Job	Truss	Truss Type	Qty	Ply	
23110135	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:16 Page: 1 ID:EzXy6iDd59oDB8CIWfcVKnyEWca-PTLvgmDj9v3hi00Nqd9cAbWAEJILYJJx?tfuN5yE6tE

Scale = 1:83.4

Plate Offsets (X, Y): [11:0-3-0,0-3-12], [19:0-4-0,0-3-3]

													-
Loading	(psf)	Spacing		1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL		1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL		1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr		YES	WB	0.20	Horz(CT)	-0.01	31	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH		. ,						
BCDL	10.0											Weight: 417 lb	FT = 20%
LUMBER TOP CHORD	2x6 SP No.2		2)	Wind: ASCE Vasd=103m II: Exp B: En	7-16; Vult=130mp oh; TCDL=6.0psf; closed: MWFRS (oh (3-seo BCDL=6 envelop	cond gust) 6.0psf; h=25f e) and C-C (ft; Cat. Corner	14) Grap or th botto	ohical pu e orient om chor	urlin re ation o	presentation doe of the purlin along	es not depict the size g the top and/or
OTHERS	2x4 SP No 3			(3E) -0-9-9 t	o 3-11-11, Exterior	r(2N) 3-1	1-11 to 16-6	-0, I	OADC	ASE(S)	Stan	dard	
BRACING	274 01 100.0			Corner(3R)	16-6-0 to 21-2-0, E	Exterior(2	2N) 21-2-0 to	<u>-</u> כ			otai		
TOP CHORD	Structural wood she 10-0-0 oc purlins, et 2-0-0 oc purlins (10	eathing directly applied o xcept -0-0 max): 11-19	31-2-0, Corner(3R) 31-2-0 to 35-11-3, Exterior(2N) ^r 35-11-3 to 48-5-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		members an Lumber DOI	d forces & MWFR _=1.60 plate grip D	S for rea	ictions show 3	'n;					
WEBS	1 Row at midpt	19-38, 18-39, 17-40, 16-41, 15-42, 14-43, 13-44, 12-45, 10-47, 20-36	3)	Truss desig only. For stu see Standar or consult qu TCLL: ASCE	ned for wind loads uds exposed to wir d Industry Gable E ualified building de 7-16: Pr=20.0 ps	s in the p nd (norm End Deta signer a f (roof Ll	lane of the ti al to the face ils as applic s per ANSI/T .: Lum DOL=	russ e), able, ſPI 1. =1.15					
REACTIONS	REACTIONS All bearings 46-8-0			Plate DOL=	1.15): Pa=20.0 psf	: Pf=18.9	9 psf (Lum						
(lb) -	Max Horiz 2=-184 (L	C 13), 54=-184 (LC 13)		DOL=1.15 P	late DOL=1.15); Is	s=1.0; R	ough Cat B;	Fully					
()	Max Uplift All uplift 1	00 (lb) or less at ioint(s)		Exp.; Ce=0.9	; Cs=1.00; Ct=1.1	10, Lu=5	0-0-0; Min. f	lat					
	2, 31, 32,	33, 34, 35, 36, 39, 40,		roof snow lo	ad governs. Rain	surchar	ge applied to	o all					
	41, 42, 43	3, 44, 48, 49, 50, 51, 52,		exposed sur	faces with slopes	less thar	n 0.500/12 in	1 I					
	53, 54		- `	accordance	with IBC 1608.3.4								
	Max Grav All reaction	ons 250 (lb) or less at joi	nt 5)	Unbalanced	snow loads have	been co	nsidered for	this					
	(s) 2, 31,	32, 33, 34, 35, 36, 38, 3	9, 6)	This trues be	s haan dasignad	for great	er of min roc	of live					
	40, 41, 42	2, 43, 44, 45, 47, 46, 49, 2 54 avcont 30-360 (I C	0)	load of 12 0	psf or 2 00 times f	flat roof l	oad of 13.9	nsf on					
	2) 53=26	1 (I C 29)		overhangs n	on-concurrent with	n other li	ve loads.						
FORCES	(lb) - Max Comp /M	lax Ten - All forces 250	7)	Provide ade	quate drainage to	prevent	water pondir	ng.					
1 ONOLO	(lb) or less except w	hen shown.	8)	All plates are	e 2x4 MT20 unless	s otherwi	se indicated	l.					
TOP CHORD	2-3=-155/272, 10-11	1=-115/259,	9)	Gable studs	spaced at 2-0-0 o	C.							
	11-12=-103/250, 12-	-13=-103/250,	10)	* This truss I	has been designed	d for a liv	e load of 20	.0psf					
	13-14=-103/250, 14-63=-103/250,				n chord in all area	as where	a rectangle						
	15-63=-103/250, 15	-16=-103/250,		3-06-00 tall I	by 2-00-00 wide w		veen the bot	tom					
	16-17=-103/250, 17	-18=-103/250,	11)		Simpson Strong Ti	o conno	otore						
	19-20=-115/267		11)	recommended to concert trus to bearing walls due to									
VVEBS	21-30=-201/18			UPLIFT at it	(s) 2, 39, 40, 41, 4	2. 43. 44	48, 49, 50	. 51.					
1) Unbelanced reaf live leads have been considered for this				52, 53, 36, 3	5, 34, 33, 32, and	31. This	connection	is for					
 Onbalanced fool live loads have been considered for this design 			15	uplift only ar	d does not consid	ler latera	l forces.						
design.				12) Non Standard bearing condition. Review required.									

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
23110135	A02	Piggyback Base	6	1	Job Reference (optional)

Plate Offsets (X,	Y):	[14:0-3-8,0-3-0]
-------------------	-----	------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code IF	RC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI TC BC WB Matrix-MSH	0.63 0.91 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.27 0.08	(loc) 18-19 18-19 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 339 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep	ot* W5:2x4 SP No.2	WEBS NOTES		3-22=-2343/106, 3- 5-19=-905/56, 6-18 7-16=0/666, 9-16=- 10-13=-1525/223,	-19=0/94 3=0/444, -680/111 10-14=-6	42, 5-19=0/48 6-16=-325/1 , 55/1783	32, 32,	LOAD C	ASE(S)	Stan	Idard	-
TOP CHORD	Structural wood she 4-3-9 oc purlins, ex 2-0-0 oc purlins (5- Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2-	eathing directly applied or cept 3-5 max.): 5-7. y applied or 10-0-0 oc -22.	g directly applied or g directly applied or ax.): 5-7. 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-9 to 3-11-11, Interior (1) 3-11-11 to 16-6-0, Exterior(2R) 16-6-0 to 23-2-14, Interior (1)										
WEBS	1 Row at midpt MiTek recommends required cross brace truss erection, in ac Installation guide.	1-2-0, Exterior(2R) 7-10-14 to 48-5-9 d; end vertical left and forces & MW _=1.60 plate grip D	31-2-0 zone; ca and rigi FRS for	to 37-10-14, intilever left a nt exposed;C reactions sho 3	and -C own;								
REACTIONS	(lb/size) 2=56/0-3- 13=1523/ 22=1871/ Max Horiz 2=-190 (L Max Uplift 2=-93 (LC Max Grav 2=143 (LC 22=2384	-0, (min. 0-1-8), /0-3-8, (min. 0-2-4), /0-3-8, (min. 0-2-13) .C 13) C 53) C 55), 13=1896 (LC 30), (LC 46)	3) TCLL Plate DOL: Exp.; roofs expo accol	.: ASCE DOL= =1.15 F Ce=0. snow lo sed sur rdance	7-16; Pr=20.0 psf 1.15); Pg=20.0 psf late DOL=1.15); Is 9; Cs=1.00; Ct=1.1 ad governs. Rain faces with slopes I with IBC 1608.3.4	f (roof Ll ; Pf=18.9 ;=1.0; Ro 0, Lu=5 surcharg ess thar	L: Lum DOL= 9 psf (Lum bugh Cat B; F 0-0-0; Min. fla ge applied to 1 0.500/12 in	:1.15 Fully at all					
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250	4) Unba	ilanced jn.	snow loads have I	been coi	nsidered for t	ihis					
TOP CHORD	2-29=-48/508, 29-3(3-31=-1673/125, 4-(4-5=-1555/169, 5-3; 32-33=-1332/170, 6 6-34=-1724/188, 34 7-35=-1724/188, 7-{ 8-36=-2040/123, 9-(9-37=-2378/96, 37-(38-39=-2494/78, 10 10-11=-445/0	D=-20/521, 3-30=0/641, 31=-1637/128, 2=-1332/170, -33=-1332/170, -35=-1724/188, 8=-2014/153, 36=-2117/109, 38=-2404/94, -39=-2571/66,	 5) This load overh 6) Provi 7) * This on th 3-06-chord 8) One record 	truss ha of 12.0 hangs r ide ade s truss e botto 00 tall d and a H2.5A s mmend	as been designed i psf or 2.00 times f on-concurrent with quate drainage to has been designed m chord in all area by 2-00-00 wide win y other members, Simpson Strong-Ti- ed to connect truss	or great lat roof l o other li prevent l for a liv s where ill fit betw with BC e conne s to bear	er of min roo: oad of 13.9 p ve loads. water pondin e load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due	osf on g. Opsf tom f. e to					
BOT CHORD	2-22=-463/89, 21-22 20-21=-49/741, 19-2 19-40=0/1877, 18-4 17-41=0/1877, 16-4 14-15=-8/2154, 13-7	2=-83/660, 20=-49/741, 0=0/1877, 17-18=0/1877, .1=0/1877, 15-16=-8/2154, 14=0/427, 11-13=0/427	0PLI does 9) This Intern R802 10) Grap or the botto	r i at jt not coi truss is nationa 2.10.2 a hical pu e orient m chor	(s) 2. Inis connect nsider lateral force: designed in accor Residential Code nd referenced star urlin representation ation of the purlin a d.	ion is fol s. dance w sections indard AN i does no along the	ith the 2018 SR502.11.1 a ISI/TPI 1. Dt depict the setop and/or	and size					

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:17 Page: 1 ID:?mYPMIXJCrygh_d6UPZMr3yEWcB-tfulu6ELwCBYK9baOKgrjo2EoiuDHe75EXOSvXyE6tD

Job	Truss	Truss Type	Qty	Ply	
23110135	A03	Piggyback Base	3	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:17 Page: 1 ID:v9fAmzYZkSCOxImUbabawUvEWc9-LrSa5SEzhWJPxJAmx1B4G0bQU66j01dETB8?RzvE6tC

NOTES

1) Unbalanced roof live loads have been considered for this design.

Job	Truss		Truss Type	Qty	Ply		
23110135	A04		Piggyback Base	6	1	Job Reference (optional)	
Carter Compone	nts, Sanford, NC, user		Run: 8.63 S Dec 2	22 2022 Print: 8	.630 S Dec	22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:18 Page: 1	
	-1-0-0 0 1-0-0	<u>5-9-15 11-2-</u> 5-9-15 5-4-	<u>12 16-6-0 23-11-12</u> 13 5-3-4 7-5-12 4-8-8	31 7-	<u>-2-0</u> 2-4	36-5-4 41-11-13 48-8-0 5-3-4 5-6-9 6-8-3	
			1 1 6x8=	2x41	6	6×8=	
10-6-0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7/2 4x5= 45 3 44 W1 W2 B1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 3940	2 2 W10 B	4x6x 4x5x 9 10 46 6x10x 11 47 47 12_{13} 12_{13} 12_{13} 12_{13} 12_{13} 13 12 13 13 13 13 13 14 12 13 13 14 12 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 12 13 12 13 12 13 13 13 14 12 13 13 14 14 14 12 13 14 14 14 14 14 14 12 13 14 14 14 14 14 12 13 13 14 14 14 12 13 14 14 14 14 12 13 14	
	4x5 =	30 2x4ıı	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 19 42 II 3x6=		10 143 10 15 14 3x5= 3x6= 4x8= 3x5∎ 3x8≈	
Scale = 1:95.5		<u>5-9-15 11-2-</u> 5-9-15 5-4-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 5x8 3x8= 25-8-0 3-11-12 10-0 10-0 4 6-0 0-1-12 1-8-4	<u>31-3-12</u> 5-7-12	4x5= Special $46-6-8 47-8-0$ $46-6-8 47-8-0$ $46-8$	
Plate Offsets (X, Y): [2:0-0-5,0-0-4],	, [6:0-3-12,0-3-0], [11:0	0-2-4,0-2-12], [16:0-3-8,0-2-0], [20:0-3-8,	0-1-8]			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 CSI 1.15 TC 1.15 BC YES WB IRC2018/TPI2014 Matrix-MSH	0.56 Vert 0.89 Vert 0.99 Horz	: L (LL) -((CT) -(z(CT) (in (loc) I/defi L/d PLATES GRIP 0.38 18-20 >999 240 MT20 244/190 0.57 18-20 >887 180 0.11 15 n/a n/a	
BCDL	10.0					Weight: 356 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x4 SP 2400F 2.0E No.2, B2:2x4 SP No 2x4 SP No.3 *Excep No.2 Structural wood she 3-7-12 oc purlins, e 2-0-0 oc purlins (4-(Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 1 Row at midpt 1 Brace at Jt(s): 24, 22, 21, 26 MiTek recommenda required cross brac truss erection, in at Installation guide.	*Except* B4,B3:2x4 S .1 bt* W10,W5,W13:2x4 eathing directly applied xcept -7 max.): 6-8. y applied or 10-0-0 oc 5-16,14-15,12-14. 7-21, 8-18, 9-16 , s that Stabilizers and cing be installed during ccordance with Stabili	BOT CHORD 2-30=0/3313, 29-30 27-28=0/2954, 27-4 39-23-25=0/3219, 20-2 19-42=0/1758, 18-4 SP 17-43=0/1519, 16-4 15-16=-1805/429, 1 12-14=-460/122, 26 24-48=-965/0, 22-2 24-48=-965/0, 22-2 24-25=-255/0, 21-2 5-29=0/417, 3-29=- 9-18=0/1150, 11-15 5-27=-826/117, 11-7 NOTES 1) Unbalanced roof live loads hav design. 2) Wind: ASCE 7-16; Vult=130mp Vasd=103mph; TCDL=6.0psf; E I; Exp B; Enclosed; MWFRS (6 Exterior(2E) -0-9-9 to 3-11-11, 1	=0/3313, 28- 1=0/2416, 25 3=0/2367, 15 2=0/1758, 17 3=0/1519, 4-15=-1759/ -48=-965/0, 21- =-604/139, 8 30/1050, 25 434/69, 9-16: =-3399/80, 1 14=-377/1607 e been consid n (3-second g GCDL=6.0psf; nvelope) and nterior (1) 3-	29=0/295 5-41=0/24 -20=0/17: 7-18=0/15 427, 22=-965/(20=0/132; 26=0/124, -26=0/132; -26=0/124, -26=0/132; -1369/41 1-16=0/29 , dered for t ust) h=25ft; C 1C-C 11-11 to	 4, 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1163 lb uplift at joint 14. 01 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated. 	
REACTIONS	(lb/size) 2=1640/0 14=-380/0	-3-8, (min. 0-1-13),	16-6-0, Exterior(2R) 16-6-0 to 2 23-2-14 to 31-2-0, Exterior(2R)	3-2-14, Interi 31-2-0 to 37-	or (1) ·10-14,	LOAD CASE(S) Standard	
 15=2565/0-3-8, (min. 0-3-0) Max Horiz 2=-190 (LC 13) Max Upifit 14=-1163 (LC 51), 15=-25 (LC 11) Max Grav 2=2220 (LC 48), 14=314 (LC 11), 15=3657 (LC 58) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 6-37=-2344/0, 37-38=-2344/0, 7-39=-2342/0, 39-40=-2342/0, 4-45=-3301/0, 4-5=-3201/0, 5-6=-2940/0, 8-9=-2088/17, 9-10=-1644/35, 10-46=-1722/18, 11-46=-1823/17, 11-47=-94/621, 12-47=-119/559 Tothe Chorne and the state of the state of							

apart.7) Provide adequate drainage to prevent water ponding.

Job	Truss Truss Type				Qty	Ply				
23110135	A0	5	Piggyback Base		1	1	Job Referer	nce (optional)		
Carter Compone	nts, Sanford, NC, us	er		Run: 8.63 S Dec 22	2022 Print:	3.630 S Dec :I7T3qhciZ_	22 2022 MiTek qg13fSONB?d>	Industries, Inc. KyEWc4-q202Jr	Thu Nov 30 16:28∷ nFbSqRGZTlyVliJoI	18 Page: 1 D7ZMWf4lZjNirtZ_QyE6tB
	-1-(├- 1-(0-0 <u>5-9-15 11-</u> 	<u>2-12 16-6-0</u> 4-13 5-3-4	23-11-12	+ <u>31</u> 7-	-2-0 2-4	<u>36-5-4</u> 5-3-4	41-10-1 5-4-13	48-8-0 6-9-15	ł
	0-9-01 -0-5-14 -0-6-14	$ \begin{array}{c} 7 \\ 4x5 = 37 \\ 3 \\ 4x5 = 29 \\ 2x4 \\ 1 \\ x5 = 2x4 \\ x5 = 2x$	4x5 = 4x6 = 12 4x6 = 12 4x6 = 12 4x6 = 12 4x6 = 12 4x6 = 12 3x5 = 4x6 = 5 3x5 = 4x6 = 5 3x5 = 15 15-7	6x8= 22 6 389 6 389 7 5 6 7 6 7 7 83 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2x4 74041 73 74041 73 74041 73 74041 73 74041 73 74041 73 74041 7	6> 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 7 1646 x5= 4x6=	4x6x 4x5x 9 10 42 W3 W2 15 3x5=	4x5 11 43 W1 B1 14 2x4	12 ₁₃ 4x5=
Scale = 1:99.3		5-9-15 11- 5-9-15 5- 5-9-15 5-	<u>2-12 14-0-0</u> 4-13 2-9-4 0- 0-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	₩ <u>3</u> 0 1-12	5-7-12	1 <u>2-4-4</u> 1 <u>2-4-4</u> 1 <u>2-4-4</u> 2-9-2	4 <u>41-10-1</u> 1 5-4-13	47-8-0 5-9-15	
Plate Offsets (X, Y): [6:0-3-12,0-	-3-0]		-0-2 0 1-6-2	-2-8 - 1-5-12					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf 20.0 18.9/20.0 10.0 0.0 10.0) Spacing) Plate Grip DOL Lumber DOL) Rep Stress Incr) Code	2-0- 1.1 1.1 1.1 YE: IRC2018/TPI201	0 CSI 5 TC 5 BC 3 WB 4 Matrix-MSH	0.69 Ver 0.63 Ver 0.67 Hor	=L t(LL) -(t(CT) -(z(CT) (in (loc) 0.25 26-28 0.45 26-28 0.14 12	l/defl L/d >999 240 >637 180 n/a n/a	PLATES MT20 Weight: 347 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	U.0" Code IRC2018/1 PI2014 Matrix-MSH Weight: 347 lb FT = 20% BER Weight: 347 lb FT = 20% CHORD 2x6 SP No.2 7-20=-817/110, 8-19=-195/405, 22-25=0/1021, 22, 24-25=0/1021, 22-25=0/1022, 24-25=0/1021, 22-25=0/1228, 3-28=-422/73, 5-28=0/449, 9-17=-853/105, 9-15=0/458, 11-15=-454/75, 5-26=-887/105 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. CING Structural wood sheathing directly applied or 3-9-12 oc purlins, except 2-0-0 oc purlins (4-6-1 max.): 6-8. NOTES 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 1.15=-454/75, 5-26=-887/105 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 1.15=-454/75, 5-26=-887/105 10) Unbalanced roof live loads have been considered for this design. 10) On the orientation of the purlin along the top and/or bottom chord. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: 20-25 NOTES 10) Unbalanced roof live loads have been considered for this design. S 1 Row at midpt 7-19, 8-19, 9-17, 5-26 IX set of the purlin along the top and/or bottom chord. 20 Concretor(2E) -0-9-9 to 3-11-11, Interior (1) 3-11-11 to 10, 11-11 t									
REACTIONS	$\begin{array}{l} 23-2-14 \text{ to } 31-2-0 \text{ to } 37-10-14,\\ 1nterior (1) 37-10-14 \text{ to } 48-5-9 \text{ zone; cantilever left and}\\ 1ght exposed; c-C\\ 50\text{ to } 12=1433/0-3-8, (min. 0-1-12),\\ 12=1433/0-3-8, (min. 0-1-10),\\ 19=883/0-3-8, (min. 0-1-8)\\ Max Horiz 2=-190 (LC 13)\\ Max Uplift 19=-47 (LC 11)\\ Max Grav 2=2136 (LC 48), 12=1942 (LC 50),\\ 10=2322(160 (LC 48), 12=1942 (LC 50),\\ 10=232(160 (LC 48), 12=1942 (LC 50),\\ 10$									
FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. accordance with IBC 1608.3.4. TOP CHORD 2-36=-3604/0, 3-36=-3531/0, 3-37=-3208/0, 4-37=-3145/0, 4-5=-3055/0, 5-6=-2765/0, 6-38=-2164/0, 38-39=-2164/0, 7-40=-2153/0, 40-41=-2153/0, 8-9=-2439/4, 9-10=-2745/0, 10-42=-2836/0, 11-42=-2898/0, 11-43=-3199/0, 12-43=-3272/0 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 3.9 psf on overhangs non-concurrent with other live loads.										
BOT CHORD	12-43-32720apart.PRD2-29=0/3174, 28-29=0/3174, 27-28=0/2822, 26-47=0/2822, 26-44=0/2323, 24-44=0/2323, 22-24=0/3072, 19-22=0/2079, 18-19=0/2042, 18-45=0/2042, 17-45=0/2042, 16-17=0/2484, 16-46=0/2484, 15-46=0/2484, 14-15=0/2766, 12-14=0/2766, 25-47=-1007/0, 23-47=-1007/0, 21-23=-1007/0, 20-21=-1007/07Provide adequate drainage to prevent water ponding. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.00H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces.									

Job	Truss	Truss Type	Qty	Ply	
23110135	A06	Piggyback Base	9	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:19 Page: 1 ID:FVbpENey4c4OGNpqVoDTiyyEWc2-IEaQW7GDD7Z7BdK93SDYLRgm7w_gUzKXwVd6WsyE6tA

<u>د</u>.

-1-0-0 |----0 1-0-0 <u>23-10-0</u> 7-4-0 <u>31-2-0</u> 7-4-0 8-5-9 16-6-0 39-2-7 48-8-0 8-5-9 8-0-7 8-0-7 9-5-9 6x8= 4x5= 6x8= 5 303163233 7 T3 1 n 7¹² 4x6≉ 4x6👟 4x5≉ 4 8 4x5**≈** 29 34 28 935 10-2-6 27 36 26 37 W1 10 11 2 0-6-14 Ş. ⊠ 16 19 18 17 38 15 39 14 13 12 2x4∎ 3x6= 4x8= 3x5= 3x6= 2x4 II 4x5= 3x5= 4x5= One H2.5A 3x6=

Scale = 1:83.4

10-6-0

Loading	(psf)	Spacing		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL		1.15	TC	0.56	Vert(LL)	-0.12	16-17	>999	240	MT20	244/190	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL		1.15	BC	0.67	Vert(CT)	-0.20	19-22	>999	180			
TCDL	10.0	Rep Stress Incr		YES	WB	0.84	Horz(CT)	0.04	10	n/a	n/a			
BCLL BCDL	0.0* 10.0	Code	IRC20)18/TPI2014	Matrix-MSH							Weight: 318 lb	FT = 20%	
			1)	Unbalanced	roof live loads h	ave been	considered fo	or this	-					
TOP CHORD	2X6 SP No.2		2)	Wind ASCF	7-16 [.] Vult=130n	nph (3-seo	cond gust)							
WEBS	2x4 SP No 3 *Excer	ot* W4 W6 [.] 2x4 SP No 2	=/	Vasd=103m	ph; TCDL=6.0psf	f; BCDL=6	6.0psf; h=25ft	; Cat.						
BRACING		II; Exp B; Enclosed; MWFRS (envelope) and C-C												
TOP CHORD	Structural wood she	athing directly applied o	or	Exterior(2E)	-0-9-9 to 3-11-11	1, Interior	(1) 3-11-11 to							
	6-0-0 oc purlins, exe	cept		23-2-14 to 3	1-2-0 Exterior(2)	0 23-2-14, R) 31-2-0	to $37 \cdot 10 \cdot 14$							
	2-0-0 oc purlins (6-0	0-0 max.): 5-7.		Interior (1) 3	7-10-14 to 48-5-9	9 zone: ca	antilever left a	nd						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		right expose	d ; end vertical le	eft and rig	ht exposed;C	-C						
	6-0-0 oc bracing: 16	6-17.		for members	and forces & M	WFRS for	reactions sh	own;						
WEBS	1 Row at midpt	3-17, 5-17, 6-16, 7-16,	3)		_=1.60 plate grip = 7_16: Pr=20.0 n	DOL=1.3	3 ∴Lum DOL =	1 1 5						
		9-14	— ⁽⁾	Plate DOL=	1.15); Pg=20.0 p	sf; Pf=18.9	9 psf (Lum	1.10						
	MiTek recommende	s that Stabilizers and		DOL=1.15 P	late DOL=1.15);	ls=1.0; R	ough Cat B; I	ully						
	required cross brac	ong be installed during		Exp.; Ce=0.9	9; Cs=1.00; Ct=1	.10, Lu=5	0-0-0; Min. fla	at						
	Installation guide.		1	root snow load governs. Rain surcharge applied to all										
				accordance	with IBC 1608.3.	.4.	10.000/12 11							
REACTIONS	(Ib/size) 2=705/0-3 10=674/0	3-8, (min. 0-1-8), -3-8 (min. 0-1-8)	4)	Unbalanced	snow loads have	e been co	nsidered for t	his						
	16=2072/	0-3-8. (min. 0-3-1)	->	design.			<i>.</i> .							
	Max Horiz 2=190 (LC	C 14)	5)	I his truss ha	as been designed	a for great	er of min roo	sfon						
	Max Uplift 2=-15 (LC	C 15), 10=-37 (LC 16)		overhangs n	ion-concurrent wi	ith other li	ve loads.	51 011						
	Max Grav 2=918 (L0	C 29), 10=917 (LC 30),	6)	Provide ade	quate drainage to	o prevent	water pondin	g.						
FORCES	(lb) Max Comp /M	(LC 3)	7)	* This truss I	has been designe	ed for a liv	e load of 20.	0psf						
FORCES	(lb) or less except w	hen shown.		3-06-00 tall	m chord in all are	eas where	a rectangle	om						
TOP CHORD	2-26=-1177/35, 26-2	27=-1121/45,		chord and a	ny other member	rs, with BC	DL = 10.0ps	f.						
	27-28=-1014/71, 3-2	28=-986/73,	8)	One H2.5A S	Simpson Strong-	Tie conne	ctors							
	3-29=-493/94, 4-29=	=-439/97, 4-5=-354/138, 31=-308/164		recommende	ed to connect tru	iss to bear	ing walls due	to						
	6-31=-308/164, 6-32	2=0/628, 32-33=0/628,		and does no	(s) 2 and 10. This it consider lateral	s connecu I forces	on is for upili	t only						
	7-33=0/628, 7-8=-29	90/139, 8-34=-364/108,	9)	This truss is	designed in acco	ordance w	ith the 2018							
	9-34=-409/95, 9-35=	=-986/90,	,	International	Residential Cod	le sections	s R502.11.1 a	and						
	35-36=-1015/88, 36	-37=-1121/63,	10	R802.10.2 a	nd referenced st	andard Al	ISI/TPI 1.							
BOT CHORD	2-19=-109/1104, 18	-19=-76/1104,	10	or the orient	ation of the purlic	on does n h along th	ot depict the top and/or	size						
	17-18=-76/1104, 17-	-38=-603/99,		bottom chore	d.	r diorig an								
	16-38=-603/99, 13-1	14=0/961, 12-13=0/961,	LO	AD CASE(S)	Standard									
WEBS	10-12=0/961 3-19=0/326 3-17=-0	995/109 5-17=-313/58												
	6-17=-21/1320, 6-16	6=-1360/125,												
	7-16=-1297/24, 7-14	4=0/834, 9-14=-998/107	,											
NOTEO	9-12=0/333													
NULES														

Job	Truss	Truss Type	Qty	Ply	
23110135	A07	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:19 Page: 1 ID:EzXy6iDd59oDB8CIWfcVKnyEWca-IEaQW7GDD7Z7BdK93SDYLRgsDw7HU7JXwVd6WsyE6tA

Scale = 1:83.4

Plate Offsets (X, Y): [11:0-3-0,0-3-12], [19:0-4-0,0-3-3]

Loading TCLL (roof) Snow (Pf/P TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.17 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 417 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR BOT CHOR WEBS	 D 2x6 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins (10 D Rigid ceiling directly bracing. 1 Row at midpt 	eathing directly applied o xcept -0-0 max.): 11-19. / applied or 6-0-0 oc 19-38, 18-39, 17-40, 16-41, 15-42, 14-43, 13-44, 12-45, 10-47, 20-36	 3) Truss desig only. For stu see Standar or consult qu 4) TCLL: ASCE Plate DOL=' DOL=1.15 F Exp.; Ce=0.1 roof snow lo exposed sur accordance 5) Unbalanced design. 6) This truss ha load of 12.0 	ned for wind loads uds exposed to wind d Industry Gable E ualified building de 57-16; Pr=20.0 psf late DOL=1.15); Isg c Cs=1.00; Ct=1.1 ad governs. Rain faces with slopes I with IBC 1608.3.4. snow loads have I as been designed 1 psf or 2.00 times f	in the p id (norm and Deta signer a f (roof LI ; Pf=18.9 =1.0; R 0, Lu=5 surchard less thar been col for great lat roof I	lane of the t al to the fac ils as applic s per ANSI/ 2 psf (Lum bugh Cat B; 0-0-0; Min. 1 ge applied to n 0.500/12 ir nsidered for er of min roo bad of 13.9	truss ce), cable, TPI 1. =1.15 Fully flat this o all n this of live psf on					
REACTION (Ib	S All bearings 47-8-0. - Max Horiz 2=-184 (L Max Uplift All uplift 1 2, 31, 32, 41, 42, 42, 53, 54 Max Grav All reaction (s) 2, 31, 40, 41, 42, 53, 54 Max Grav J. Hore and the action (s) 2, 31, 40, 41, 42, 52, 53=26	C 13), 54=-184 (LC 13) 00 (lb) or less at joint(s) 33, 34, 35, 36, 39, 40, 3, 44, 48, 49, 50, 51, 52, ons 250 (lb) or less at join 32, 33, 34, 35, 36, 38, 33 2, 43, 44, 45, 47, 48, 49, 2, 54 except 30=360 (LC 1 (LC 29)	 b) This trust has here beindesigned to greater of minor into a more load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 2x4 MT20 unless otherwise indicated. 9) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 39, 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 212) Provide mechanical connection (by others) of truss to bearing plate canable of withstanding 100 lb unlift at joint 									
FORCES	(lb) - Max. Comp./N (lb) or less except w	lax. Ten All forces 250 /hen shown.	(s) 2, 39, 40 35, 34, 33, 3	, 41, 42, 43, 44, 48 2, 31, 2.	8, 49, 50	, 51, 52, 53,	, 36,					
TOP CHOR	D 2-3=-155/270, 10-1 19-20=-115/267	1=-115/258,	13) This truss is International	designed in accor Residential Code	dance w sections	ith the 2018 8 R502.11.1	} and					
WEBS	27-30=-267/78		R802.10.2 a 14) Graphical pi	nd referenced star	ndard AN I does n	NSI/TPL1. ht denict the	size					
NULES 1) Unhalar	nced roof live loads have	e been considered for thi	or the orient	ation of the purlin a	along the	e top and/or						
 (i) Onbalanced for live focus fave been considered for this design. (ii) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-9-9 to 3-11-11, Exterior(2N) 3-11-11 to 16-6-0, Corner(3R) 16-6-0 to 21-2-0, Exterior(2N) 21-2-0 to 31-2-0, Corner(3R) 31-2-0 to 35-11-3, Exterior(2N) 35-11-3 to 48-5-9 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 			bottom chor LOAD CASE(S) t. r	d. Standard								

Job	Truss	Truss Type	Qty	Ply	
23110135	PB1	Piggyback	2	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:19 Page: 1 ID:qOrqTjBloEQeKhUjrX2oi9yEWcd-IEaQW7GDD7Z7BdK93SDYLRguyw8MUAqXwVd6WsyE6tA

12-11-10

Scale = 1:36.4

		-	1									
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 61 lb	FT = 20%

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

6-0-0 oc purlins.

bracing.

REACTIONS All bearings 12-11-10.

- 9) Gable studs spaced at 2-0-0 oc.
 - on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- Max Grav All reactions 250 (lb) or less at joint LOAD CASE(S) Standard

FORCES

- NOTES
- Unbalanced roof live loads have been considered for this 1) design

(lb) or less except when shown.

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift All uplift 100 (lb) or less at joint(s)

(lb) - Max. Comp./Max. Ten. - All forces 250

(s) 2, 8, 10, 11, 12, 13, 14, 15, 19

(lb) - Max Horiz 2=-75 (LC 13), 15=-75 (LC 13)

10, 11, 13, 14

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-11 to 3-4-0, Interior (1) 3-4-0 to 7-4-0, Exterior(2R) 7-4-0 to 10-4-0, Interior (1) 10-4-0 to 14-4-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

10) * This truss has been designed for a live load of 20.0psf

Job	Truss	Truss Type	Qty	Ply	
23110135	PB2	Piggyback	25	1	Job Reference (optional)
Carter Components, Sanford, No	Run: 8.63 S Dec 22	2022 Print: 8	3.630 S Dec	22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:20 Page: 1	
			IDvid)dmuu Dwoh	2fMyalZBwi2ayEWalmQaiTHr Bh. anyl dAlptaD01KT9Ddma09Mf2lyE6t0

0 - 9 - 1214-7-2 7-3-9 13-9-6 6-5-13 6-5-13 0-9 4x5= 4 12 7 2x4 II 2x4 II 19 20 ST2 4-1-11 4-1-11 -3-5 18³ ⁵21 6 ś ST1 6 7 0 B 0-4-5 10 9 8 3x5 = 2x4 II 2x4 II 2x4 II 3x5= 12-11-10 Scale = 1:36.4 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.23 Vert(LL) 999 MT20 244/190 n/a n/a 80.0 BC Snow (Pf/Pg) 13 9/20 0 Lumber DOL 1.15 Vert(CT) n/a _ n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.06 0.00 6 Horz(CT) n/a n/a IRC2018/TPI2014 BCLL 0.0 Code Matrix-MSH BCDL Weight: 53 lb FT = 20%10.0 5) Unbalanced snow loads have been considered for this LUMBER TOP CHORD 2x4 SP No.2 design. BOT CHORD 2x4 SP No.2 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 2x4 SP No.3 OTHERS overhangs non-concurrent with other live loads. BRACING Gable requires continuous bottom chord bearing. TOP CHORD Structural wood sheathing directly applied or 8) Gable studs spaced at 4-0-0 oc. 6-0-0 oc purlins. 9) * This truss has been designed for a live load of 20.0psf BOT CHORD Rigid ceiling directly applied or 10-0-0 oc on the bottom chord in all areas where a rectangle bracing. 3-06-00 tall by 2-00-00 wide will fit between the bottom MiTek recommends that Stabilizers and chord and any other members. required cross bracing be installed during 10) One H2.5A Simpson Strong-Tie connectors truss erection, in accordance with Stabilizer recommended to connect truss to bearing walls due to Installation guide. UPLIFT at jt(s) 2, 10, and 8. This connection is for uplift only and does not consider lateral forces. REACTIONS All bearings 12-11-10. 11) This truss is designed in accordance with the 2018 (lb) - Max Horiz 2=-77 (LC 13), 11=-77 (LC 13) International Residential Code sections R502.11.1 and Max Uplift All uplift 100 (lb) or less at joint(s) R802.10.2 and referenced standard ANSI/TPI 1. 2, 8, 10, 11 12) See Standard Industry Piggyback Truss Connection Max Grav All reactions 250 (lb) or less at joint Detail for Connection to base truss as applicable, or (s) 2, 6, 11, 15 except 8=347 (LC consult qualified building designer. 23), 9=274 (LC 2), 10=347 (LC 22) LOAD CASE(S) Standard FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-10=-286/140, 5-8=-286/141 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-11 to 3-4-0, Interior (1) 3-4-0 to 7-4-0, Exterior(2R) 7-4-0 to 10-4-0, Interior (1) 10-4-0 to 14-4-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

1)

2)

3)

Job	Truss		Truss Type	Qty	'	Ply					
23110135	VL1		Valley	1		1	Job Refe	rence (op	tional)		
Carter Componer	nts, Sanford, NC, user			Run: 8.63 S Dec 22 2022	Print: 8.0	630 S Dec	22 2022 Mi	Tek Industri	es, Inc.	Thu Nov 30 16:28:2	20 Page: 1
					ID:BdB8	5ESYc?CV	Vz39y78Syb	oyEWcH-n	1Q8ojTł	Hr_Rh_onvLdAInteD	2OKTzDbgg98Mf2IyE6t9
		l	10-10	-4			21-4-6	6		21-8-8	
		1	10-10	-4 1			10-6-2	2		0-4-2	
				4×	:5=						
		<u></u>		6							
				5		7					
				26		27	8				
				TE ST	5						
	-0-1; o	6 0	3 //	ST4 🛛	s	т6		9			
	05		P	ѕтз		s	ST7				
			2 sт2				s	тв	10		
		10	ST1					s	Т9	\mathbf{X}	
						0	0	B2		11	
	~	0-0-4 \	21 20	19 18 17	<u>******</u> ′ 16	<u>*******</u> 15	<u>*************************************</u>	<u>*******</u> 13	<u>∞</u> 12		
		Зх	5 🕫		3x5=	=				3x5💊	
Scale = 1.59 1		ļ		21-8	3-8						
		I	· · · · · ·							1	
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.08	DEFL Vert(I	-)	in (loo n/a	c) l/defl - n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC 0.09	Vert(TL)	n/a	- n/a	999		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		(1L) U	J.UU I	i n/a	n/a		
BCDL	10.0						-			Weight: 137 lb	FT = 20%
			6) * This truss ha	as been designed for a li	ve load	of 20.0ps	f				
BOT CHORD	2x4 SP No.2 2x4 SP No.2		3-06-00 tall b	y 2-00-00 wide will fit bet	ween th	ne bottom					
OTHERS BRACING	2x4 SP No.3		7) Provide mech	nanical connection (by ot	hers) of	truss to					
TOP CHORD	Structural wood she	eathing directly applie	ed or bearing plate (s) 1, 18, 19,	capable of withstanding 20, 21, 15, 14, 13, 12.	100 lb i	uplift at joi	int				
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	8) This truss is c International	designed in accordance v Residential Code section	vith the s R502	2018 .11.1 and					
WEBS	1 Row at midpt	6-17	R802.10.2 an	d referenced standard A Standard	NSI/TPI	11.					
	MiTek recommender required cross brack	s that Stabilizers and cing be installed durir		otandard							
	truss erection, in a	ccordance with Stabil	izer								
REACTIONS A	All bearings 21-8-8										
(lb) - 1	Max Horiz 1=167 (L	C 10) 100 (lb) or loop of ioin	t(a)								
	1, 12, 13,	14, 15, 18, 19, 20, 2	1								
r	Max Grav All reaction (s) 1, 11,	ons 250 (lb) or less at 12, 13, 14, 15, 17, 18	3 joint 3, 19,								
FORCES	20, 21 (lb) - Max. Comp./M	lax. Ten All forces 2	250								
NOTES	(lb) or less except w	/hen shown.									
1) Unbalance	d roof live loads have	e been considered for	r this								
2) Wind: ASC	E 7-16; Vult=130mpl	n (3-second gust)	_								
Vasd=103n II; Exp B; E	nph; TCDL=6.0psf; E inclosed; MWFRS (e	BCDL=6.0psf; h=25ft; envelope) and C-C	Cat.								
Exterior(2E 10-10-9, Ex	E) 0-0-5 to 2-10-4, Int (xterior(2R) 10-10-9 to	erior (1) 2-10-4 to o 13-10-9. Interior (1)									
13-10-9 to :	21-4-4 zone; cantilevend vertical left and r	ver left and right									
members a	and forces & MWFRS	S for reactions shown $\Omega = 1.33$;								
3) TCLL: ASC	E 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1	.15								
Plate DOL= DOL=1.15	=1.15); Pg=20.0 psf; Plate DOL=1.15); ls:	=13.9 pst (Lum =1.0; Rough Cat B; F	ully								
Exp.; Ce=0 4) All plates a).9; Cs=1.00; Ct=1.10 re 2x4 MT20 unless) otherwise indicated.									
5) Gable requ	ires continuous botto	om chord bearing.									

	Job	Truss	Truss Type	Qty	Ply		
	23110135	VL2	Valley	1	1	Job Reference (optional)	
	Carter Components, Sanford, No	C, user	Run: 8.63 S Dec 22	2022 Print: 8	3.630 S Dec	22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:20	Page: 1

ID:BdB85ESYc?CWz39y78SyboyEWcH-mQ8ojTHr_Rh_onvLdAInteD0VKSjDbtg98Mf2IyE6t9

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

bearing plate capable of withstanding 100 lb uplift at joint

LU	M	BE	R	
	-	~ '	. ~	

Scale = 1:53.9

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 OTHERS
 2x4 SP No.3

 BRACING
 Structural wood sheathing directly applied or 6-0-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. 7)

8)

(s) 1, 7, 12, 13, 9, 8.

LOAD CASE(S) Standard

REACTIONS All bearings 19-6-10. (lb) - Max Horiz 1=150 (LC

Max Horiz	1=150 (LC 10)
Max Uplift	All uplift 100 (lb) or less at joint(s)
	1, 7, 8, 9, 12, 13
Max Grav	All reactions 250 (lb) or less at joint
	(s) 1, 7 except 8=318 (LC 25),

9=459 (LC 25), 11=355 (LC 27), 12=462 (LC 24), 13=321 (LC 24) (lb) - Max. Comp./Max. Ten. - All forces 250

FORCES (Ib) - Max. Comp./Max. Ten. - Al (Ib) or less except when shown. WEBS 3-12=-286/175, 5-9=-284/173

NOTES

- NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 9-9-10, Exterior(2R) 9-9-10 to 12-9-10, Interior (1) 12-9-10 to 19-2-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

Job	Truss		Truss Type		Qty	Ply]
23110135	VL3		Valley		1	1	Job Doferer	nan (anti	ianal)		
Carter Compone	nts, Sanford, NC, user		,	Run: 8.63 S Dec 3	22 2022 Print:	8.630 S Dec	22 2022 MiTek	Industrie	ionar) s, Inc. 1	Thu Nov 30 16:28:2	20 Page: 1
					IC	0:qOrqTjBloE0	QeKhUjrX2oi9y	EWcd-m	Q8ojTH	r_Rh_onvLdAInteD	1RKTzDZTg98Mf2IyE6t9
			I	8 8 8	I		17 0 14			17-5-0	
			<u> </u>	8-8-8	1		8-4-6				
										0-4-2	
					4x5=						
	7-3-5	0-0-4×	2 ²³ 10 ¹² ST 1	4 3 T1 ST2 B1	ST4	6 ST5	25 7 5T6	8 ST7 B2		9	
			17	16 15	××××××××××××××××××××××××××××××××××××××	13 12	**************************************	<u> </u>	~~~~~	××××4	
			3x5 ≁			3x5=				3x5💊	
Scale = 1:50.3			, 		17-5-0						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(pst) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.14 Ve 0.09 Ve 0.27 Ho	: FL rt(LL) rt(TL) vriz(TL) (in (loc) n/a - n/a -).00 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0									Weight: 98 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sha 10-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommend required cross brac truss erection, in a Installation guide.	eathing directly app y applied or 6-0-0 o s that Stabilizers ar cing be installed du ccordance with Sta	6) - This truss on the botto 3-06-00 tall chord and a 7) Provide me bearing plat (s) 1, 15, 16 8) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been designed m chord in all areas by 2-00-00 wide wi ny other members. chanical connectior e capable of withsta , 17, 12, 11, 10. designed in accord I Residential Code and referenced stan Standard	for a live io s where a re l fit betweer (by others) anding 100 l dance with t sections R5 dard ANSI/ ⁷	ad of 20.0ps ectangle the bottom of truss to b uplift at jo he 2018 02.11.1 and IPI 1.	int				
REACTIONS (lb) -	All bearings 17-5-0. Max Horiz 1=-133 (L	-C 9)									
(.~)	Max Uplift All uplift 1	100 (lb) or less at jo	int(s)								
	Max Grav All reaction	ons 250 (lb) or less	← at joint								
	(5) 1, 10, 14=331 (1	LC 27)									
FORCES	(Ib) - Max. Comp./N (Ib) or less except w	iax. Ten All forces when shown.	250								
TOP CHORD WEBS	1-2=-101/257 5-14=-292/0										
NOTES	d roof live loads how	e heen considered :	or this								
 a) Sinchard Construction b) Sinchard Construction c) Wind: ASC vasd=103r li; Exp B; E Exterior(2E Exterior(2E Exterior(2F 17-5-5 zon vertical left forces & M DOL=1.60 c) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0 	E 7-16; Vult=130mpl mph; TCDL=6.0psf; E Enclosed; MWFRS (e E) 0-0-5 to 3-0-5, Inte R) 8-8-13 to 11-8-13, ie; cantilever left and t and right exposed;C WFRS for reactions plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; Plate DOL=1.15); Is: 0.9; Cs=1.00; Ct=1.10;	h (3-second gust) 3CDL=6.0psf; h=25 envelope) and C-C erior (1) 3-0-5 to 8-8 Interior (1) 11-8-13 right exposed ; enc C-C for members an shown; Lumber (roof LL: Lum DOL Pf=13.9 psf (Lum =1.0; Rough Cat B; 0	t; Cat. -13, to I d =1.15 Fully								

Job	Truss		Truss Type		Qty	Ply					
23110135	VL4		Valley		1	1	Job Referer	nce (opt	tional)		
Carter Compone	nts, Sanford, NC, user			Run: 8.63 S Dec 22	2 2022 Prin	nt: 8.630 S Dec	22 2022 MiTek	Industrie	es, Inc.	Thu Nov 30 16:28:2	20 Page: 1
				<u>8-0-2</u> 8-0-2		JD05ES1C/CV	<u>15-8-1</u> 7-8-0			16-0-3	r-kann u liñðaoini sí Aeora
	6-8-5	0-0-4	10 ¹² 1 3x5 +	2x4 II 15 2 5T1 5T1 9 17 2x4 II	4x5 3 5T2 5T2 8 2x4 16-0-	= 7 11 3x5= 3	2x4 II 16 5T3 18 6 5 2x4 II	B2		5 3x5 •	
Scale = 1:48			1							1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.28 V 0.16 V 0.38 H	PEFL /ert(LL) /ert(TL) loriz(TL)	in (loc) n/a - n/a - 0.00 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD (Ib) - FORCES TOP CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E) Exter	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brac truss erection, in au Installation guide. All bearings 16-0-3. Max Horiz 1=-122 (L Max Uplift All uplift 1 1, 5, 6, 9, Max Grav All reactic (s) 1, 5, 1 8=672 (L0 (lb) - Max. Comp./M (lb) or less except w (lb)	eathing directly applied (applied or 6-0-0 oc s that Stabilizers and cing be installed durin ccordance with Stabili (C 11) 00 (lb) or less at joint 14 00 (lb) or less at joint 14 00 (lb) or less at joint 14 20 24), 9=461 (LC 24) 1ax. Ten All forces 2 when shown. 0/305, 3-16=0/287, 35/180, 4-6=-288/179 be been considered for n (3-second gust) 3CDL=6.0psf; h=25ft; nvelope) and C-C rior (1) 3-0-5 to 8-0-6, erior (1) 11-0-6 to 16- cposed ; end vertical I bers and forces & umber DOL=1.60 plat (roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Ft) om chord bearing.	(s) (s) (s) (s) (s) (s) (s) (s)	has been designed in m chord in all areas by 2-00-00 wide will ny other members, v chanical connection (e capable of withstar designed in accorda I Residential Code so and referenced stand) Standard	or a live i where a r fit betwee vith BCDL (by others ading 100 ance with ections R ard ANSI	oad of 20.0p rectangle an the botton _ = 10.0psf. s) of truss to l b uplift at jc the 2018 502.11.1 and /TPI 1.	sr bint				

	I_						1			
Job	Truss		Truss Type		Qty	Ply				
23110135	VL5		Valley		2	1	Job Referer	nce (optio	nal)	
Carter Compone	nts, Sanford, NC, user			Run: 8.63 S Dec	22 2022 Print:	8.630 S Dec	22 2022 MiTek Mz39v78Sybov	Industries, EWcH-mO	Inc. Thu Nov 30 16 SoiTHr Bh. onvl dA	:28:20 Page: 7
				<u>6-11-11</u> 6-11-11			<u>13-7-4</u> 6-7-9		13-11-6 13-11-6 	
	5-10-0	ې پې پې ۵-0- 4 ک	10 ¹² 1 3x5 ¢	2x4 II 13 T1 2 5T1 8 2x4 II	4x5 3 5T2 5T2 7 2x4	= 	2x4 14 5T3 6 2x4	11 t	5 3x5s	
Scale = 1:44.5					13-11-	6				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.19 Ver 0.08 Ver 0.12 Ho	FL rt(LL) rt(TL) riz(TL) (in (loc) n/a - n/a -).00 5	l/defl n/a § n/a § n/a	L/d PLATES 999 MT20 999 n/a Weight: 60	GRIP 244/190 Ib FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection in ar	eathing directly applie y applied or 6-0-0 oc s that Stabilizers and cing be installed durin coordance with Stabil	6) Provide med bearing plate (s) 1, 8, 6. 7) This truss is International R802.10.2 a LOAD CASE(S)	chanical connection e capable of withst designed in accor Residential Code nd referenced star Standard	n (by others) anding 100 I dance with tl sections R5 idard ANSI/T	of truss to b uplift at jo ne 2018 02.11.1 and PI 1.	int			
REACTIONS (lb) -	All bearings 13-11-6. Max Horiz 1=-106 (L Max Uplift All uplift 1	.C 9) 00 (lb) or less at joint	t(s)							
FORCES WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103i II; Exp B; E Exterior(2E 7-0-0, Exter 13-11-11 z vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 4) Gable requ	I, 0, 8 Max Grav All reaction (s) 1, 5 ev 7=280 (LC (lb) - Max. Comp./M (lb) or less except w 2-8=-262/191, 4-6=- ed roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (e E) 0-0-5 to 2-11-11, In prior(2R) 7-0-0 to 10-(one; cantilever left an and right exposed;C WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf =1.15); Pg=20.0 psf =1.15); Pg=20.0 psf =1.15); Js =0.0; Ct=1.10 uires continuous botto	ons 250 (lb) or less at keept 6=344 (LC 25), C 2), 8=347 (LC 24) lax. Ten All forces 2 then shown. -259/188 e been considered for n (3-second gust) GCDL=6.0psf; h=25ft; nvelope) and C-C terior (1) 2-11-11 to 0-0, Interior (1) 10-0-(nd right exposed; end -C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fr 0 om chord bearing.	joint 250 r this Cat. 0 to 1.15 ully							

 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Tru	ISS	Truss Type		Qty	Ply					
23110135	VL	.6	Valley		2	1	Job Referen	ice (opti	onal)		
Carter Componen	ts, Sanford, NC, us	ser	1	Run: 8.63 S Dec 22	2022 Print:	8.630 S Dec	22 2022 MiTek	Industrie	s, Inc. ⁻	Thu Nov 30 16:28:2	1 Page: 1
					ID:fp	kWIaTANIKN	lbDk8hszB8?yE	EWcG-Ec	liBxpHl	JIIprQxUXAtG0QsI	CQjoCy3hqOo6DakyE6t8
			I	5.0.44	1		10.0.11	11	-1-13		
				<u>5-6-14</u> 5-6-14			<u>10-9-11</u> 5-2-12				
					'			0	-4-2		
					4x5	=					
					3 ∕						
					/	\mathbf{i}					
		4 - 0		2x4 II TI	ST2	L)	23	x4 II			
		4-8-4-8	10	13							
			10 ¹²	2				4			
			1	574		D 4	STE	\square	▶ 5		
		0-(Ì		
				8	7		6	;			
			3x5 ∕		2x4	11	2)	x4 II	F		
			I	2x4 II				3x	₽		
Scale = 1:42.3					11-1-1	3			-		
	z	· · ·		· · · · ·							
Loading TCLL (roof)	(psf 20.0	f) Spacing 0 Plate Grip DOL	2-0-0 1.15	CSI TC	0.19 DE	F L t(LL)	in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	0 Lumber DOL	1.15	BC	0.09 Ver	t(TL) ∺≂(TL) 0	n/a -	n/a	999		
BCLL	0.0	0* Code	IRC2018/TPI2014	Matrix-MSH	0.00 110	12(11) 0		n/a	1#a		
BCDL	10.0	0	-							Weight: 45 lb	FT = 20%
	2v4 SP No 2		 Provide med bearing plate 	hanical connection (b capable of withstan	oy others) ding 100 lt	of truss to puplift at ioi	int				
BOT CHORD	2x4 SP No.2		(s) 1, 5, 8, 6 7) This trues is	. dosignod in accorda	nco with th	o 2018					
BRACING	2x4 SP No.3		Internationa	Residential Code se	ctions R50	2.11.1 and					
TOP CHORD	Structural wood	sheathing directly applie	ed or LOAD CASE(S)	nd referenced standa Standard	ard ANSI/ I	PI1.					
BOT CHORD	Rigid ceiling dire	ectly applied or 10-0-0 od	0								
	MiTek recomme	ends that Stabilizers and									
	required cross I truss erection, i	bracing be installed durir in accordance with Stabi	ng lizer								
	Installation guid	de.									
REACTIONS A (lb) - N	All bearings 11-1- Aax Horiz 1=-84	-13. (LC 11)									
Ň	Aax Uplift All upl	lift 100 (lb) or less at join	t(s)								
Ν	All rea	actions 250 (lb) or less at 5.7 except $6-244$ (LC 2	t joint								
	(5) 1, 8=318	3 (LC 24)	5),								
FORCES	(Ib) - Max. Comp (Ib) or less except	p./Max. Ten All forces 2 pt when shown.	250								
WEBS NOTES	2-8=-284/267, 4	-6=-273/257									
1) Unbalanced	l roof live loads h	have been considered fo	r this								
2) Wind: ASCE	E 7-16; Vult=130	mph (3-second gust)	0-1								
II; Exp B; E	nclosed; MWFR	st; BCDL=6.0pst; h=25π; S (envelope) and C-C	Cat.								
Exterior(2E) Exterior(2R)) 0-0-5 to 3-0-5,) 5-7-3 to 8-7-3,	Interior (1) 3-0-5 to 5-7-3 Interior (1) 8-7-3 to 11-2-	3, -2								
zone; cantil and right ex	ever left and righ	nt exposed ; end vertical nembers and forces &	left								
MWFRS for	reactions show	n; Lumber DOL=1.60 pla	ite								
3) TCLL: ASC	E 7-16; Pr=20.0	psf (roof LL: Lum DOL=	1.15								
DOL=1.15	Plate DOL=1.15)	; Is=1.0; Rough Cat B; F	ully								
Exp.; Ce=0. 4) Gable requi	.9; Cs=1.00; Ct= ires continuous b	1.10 oottom chord bearing.									
 This truss on the botto 	has been desigr om chord in all ar	ned for a live load of 20.0 reas where a rectangle)psf								
3-06-00 tall chord and a	by 2-00-00 wide	e will fit between the botto	om								
	,										

Job	Truss	Truss Type	Qty	Ply	
23110135	VL7	Valley	2	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:21 Page: 1

ID:fpkWIaTANIKNbDk8hszB8?yEWcG-EdiBxpHUllprQxUXAtG0QslBnjmLy33qOo6DakyE6t8

3

2x4 💊

2x4 🍫

Scale = 1:34.5

Ocale = 1.04.0										I		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.21 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-4-3 oc purlins. Rigid ceiling directly bracing. MiTek recommender required cross brack truss erection, in ar Installation guide.	eathing directly applied y applied or 6-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabiliz	5) * This truss on the botto 3-06-00 tall chord and a 6) Provide med bearing plat 1, 19 lb uplif 7) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been desigr m chord in all ar by 2-00-00 wide ny other membe chanical connect e capable of with ft at joint 3 and 1 designed in acc l Residential Cou und referenced s Standard	ned for a liv reas where will fit betw ers. tion (by oth hstanding 2 19 Ib uplift a cordance w de sections tandard AN	re load of 20. a rectangle ween the both uers) of truss 22 lb uplift at at joint 4. ith the 2018 s R502.11.1 a JSI/TPI 1.	.0psf tom to joint and					
REACTIONS	ACTIONS (lb/size) $1=22/8-4-3$, (min. 0-1-8), 3=26/8-4-3, (min. 0-1-8), 4=518/8-4-3, (min. 0-1-8) Max Horiz $1=-62$ (LC 9) Max Uplift $1=-22$ (LC 31), $3=-19$ (LC 30), 4=-19 (LC 13) Max Grav $1=62$ (LC 31), $4=612$											
FORCES TOP CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103 II; Exp B; I Exterior(2I Zone; cant and right e MWFRS fr grip DOL= 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 4) Gable req	(lb) - Max. Comp./M (lb) or less except w 2-9=-119/253 2-4=-448/255 ed roof live loads have CE 7-16; Vult=130mpt mph; TCDL=6.0psf; E Enclosed; MWFRS (e E) 0-0-5 to 3-0-5, Inte tilever left and right ex exposed;C-C for mem or reactions shown; L :1.33 CE 7-16; Pr=20.0 psf; =1.15); Pg=20.0 psf; Plate DCL=1.15); Is= 0.9; Cs=1.00; Ct=1.10; uires continuous botto	lax. Ten All forces 25 when shown. a been considered for h (3-second gust) SCDL=6.0psf; h=25ft; 0 mvelope) and C-C more of 1) 3-0-5 to 4-2-6, wher of 1) 7-2-6 to 8-4-8 wher and forces & umber DOL=1.60 plate (roof LL: Lum DOL=1. Pf=13.9 psf (Lum =1.0; Rough Cat B; Fu on chord bearing.	i0 this Cat. oft 15 Ily									

Job	Truss	Truss Type	Qty	Ply	
23110135	VL8	Valley	2	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:21 Page: 1 ID:fpkWIaTANIKNbDk8hszB8?yEWcG-EdiBxpHUllprQxUXAtG0QsID8jo2y48qOo6DakyE6t8

3

2-4-0

Scale = 1:30.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg) 13.9/20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 20 lb	FT = 20%
LUMBER			7) This truss is	designed in acc	cordance w	ith the 2018						
TOP CHORE	2x4 SP No.2		International	Residential Co	de sections	R502.11.1	and					
BOT CHORE	2x4 SP No.2	2x4 SP No.2 R802.10.2 and referenced standard ANSI/TPI 1.										
OTHERS	2x4 SP No.3		LOAD CASE(S)	Standard								
BRACING												
TOP CHORE) Structural wood she	eathing directly applied o	r									
	5-6-10 oc purlins.	saamig anoon) appnoa o	•									
BOT CHORE	Rigid ceiling directly	y applied or 6-0-0 oc										
	bracing.		-									
	MITEK recommends	s that Stabilizers and										
	required cross brac	cing be installed during	-									
	Installation guide.											
REACTIONS	(lb/size) 1=41/5-6-	-10 (min 0-1-8)										
REACTIONS	3=43/5-6-	-10, (min. 0-1-8),										
	4=292/5-6	6-10, (min. 0-1-8)										
	Max Horiz 1=-40 (LC	C 11)										
	Max Uplift 4=-1 (LC	13)										
	Max Grav 1=64 (LC (LC 2)	30), 3=66 (LC 31), 4=34	14									
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250										
	(lb) or less except w	vhen shown.										
NOTES												
1) Unbaland	ced roof live loads have	e been considered for thi	S									
design.		h (0										
2) Wind: AS	2mph; TCDI =6 0pof; B	n (3-secona gust) CDL-6 Opot: h=25#: Co	•									
II: Eyn B	· Enclosed: MWERS (e	envelope) and C-C	ι.									
Exterior(2E) zone: cantilever lef	ft and right exposed : end	ł									
vertical le	eft and right exposed:C	C-C for members and										
forces &	MWFRS for reactions	shown; Lumber										
DOL=1.6	0 plate grip DOL=1.33											
 3) TCLL: AS 	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15											
Plate DO	Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum											
DOL=1.1	JOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully											
Exp.; Ce	xp, $(c=0.9; c=1.0)$, $ct=1.10$											
 Gable reg S) * This true 	quires continuous Dotto	for a live load of 20 0pcf										
on the he	attom chord in all aroas	where a rectande										
3-06-00 t	all by 2-00-00 wide will	I fit between the hottom										
chord an	chord and any other members.											

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 4.

Job	Truss	Truss Type	Qty	Ply	
23110135	VL9	Valley	2	1	Job Reference (optional)

Run: 8.63 S Dec 22 2022 Print: 8.630 S Dec 22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:21 Page: 1 ID:fpkWlaTANIKNbDk8hszB8?yEWcG-EdiBxpHUllprQxUXAtG0QsIESjpqy4wqOo6DakyE6t8

3

Scale = 1:30.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDI	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.06 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 8 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No 2

BOT CHORD	2X4 SP No
DDACINC	

BRACING	
TOP CHORD	Structural wood sheathing directly applied or

2-9-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.
MiTek recommends that Stabilizers and
required cross bracing be installed during
truss erection, in accordance with Stabilizer
Installation guide.

- REACTIONS (lb/size) 1=93/2-9-0, (min. 0-1-8), 3=93/2-9-0, (min. 0-1-8) Max Horiz 1=18 (LC 12) Max Grav 1=110 (LC 2), 3=110 (LC 2)
- FORCES (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply	
23110135	VL10	Valley		1	1	Job Reference (optional)
Carter Components, Sanford, N	C, user		Run: 8.63 S Dec 22	2022 Print: 8	8.630 S Dec	22 2022 MiTek Industries, Inc. Thu Nov 30 16:28:21 Page: 1
				ID:BdE	385ESYc?C	Wz39y78SyboyEWcH-EdiBxpHUllprQxUXAtG0QsIAXjnoy_3qOo6DakyE6t8
		I	0.4.0	I.		16-9-0

Scale = 1:49.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.18 0.44	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ad Installation quide	eathing directly applied or applied or 6-0-0 oc that Stabilizers and ing be installed during coordance with Stabilizer	 5) * This truss I on the bottor 3-06-00 tall I chord and at 6) Provide mec bearing plate (s) 1, 9, 6. 7) This truss is International R802.10.2 a LOAD CASE(S) 	has been designed in chord in all area by 2-00-00 wide w by other members, hanical connection e capable of withst designed in accor Residential Code ind referenced star Standard	d for a liv is where ill fit betv, with BC n (by oth anding 1 dance w sections ndard AN	e load of 20.1 a rectangle veen the bott DL = 10.0psi ers) of truss 1 00 lb uplift ai ith the 2018 s R502.11.1 <i>a</i> ISI/TPI 1.	Opsf om f. to t joint and					
REACTIONS All bearings 16-9-0. (lb) - Max Horiz 1=128 (LC 10) Max Uplift All uplift 100 (lb) or less at joint(s) 1, 5, 6, 9, 14 Max Grav All reactions 250 (lb) or less at joint (s) 1, 5, 14 except 6=497 (LC 25), 8=695 (LC 24), 9=492 (LC 24)												
FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1.15=-70/317, 2.15=-36/390, 3-16=0/328, 3-17=0/310, 4-18=0/333, 5-18=-19/259 WEBS 3-8=-512/0, 2-9=-298/178, 4-6=-300/177 NOTES 1) Unbalanced roof live loads have been considered for this design												
 Wind: ASC Vasd=103j II; Exp B; I Exterior(21 Exterior(21 16-9-5 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0 Gable required 	½E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (ei E) 0-0-5 to 3-0-5, Inter R) 8-4-13 to 11-4-13, I e; cantilever left and t and right exposed;C WFRS for reactions s plate grip DOL=1.33):E 7-16; Pr=20.0 psf; Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous botto	 (3-second gust) CDL=6.0psf; h=25ft; Cat nvelope) and C-C rior (1) 3-0-5 to 8-4-13, interior (1) 11-4-13 to right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.15 Pf=13.9 psf (Lum :1.0; Rough Cat B; Fully) m chord bearing. 	i.									