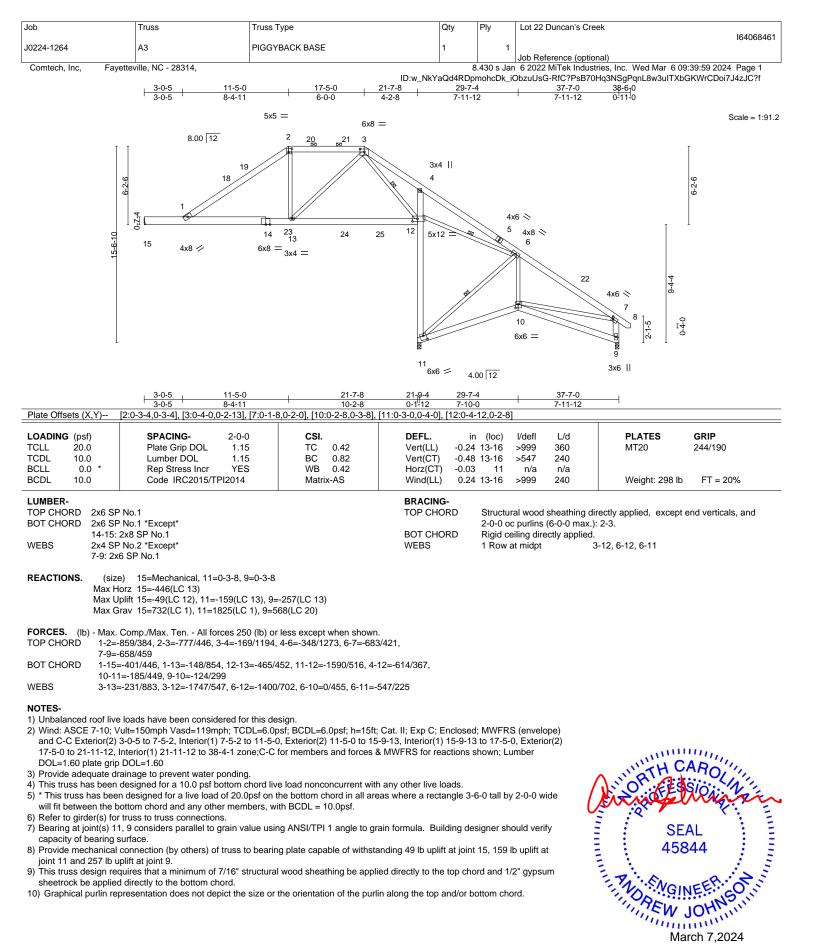
North Carolina COA: C-0844



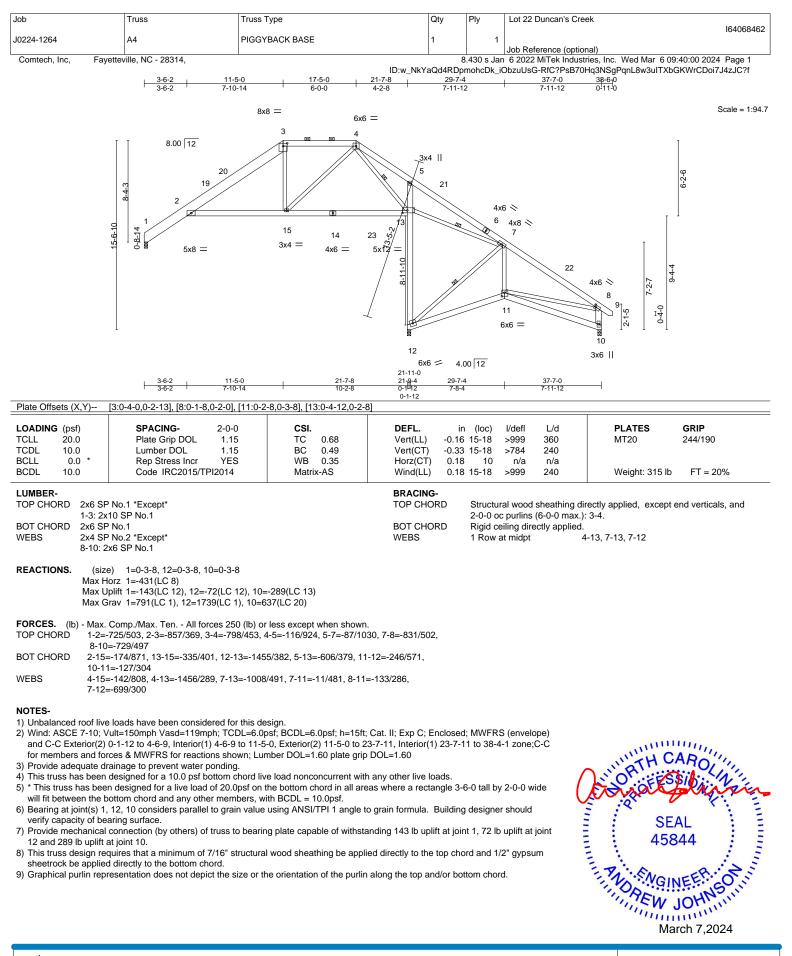
March 7,2024


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

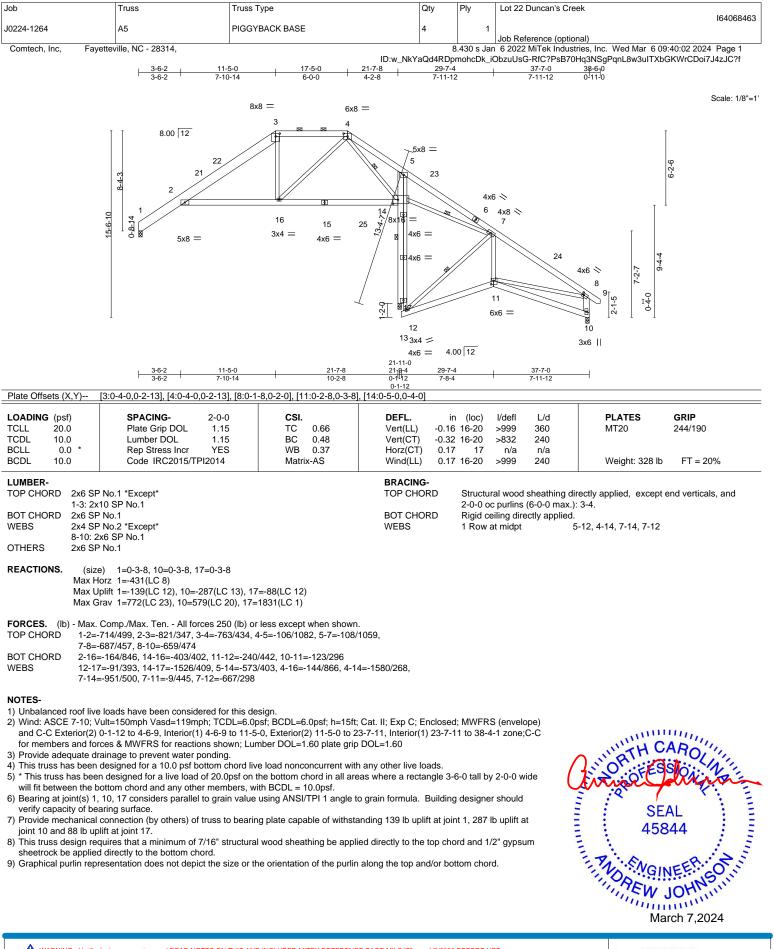
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


Design value for design with with with exercise closes. This design is based only upon parameters shown, and is for an individual duiling component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

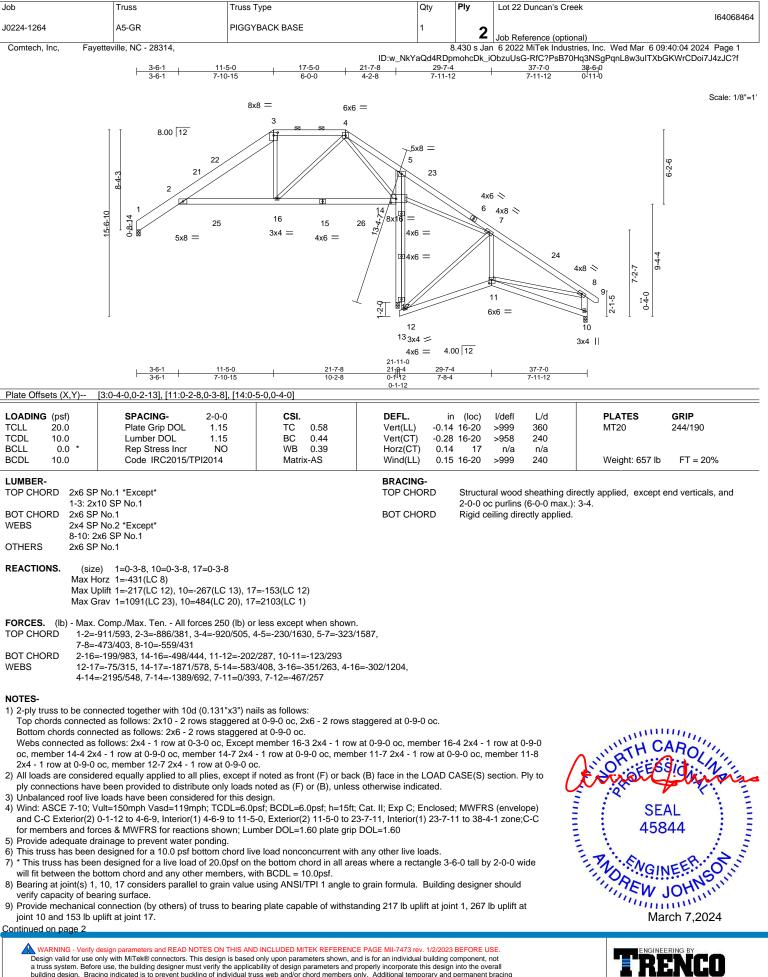
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Af

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

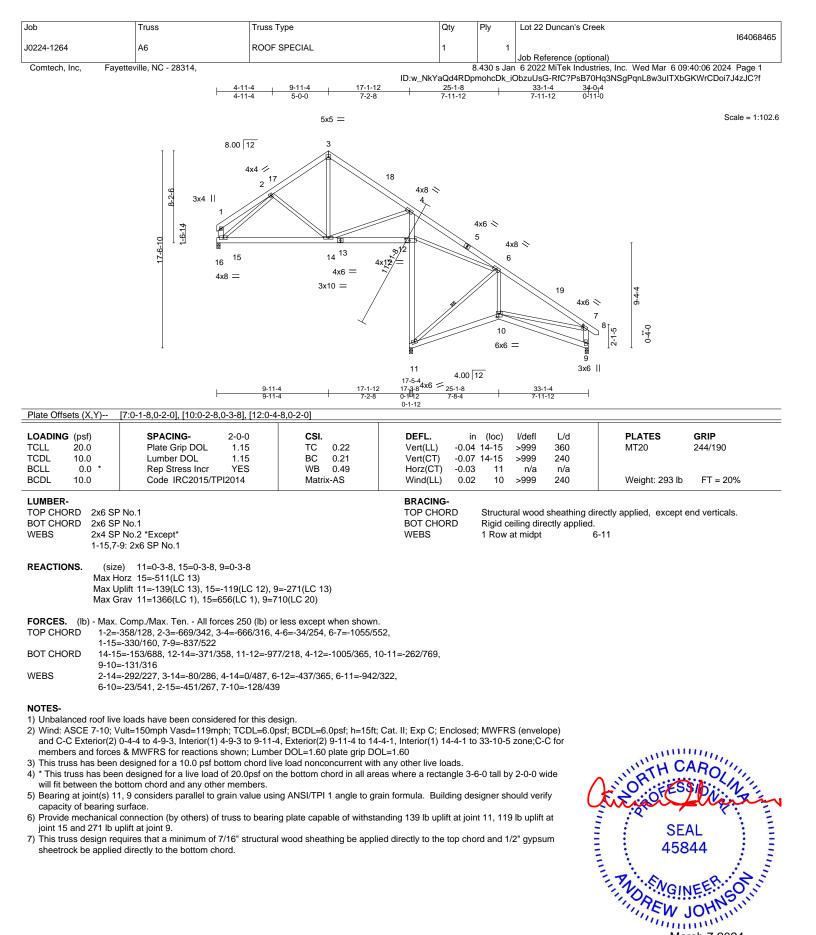
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
					164068464
J0224-1264	A5-GR	PIGGYBACK BASE	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	rille, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:04 2024 Page 2
		ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f			

NOTES-

- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

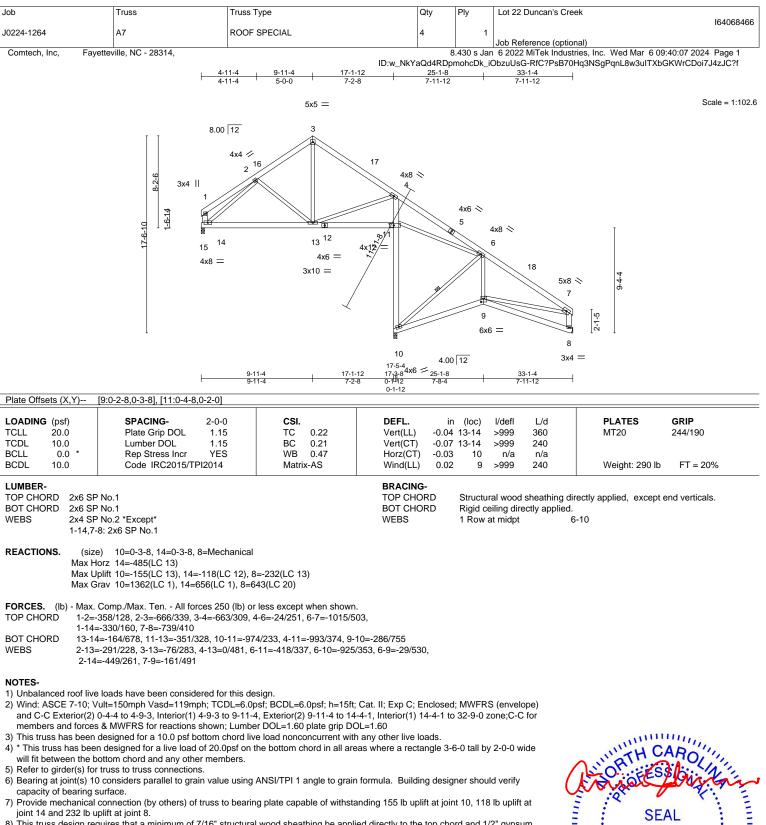
LOAD CASE(S) Standard


- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-19=-84, 3-19=-60, 3-4=-60, 4-8=-60, 8-9=-60, 14-18=-20, 11-13=-20, 10-11=-20 Concentrated Loads (lb)

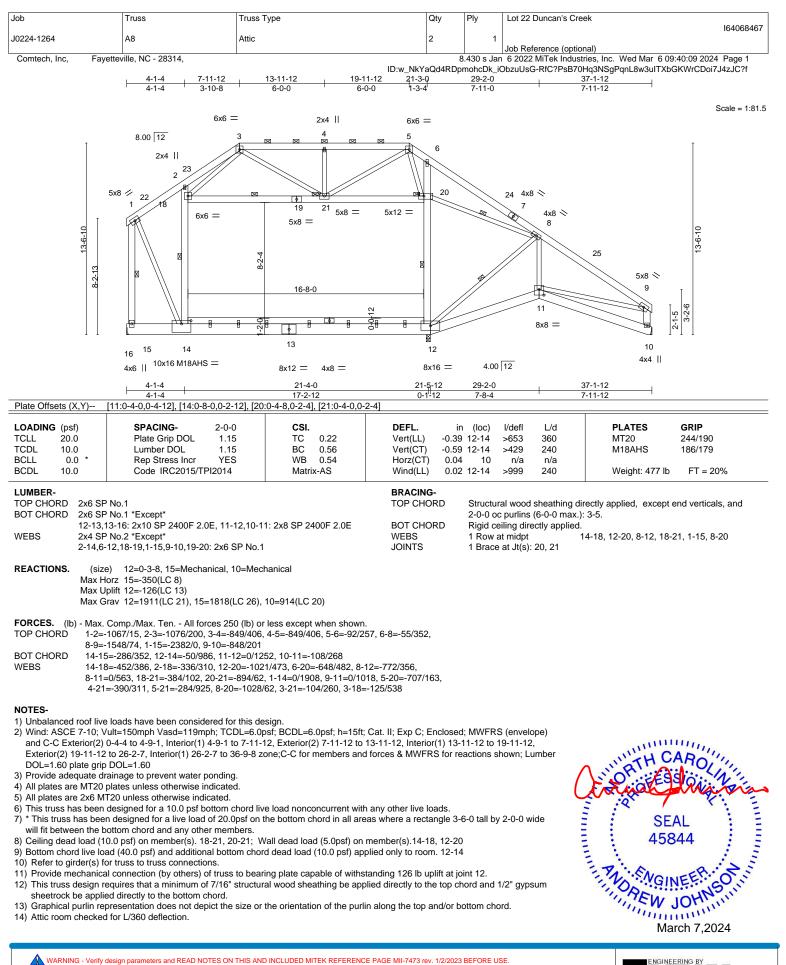
Vert: 25=-500(F)

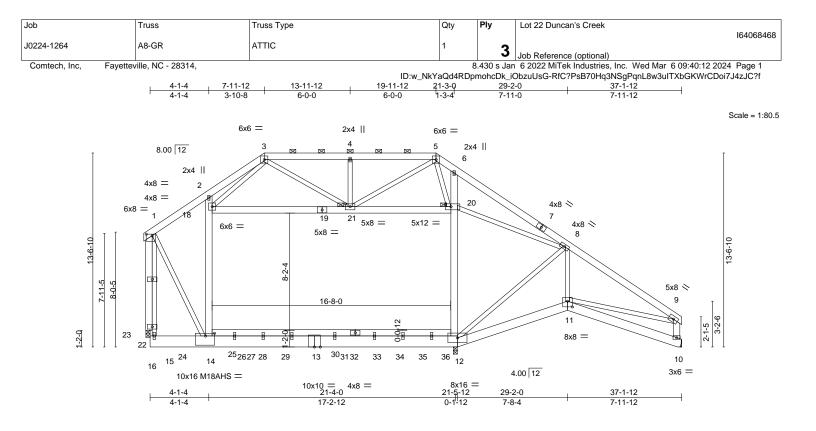
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932


March 7,2024


8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	[1:0 0 0,0 1 1]; [11:0 1 0,0 1 12]; [11:0		·];[=::::::::::::::::::::::::::::::::::::				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-1-4-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.15 BC 0.81 WB 0.61 Matrix-MS	Vert(LL) -0.5		L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 1460 lb	GRIP 244/190 186/179 FT = 20%
WEBS 2x4 SF 2-14,6 OTHERS 2x6 SF	P No.1 *Except* 13-16: 2x10 SP 2400F 2.0E, 11-12,10-1 P No.2 *Except* -12,18-19,9-10,19-20: 2x6 SP No.1 P No.1		BRACING- TOP CHORD BOT CHORD JOINTS	except end ver	ticals, and 2-0-0 rectly applied or	ctly applied or 6-0-0 oc oc purlins (6-0-0 max 10-0-0 oc bracing.	
Max H Max U	e) 12=0-3-8, 10=Mechanical, 23=0-3- lorz 23=-233(LC 4) Jplift 12=-84(LC 9) Grav 12=2480(LC 14), 10=1792(LC 14),						
TOP CHORD 1-2= BOT CHORD 12-14 WEBS 14-11 18-2 9-11	Comp./Max. Ten All forces 250 (lb) o -3687/0, 2-3=-3536/37, 3-4=-860/143, 4 4=-21/3001, 11-12=0/2865 8=-77/2086, 12-20=-535/450, 6-20=-357 1=-2023/0, 20-21=-2830/5, 15-22=-2135 =0/2650, 5-20=-471/103, 4-21=-262/147 =-273/107, 3-18=0/2790, 1-23=-5873/0	-5=-860/143, 8-9=-3484/0 /232, 8-12=-440/187, 8-1 /0, 1-22=-2135/0, 1-14=0), 9-10=-1701/9 1=0/764, //6516,		0	NUMERTH CA	ROLA
Top chords connect Bottom chords conn Webs connected as	nnected together with 10d (0.131"x3") na ed as follows: 2x6 - 2 rows staggered at lected as follows: 2x10 - 2 rows staggered follows: 2x6 - 2 rows staggered at 0-9-t ered equally applied to all plies, except i	0-9-0 oc. ed at 0-9-0 oc, 2x8 - 2 rov 0 oc, 2x4 - 1 row at 0-9-0	OC.		Ply to	SEA 4584	•
 Unbalanced roof live Wind: ASCE 7-10; \ Lumber DOL=1.60 p Provide adequate d 	e been provided to distribute only loads e loads have been considered for this de /ult=150mph Vasd=119mph; TCDL=6.0 plate grip DOL=1.60 rainage to prevent water ponding. plates unless otherwise indicated.	esign.		d; MWFRS (enve	lope);	IN REW J	
	T20 unless otherwise indicated. erance at joint 14 = 19%					Marc	ch 7,2024
Design valid for use a truss system. Befo building design. Bra	design parameters and READ NOTES ON THIS AN only with MiTek® connectors. This design is based re use, the building designer must verify the applica- cing indicated is to prevent buckling of individual tri ratability and to prevent collapse with possible per ratability and to prevent collapse with possible per	only upon parameters shown, a ability of design parameters and uss web and/or chord members of	nd is for an individual building properly incorporate this desig only. Additional temporary and	component, not In into the overall d permanent bracing			NING BY NCO A MiTek Affiliate

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)-- [1:0-5-0,0-1-4], [11:0-4-0,0-4-12], [14:0-7-8,0-2-4], [20:0-4-8,0-2-4], [21:0-4-0,0-2-4]

Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
		47710			164068468
J0224-1264	A8-GR	ATTIC	1	3	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

NOTES-9) n/a 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:12 2024 Page 2 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) Ceiling dead load (10.0 psf) on member(s). 18-21, 20-21; Wall dead load (5.0psf) on member(s).14-18, 12-20

13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

14) Refer to girder(s) for truss to truss connections.

15) Bearing at joint(s) 23 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 12.

17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

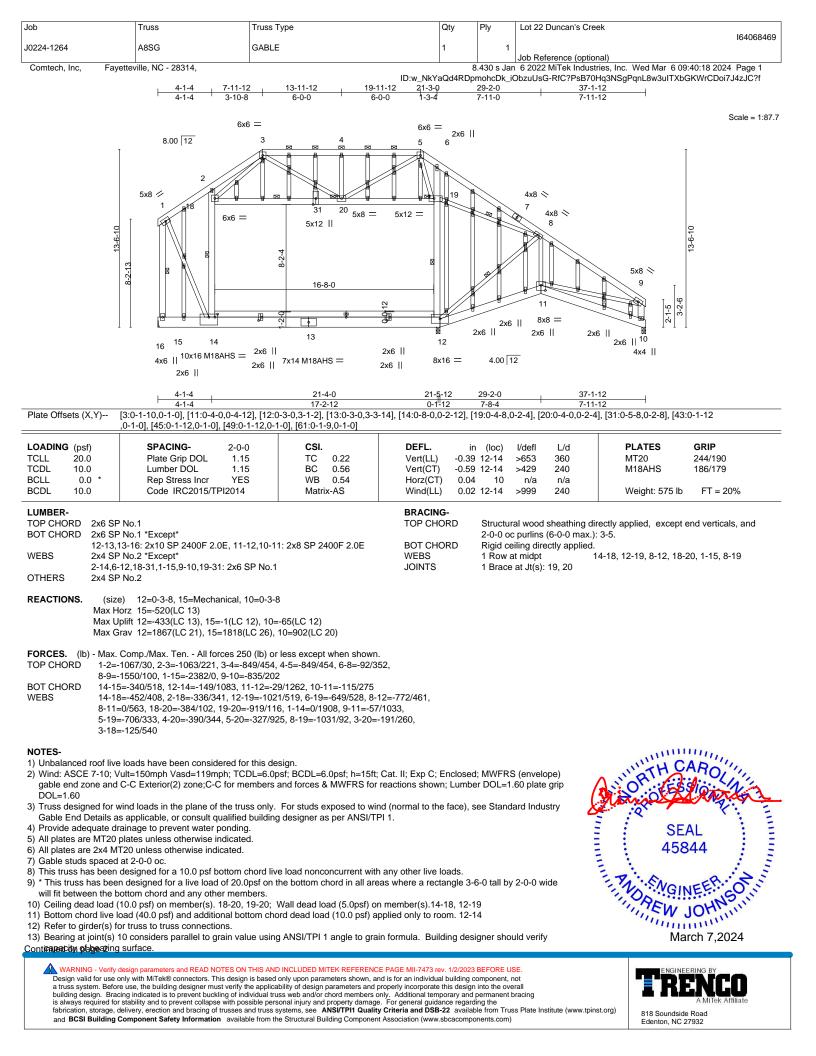
18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 513 lb down at 0-6-8, 511 lb down at 2-1-11, 511 lb down at 3-8-14, 511 lb down at 5-4-1, 511 lb down at 6-11-4, 511 lb down at 7-8-14, 511 lb down at 9-4-1, 511 lb down at 10-11-4, 595 lb down at 12-6-7, 595 lb down at 14-1-10, 595 lb down at 15-8-13, 595 lb down at 17-4-0, and 595 lb down at 18-11-3, and 595 lb down at 20-6-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

19) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-40, 3-5=-40, 5-9=-40, 14-16=-13, 12-14=-27, 11-12=-13, 10-11=-13, 18-20=-13

Drag: 14-18=-7, 12-20=-7 Concentrated Loads (lb)

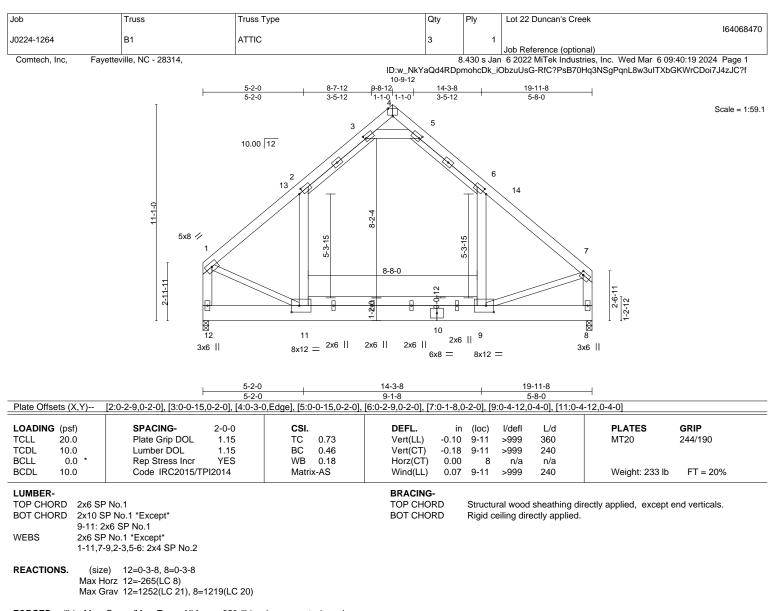
Vert: 15=-107(B) 24=-105(B) 25=-105(B) 26=-105(B) 27=-105(B) 28=-105(B) 29=-105(B) 30=-105(B) 31=-154(B) 32=-154(B) 33=-154(B) 34=-154(B) 35=-154(B) 36=-154(B) 36=-1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek		
10004 4004	1000				164068469		
J0224-1264	A8SG	GABLE	1	1			
					Job Reference (optional)		
Comtech, Inc, Fayettev	rille, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:18 2024 Page 2		
		ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

NOTES-

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 433 lb uplift at joint 12, 1 lb uplift at joint 15 and 65 lb uplift at joint 10.
 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the


15) This truss design requires that a minimum of 7/16 structural wood sheatning be applied directly to the top chord and 1/2' gypsum sheetrock be applied directly to bottom chord.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

17) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1269/100, 2-3=-852/261, 3-4=-198/722, 4-5=-196/734, 5-6=-846/263, 6-7=-1276/88, 1-12=-1329/115, 7-8=-1224/114 BOT CHORD 11-12=-284/365, 9-11=0/872

2-11=-37/407, 6-9=-36/403, 3-5=-1851/578, 1-11=0/872, 7-9=0/780 WEBS

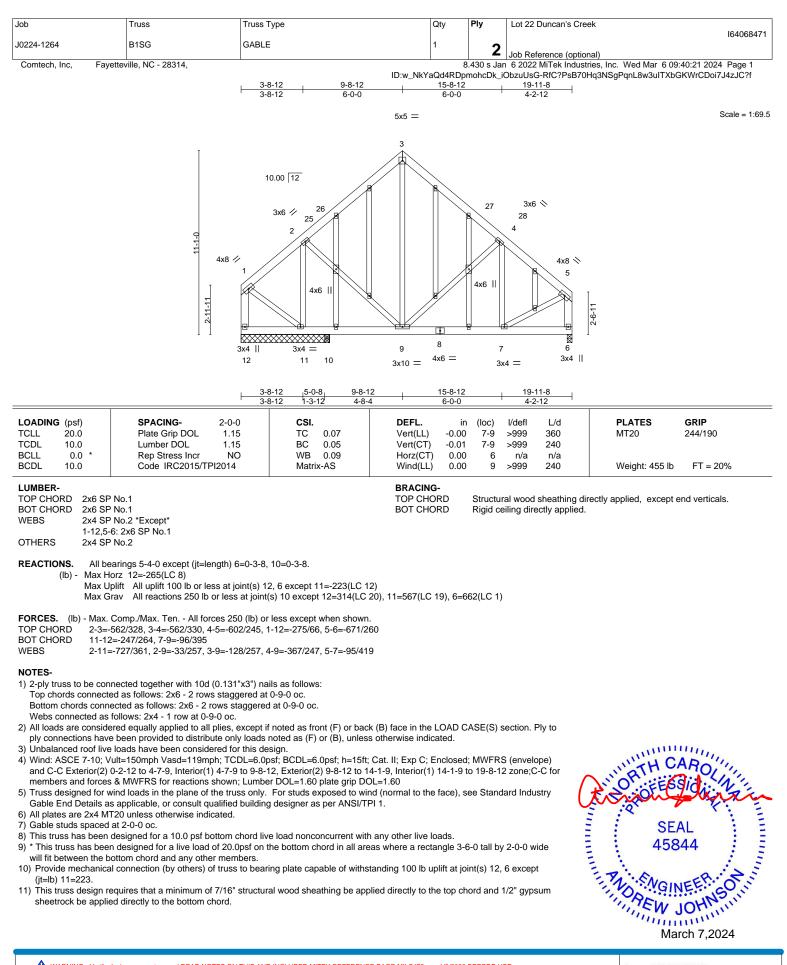
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 9-8-12, Exterior(2) 9-8-12 to 14-3-8, Interior(1) 14-3-8 to 19-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are 4x6 MT20 unless otherwise indicated.

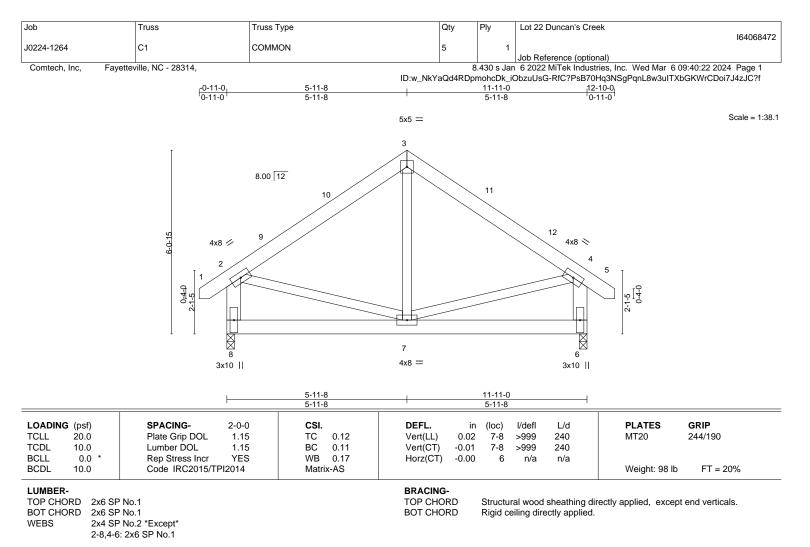
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).2-11, 6-9 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Attic room checked for L/360 deflection.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 8=0-3-0, 6=0-3-0 Max Horz 8=-143(LC 10) Max Uplift 8=-131(LC 9), 6=-131(LC 8) Max Grav 8=517(LC 1), 6=517(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-412/568, 3-4=-412/568, 2-8=-481/569, 4-6=-481/569

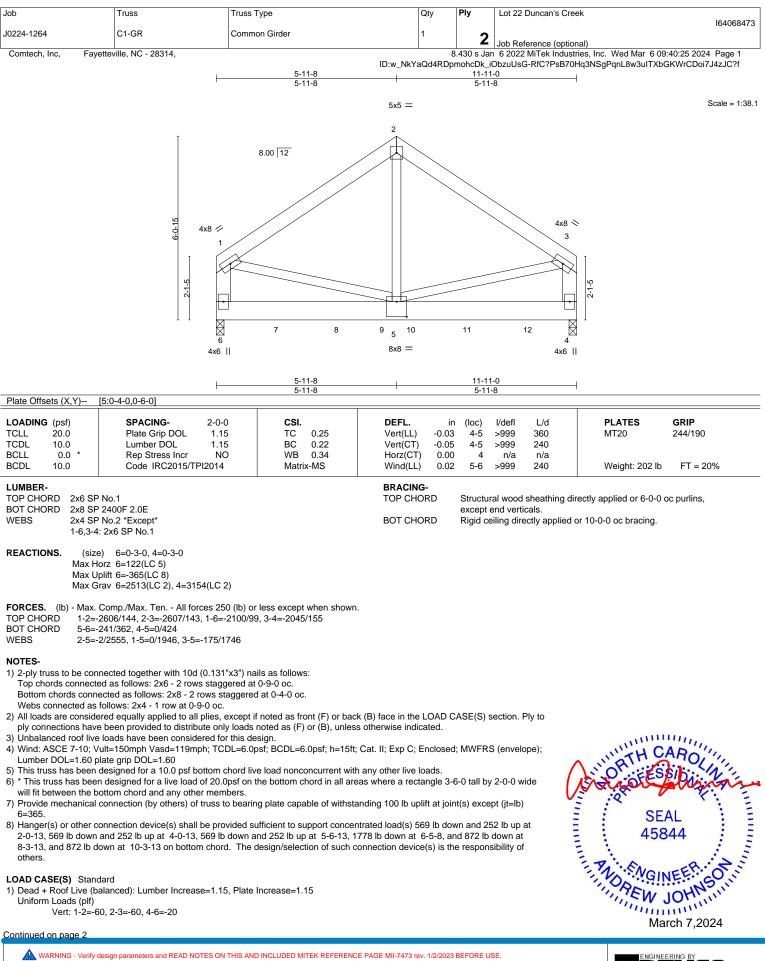
WEBS 3-7=-343/164

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-1 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

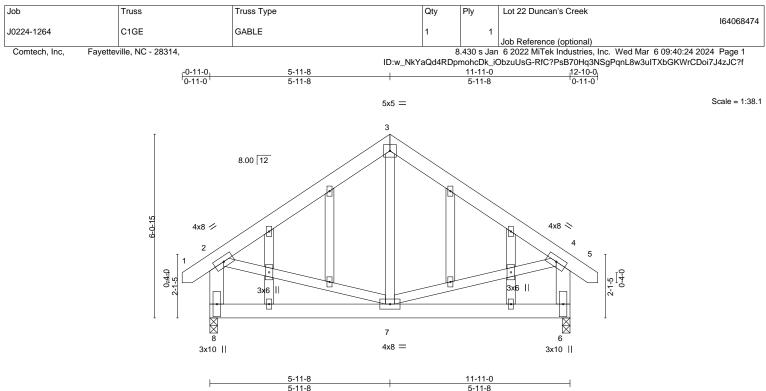
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=131, 6=131.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Design valid for use only with MiTek® connectors. This design is based only upon parameters have been and the connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent pracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TFI1 Quality Criería and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSB Building Component Safety Information** available from the Structural Building Component Addet sociation (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
						164068473
	J0224-1264	C1-GR	Common Girder	1	2	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:25 2024 Page 2


ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=-560(F) 8=-560(F) 9=-560(F) 10=-835(F) 11=-787(F) 12=-787(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		5-11-8	5-11-8	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.13	Vert(LL) 0.02 7-8 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.01 7-8 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.17	Horz(CT) -0.00 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS		Weight: 114 lb FT = 20%

BRACING-

TOP CHORD BOT CHORD

```
LUMBER-
```

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except
	2-8,4-6: 2x6 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. (size) 8=0-3-0, 6=0-3-0 Max Horz 8=-179(LC 10) Max Uplift 8=-188(LC 12), 6=-188(LC 13) Max Grav 8=517(LC 1), 6=517(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-412/579, 3-4=-412/579, 2-8=-481/579, 4-6=-481/579

WEBS 3-7=-340/163

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=188, 6=188.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

				5-2-	8	,		5-2-8				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	-0.00	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	2014	Matri	k-AS	Wind(LL)	0.00	7	>999	240	Weight: 87 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2 *Except*

 2-8,4-6: 2x6 SP No.1

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-127(LC 10) Max Uplift 8=-80(LC 12), 6=-80(LC 13) Max Grav 8=457(LC 1), 6=457(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-373/202, 3-4=-373/202, 2-8=-459/292, 4-6=-459/292

NOTES-

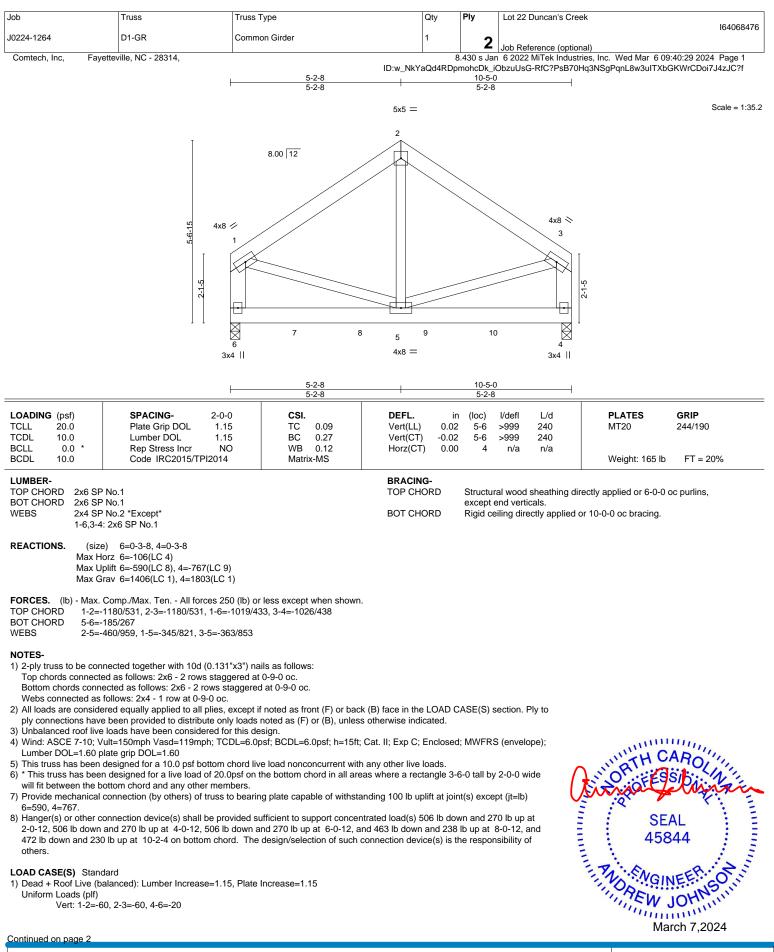
1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 5-2-8, Exterior(2) 5-2-8 to 9-7-5, Interior(1) 9-7-5 to 11-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

6) This trust design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

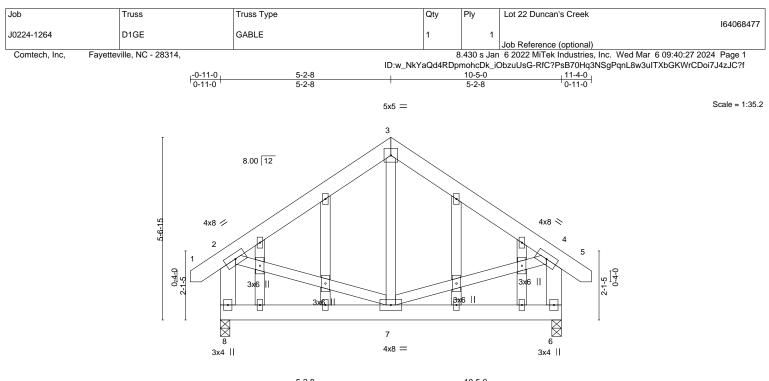
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[dof	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
						164068476
	J0224-1264	D1-GR	Common Girder	1	2	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	8.430 s Jan	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:29 2024 Page 2


ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 4=-472(F) 7=-492(F) 8=-492(F) 9=-492(F) 10=-463(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		5-2-8 5-2-8	5-2-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.09 BC 0.06 WB 0.04 Matrix-AS	DEFL. in (loc) Vert(LL) -0.00 6-7 Vert(CT) -0.01 6-7 Horz(CT) 0.00 6 Wind(LL) 0.00 7	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 102 lb FT = 20%

LUMBER-

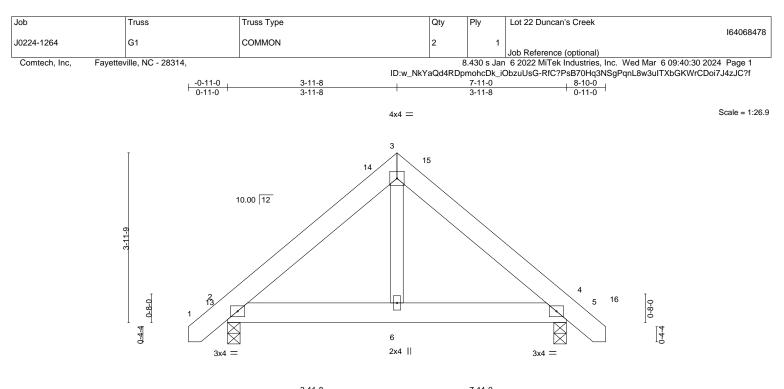
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	2-8,4-6: 2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-159(LC 10) Max Uplift 8=-166(LC 12), 6=-166(LC 13) Max Grav 8=457(LC 1), 6=457(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-373/208, 3-4=-373/208, 2-8=-459/298, 4-6=-459/297


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=166, 6=166.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			3-11-8 3-11-8			-11-0 -11-8				
LOADING (psf)	SPACING- 2	-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.08	Vert(LL)	-0.00	6-9	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.09	Vert(CT)	-0.00	6-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014	Matrix-AS	Wind(LL)	0.00	6-9	>999	240	Weight: 54 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=-126(LC 10) Max Uplift 2=-67(LC 12), 4=-67(LC 13) Max Grav 2=363(LC 1), 4=363(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-357/176, 3-4=-357/176

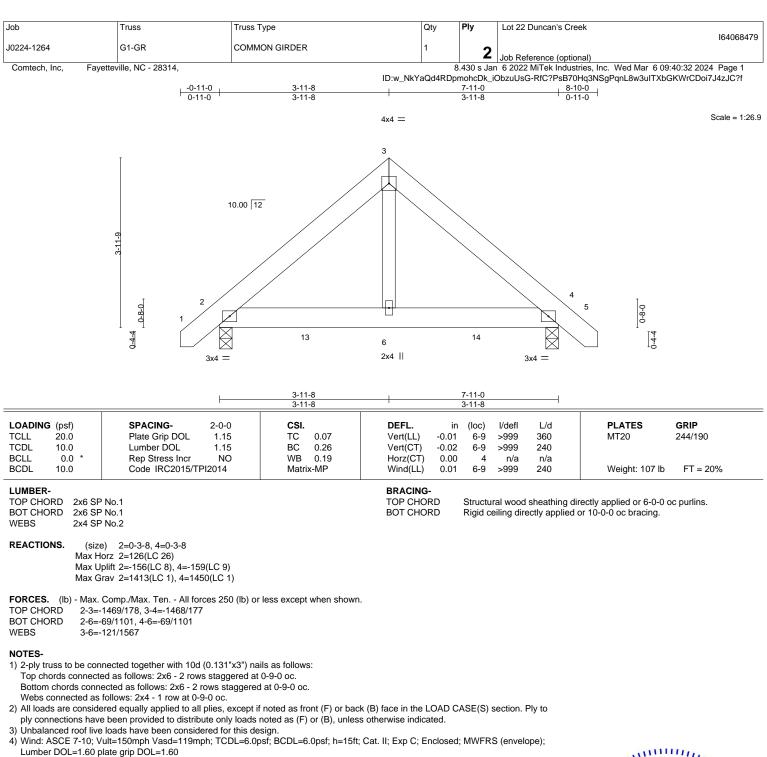
NOTES-

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-4 to 3-7-9, Interior(1) 3-7-9 to 3-11-8, Exterior(2) 3-11-8 to 8-4-5, Interior(1) 8-4-5 to 8-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ERENCO A Mi Tek Affiliate

¹⁾ Unbalanced roof live loads have been considered for this design.

SEAL 45844 WGINEEP, 60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

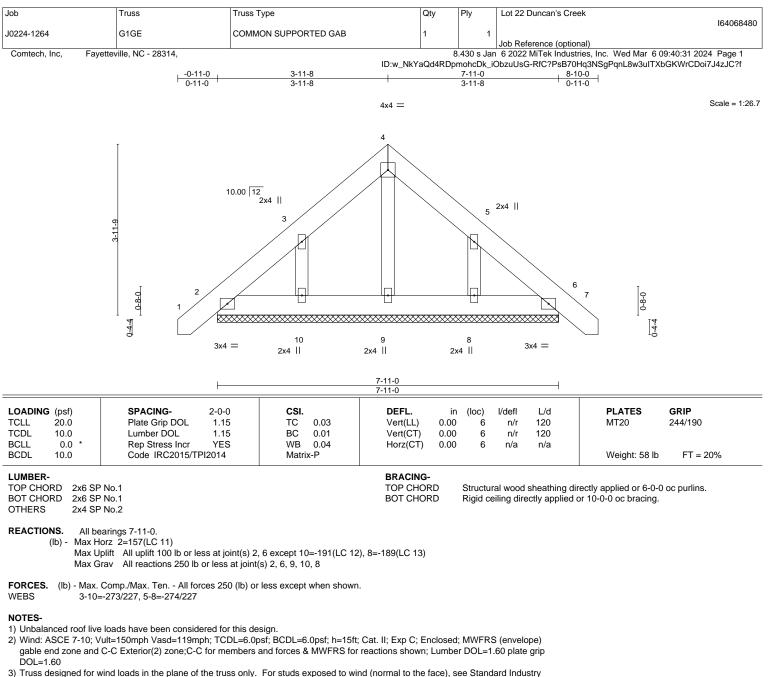
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=156, 4=159.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 712 lb down and 68 lb up at 2-0-12, and 712 lb down and 68 lb up at 4-0-12, and 712 lb down and 69 lb up at 6-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-5=-60, 7-10=-20 Concentrated Loads (lb)

Vert: 6=-712(B) 13=-712(B) 14=-712(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) ENGINEERING BY RENCO A MiTek Affiliate

818 Soundside Road

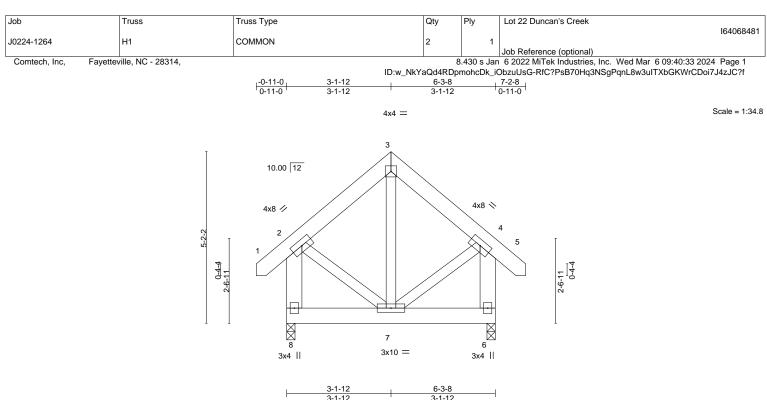
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Sta Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=191, 8=189.

9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

				•	3-1-12		3-1-12					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.00	8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-AS	Wind(LL)	0.00	7	>999	240	Weight: 65 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	2-8,4-6: 2x6 SP No.1

REACTIONS. (size) 8=0-3-0, 6=0-3-0 Max Horz 8=-104(LC 10) Max Uplift 8=-54(LC 13), 6=-54

Max Uplift 8=-54(LC 13), 6=-54(LC 12) Max Grav 8=293(LC 1), 6=293(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-8=-296/219, 4-6=-296/219

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

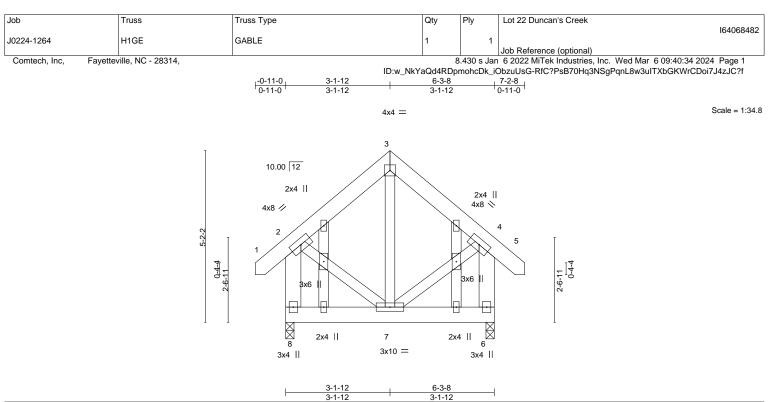
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

SEAL 45844 March 7,2024


Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

			3-1-12	3-1-12			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) 0.00	8	>999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00	7	>999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.00	6	n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	. ,			Weight: 72 lb FT = 20%

BRACING-

TOP CHORD BOT CHORD

```
LUMBER-
```

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except*
	2-8,4-6: 2x6 SP No.1
OTHERS	2x4 SP No.2

 OTHERS
 2x4 SP No.2

 REACTIONS.
 (size)
 8=0-3-0, 6=0-3-0

 Max Horz
 8=-130(LC 10)
 0.0

Max Uplift 8=-111(LC 13), 6=-111(LC 12)

Max Grav 8=293(LC 1), 6=293(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-160/270, 3-4=-160/270, 2-8=-271/368, 4-6=-271/368

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=111, 6=111.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	Lot 22 Duncan's Cree	ek	10.45
J0224-1264	M1	MONOPITCH		5	1			164068483
0224-1204				5		Job Reference (optior	nal)	
Comtech, Inc, F	ayetteville, NC - 28314,				8.430 s Ja	an 6 2022 MiTek Industr	ries, Inc. Wed Mar	6 09:40:35 2024 Page 1
	•			ID:w_NkYaQd4R				TXbGKWrCDoi7J4zJC?f
			- <mark>0-11-0</mark> 0-11-0	7-2-4 7-2-4		4		
			0-11-0	7-2-4				
					3x4			Scale = 1:46
					3	4		
		Ī			/	1		
			T			ſ		
			8.00	12	$/ \wedge$			
				9				
				8				
		2	4x8 💋					
		Z-10-2	+^0 /					
		2	2					
			1					
		0 <u>-4-</u> 0 3-0-10						
		0 ⁰						
					\searrow			
						ť)		
		1 1	X			<u>w</u>		
			7		6	5		
			3x4		6x6 3	=		
			<u> </u>	7-2-4 7-2-4		4		
Plate Offsets (X,Y)	[6:0-1-8,0-3-0]			7-2-4				
1 Idle Olisels (A, I)	[0.0-1-0,0-3-0]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP

	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.30 BC 0.17 WB 0.24 Matrix-AS	DEFL. ir Vert(LL) -0.03 Vert(CT) -0.06 Horz(CT) -0.00 Wind(LL) 0.00	6-7 6-7 6	l/defl >999 >999 n/a	L/d 360 240 n/a 240	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 20%
--	--	---	--	---	-----------------	-------------------------------	---------------------------------	---

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1 *Except*

 2-6: 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 7=0-3-8, 6=Mechanical Max Horz 7=222(LC 12) Max Uplift 6=-225(LC 12)

Max Grav 7=327(LC 1), 6=355(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-6=-341/292, 2-7=-261/16

BOT CHORD6-7=-358/271WEBS2-6=-293/387

NOTES-

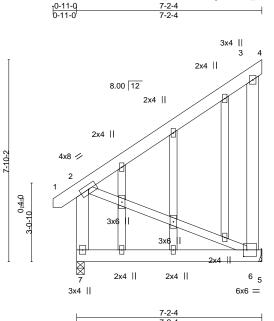
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 7-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=225.


6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Plv	Lot 22 Duncan's Creek	
				,		164068484
J0224-1264	M1GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:36 2024 Page 1						
	ID:w_NkYaOd4RDpmohcDk_iObzuUsG-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDgi7.l4z.lC?f					

7-2-4

			7-2-4			•			
Plate Offsets (X,Y)	[6:0-1-8,0-3-0]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in ((loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.30	Vert(LL) -	-0.03	6-7 >	>999 3	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -	-0.05	6-7 >	>999 2	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.24	Horz(CT) -	-0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.00	7	**** 2	240	Weight: 90 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1 *Except*
	2-6: 2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 6=Mechanical Max Horz 7=322(LC 12) Max Uplift 6=-364(LC 12) Max Grav 7=327(LC 1), 6=371(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-341/315, 2-7=-261/4 BOT CHORD 6-7=-379/271 WEBS 2-6=-293/410

NOTES-

1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

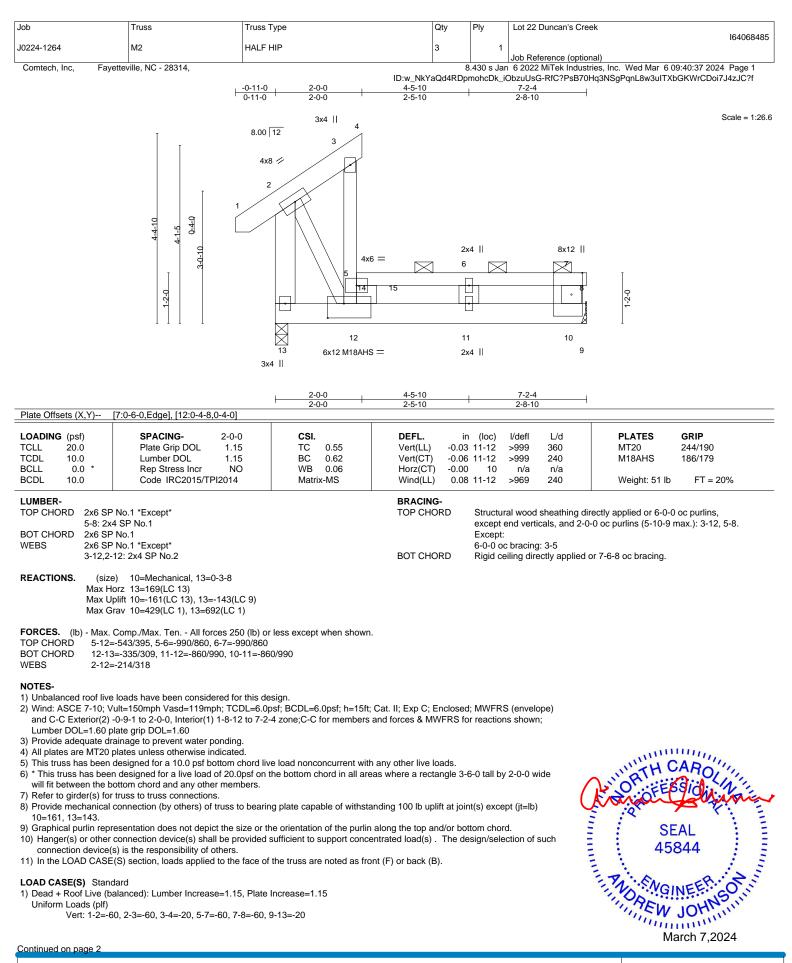
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=364.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



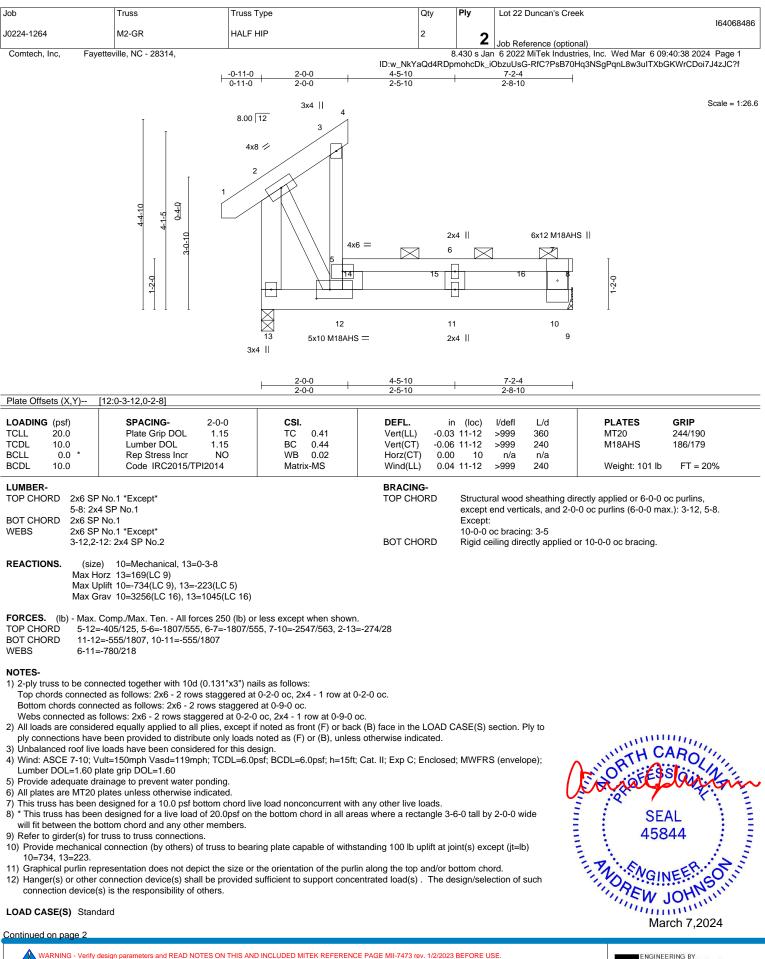
Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:44.7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietu Information**. Storage the function of the prevention of the storage of the stability for the storage of the storage and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
					164068485
J0224-1264	M2	HALF HIP	3	1	
					Job Reference (optional)
Comtech, Inc, Fa	yetteville, NC - 28314,			3.430 s Jar	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:37 2024 Page 2

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 14=-500(F)

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

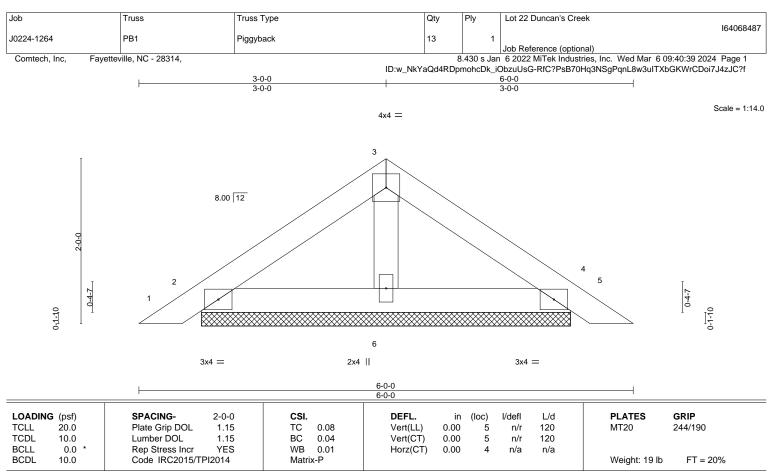
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-4/3 rev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MiTeR& connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 22 Duncan's Creek
						164068486
	J0224-1264	M2-GR	HALF HIP	2	2	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	8.430 s Jan	6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:39 2024 Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Mar 6 09:40:39 2024 Page 2 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-20, 5-7=-180(F=-120), 7-8=-180(F=-120), 9-13=-20 Concentrated Loads (lb)

Vert: 7=-1450(F) 14=-363(F) 15=-363(F) 16=-363(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

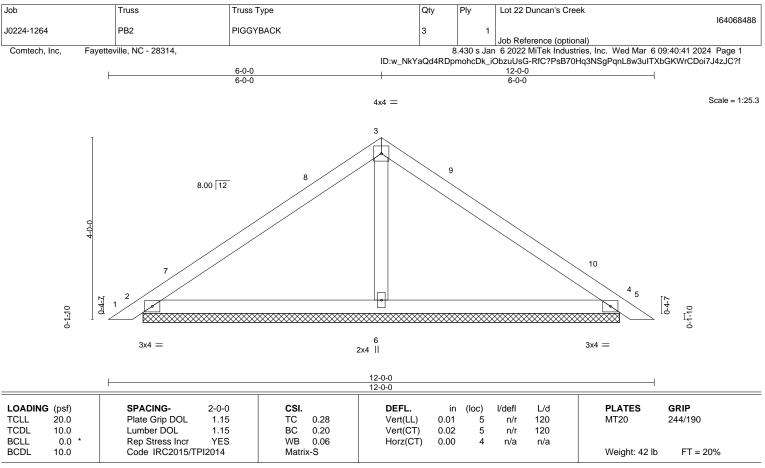
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=4-5-12, 4=4-5-12, 6=4-5-12 Max Horz 2=58(LC 11) Max Uplift 2=-43(LC 12), 4=-48(LC 13) Max Grav 2=130(LC 1), 4=131(LC 20), 6=158(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=10-5-12, 4=10-5-12, 6=10-5-12 Max Horz 2=-122(LC 10) Max Uplift 2=-65(LC 12), 4=-77(LC 13), 6=-35(LC 12) Max Grav 2=238(LC 1), 4=243(LC 20), 6=421(LC 1)

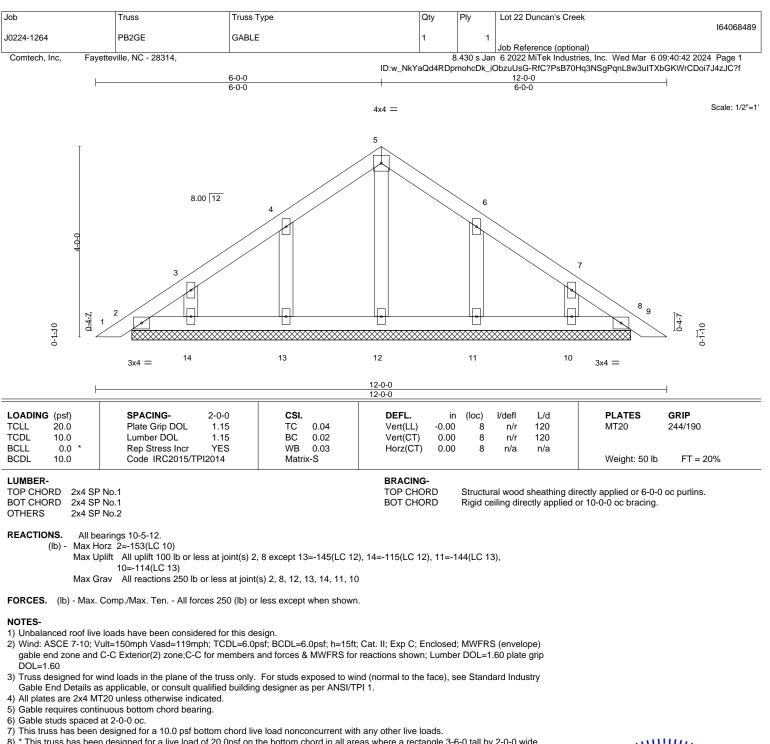
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-280/160

NOTES-

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-2 to 4-7-15, Interior(1) 4-7-15 to 6-0-0, Exterior(2) 6-0-0 to 10-4-13, Interior(1) 10-4-13 to 11-8-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

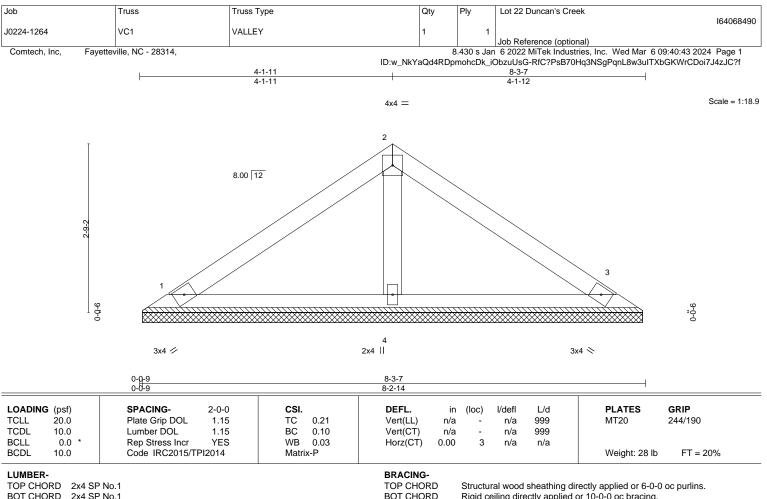
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

¹⁾ Unbalanced roof live loads have been considered for this design.


8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8 except (jt=lb) 13=145, 14=115, 11=144, 10=114.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. 1=8-2-5, 3=8-2-5, 4=8-2-5 (size) Max Horz 1=-78(LC 8) Max Uplift 1=-48(LC 12), 3=-55(LC 13), 4=-4(LC 12) Max Grav 1=159(LC 1), 3=161(LC 20), 4=266(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

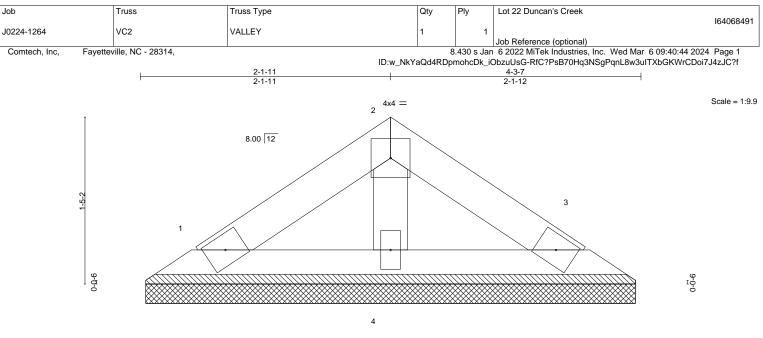
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) Non Standard bearing condition. Review required.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3x4 //

2x4 ||

TOP CHORD

BOT CHORD

3x4 📎

Structural wood sheathing directly applied or 4-3-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	0- <u>0</u> -9 0-0-9	4-3-7 4-2-14				I			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.04 BC 0.02 WB 0.01	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	H0I2(CT)	0.00	3	n/a	n/a	Weight: 13 lb	FT = 20%

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 OTHERS

2x4 SP No.2

REACTIONS. 1=4-2-5, 3=4-2-5, 4=4-2-5 (size) Max Horz 1=-35(LC 8) Max Uplift 1=-21(LC 12), 3=-25(LC 13), 4=-2(LC 12) Max Grav 1=72(LC 1), 3=73(LC 20), 4=120(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

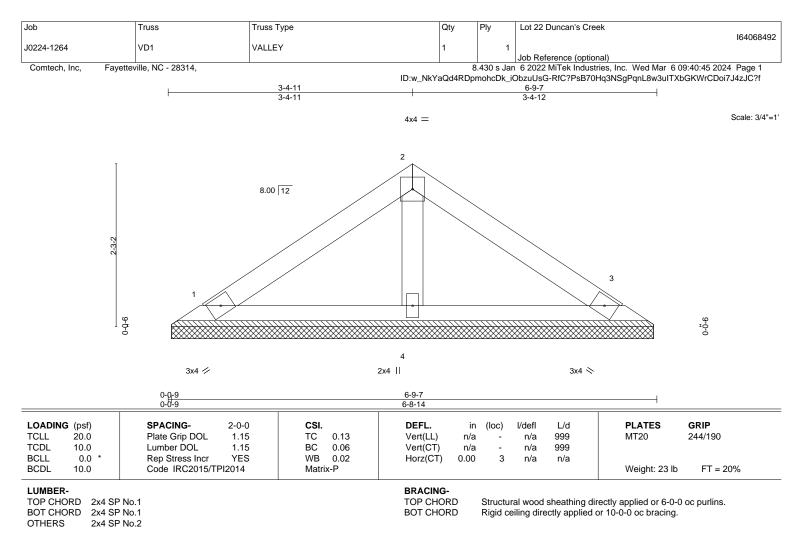
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

REACTIONS. (size) 1=6-8-5, 3=6-8-5, 4=6-8-5 Max Horz 1=62(LC 11) Max Uplift 1=-38(LC 12), 3=-44(LC 13), 4=-3(LC 12) Max Grav 1=126(LC 1), 3=128(LC 20), 4=212(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

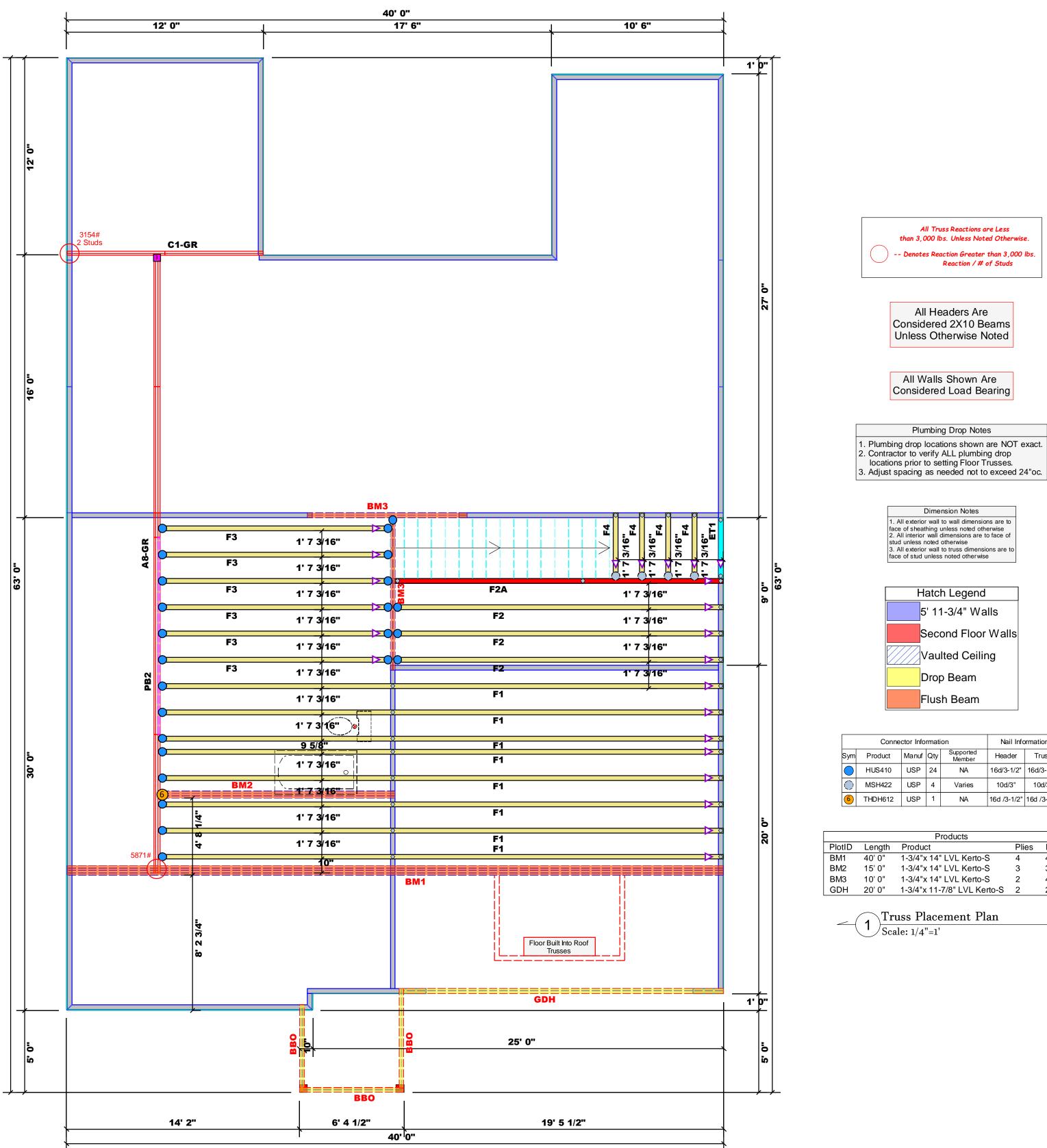
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Flush Beam

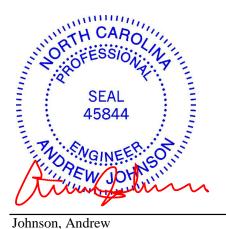
	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS410 US		24	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	MSH422	USP	4	Varies	10d/3"	10d/3"
6	THDH612	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	40' 0"	1-3/4"x 14" LVL Kerto-S	4	4
BM2	15' 0"	1-3/4"x 14" LVL Kerto-S	3	3
BM3	10' 0"	1-3/4"x 14" LVL Kerto-S	2	4
GDH	20' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

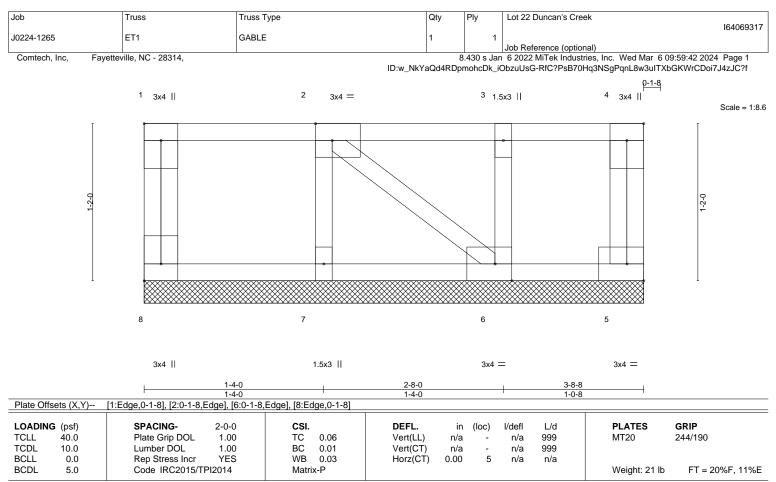
(BASE	LOAD CHART FOR JACK STUDS (BASED ON TABLES R502.5(1) 4 (b)) NUMBER OF JACK STUDS REQUIRED & EA END OF		BUILDER	New Home, Inc.	CITY / CO.	Lillington / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
			JOB NAME	Lot 22 Duncan's Creek	ADDRESS	327 Beacon Hill Road	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com	соттесн
END REAU (UP 1 (UP 1) (2) PLY H	END REAC (UP T (UP T) (3) PLY H	u 2	PLAN	The Guilford - Traditional "B"	MODEL	Floor	Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
3400 2 5100 3	1700 1 2550 1 3400 1 3400 2 5100 2 6800 2 5100 3 7650 3 10200 3		SEAL DATE	10/31/23	DATE REV.	03/06/24 (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions great than 300# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS Reilly Road Industrial Park	
6800 4 8500 5 10200 6	8500 5 12750 5 17 0200 6 15300 6	13600 4 17000 5	QUOTE #		DRAWN BY	Jonathan Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#. Jonathan Landry	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9			JOB #	J0224-1265	SALES REP.	Paul Hawkins	SignatureJonathan Landry	Fax: (910) 864-4444

Trenco 818 Soundside Rd Edenton, NC 27932


Re: J0224-1265 Lot 22 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I64069317 thru I64069322


My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 7,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

LUMBER-

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 3-8-8 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 3-8-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

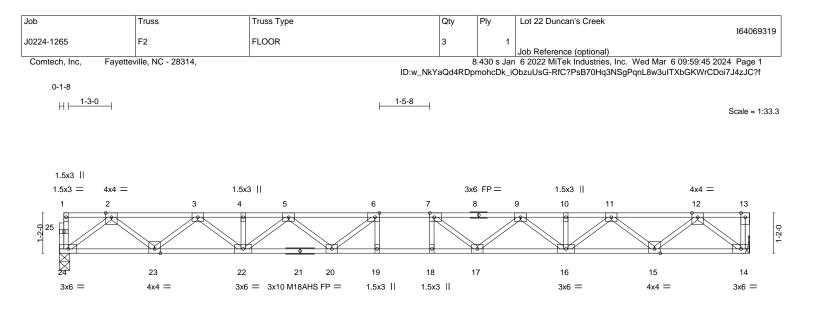
6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	Lot 22 Duncan's Creek		1640	69318
J0224-1265	F1	FLOOR		8	1			1040	09310
		120011				Job Reference (optional)			
Comtech, Inc, Fa	ayetteville, NC - 28314,					n 6 2022 MiTek Industries, I			
			ID:w_NkY	aQd4RDp	mohcDk_i	ObzuUsG-RfC?PsB70Hq3N	SgPqnL8w3uITXt	GKWrCDoi7J4zJC	?f
0-1-8									
HI 1-3-0		1-8-12				2-3	-8		
		1 1				I	I	Scale =	= 1:57.6
1.5x3			1.5x3		3x6 F				
	4.5-2.11	3x6 FP=		; =		r —	1.5-2.11		
1.5x3 =	1.5x3				4x4 ≡		1.5x3		
1 2	3 4 5	6 7 8 9	10 11 12	2 13	14 15	16 17	18 19	20 21	
0-2- 40									1-2-0
+ *				<u>Ny</u>	<u> </u>				<u>-</u>
				Ø					
39	38 37	36 35 34 33 3	2 31 30	29	28 2	27 26 25	24	23 22	
3x6 =	3x6 =	1.5x3 1.5x3 3x6	FP = 4x6 =	3x10 =	= 4	x4 = 1.5x3		3x6 =	=
			4x6 =	3	$x_{6} FP =$				

	<u>20-1-4</u> 20-1-4						34-3-4 4-2-0	
Plate Offsets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge], [17:0-1-	8,Edge], [24:0-1-8,Edge]					I.	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.66 BC 0.99 WB 0.59	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.30 35-30 -0.41 35-30 0.05 2	5 >789 5 >587	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S					Weight: 171 lb	FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (si	P No.1(flat) P No.1(flat) P No.3(flat) ze) 39=0-3-8, 22=Mechanical, 29=0-3-1 Grav 39=767(LC 3), 22=521(LC 4), 29=1		BRACING- TOP CHOR BOT CHOR	D Strue exce	pt end ver	ticals.	rectly applied or 6-0-0 or 2-2-0 oc bracing.	oc purlins,
TOP CHORD 2-33 9-10 14- BOT CHORD 38-3 31-3	c. Comp./Max. Ten All forces 250 (lb) or =-1627/0, 3-4=-2694/0, 4-5=-2694/0, 5-6= D=-1733/66, 10-11=-1733/66, 11-12=-130 16=-190/1307, 16-17=-1087/753, 17-18=- 39=0/964, 37-38=0/2260, 36-37=0/3072, 33=0/2331, 30-31=-318/1022, 29-30=-136 26=-369/1441, 24-25=-369/1441, 23-24=	-3168/0, 6-7=-3177/0, 7-9 /599, 12-13=0/2624, 13-14 1441/369, 18-19=-1441/36 35-36=0/3177, 34-35=0/31 51/0, 27-29=-1706/0, 26-27	=-2719/0, 4=0/2624, 69, 19-20=-1001/ [,] 77, 33-34=0/317					

WEBS 2-39=-1207/0, 2-38=0/863, 3-38=-825/0, 3-37=0/554, 12-29=-1585/0, 12-30=0/1235, 11-30=-1213/0, 11-31=0/963, 9-31=-807/0, 9-33=0/603, 7-33=-802/0, 5-37=-482/0, 6-36=-225/326, 7-34=-19/269, 20-22=-799/0, 20-23=-28/473, 19-23=-422/130, 19-24=-327/149, 14-29=-1253/0, 14-27=0/910, 16-27=-870/0, 16-26=0/616, 17-26==812/0


NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

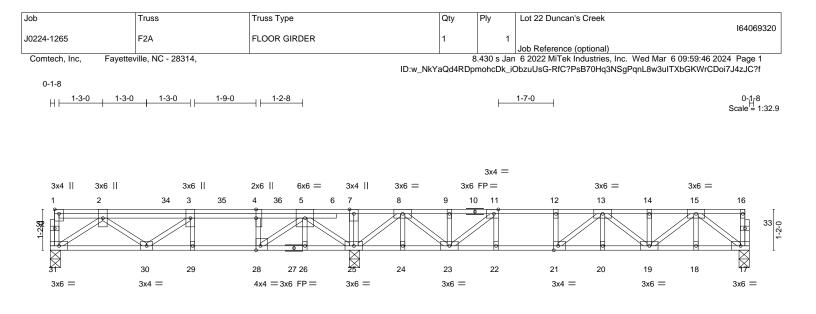
			19-11-8				
Plate Offsets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge]		19-11-8				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.85 WB 0.48 Matrix-S		35 18-19 48 18-19	l/defl L/d >677 480 >492 360 n/a n/a	PLATES MT20 M18AHS Weight: 102 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x WEBS 2x	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat)	BRACING- TOP CHORD BOT CHORD	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.				
M FORCES. (Ib) - N	(size) 24=0-3-8, 14=Mechanical ax Grav 24=862(LC 1), 14=867(LC 1) Max. Comp./Max. Ten All forces 250 (lb) or -3=-1862/0, 3-4=-3166/0, 4-5=-3166/0, 5-6=						
9-10=-3166/0, 10-11=-3166/0, 11-12=-1862/0 BOT CHORD 23-24=0/1087, 22-23=0/2609, 20-22=0/3640, 19-20=0/4083, 18-19=0/4083, 17-18=0/4083, 16-17=0/3640, 15-16=0/2609, 14-15=0/1088							
WEBS 2-24=-1362/0, 2-23=0/1008, 3-23=-973/0, 3-22=0/711, 5-22=-605/0, 5-20=0/410, 6-20=-506/75, 12-14=-1365/0, 12-15=0/1008, 11-15=-972/0, 11-16=0/711, 9-16=-605/0, 9-17=0/410, 7-17=-506/75							
,	or live loads have been considered for this de T20 plates unless otherwise indicated.	esign.					

All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

	<u>8-6-8</u> 8-6-8	<u>8-8-0</u> 0-1-8	<u> 19-11-8</u> 11-3-8	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-3-0,0-0-0], [11:0-1-	8,Edge], [21:0-1-8,Edge], [28:0-1-8,Edge]	
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING-1-7-3Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.31 BC 0.48 WB 0.51 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.06 20-21 >999 480 Vert(CT) -0.08 20-21 >999 360 Horz(CT) 0.02 17 n/a n/a	PLATES GRIP MT20 244/190 Weight: 118 lb FT = 20%F, 11%E
	SP No.1(flat) SP No.1(flat)		BRACING- TOP CHORD Structural wood sheathing direct except end verticals.	tly applied or 6-0-0 oc purlins,

LUMBER-	BRACING-	
TOP CHORD 2x4 SP No.1(flat	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD 2x4 SP No.1(flat		except end verticals.
WEBS 2x4 SP No.3(flat	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
		6-0-0 oc bracing: 24-25,23-24.

REACTIONS. (size) 31=0-3-8, 17=0-3-8, 25=0-3-8 Max Grav 31=606(LC 3), 17=437(LC 7), 25=1224(LC 1)

- 9-11=-560/0, 11-12=-983/0, 12-13=-983/0, 13-14=-845/0, 14-15=-845/0
- BOT CHORD 30-31=0/837, 29-30=0/1258, 28-29=0/1258, 26-28=0/499, 25-26=0/499, 22-23=0/983,
- 21-22=0/983, 20-21=0/1054, 19-20=0/1054, 18-19=0/523, 17-18=0/523 WFBS 5-25=-957/0, 5-28=0/1067, 4-28=-538/0, 2-31=-1027/0, 2-30=0/303, 8-25=-781/0,
- 15-17=-649/0, 15-19=0/409, 13-19=-265/0, 8-23=0/559, 11-23=-568/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

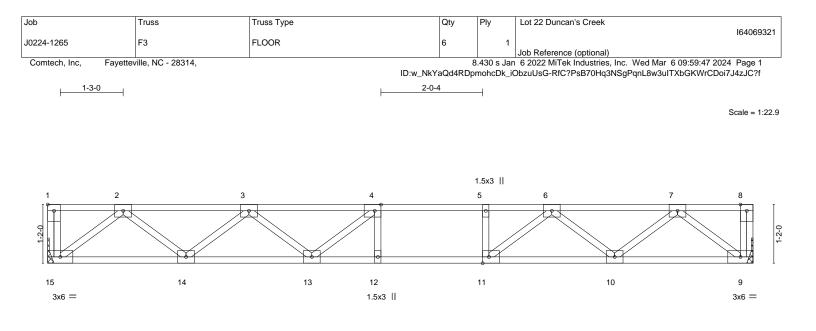
Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 190 lb down at 1-8-15, 190 lb down at 3-4-2, and 190 lb down at 4-11-5, and 190 lb down at 6-6-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 17-31=-8, 1-16=-80
 - Concentrated Loads (lb)

Vert: 2=-126(B) 34=-126(B) 35=-126(B) 36=-126(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1075/0, 3-4=-1258/0, 4-5=-1258/0, 5-7=0/556, 7-8=0/554, 8-9=-560/0,

			14-0-4			
I			14-0-4			1
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [11:0-1-	8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.64 WB 0.29 Matrix-S	Vert(LL) -0.12	n (loc) l/defl L/d 2 12-13 >999 480 7 12-13 >994 360 3 9 n/a n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or		oc purlins,

14-0-4

REACTIONS. (size) 15=Mechanical, 9=Mechanical Max Grav 15=606(LC 1), 9=606(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1212/0, 3-4=-1838/0, 4-5=-1955/0, 5-6=-1955/0, 6-7=-1197/0

BOT CHORD 14-15=0/739, 13-14=0/1663, 12-13=0/1955, 11-12=0/1955, 10-11=0/1643, 9-10=0/745

- WEBS 2-15=-927/0, 2-14=0/616, 3-14=-587/0, 3-13=0/294, 7-9=-934/0, 7-10=0/589,
 - 6-10=-581/0, 6-11=0/542, 4-13=-319/27

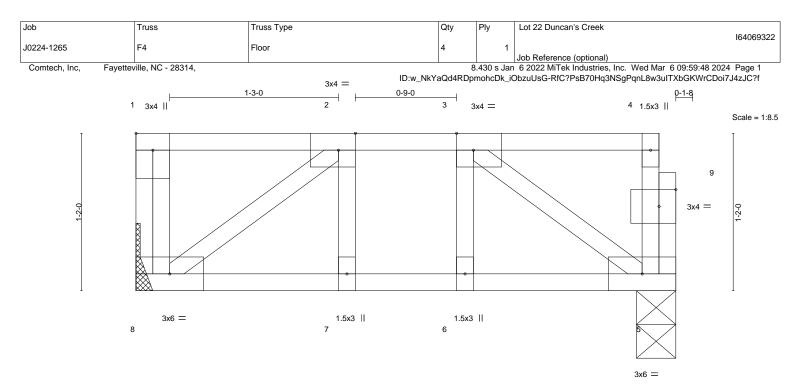
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			4-0-0			
4-0-0						
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge], [9:0-1-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.09 BC 0.06 WB 0.06	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00) 7 >999 360	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 24 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathin except end verticals.) oc purlins,
WEBS 2x4 SP No.3(flat)			BOICHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.		

REACTIONS. (size) 8=Mechanical, 5=0-3-8 Max Grav 8=206(LC 1), 5=200(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

SEAL 45844 MGINEEP, 60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

