

RE: 21050189-A Kristie with bonus side load Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Lamco Custom Builders LLC Lot/Block:	Project Name: 21050189-A Model:
Address:	Subdivision:
City: Sanford	State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 15 16 17 18	Seal# I58301391 I58301392 I58301393 I58301394 I58301395 I58301396 I58301397 I58301398 I58301399 I58301400 I58301400 I58301402 I58301403 I58301403 I58301405 I58301405 I58301406 I58301407 I58301408	Truss Name A AA AB AD1 AD2 ADE AE B B1 BE BG2 V VAE VB VC VD VC VD VE VF	Date 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023 5/11/2023	No. 21 22	Seal# I58301411 I58301412	Truss Name VI VJ	Date 5/11/2023 5/11/2023
19	158301409	VG	5/11/2023				
20	158301410	VH	5/11/2023				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	A	Common	3	1	Job Reference (optional)	158301391

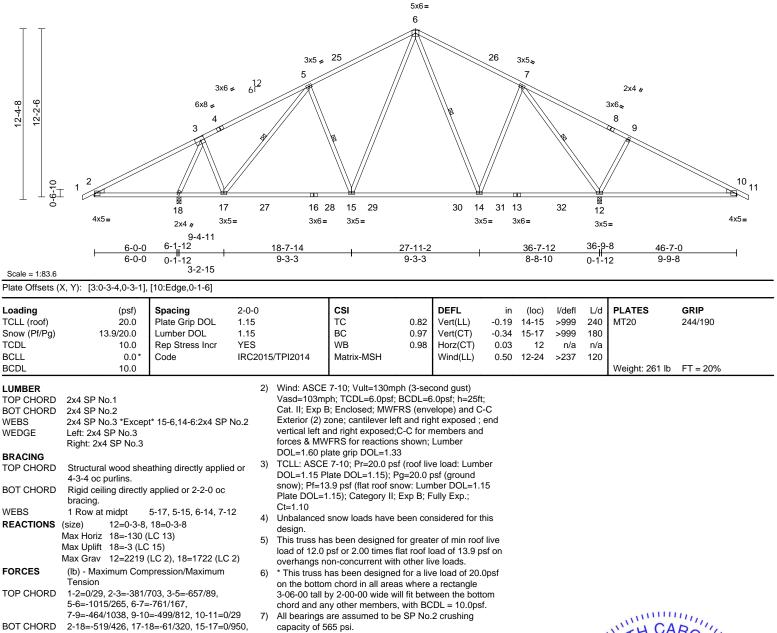
23-3-8

7-8-11

Carter Components (Sanford), Sanford, NC - 27332

-0-10-8 0-10-8

7-10-3


7-10-3

15-6-13

7-8-11

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:13

Page: 1 ID:ymmA5a8h9dWADfRH9jsTImz04Se-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 47-5-8 0-10-8 31-0-3 38-8-13 46-7-0 7-8-11 7-8-11 7-10-3

14-15=0/698, 12-14=0/425, 10-12=-607/521 WEBS 3-18=-1708/447, 3-17=0/747, 5-17=-638/175, 5-15=-199/226, 6-15=-116/554, 6-14=-292/161, 7-14=-6/562 7-12=-1895/593, 9-12=-498/335

NOTES

Unbalanced roof live loads have been considered for 1) this design.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 18 and 12. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2015

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AA	Common	6	1	Job Reference (optional)	158301392

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:16 ID:N80bQ2oZRCKWiyZfJ3q8U9z04Ro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

										NOGE CHILDWO				
	-0-10-8 0-10-8	7-10-3 7-10-3		<u>15-6-13</u> 7-8-11		<u>23-3-8</u> 7-8-11	5x6=	<u>31-0-3</u> 7-8-11		<u>38-8</u> 7-8-			<u>46-7-0</u> 7-10-3	47-5-8 0-10-8
12-4-8 12-2-6 0-6-10	1 2		3x6 - 2x4 _w 3	- 6 ¹²	3x5 = 5	25	6	2	6 3x5a			6x8z 3x6z 8 9		10 11
⊥⊥ģ⊥ o	5x6=		18 3x5	27	17 28 4x6=	3 16 29 4x5=		30 15 3x5=	31 14 4x6=	32		3 8x5=	8 12 3x5 _∿	4x5=
	5.0=	9-4-11		18-7			27-11-2			7-2-5			42-1-0 46-7-	· <u>0</u>
Scale = 1:83.6		9-4-11		9-3	-3		9-3-3			9-3-3		4-8-15	0-1-12 4-6-	J
ate Offsets (X	, Y): [2:Edge,0	-1-6], [9:0-3-4,(0-3-1], [10:E	dge,0-1-6]				-						
Dading CLL (roof) Now (Pf/Pg) CDL CLL	20 13.9/20 10	0.0 Lumber	rip DOL	2-0-0 1.15 1.15 YES IRC2015/TPI:	-	CSI TC BC WB Matrix-MSH	0.80 0.90 0.74	Vert(CT) -	0.32 16- 0.56 16-		L/d 240 180 n/a	PLATES MT20	GRIP 244/190)
		0.0 Code			2014	Mathx-Mort						Weight: 26	3 lb FT = 20	%
DT CHORD EBS EDGE RACING DP CHORD DT CHORD EBS EACTIONS (% N N CRCES DP CHORD DT CHORD DT CHORD EBS	2x4 SP 2400F No.1 2x4 SP No.1 2x4 SP No.3 *I No.2 Left: 2x4 SP N Right: 2x4 SP N Structural woo 2-2-0 oc purlin Rigid ceiling di bracing. 1 Row at midp size) 2=0 Max Horiz 2=-1 (lb) - Maximur Tension 1-2=0/29, 2-3= 5-6=-2308/660 7-9=-1709/407 2-18=-470/280 15-16=-41/161 12-13=-83/117 9-12=-2558/86 5-18=-176/695 6-16=-256/112	Except* 12-9,16 0.3 No.3 d sheathing dirds s. rectly applied of t 9-12, 5-1 3-8, 12=0-3-8 30 (LC 13) 759 (LC 2), 12= o Compression/ -3157/662, 3-5 , 6-7=-2076/60 , 9-10=-332/62 6, 16-18=-268/ 2, 13-15=-164/ 9, 10-12=-456/ 8, 3-18=-405/2 , 5-16=-782/37	ectly applied or 6-0-0 oc 6, 7-15, 7-1: =2183 (LC 2 /Maximum =-3008/734, 2, 5, 10-11=0/: 2274, 1811, 382 70, 3,	Cat Ext Ext SP veri DO 3) TCI DO 3) TCI DO sno Ct= 4) Unt des ct= 4) Unt des 3 5) This load ove 3 5) This load ove 3 5) This load ove 3 6) * Th on 1 3-00 , cho 7) All 29 cap 8) One rec UP only 9) This	. II; Exp B; erior (2) zc ical left an ees & MWF L=1.60 plat L: ASCE L=1.15 Plat w); Pf=13. te DOL=1. 1.10 balanced s ign. s truss has d tof 12.0 p rhangs no bis truss has d tof 12.0 p rhangs no he bottom 6-00 tall by rd and any pearings a left at trus a acity of 56 d H2.5A Si commender LIFT at it(s a rhuss is d	d right exposed RS for reaction te grip DOL=1. 7-10; Pr=20.0 p te DOL=1.15); 9 psf (flat roof = 15); Category I now loads have been designer n-concurrent w s been designer chord in all are 2-00-00 wide v other member re assumed to 5 psi. mpson Strong- d to connect trut) 2 and 12. Thi esigned in acc	/FRS (enve left and right d;C-C for m as shown; h 33 osf (roof live Pg=20.0 p snow: Lum l; Exp B; F e been con d for greate s flat roof lo ith other live eas where will fit betw be SP No. Tie connect s connections a connections a connections ordance with	Hope) and C-C tt exposed; end embers and Lumber e load: Lumber sf (ground ber DOL=1.15 ully Exp.; sidered for this er of min roof liv ad of 13.9 psf of e loads. e load of 20.0psf a rectangle een the bottom DL = 10.0psf. I crushing tors ng walls due to n is for uplift s.	e on sf			WITH OR OFFE	CARO SSO: EAL	
DTES	7-15=-279/230 I roof live loads				02.10.2 and CASE(S)	d referenced st Standard	andard AN	SI/TPI 1.			A A A A A A A A A A A A A A A A A A A		6322	A States

May 11,2023

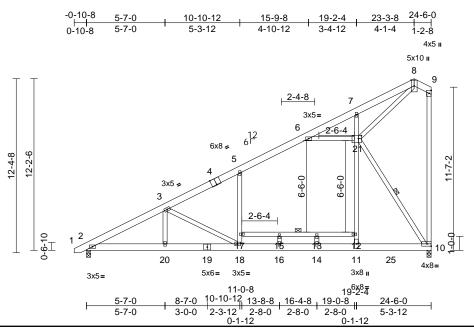
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AB	Common	5	1	Job Reference (optional)	158301393

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:17 ID:DJIrcbLoZePy?9Gu7iCIR3204WF-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

:25:17 Page: 1

								KWrCDoi7J4zJC		
-0-10-8 7-1 0-10-8 7-1		1 <u>5-6-13</u> 7-8-11	<u>23-3-8</u> 7-8-11	<u>31-(</u> 7-8-			<u>3-8-13</u> -8-11		46-7-0 7-10-3	47-5-8
0-10-8 7-1	0-3	7-8-11	7-8-11	5x6=	.11	1	-0-11		7-10-3	0-10-8
12-2-6	3x6 = 5x6 = 3	6 ¹² 5	5 = 25 B	6	26	3x5s 7		2x4 # 3x6= 8 9		
			¥		¥.	Π		¥		10 11
4x5=	18 17 2x4 y 4x5=		6 28 15 29 x6= 3x5=	30	14 31 1 4x5= 4	3 3 x6=	2	12 3x5=		5x6=
<u> </u>	9-4-11 6-1-12 0-1-12 3-2-15	<u>18-7-14</u> 9-3-3		<u>27-11-2</u> 9-3-3		<u>37-2-5</u> 9-3-3		-	<u>46-7-0</u> 9-4-11	
cale = 1:83.6 te Offsets (X, Y): [3:0-1-12,0-1-1										
ading (psf) LL (roof) 20.0 ow (Pf/Pg) 13.9/20.0 DL 10.0 LL 0.0* DL 10.0 LL 0.0*	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 /ES RC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.98 Vert(LL) 0.88 Vert(CT) 0.87 Horz(CT)		(loc) l/d 12-14 >9 12-14 >8 10 r	99 240) MT20	GRIP 244/190 2 lb FT = 20 ^o	%
T CHORD 2x4 SP No.1 EBS 2x4 SP No.3 *Excep EDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 ACING P CHORD Structural wood she T CHORD Rigid ceiling directly bracing. EBS 1 Row at midpt ACTIONS (size) 10=0-3-8, Max Horiz 18=-130 (Max Grav 10=1675 (RCES (lb) - Maximum Com Tension P CHORD 1-2=0/29, 2-3=-381// 5-6=-1802/519, 6-7=	5-17, 5-15, 7-14 18=0-3-8 LC 13) (LC 2), 18=2267 (LC 2) pression/Maximum 695, 3-5=-1041/197, 2125/605, I=-2983/609, 10-11=0/29 8=-45/525, 15=0/1446, 0-12=-419/2578 7=-112/1130, 5=-84/213, 256/1123, I=-179/701,	 Vasd=103 Cat. II; Exterior (2 vertical le forces & I DOL=1.60 3) TCLL: AS DOL=1.11 snow); Pf Plate DOL Ct=1.10 4) Unbalanc design. 5) This truss load of 12 overhang 6) * This truss on the bo 9) 3-06-00 tt chord and 7) All bearin capacity (2 8) One H2.5 recomme UPLIFT a only and 9) This truss Internatio 8) Inis truss on the solo 	CE 7-10; Vult=130mj 3mph; TCDL=6.0psf; qp B; Enclosed; MWF 2) zone; cantilever le th and right exposed; WWFRS for reactions 0 plate grip DOL=1.3 5CE 7-10; Pr=20.0 ps 5 Plate DOL=1.15); F =13.9 psf (flat roof sr L=1.15); Category II; ed snow loads have a has been designed 2.0 psf or 2.00 times I s non-concurrent with ss has been designed 2.0 psf or 2.00 wide w d any other members gs are assumed to bu of 565 psi. A Simpson Strong-T nded to connect trus: ti ti(s) 18 and 10. This does not consider lat s is designed in accor nal Residential Code 2 and referenced stat (S) Standard	BCDL=6.0psf; h=2 RS (envelope) and ft and right expose C-C for members a s shown; Lumber 3 f (roof live load: Lu 2g=20.0 psf (groun ow: Lumber DOL= Exp B; Fully Exp.; been considered for for greater of min r flat roof load of 13. n other live loads. d for a live load of 2 is where a rectang ill fit between the b , with BCDL = 10.0 e SP No.1 crushing ie connectors s to bearing walls of s connection is for eral forces.	25ft; J C-C d; end and mber d f.15 or this oof live 9 psf on 20.0psf le oottom 0psf. J due to uplift		and a state of the		CARO SSI SSI SSI SSI SSI SSI SSI SSI SSI SS	



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AD1	Attic	6	1	Job Reference (optional)	158301394

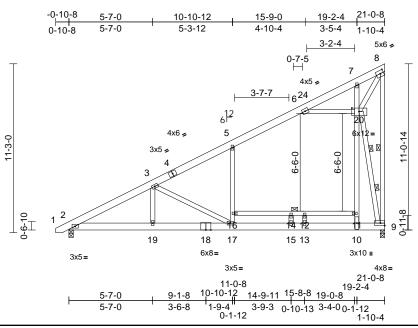
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:17 ID:XRhU6tq?KKxuJXFvWHq?95z04Nt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.9	
Plate Offsets (X, Y):	[4:0-4-0,Edge], [21:0-2-8,0-2-8]

		1			1							1	-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)		16-18		240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.70	16-18	>416	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.03	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		Attic	-0.17	11-18	>592	360		
BCDL	10.0											Weight: 214 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130mp	oh (3-seo	cond aust)		13) Atti	c room o	checke	d for L/360 deflec	tion.
TOP CHORD	2x6 SP 2400F 2.0E	*Except* 8-9:2x6 SP	,		ph; TCDL=6.0psf;				'	CASE(S			
	No.2			Cat. II; Exp I	B; Enclosed; MWF	RS (env	elope) and C	-C	LOND	0/102(0	, 010	liadia	
BOT CHORD	2x6 SP No.2 *Excep	ot* 17-12:2x4 SP No.:	3,		zone; cantilever lef								
	19-10:2x6 SP 2400F	- 2.0E			and right exposed;								
WEBS	2x4 SP No.3 *Excep	ot* 6-21,10-9:2x4 SP	No.2		/FRS for reactions		Lumber						
BRACING					late grip DOL=1.33								
TOP CHORD	Structural wood she		dor ³⁾		7-10; Pr=20.0 ps			er					
	6-0-0 oc purlins, ex				late DOL=1.15); P 3.9 psf (flat roof sn			5					
BOT CHORD		applied or 10-0-0 oc	;		1.15); Category II;			5					
WEBS	bracing.	10 17 10 01		Ct=1.10			,,						
		12-17, 10-21	4)	Unbalanced	snow loads have l	been cor	nsidered for th	nis					
REACTIONS				design.									
	Max Horiz 2=358 (LC Max Grav 2=1227 (L		20) 5)		as been designed f								
500050	,	<i>,</i>	30)		psf or 2.00 times f			sf on					
FORCES	(lb) - Maximum Corr Tension	pression/iviaximum			on-concurrent with								
TOP CHORD	1-2=0/23, 2-3=-2371	1/103 3-51610/56	6)		e 2x4 MT20 unless			f					
	5-6=-1225/147, 6-7=	, ,	7)		has been designed m chord in all area			Jpst					
	7-8=-417/1243, 8-9=		277		by 2-00-00 wide wi		J .	h					
BOT CHORD					ny other members,								111
	16-18=-283/1304, 1	,	8)		l load (5.0 psf) on r							W'LL CA	Dille
	11-14=-283/1304, 1	0-11=-277/1248	- /		3, 6-21; Wall dead							"ATH UN	TOP
WEBS	3-20=-4/278, 3-18=-	1040/286, 17-18=0/5	527,	(s).5-17, 12-			. ,				X	OFFESS	AN's
	,	-11/941, 12-21=0/10	17, 9)	Bottom chore	d live load (40.0 ps	sf) and a	dditional bott	om		1	6	10	
	7-21=0/278, 15-17=			chord dead l	oad (0.0 psf) appli	ed only	to room. 16-1	8,			a	181 1	4. 4.
	12-13=-47/9, 6-21=-			14-16, 11-14							1	0.5.1	1 1 1
	10-21=-2229/316, 1	,	10		e assumed to be: J					=	:	SEA	L ; =
	13-14=-93/2, 8-21=-	1429/3/1			65 psi, Joint 10 SF	P 2400F	2.0E crushin	g		Ξ		0363	22 : 3
NOTES				capacity of 8			at a #a					. 0000	i E
 Unbalance this design 	ed roof live loads have	been considered for	11		Simpson Strong-Ti ed to connect truss			to			-		1 1 2
uns design	1.				(s) 2 and 10. This						21	N. ENG	CRIX S
					es not consider late						20	S. GINI	E. A.S
			12		designed in accord						1	CA -	BEIN
					Residential Code			ind				A. G	1L
					nd referenced star								111,
												May	11,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AD2	Roof Special	5	1	Job Reference (optional)	158301395

Scale = 1:76.8

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:18 ID:NNRjJJn3tlhHa1vopWCD2Yz04K3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [8:0-2-11,0-2-8], [20:0-5-12,0-2-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.87 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.79 0.02	(loc) 15-17 17 9 10-17	l/defl >635 >318 n/a >538	L/d 240 180 n/a 360	PLATES MT20 Weight: 189 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP 2400F 2.0E No.2 2x6 SP No.2 *Excep 18-9:2x6 SP 2400F 2 2x4 SP No.2 *Excep 3-19,17-3,14-15,12- Structural wood she 4-11-5 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts	t* 16-11:2x4 SP No.: 2.0E 13,8-20:2x4 SP No.3 athing directly applie xcept end verticals. applied or 10-0-0 oc 8-9, 11-16 9-20 9=0-3-8 2 14) LC 30), 9=1361 (LC 3 pression/Maximum //178, 3-5=-1131/44,	2, 2) d or 3) 4)	Vasd=103mj Cat. II; Exp E Exterior (2) z vertical left af forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are on the bottor 3-06-00 tall h	7-10; Vult=130mp bh; TCDL=6.0psf; I 3; Enclosed; MWFI cone; cantilever leff nd right exposed; C (FRS for reactions ate grip DOL=1.33; 7-10; Pr=20.0 psf late DOL=1.15); Pr 3.9 psf (flat roof sm .15); Category II; I snow loads have b s been designed fi psf or 2.00 times fl on-concurrent with a 2x4 MT20 unless has been designed in chord in all areas by 2-00-00 wide will y other members.	BCDL=6 RS (env and rig C-C for r shown; (roof liv g=20.0 p ow: Lurr Exp B; F been cor or great at roof li other li other wiv for a liv s where	.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb soft (ground ber DOL=1.1 ully Exp.; nsidered for the er of min roof bad of 13.9 p: ve loads. se indicated. e load of 20.0 a rectangle	-C end 5 his live sf on Dpsf	12) Attic	CASE(S) Star	d for L/360 deflec ndard	
BOT CHORD WEBS NOTES	7-8=-380/1383, 8-9= 2-19=-465/1745, 17- 15-17=-210/819, 9-1 3-19=-8/332, 3-17=- 5-16=0/557, 10-11=- 5120=-95/1525, 7-2 9-20=-3707/539, 14- 11-12=-26/4, 6-20=- 14-15=-45/218, 12-1 8-20=-2462/565	371/1498 -19=-465/1745, -15=-210/819, 0=-207/760 1077/293, 16-17=0/4 -117/1449, 100=-117/219, -16=-26/4, 12-14=-26 2011/391,	8) 60, 5/4, 10	Ceiling dead 12-14, 11-12 (s).5-16, 11- Bottom chorr chord dead I 13-15, 10-13 Bearings are capacity of 5 capacity of 5 capacity of 8 0) One H2.5A S recommende UPLIFT at jtu and does no) This truss is International	load (5.0 psf) on n , 6-20; Wall dead 20 d live load (40.0 ps oad (0.0 psf) applie assumed to be: Je 65 psi, Joint 9 SP	load (5. f) and a ed only bint 2 Sl 2400F 2 e conne to bear nnectio prces. lance w sections	opsf) on men dditional bott o room. 15-1 P No.2 crushi coE crushing ctors ing walls due n is for uplift ith the 2015 i R502.11.1 a	nber om 7, ng to only		4		SEA 0363	ER A III

May 11,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

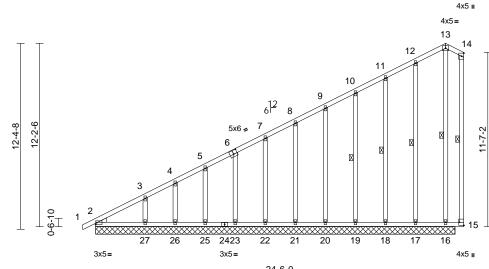
Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	ADE	Common Supported Gable	1	1	Job Reference (optional)	158301396

23-3-8 23-3-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:18 ID:7VtCUFL7Xf5?_mZVQeQfN_z_lh8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-6-0


1-2-8

Page: 1

10 9 61² 8 7 5x6 ≠ 11-7-2 Þ 6 5 X 4 15 ********** XXXX ****** 25 2423 17 16 26 22 21 20 19 18 3x5= 4x5 🛛 24-6-0

818 Soundside Road Edenton, NC 27932

Scale = 1:76.7	
Plate Offsets (X, Y):	[6:0-3-0,0-3-0], [15:Edge,0

Scale = 1.70.7													
Plate Offsets (2	X, Y): [6:0-3-0,0-3-0]	, [15:Edge,0-3-8]									-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.37 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 205	GRIP 244/190 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	No.2 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ez Rigid ceiling directly bracing. 1 Row at midpt (size) 2=23-11- 17=23-1	y applied or 6-0-0 oc 14-15, 13-16, 12-17, 11-18, 10-19 -0, 16=23-11-0, 1-0, 18=23-11-0,	BOT CHORD	$\begin{array}{c} 1\text{-}2\text{=}0/28, 2\text{-}3\text{=}-6\\ 4\text{-}5\text{=}-484/266, 5\\ 8\text{-}9\text{=}-300/204, 9\text{-}\\ 10\text{-}11\text{=}-208/171, \\ 12\text{-}13\text{=}-181/199, \\ 14\text{-}15\text{=}-241/268\\ 2\text{-}27\text{=}-523/308, 2\\ 25\text{-}26\text{=}-161/178, \\ 22\text{-}23\text{=}-164/181, \\ 20\text{-}21\text{=}-164/181, \\ 16\text{-}17\text{=}-164/181, \\ 16\text{-}17\text{=}-164/181, \\ 13\text{-}16\text{=}-284/234, \\ 11\text{-}18\text{=}-120/86, 1\\ 9\text{-}20\text{=}-121/78, 8\text{-}\\ 6\text{-}23\text{=}-119/78, 5\text{-}\\ 3\text{-}27\text{=}-180/148 \end{array}$	7=-438/24 10=-254/ 11-12=-1 13-14=-2 26-27=-16 23-25=-1 21-22=-1 19-20=-1 17-18=-1 15-16=-1 12-17=-1 10-19=-12 21=-119/0	49, 7-8=-346/2 188, 76/161, 51/283, 1/178, 61/178, 64/181, 64/181, 64/181, 64/181, 28/93, 1/78, 77, 7-22=-128	/81,	6) Thi loa ove 7) All 8) Ga 9) * T on 3-0 cho 10) All	sign. s truss h d of 12.0 erhangs plates a ble stud: his truss the botto 6-00 tall ord and a bearings pacity of	has bee 0 psf or non-co re 2x4 s space has be om cho l by 2-0 any oth s are as	en designed for 2.00 times flat incurrent with of MT20 unless of ed at 2-0-0 oc. een designed f ord in all areas 00-00 wide will ier members. ssumed to be \$	een considered for thi r greater of min roof I t roof load of 13.9 psi ther live loads. therwise indicated. or a live load of 20.0 where a rectangle fit between the bottoo SP No.2 crushing	live of on
	21=23-1 23=23-1 26=23-1 28=23-1 28=23-1 Max Horiz 2=352 (L Max Uplift 16=-2 (L 18=-25 (l 20=-16 (l 25=-16 (l 25=-16 (l 17=162 (19=159 (21=158 (23=157 (26=126 (28=224 (l	C 14), 28=352 (LC 14 C 16), 17=-26 (LC 12) LC 15), 19=-14 (LC 15 LC 15), 21=-16 (LC 15 LC 15), 27=-57 (LC 15 C 30), 16=175 (LC 23 LC 33), 18=163 (LC 2 LC 33), 20=160 (LC 2 LC 33), 22=167 (LC 2 LC 33), 25=160 (LC 2 LC 33), 27=254 (LC 2	this design 2) Wind: ASC Vasd=103 5), Cat. II; Ex 5), Exterior (2 5), vertical lef 5), forces & M 5), DOL=1.60 5), only. For 5), see Stand 6), or consult 1), see Stand 1), OLL: ASC DOL=1.15 5), DOL=1.15 5), Snow); Pf=	ed roof live loads ha CE 7-10; Vult=130m mph; TCDL=6.0psf p B; Enclosed; MW) zone; cantilever lit t and right exposed WFRS for reaction plate grip DOL=1.3 igned for wind load studs exposed to w ard Industry Gable qualified building d CE 7-10; Pr=20.0 p Plate DOL=1.15); =13.9 psf (flat roof s =1.15); Category II	nph (3-see f; BCDL=(FRS (env eft and rig t;C-C for r is shown; 33 ds in the p rind (norm End Deta lesigner a ssf (roof lix Pg=20.0 snow: Lun	cond gust) 6.0psf; h=25ft; relope) and C- int exposed; in nembers and Lumber lane of the tru nal to the face iils as applical s per ANSI/TF ve load; Lumb psf (ground nber DOL=1.1	C end iss), ble, PI 1. er		n Standa	A. S.	ORTH C	Review required. AROUT	Name and a second second

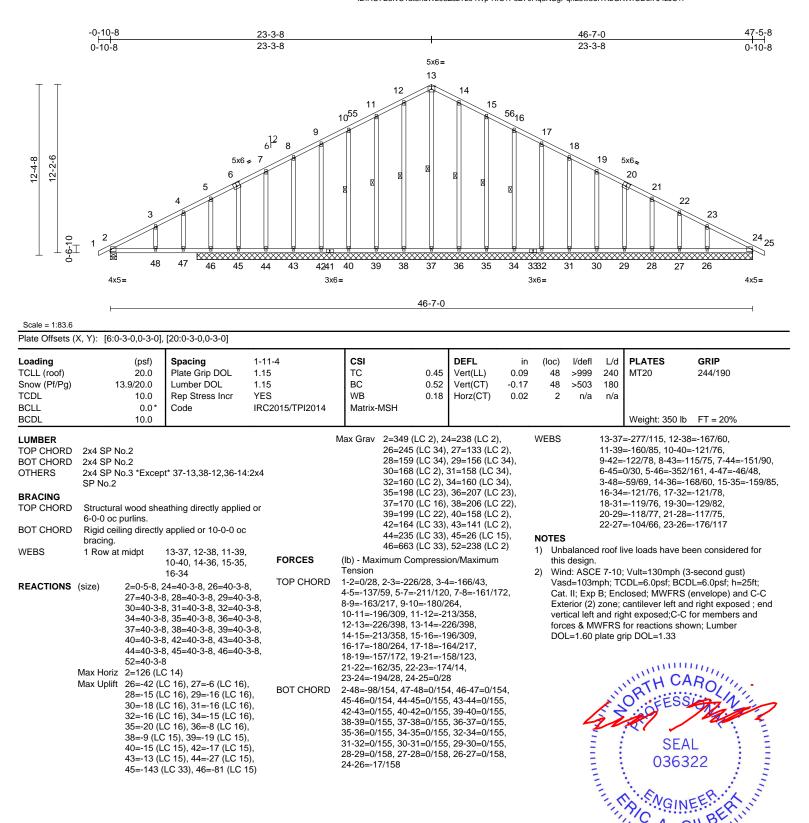
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss	SS	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A ADE	E	Common Supported Gable	1	1	Job Reference (optional)	158301396

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:18 ID:7VtCUFL7Xf5?_mZVQeQfN_z_Ih8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AE	Common Supported Gable	1	1	Job Reference (optional)	158301397

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:19 ID:HO7E3IvC1at3hdWz08ZszTz04Wp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ADS/TFPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

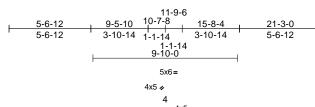
4. GILD

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	AE	Common Supported Gable	1	1	Job Reference (optional)	158301397

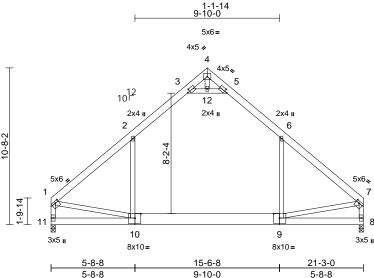
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) _{N/A}

12) N/A

13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:19 ID:HO7E3IvC1at3hdWz08ZszTz04Wp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	В	Attic	8	1	Job Reference (optional)	158301398

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Thu May 11 12:25:20 ID:_B7u7EAgmN0NTZNOh8vWHYz_ly8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.4

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

Max Horiz 11=-214 (LC 9)

1-11=-1162/54, 7-8=-1163/54

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end

Wind: ASCE 7-10; Vult=130mph (3-second gust)

Tension

8-11=-219/886

7-9=0/783

DOL=1.60 plate grip DOL=1.33

Max Grav 8=1198 (LC 26), 11=1198 (LC 25)

1-2=-1290/28, 2-3=-892/157, 3-4=-118/577,

4-5=-118/577, 5-6=-892/157, 6-7=-1290/28,

6-9=0/459, 2-10=0/459, 3-12=-1627/378,

5-12=-1627/378. 4-12=-14/191. 1-10=0/780.

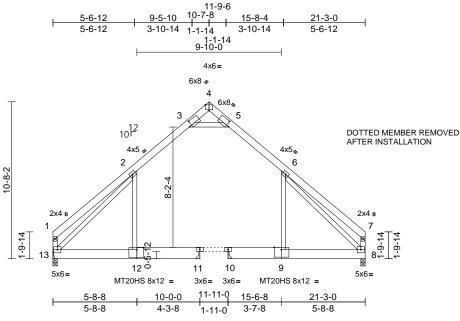
(lb) - Maximum Compression/Maximum

Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.59 Vert(LL) -0.18 9-10 >999 240 MT20 244/190 Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.29 9-10 >859 180 TCDL Rep Stress Incr WB 8 10.0 YES 0.28 Horz(CT) 0.01 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MSH -0.08 9-10 >999 360 Attic BCDL 10.0 Weight: 172 lb FT = 20% LUMBER 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground TOP CHORD 2x6 SP 2400F 2 0F snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 BOT CHORD 2x6 SP No.2 *Except* 10-9:2x10 SP 2400F Plate DOL=1.15); Category II; Exp B; Fully Exp.; 2.0E WEBS 2x4 SP No.3 *Except* 3-5:2x4 SP No.2 Ct=1.10 4) * This truss has been designed for a live load of 20.0psf BRACING on the bottom chord in all areas where a rectangle TOP CHORD Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom 6-0-0 oc purlins, except end verticals. chord and any other members. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, bracing. 3-12, 5-12 REACTIONS (size) 8=0-3-8, 11=0-3-8

- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 9-10
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. One H2.5A Simpson Strong-Tie connectors
- 8) recommended to connect truss to bearing walls due to UPLIFT at it(s) 11 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Plate Offsets (X, Y): [1:0-2-12,0-1-8], [3:0-2-1,0-2-0], [5:0-2-1,0-2-0], [7:0-2-12,0-1-8], [9:0-4-12,0-3-8], [10:0-4-12,0-3-8]



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	B1	Attic	2	1	Job Reference (optional)	158301399

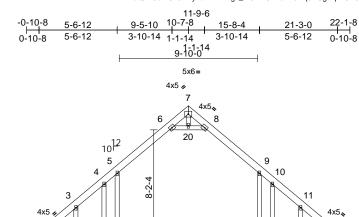
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:20 ID:_B7u7EAgmN0NTZNOh8vWHYz_ly8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.4 Image: Constraint of the state of the sta

	0-0		csi		DEFL		(100)				
Lumber DOL 1.1 Rep Stress Incr YE	S	5/TPI2014	TC BC WB Matrix-MSH	0.62 0.48 0.43		in -0.10 -0.21 0.82 -0.10	(loc) 12-13 12-13 10 11-12	l/defl >999 >543 n/a >995	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 180 lb	GRIP 244/190 187/143 FT = 20%
xcept* 11-12,10-9:2x10 :2x4 SP No.2	,	DOL=1.15 Pl snow); Pf=13	ate DOL=1.15); Pg 8.9 psf (flat roof sno		osf (ground ber DOL=1.1						
WEBS 2x4 SP No.3 *Except* 3-5,8-7:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 9-6-0 oc bracing. REACTIONS (size) 8=0-3-8, 10= Mechanical, 11= Mechanical, 13=0-3-8 Max Horiz 13=-211 (LC 9) Max Uplift 8=-36 (LC 14), 13=-26 (LC 14) Max Grav 8=509 (LC 26), 10=633 (LC 25),				for a liv where fit betw nembe and a d only t int 13 S nt 8 SF	e load of 20.6 a rectangle veen the botto r(s). 2-3, 5-6, dditional botto o room. 11-1 SP 2400F 2.0 2 2400F 2.0E	0psf om 3-5 om 2,					
ression/Maximum 68/257, 3-4=-570/0, 256, 6-7=-257/243,	 9) Refer to girder(s) for truss to truss connections. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 8. This connection is for uplift only and does not consider lateral forces. 										
258/240 354/63, 3-5=-183/793, '9/113 een considered for	 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 										
	Lumber DOL 1. Rep Stress Incr YE Code IR Accept* 11-12,10-9:2x10 2x4 SP No.2 3-5,8-7:2x4 SP No.2 3-5,8-7:2x4 SP No.2 aing directly applied or ot end verticals. 50 applied or 9-6-0 oc = Mechanical, 11= 13=0-3-8 39 4), 13=-26 (LC 14) 6), 10=633 (LC 25), 25), 13=556 (LC 26) ession/Maximum 8/257, 3-4=-570/0, 556, 6-7=-257/243, 58/240 54/63, 3-5=-183/793, 9/113	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015 3) 3) xcept* 11-12,10-9:2x10 3) xcept* 11-12,10-9:2x10 2x4 SP No.2 3-5,8-7:2x4 SP No.2 4) 3-5,8-7:2x4 SP No.2 4) 3-5,8-7:2x4 SP No.2 4) a-5,8-7:2x4 SP No.2 4) sing directly applied or ot end verticals. 6) polied or 9-6-0 oc 6) = Mechanical, 11= 7) 13=0-3-8 8) 4), 13=-26 (LC 14) 6), 10=633 (LC 25), 25), 13=556 (LC 26) 9) ession/Maximum 10) 8/257, 3-4=-570/0, 556, 6-7=-257/243, 58/240 11) 54/63, 3-5=-183/793, 9/113 9/113 12)	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014 3) TCLL: ASCE DOL=1.15 Pl Snow); Pf=13 Plate DOL=1 Plate DOL=1 3-5,8-7:2x4 SP No.2 4) 3-5,8-7:2x4 SP No.2 4) All plates are 5) ring directly applied or 3-06-00 call ot end verticals. 6) piled or 9-6-0 oc 6) Mechanical, 11= 3-06-00 tall 13=0-3-8 9-10 9) 8) 9) 8) Bearings are (10) One H2.5A S 8/257, 3-4=-570/0, 9) 58/240 11) 54/63, 3-5=-183/793, 9/113 9/113 12)	Lumber DOL1.15BCRep Stress IncrYESWBCodeIRC2015/TPI2014Matrix-MSH30TCLL: ASCE 7-10; Pr=20.0 psf (2x4 SP No.23)TCLL: ASCE 7-10; Pr=20.0 psf (2x4 SP No.23)TCLL: ASCE 7-10; Pr=20.0 psf (3-5,8-7:2x4 SP No.24)All plate DOL=1.15); Category II; E3-0-3-85)* This truss has been designed f13=0-3-86)4)All plates are MT20 plates unless5)* This truss has been designed fon the bottom chord in all areas3-06-00 call by 2-00-00 wide will chord dead load (10.0 psf) on r7)Bottom chord live load (40.0 psf)on r6)Bearings are assumed to be: Jo7)Bottom chord live load (40.0 psf)6)1.158/257, 3-4=-570/0,9256, 6-7=-257/243,958/2401054/63, 3-5=-183/793,9/1139/113202021021Attic room checked for L/360 de202021Attic room checked for L/360 de2020213021312221.02233424353435353436353635<	Lumber DOL1.15BC0.48Rep Stress IncrYESMatrix-MSHCodeIRC2015/TPI2014Matrix-MSH3)TCLL: ASCE 7-10; Pr=20.0 psf (roof liv DOL=1.15 Plate DOL=1.15); Pg=20.0 ps snow); Pf=13.9 psf (flat roof snow: Lum Plate DOL=1.15); Category II; Exp B; F Ct=1.103-5,8-7:2x4 SP No.24)All plates are MT20 plates unless other shing directly applied or ot end verticals. oplied or 9-6-0 oc4)All plates are MT20 plates unless other shing directly applied or ot end verticals. oplied or 9-6-0 oc5)Mechanical, 11= 13=0-3-85)(1) 0=633 (LC 25), 25), 13=556 (LC 26) ession/Maximum8/257, 3-4=-570/0, 556, 6-7=-257/243, 58/2408/24088/240Refer to girder(s) for truss to truss connect recommended to connect truss to bear UPLIFT at jt(s) 13 and 8. This connectition only and does not consider lateral force tonly and referenced standard AN tonly and forenced standard AN tonly and coes not consider lateral force tonly and doe	Lumber DOL1.15BC0.48Vert(CT)Rep Stress IncrYESMatrix-MSHVert(CT)CodeIRC2015/TPI2014Matrix-MSHHorz(CT)AtticMatrix-MSHMatrix-MSHAttic30TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumb DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.1 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.103-5,8-7:2x4 SP No.24)All plates are MT20 plates unless otherwise indicate to end verticals. optied or 9-6-0 ocMechanical, 11= 13=0-3-8* This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the botto chord dead load (10.0 psf) on member(s). 2-3, 5-6, F)6)Ceiling dead load (5.0 psf) applied only to room. 11-11 9-108)Bearings are assumed to be: Joint 13 SP 2400F 2.0 crushing capacity of 805 psi, Joint 8 SP 2400F 2.0 crushing capacity of 805 psi, 9)8)Refer to girder(s) for truss to truss connections. 10 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due UPLIFT at jt(s) 13 and 8. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. 12) Attic room checked for L/360 deflection.100LOAD CASE(S)Standard	Lumber DOL1.15BC0.48Vert(CT)-0.21Rep Stress IncrYESMatrix-MSHVert(CT)0.82CodeIRC2015/TPI2014Matrix-MSHAttic-0.103)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.103-5,8-7:2x4 SP No.24)All plates are MT20 plates unless otherwise indicated. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.6)Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-57)Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-12, 9-108)Bearings are assumed to be: Joint 13 SP 2400F 2.0E crushing capacity of 805 psi, Joint 8 SP 2400F 2.0E crushing capacity of 805 psi.9)Refer to girder(s) for truss to truss connections. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 8. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Attic room checked for L/360 deflection.100LOAD CASE(S)Standard	Lumber DOL1.15BC0.48Vert(CT)-0.2112-13Rep Stress IncrYESMatrix-MSHWB0.43Horz(CT)0.8210CodeIRC2015/TPI2014Matrix-MSHAttic-0.1011-123)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15; Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.153-5,8-7:2x4 SP No.24)All plates are MT20 plates unless otherwise indicated.3'This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.94)13=-26 (LC 14)6)10=633 (LC 25),25)13=556 (LC 26)98)Bearings are assumed to be: Joint 13 SP 2400F 2.0E9/108)Bearings are assumed to be: Joint 13 SP 2400F 2.0E8/257, 3-4=-570/0,9256, 6-7=-257/243,958/2401054/63, 3-5=-183/793,9/1139/11312) Attic room checked for L/360 deflection.20A12) Attic room checked for L/360 deflection.20A20,209/11312) Attic room checked for L/360 deflection.	Lumber DOL Rep Stress Incr1.15 YES IRC2015/TPI2014BC0.48 WBVert(CT)-0.2112-13>543 Horz(CT)CodeIRC2015/TPI2014Matrix-MSHMatrix-MSHAttic-0.1011-12>995Acter AtticO.1011-12>995Matrix-MSHAttic-0.1011-12>995Acter AtticO.1011-12>995Matrix-MSHAttic-0.1011-12>995Acter AtticO.2S. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.103-5,8-7:2x4 SP No.2All plates are MT20 plates unless otherwise indicated.3-5,8-7:2x4 SP No.25* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.6Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-57Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-12, 9-108Bearings are assumed to be: Joint 13 SP 2400F 2.0E crushing capacity of 805 psi.99Refer to girder(s) for truss to truss connections.10One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 8. This connection is for uplift only and does not consider lateral forces.11This truss is designed in accordance with the 2015 International Residential Code sections R502.1	Lumber DOL1.15BC0.48Vert(CT)-0.2112-13>543180Rep Stress IncrYESMatrix-MSHMatrix-MSHHorz(CT)0.8210n/an/aAttic-0.1011-12>9953603)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; CL=1.103-5,8-7:2x4 SP No.24)All plates are MT20 plates unless otherwise indicated. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.Mechanical, 11= 13=0-38(C 14) (5), 13=556 (LC 24) (5), 13=556 (LC 25), 25), 13=556 (LC 25), 25), 13=556 (LC 26) (55, 6-7=257/243, 58/2408)Bearings are assumed to be: Joint 13 SP 2400F 2.0E crushing capacity of 805 psi, Joint 8 SP 2400F 2.0E crushing capacity of 805 psi, Joint 8 SP 2400F 2.0E crushing capacity of 805 psi, Joint 8 SP 2400F 2.0E64/63, 3-5=-183/793, 9/1139/1364/63, 3-5=-183/793, 9/11312) Attic room checked for L/360 deflection.10) One Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1. 12) Attic room checked for L/360 deflection.LOAD CASE(S)Standard	Jumber DOL1.15BC0.48Vert(CT)-0.2112-13>543180MT20HSRep Stress IncrYESWB0.43Horz(CT)0.8210n/an/aN/aAttic-0.1011-12>995360Weight: 180 lbWeight: 180 lbScodeIRC2015/TPI20143)TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10Weight: 180 lb3-5,8-7:2x4 SP No.24)All plates are MT20 plates unless otherwise indicated. 5)*This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.6)Celling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5Methanical, 11= 13=0-3-8 (9)8)Bearings are assumed to be: Joint 13 SP 2400F 2.0E crushing capacity of 805 psi. Joint 8 SP 2400F 2.0E crushing capacity of 805 psi. 9)8)Bearings are assumed to be: Joint 13 SP 2400F 2.0E crushing capacity of 805 psi. 9)9)8/257, 3-4=-5700, 250, 6-7=257/243, 564-67=257/244, 564-67=257/244, 564-67=257/243, 564-67=257/243, 564-67=257/243, 564-67=257/243, 564-67=257/243, 564-67=257/243, 571310One H2.5A Simpson Strong-Tie connectors the connect trus to bearing walls due to UPLIFT at it(s) 13 and 8. This connections is for uplift only and does not consider lateral forces.10One H2.5A Simpson Strong-Tie connectors thermational Residential Code sections R502.11.1 and R802.10.2 and

this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust)
 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	BE	Attic Structural Gable	1	1	Job Reference (optional)	158301400

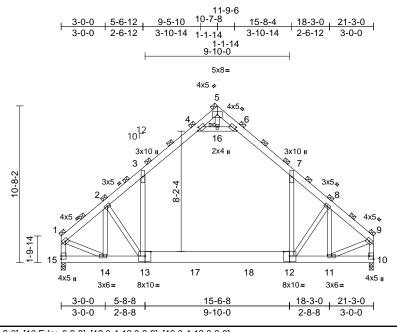
10-8-2

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:21 ID:aQ11CeInS73ZDy2dVEmnEgz_lxO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page	: 1

May 11,2023

818 Soundside Road Edenton, NC 27932


		-1-9-1 1-9-14	2 1 19 18		1 17 8x10=	~~~~~~	16 24 8x10=		26	12 13 14		
Scale = 1:82				<u>5-8-8</u> 5-8-8		<u>15-6-8</u> 9-10-0		21-3-(5-8-8				
Plate Offsets	(X, Y): [16:0-4-12,0-3	3-8], [17:0-4-12,0-3-8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2019	5/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.18 0.29	· · ·	-0.03 1	6-17 >	/defl L/4 >999 244 >999 184 n/a n/5	0 MT20	GRIP 244/190 • FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP No.2 *Exce 2.0E 2x4 SP No.3 *Exce 2x4 SP No.3 Structural wood shi	pt* 17-16:2x10 SP 24 pt* 6-8:2x4 SP No.2 eathing directly applie	00F d or	EBS	9-16=-332/179 6-20=-191/161 2-23=-142/234 21-22=-92/193 16-24=-99/207 25-26=-83/190 3-22=-76/47, 1 11-25=-77/47,	, 8-20=-191/ , 22-23=-80/ , 17-21=-96/ , 24-25=-94/ , 12-26=-144 8-23=-179/1	(161, 7-20=-14/ (186, (206, (194, 4/235, 4-21=-4/ 48, 10-24=-5/5	, 10 /53,	on the 3-06-0 chord) All be	bottom cl 00 tall by 2 and any c	nord in all areas w -00-00 wide will fit ther members, wit assumed to be SI	t between the bottom th BCDL = 10.0psf.
BOT CHORD		xcept end verticals. y applied or 10-0-0 oc	; 1)	this design				12	2) N/A			
JOINTS REACTIONS	17=21-3 Max Horiz 19=-220 Max Uplift 14=-43 (16=-96 (18=-53 (Max Grav 14=395 16=643	-0, 15=21-3-0, 16=21 -0, 18=21-3-0, 19=21	-3-0, -3-0 4), 3), 3) 12), 26), 27)	Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 Truss desi only. For s see Standa or consult of	E 7-10; Vult=130 mph; TCDL=6.0p B; Enclosed; M zone; cantileve and right expos WFRS for reacti plate grip DOL= gned for wind lo tuds exposed to ard Industry Gab qualified building	osf; BCDL=6 WFRS (envo r left and rig ed;C-C for n ons shown; 1.33 ads in the pl wind (norm le End Detai g designer as	.0psf; h=25ft; elope) and C-C ht exposed; en- nembers and Lumber ane of the trus: al to the face), ils as applicable s per ANSI/TPI	nd 13 14 s L(e, 1.	Intern R802. 4) Attic r	ational Re 10.2 and r	eferenced standa ked for L/360 defle	ctions R502.11.1 and rd ANSI/TPI 1.
FORCES	(lb) - Maximum Cor	mpression/Maximum			E 7-10; Pr=20.0 Plate DOL=1.15			r			TH CA	AROLIU
TOP CHORD BOT CHORD	7-8=-105/19, 8-9=-	329/127, 6-7=-104/19 329/127, 9-10=-190/4 -12=-335/31, 12-13=0 4=-295/22	7, 5) /39,	Plate DOL= Ct=1.10 This truss H load of 12.0 overhangs All plates a Truss to be	13.9 psf (flat roo =1.15); Category has been design 0 psf or 2.00 time non-concurrent re 2x4 MT20 un e fully sheathed f	II; Exp B; F ed for greate es flat roof lo with other liv less otherwis from one fac	ully Exp.; er of min roof liv oad of 13.9 psf /e loads. se indicated. e or securely	ve		Within	SEA 0363	
			8)	0	iinst lateral move s spaced at 2-0-	``	iagonal web).			(ALIT)		NEERATION

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	BG2	Attic Girder	1	3	Job Reference (optional)	158301401

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:21 ID:Hc9Ftt4j5QTky5cpaOl6qMz_lwz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.4

Plate Offsets (X, Y): [4:0-2-1,0-2-0], [6:0-2-1,0-2-0], [10:Edge,0-3-8], [12:0-4-12,0-3-8], [13:0-4-12,0-3-8]

													-
Loading	(psf)	Spacing	6-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.93	Vert(LL)	-0.34	12-13	>744	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.52	12-13	>485	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.69	Horz(CT)	0.01	10	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH	0.00	Attic		12-13	>752	360	1	
BCDL	10.0	Code	1110201	5/11/2014	Matrix-INIOTT		Auto	-0.10	12-13	2152	300	Weight: 560 lb	ET - 20%
BODL	10.0		-									Weight. 500 ib	FT = 2070
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2.0E 2x4 SP No.3 *Excep 2-0-0 oc purlins (6-0 verticals (Switched from shee	et* 13-12:2x10 SP 240 et* 4-6:2x4 SP No.2 -0 max.), except end eted: Spacing > 2-8-0 applied or 10-0-0 oc	0F	(0.131"x3") n Top chords of staggered at Bottom choro staggered at oc. Web connec All loads are except if note CASE(S) sec	be connected tog nails as follows: connected as follow 0-9-0 oc, 2x4 - 1 ds connected as follow 0-9-0 oc, 2x10 - 2 ted as follows: 2x4 considered equall ed as front (F) or b ction. Ply to ply co	ws: 2x6 row at 0- bllows: 2 ? rows st 4 - 1 row ly applie back (B) nnection	- 2 rows .9-0 oc. x6 - 2 rows aggered at 0 at 0-9-0 oc. d to all plies, face in the L0 s have been	OAD	rec UP only 11) This Inte R80 12) Gra or t bott 13) Har	Dimmence LIFT at j and do s truss is prnational 22.10.2 a phical p he orien com choi nger(s) c	led to o t(s) 15 es not s desig al Resid and ref urlin re tation o rd. or other	and 10. This con consider lateral ined in accordan dential Code sec ferenced standar opresentation do of the purlin alon r connection dev	bearing walls due to nnection is for uplift forces. ce with the 2015 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or ice(s) shall be
JOINTS	1 Brace at Jt(s): 5, 16, 1, 9		0)	unless other	brovided to distribute only loads noted as (F) or (B), unless otherwise indicated. between the set of the set								d 2173 lb down and 43
REACTIONS	(size) 10=0-3-8,	15=0-3-8	3)		Unbalanced roof live loads have been considered for this design. Ib up at 12-9-8 on bottom chord. The design/se of such connection device(s) is the responsibility								0
	Max Horiz 15=-641 (this design.							nection	n device(s) is the	e responsibility of
	Max Grav 10=5824		· 21) 4)		7-10; Vult=130mp				oth				
			~ ~ 1)		oh; TCDL=6.0psf;				14) Atti	c room c	checke	d for L/360 defle	ction.
FORCES	(lb) - Maximum Com	pression/Maximum			3; Enclosed; MWF			ever	LOAD	CASE(S) Sta	ndard	
TOP CHORD	4-5=-111/3044, 5-6=	879/0, 3-4=-3960/121 =-112/2987, =-7117/0, 8-9=-5482/0	5)	exposed; Lui TCLL: ASCE	exposed ; end ver mber DOL=1.60 p 7-10; Pr=20.0 ps late DOL=1.15); P	late grip f (roof liv	DOL=1.33 re load: Lumb	ber	Í	ead + Sr crease= niform Lo	1.15	,	r Increase=1.15, Plate
	1-15=-5434/0, 9-10=	,	,		B.9 psf (flat roof sn			15					in the second se
BOT CHORD	14-15=-567/641, 11- 10-11=-17/151				.15); Category II;			10			51	NATH CA	ROUT
WEBS	7-12=0/4620, 8-12= 8-11=-2936/135, 3-1 2-13=-600/532, 2-14 4-16=-8519/197, 6-1 5-16=0/924, 1-14=0/	3=0/4380, ↓=-3034/87, 6=-8519/197,	 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-16, 6-16 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 12-13 9) All bearings are assumed to be SP No.2 crushing 						• -				
NOTES				4-16, 6-16								0363	22 : =
			8) 9)	chord dead le	d live load (40.0 ps oad (5.0 psf) appli are assumed to be	ed only	to room. 12-1			111		NO.NO.	1 1
			0)								1.5	A PACINI	EENANN

capacity of 565 psi.

A. GILBERT

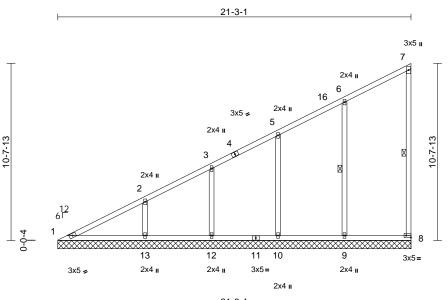
818 Soundside Road Edenton, NC 27932

C

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design rm ust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	uss Type Qty Pl		Kristie with bonus side load	
21050189-A	BG2	Attic Girder	1 3 Job Reference (optional)		Job Reference (optional)	158301401

Vert: 1-3=-143, 3-4=-203, 4-5=-143, 5-6=-143, 6-7=-203, 7-9=-143, 13-15=-60, 12-13=-90, 10-12=-60, 4-16=-60, 6-16=-60 Concentrated Loads (lb) Vert: 17=-1000 (F), 18=-1000 (F) Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:21 ID:Hc9Ftt4j5QTky5cpaOl6qMz_lwz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	V	Valley	1	1	Job Reference (optional)	158301402

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:22 ID:W_ZWwuA2?3uWrQoC7ROHIKz_ly9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

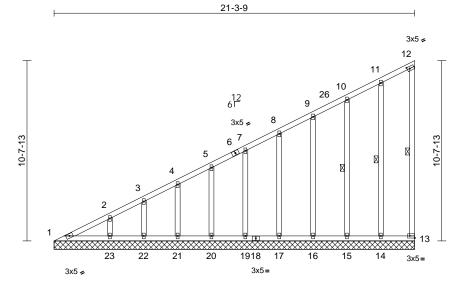
2	1	-3	-	1

Scale = 1:69.3

Plate Offsets (X, Y): [8:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.31 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	(size) 1=21-3-1, 10=21-3- Max Horiz 1=323 (LC Max Uplift 8=-32 (LC 10=-38 (L 13=-39 (LC Max Grav 1=209 (LC 9=463 (LC	cept end verticals. applied or 10-0-0 or 7-8, 6-9 , 8=21-3-1, 9=21-3-1 1, 12=21-3-1, 13=21 C 12) C 12), 9=-42 (LC 15), C 15), 12=-39 (LC 1 C 15)	2) , 3) -3-1 , 5), 4)), 5) , 6)	Vasd=103mj Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss desig only. For stu see Standari or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. All plates are Gable requir	7-10; Vult=130m; b); TCDL=6.0psf; 3; Enclosed; MWF cone; cantilever lei nd right exposed; (FRS for reactions ate grip DOL=1.3 and for wind loads ds exposed to wind lindustry Gable E alified building de 7-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr .15); Category II; snow loads have e 2x4 MT20 unless es continuous bot spaced at 4-0-0 o	BCDL=6 RS (envit and rig C-C for r shown; shown; a in the p nd (norm nd Deta signer a f (roof liv g=20.0 ow: Lun Exp B; F been con s otherwitom chol	b.Opsf; h=25ft; elope) and C- ht exposed; and C- ht exposed; anembers and Lumber and to the face and to the face is as applicat s per ANSI/TF e load: Lumb bosf (ground aber DOL=1.1 'ully Exp.; nsidered for the se indicated.	C end Iss), ble, Pl 1. er 5				Weight: 111 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-548/303, 2-3=- 5-6=-262/195, 6-7=- 1-13=-231/315, 12-1 10-12=-154/170 6-9=-305/213, 5-10= 3-12=-222/165, 2-13	npression/Maximum 447/253, 3-5=-352/2 161/140, 7-8=-126/8 13=-154/170, 10=-154/170, =-240/178,	224,	* This truss h on the bottor 3-06-00 tall h chord and ar	has been designed n chord in all area by 2-00-00 wide w hy other members are assumed to be	d for a liv s where ill fit betv , with BC	a rectangle veen the botto DL = 10.0psf	om		La rinner		SEA 0363	22 BERLIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A. GILD

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VAE	Valley	1	1	Job Reference (optional)	158301403

Scale = 1:68

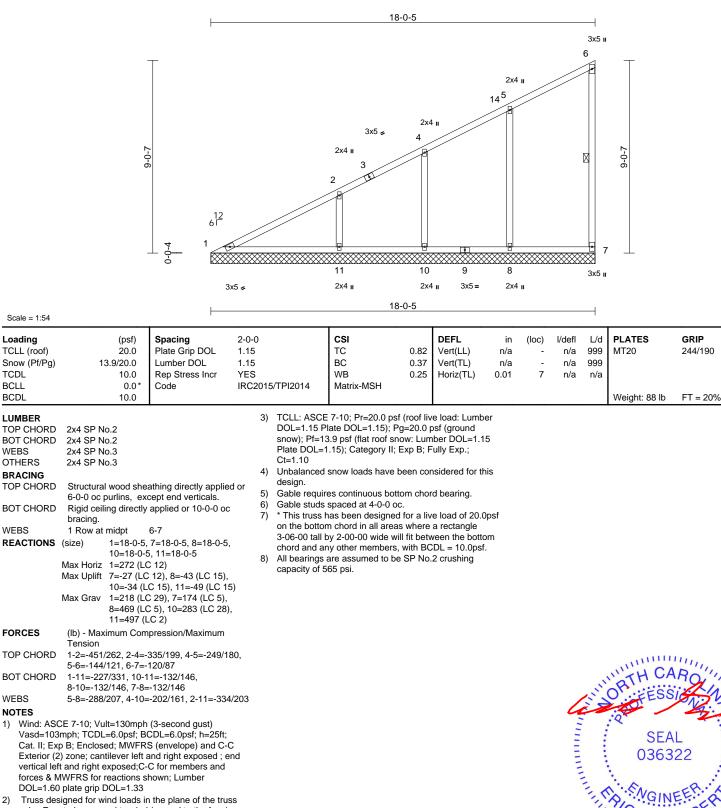
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:22 ID:W_ZWwuA2?3uWrQoC7ROHIKz_ly9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-3-9

Plate Offsets ((X, Y): [12:0-1-13,0-1-	·8], [13:Edge,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.31 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=21-3-9 19=21-3-5 22=21-3-5 Max Horiz 1=323 (LC Max Uplift 13=-41 (L 17=-16 (L 20=-17 (L 22=-23 (L Max Grav 1=159 (LC 14=211 (L 16=165 (L 19=165 (L	applied or 10-0-0 oc 12-13, 11-14, 10-15 , 13=21-3-9, 14=21-3- 9, 16=21-3-9, 17=21-3 9, 20=21-3-9, 21=21-3 9, 20=21-3-9, 21=21-3 9, 20=21-3-9 C 12) C 14), 14=-23 (LC 15 C 15), 19=-17 (LC 15 C 15), 21=-15 (LC 15) C 15), 21=-15 (LC 15) C 29), 13=76 (LC 21), LC 21), 15=194 (LC 2 LC 2), 17=165 (LC 2), LC 2), 20=162 (LC 2), LC 2), 20=162 (LC 2),	Wi I or 1) 9, 3-9, 3-9,), 2)), 2)), 3) 1),	EBS Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) : forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q TCLL: ASCF DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10	1-23=-197/237, 22: 21-22=-154/170, 20 19-20=-154/170, 12 16-17=-154/170, 12 14-15=-154/170, 12 11-14=-169/155, 11 9-16=-125/81, 8-17 5-20=-124/80, 4-21 2-23=-176/79 5-7-10; Vult=130mp ph; TCDL=6.0psf; E B; Enclosed; MWFF zone; cantilever left and right exposed; C VFRS for reactions blate grip DOL=1.33 ned for wind loads uds exposed to win d Industry Gable E ualified building des 5-7-10; Pr=20.0 psf Plate DOL=1.15); Pc 3.9 psf (flat roof snot 1.15); Category II; E snow loads have b	D-21=-1 7-19=-1 5-16=-1 3-14=-1 D-15=-1 7=-125/8 =-129/8 h (3-sec BCDL=6 RS (env : and rig C-C for r shown; in the p d (norm nd Deta signer a: (roof liv g=20.0 p ow: Lun Exp B; F	54/170, 54/170, 54/170, 55/102, 0, 7-19=-125, 0, 3-22=-106 0, 3-22=-10	/80, /81, -C end 	LOAD (s truss is rnationa 02.10.2 a CASE(S	and ref	erenced standard ndard	NSI/TPI 1.
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-563/302, 2-3=-516/272, 3-4=-468/260, 4-5=-420/242, 5-7=-373/226, 7-8=-325/209, 8-9=-277/193, 9-10=-229/175, 10-11=-187/165, 11-12=-133/127, 12-13=-61/55				All plates an Gable requii Gable studs * This truss on the botto 3-06-00 tall chord and a	e 2x4 MT20 unless res continuous botti spaced at 2-0-0 oc has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be 565 psi.	om chor c. for a liv s where Il fit betv	d bearing. e load of 20.0 a rectangle veen the botto					SEA 0363	ER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


May 11,2023

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VB	Valley	2	1	Job Reference (optional)	158301404

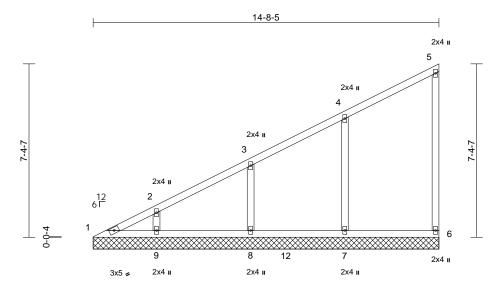
BCDL

1)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:23 ID:_B7u7EAgmN0NTZNOh8vWHYz_ly8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

May 11,2023



G mm

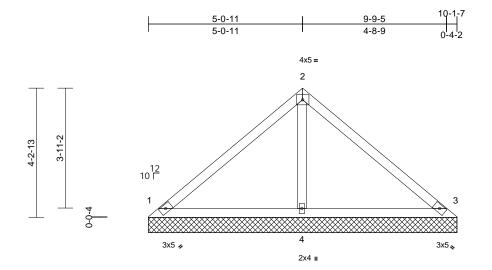
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VC	Valley	2	1	Job Reference (optional)	158301405

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:23 ID:_B7u7EAgmN0NTZNOh8vWHYz_ly8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.9					14	-8-5							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.18 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=14-8-5, 8=14-8-5, Max Horiz 1=220 (LC Max Uplift 6=-22 (LC 8=-41 (LC Max Grav 1=109 (LC	r applied or 10-0-0 oc , 6=14-8-5, 7=14-8-5, , 9=14-8-5 C 12) C 12), 7=-41 (LC 15), C 15), 9=-22 (LC 15) C 29), 6=174 (LC 5), C 28), 8=320 (LC 2),	d or 5) 6) 7) 8)	DOL=1.15 P snow); Pf=1; Plate DOL=' Ct=1.10 Unbalanced design. All plates are Gable requir Gable studs * This truss I on the botton 3-06-00 tall I chord and ar	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snd 1.15); Category II; E snow loads have b e 2x4 MT20 unless es continuous bott spaced at 4-0-0 oc nas been designed m chord in all areas by 2-00-00 wide wil ny other members, are assumed to be i65 psi.	g=20.0 ; pow: Lum Exp B; F been cor otherwi com chor c for a liv s where I fit betw with BC	osf (ground iber DOL=1.1 iully Exp.; insidered for th se indicated. d bearing. re load of 20.0 a rectangle veen the bottt CDL = 10.0psf	5 nis Opsf om					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=-412/223, 2-3=- 4-5=-125/108, 5-6=-	-338/195, 3-4=-238/16 -114/93	61,										
BOT CHORD	6-7=-109/121	·109/121, 7-8=-109/12	,									"TH CA	ROUT
Vasd=10 Cat. II; Ex Exterior (vertical le forces & DOL=1.6 2) Truss de only. For see Stand	4-7=-258/205, 3-8=- CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B qp B; Enclosed; MWFR 2) zone; cantilever left ff and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi	CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and shown; Lumber n the plane of the trus I (normal to the face), d Details as applicabl	nd ss le,							Carrienter .	E. M.	SEA 0363	EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


May 11,2023

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load		
21050189-A	VD	Valley	1	1	Job Reference (optional)	158301406	

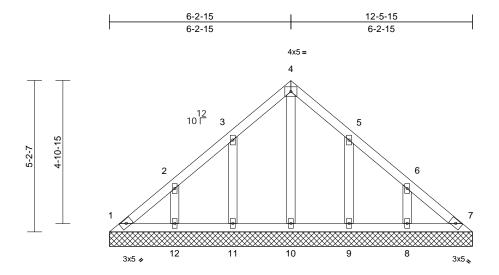
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:23 ID:I7kTPFK9oLH5O?iiZ?h3urz04WG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-1-7

Scale	 1.07	0

			1					· · · · ·						
Loadi	ng	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	-	20.0	Plate Grip DOL	1.15		тс	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow	(Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IRC2015/1	FPI2014	Matrix-SH		. ,						
BCDL		10.0											Weight: 39 lb	FT = 20%
BOT (OTHE BRAC TOP (BOT (CHORD CHORD RS CING CHORD CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 3=10-1-7, 4=10-1-7 : 9)	6) (7) * d or (8) /	Gable studs : * This truss h on the botton 3-06-00 tall b chord and an	es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be 55 psi.	for a liv where fit betv	e load of 20.0 a rectangle veen the botto	•					
		Max Grav 1=207 (LC (LC 2)	22), 3=209 (LC 2), 4	=389										
FORC	ES	(lb) - Maximum Com Tension	pression/Maximum											
	CHORD CHORD	1-2=-168/69, 2-3=-10 1-4=-10/66, 3-4=-10 2-4=-224/47												
NOTE	s													
		ed roof live loads have	been considered for											
'	is design													ULL.
	0	CE 7-10; Vult=130mph	(3-second gust)										White CA	Dalle
		mph; TCDL=6.0psf; B										1	THUT	10/11/
	· · ·	B; Enclosed; MWFR	· · · ·									S.	O EFSS	111
) zone; cantilever left a		nd								20	CP	Risen
		t and right exposed;C- IWFRS for reactions s									-		:0	K: -
		plate grip DOL=1.33	nown, Lumber										054	n 196
		igned for wind loads ir	the plane of the true	20								1	SEA	L <u>E</u>
		studs exposed to wind										:	0363	22 : =
		ard Industry Gable En									-			
		qualified building desig									-	-		- 1 - E
		CE 7-10; Pr=20.0 psf (er								20	SEA 0363	EFR. A S
		Plate DOL=1.15); Pg=		_								1	SU. GIN	F. CAN
		13.9 psf (flat roof snov)									A G	ILBUIN
	late DOL t=1.10	=1.15); Category II; Ex	кр в, Fully Exp.;										A. C	
U	-1.10													11.0000


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VE	Valley	1	1	Job Reference (optional)	158301407

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:24 ID:K??UecuyWzdLSJNaujXOu2z04Wr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

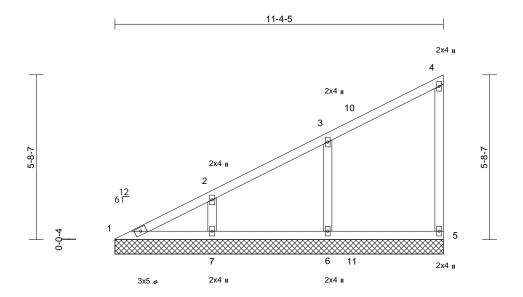
Scale = 1:39.6					12-5-15						4	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	()	n/a	-	n/a		MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.03	· · /	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH								
BCDL	10.0										Weight: 61 lb	FT = 20%

			3)	Truss only. F see Sta
				or cons
	2X4 SP N	0.3	4)	TCLL:
			4)	DOL=1
TOP CHORD				snow);
BOT CHORD		ing directly applied or 10-0-0 oc		Plate D Ct=1.1
REACTIONS	(size)	1=12-5-15, 7=12-5-15, 8=12-5-15, 9=12-5-15, 10=12-5-15, 11=12-5-15, 12=12-5-15	5) 6) 7)	All plate Gable Gable
	Max Horiz	1=-96 (LC 9)	0)	on the
	Max Uplift	1=-9 (LC 9), 8=-39 (LC 14), 9=-37		3-06-0
		(LC 14), 11=-37 (LC 13), 12=-39		chord a
		(LC 13)	0)	All bea
	Max Grav	1=96 (LC 25), 7=82 (LC 24), 8=195 (LC 25), 9=188 (LC 25), 10=133 (LC 27), 11=189 (LC 24), 12=195 (LC 24)	3)	capacit
FORCES	(lb) - May	(-)		
TOROLO				
TOP CHORD	1-2=-99/7			
BOT CHORD		- / / /		
WEBS				
	5-9=-162/	100, 6-8=-161/98		
,		oads have been considered for		
2) Wind: AS	CE 7-10; Vu	It=130mph (3-second gust)		
Vasd=103	mph; TCDL	=6.0psf; BCDL=6.0psf; h=25ft;		
	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASG	TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SP N BRACING 2x4 SP N BRACING 2x4 SP N BRACING 2x4 SP N BRACING 3tructural 6-0-0 oc f BOT CHORD Rigid ceili bracing. REACTIONS (size) REACTIONS	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING Structural wood sheathing directly applied or 6-0-0 cc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=12-5-15, 7=12-5-15, 8=12-5-15, 9=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-15, 11=12-5-13, (LC 14), 11=-37 (LC 13), 12=-39 (LC 13) Max Horiz 1=-9 (LC 9), 8=-39 (LC 14), 9=-37 (LC 13), 12=-39 (LC 25), 9=188 (LC 25), 10=133 (LC 27), 11=189 (LC 24), 12=195 (LC 24) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-99/79, 2-3=-94/55, 3-4=-112/105, 4-5=-112/105, 5-6=-73/27, 6-7=-80/61 BOT CHORD 1-12=-55/82, 11-12=-55/82, 10-11=-55/82, 9-10=-55/82, 8-9=-55/82, 7-8=-55/82 WEBS 4-10=-92/13, 3-11=-162/100, 2-12=-161/98, 5-9=-162/100, 6-8=-161/98 NOTES 1) Unbalanced roof live loads have been considered for this design.	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING 4) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=12-5-15, 7=12-5-15, 8=12-5-15, 9=12-5-15, 10=12-5-15, 11=12-5-15, 12=12-5-15 5) Max Horiz 1=-96 (LC 9) 8) Max Uplift 1=-96 (LC 25), 7=82 (LC 24), 8=195 (LC 25), 9=188 (LC 25), 10=133 (LC 27), 11=189 (LC 24), 12=195 (LC 24) 9) FORCES (lb) - Maximum Compression/Maximum Tension 9) TOP CHORD 1-12=-55/82, 11-12=-55/82, 10-11=-55/82, 9-10=-55/82, 8-9=-55/82, 7-8=-55/82 9) WEBS 4-10=-92/13, 3-11=-162/100, 2-12=-161/98, 5-9=-162/100, 6-8=-161/98 9) NOTES 1) Unbalanced roof live loads have been considered for this design. 9) 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) 9)

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.33

- designed for wind loads in the plane of the truss For studs exposed to wind (normal to the face), tandard Industry Gable End Details as applicable, sult qualified building designer as per ANSI/TPI 1. ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 1.15 Plate DOL=1.15); Pg=20.0 psf (ground ; Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 DOL=1.15); Category II; Exp B; Fully Exp.; 0
- tes are 2x4 MT20 unless otherwise indicated.
- requires continuous bottom chord bearing.
- studs spaced at 2-0-0 oc.
- truss has been designed for a live load of 20.0psf bottom chord in all areas where a rectangle 00 tall by 2-00-00 wide will fit between the bottom and any other members.
- arings are assumed to be SP No.2 crushing ity of 565 psi.


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VF	Valley	2	1	Job Reference (optional)	158301408

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:24 ID:pQbsfX44K6LtLx1c1hEtH8z_lx_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

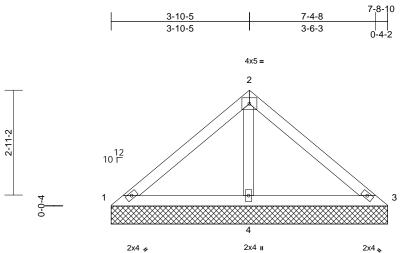
Page: 1

11-4-5

Scale = 1:39.8

Ocale = 1.55.0		·											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15 YES		BC WB	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code		15/TPI2014	Matrix-MSH	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRG20	15/1712014								Weight: 49 lb	FT = 20%
LUMBER			3		E 7-10; Pr=20.0 ps			er					
TOP CHORD	2x4 SP No.2				Plate DOL=1.15); I			F					
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3				3.9 psf (flat roof s 1.15); Category II;			S					
OTHERS	2x4 SP No.3 2x4 SP No.3			Ct=1.10	nito), outogory n,	Ξлр Β, Ι	uny Exp.,						
BRACING			4) Unbalanced	snow loads have	been co	nsidered for th	nis					
TOP CHORD	Structural wood she	athing directly appli	ed or	design.									
	6-0-0 oc purlins, ex		5		es continuous bo spaced at 4-0-0 c		d bearing.						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C -		has been designe		e load of 20 (Insf					
DEACTIONS	bracing.				m chord in all area			, poi					
REACTIONS	(SIZE) 1=11-4-5 7=11-4-5	, 5=11-4-5, 6=11-4-5	э,		by 2-00-00 wide w								
	Max Horiz 1=168 (L	C 12)	8		ny other members								
	Max Uplift 5=-14 (LC		, с	capacity of s	are assumed to b 565 psi.	e of NU	z crushing						
	7=-24 (LC												
	Max Grav 1=125 (Lo	C 29), 5=175 (LC 28 C 28), 7=331 (LC 2)											
FORCES	(lb) - Maximum Con	,, (,											
TOROLO	Tension	ipression/waximum											
TOP CHORD	1-2=-318/180, 2-3=- 4-5=-107/95	236/149, 3-4=-115/	93,										
BOT CHORD	1-7=-147/182, 6-7=-	84/94, 5-6=-84/94											11
WEBS	3-6=-271/217, 2-7=-	233/165										TH CA	D
NOTES											1	"aTH OF	70/11
	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B									/	S	O' FES	HO VI
	p B; Enclosed; MWFR									4	50	AP'	and the
) zone; cantilever left											ia	· · · · · · · · · · · · · · · · · · ·
	t and right exposed;C											SEA	а <u>і</u> Е
	WFRS for reactions s	hown; Lumber								=		0363	• –
	plate grip DOL=1.33	n the plane of the tri	100							=		0303	22 : 3
	studs exposed to wind									1	-	N	1 2
	ard Industry Gable En										21	N.ENO.	-CRI'N S
or consult	qualified building desi	gner as per ANSI/TI	PI 1.									P, GIN	F.F. CR N
											1	1, A. C	ILBE IN
												1, 1. 0	11-11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 100000 May 11,2023

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VG	Valley	1	1	Job Reference (optional)	158301409

3-2-13

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:24 ID:amZR0?CxurtSmxliE9lu8Szchld-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

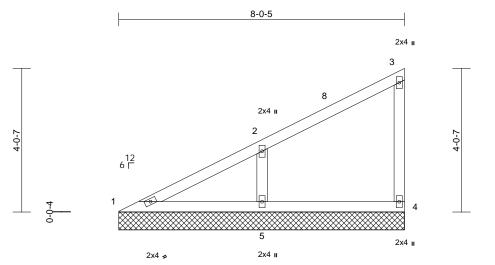
*

7-8-10

Scale = 1:32.2				-							-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.20 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Structural wood shea 7-8-10 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=7-8-10, 4=7-8-10 10) 29), 3=-9 (LC 28)	6) 7) ed or 8)	Gable studs * This truss on the botto 3-06-00 tall chord and a	es continuous bo spaced at 4-0-0 d has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b 65 psi.	bc. d for a liv as where vill fit betw S.	e load of 20.0 a rectangle veen the botto						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-74/235, 2-3=-7: 1-4=-208/123, 3-4=-; 2-4=-424/138	2/230											
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103/ Cat. II; Exp Exterior (2 vertical left forces & M DOL=1.60 3) Truss des only. Fors see Standa or consult 4) TCLL: ASC DOL=1.15 snow); Pf=	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber a the plane of the tru (normal to the face) d Details as application gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1!	C end ss , , ole, 11. er							Withhar		SEA 0363	22

May 11,2023

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VH	Valley	2	1	Job Reference (optional)	158301410

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:25 ID:pQbsfX44K6LtLx1c1hEtH8z_lx_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1:32.4	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL

(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
13.9/20.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
0.0*	Code	IRC2015/TPI2014	Matrix-MP								
10.0										Weight: 32 lb	FT = 20%

8-0-5

LUMBER									
TOP CHORD	2x4 SP No.2								
BOT CHORD	2x4 SP No.2								
WEBS	2x4 SP No.3								
OTHERS	2x4 SP No.3								
BRACING									
TOP CHORD	Structural wood sheathing directly applied or								
	6-0-0 oc purlins, except end verticals.								
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc								
	bracing.								
REACTIONS	(size) 1=8-0-5, 4=8-0-5, 5=8-0-5								
	Max Horiz 1=117 (LC 12)								
	Max Uplift 4=-10 (LC 12), 5=-35 (LC 15)								
	Max Grav 1=126 (LC 2), 4=118 (LC 2), 5=404								
	(LC 2)								
FORCES	(lb) - Maximum Compression/Maximum								
	Tension								
TOP CHORD	1-2=-224/141, 2-3=-107/81, 3-4=-93/102								
BOT CHORD	1-5=-145/190, 4-5=-63/69								
WEBS	2-5=-287/227								
NOTES									

- NOTES
- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- design.
- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SP No.2 crushing 8)
 - capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load		
21050189-A	VI	Valley	1	1	Job Reference (optional)	158301411	

12 10 Г

2-7-15

2-7-15

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:25

Loading

TCDL

BCLL

BCDL

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

this design.

FORCES

NOTES

1)

2)

bracing.

Tension

(size)

TCLL (roof)

Snow (Pf/Pg)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:25 ID:RRt_hKXU__NlfuvanlMxtSz_lsW-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

> 3x5 = 2

4-11-11

2-3-13

5-3-13

3

PLATES

Weight: 17 lb

MT20

GRIP

244/190

FT = 20%

2x4 。

l/defl

n/a 999

n/a 999

n/a n/a

(loc)

3

L/d

2x4 🧀 5-3-13 Plate Offsets (X, Y): [2:0-2-8,Edge] Spacing 2-0-0 CSI DEFL (psf) in 20.0 Plate Grip DOL 1.15 тс 0.10 Vert(LL) n/a 13.9/20.0 Lumber DOL 1.15 BC 0.19 Vert(TL) n/a 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 0.0 IRC2015/TPI2014 Matrix-P Code 10.0 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No.2 chord and any other members. All bearings are assumed to be SP No.2 crushing 8) Structural wood sheathing directly applied or capacity of 565 psi. 5-4-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc 1=5-3-13, 3=5-3-13 Max Horiz 1=-38 (LC 9) Max Grav 1=196 (LC 2), 3=196 (LC 2) (lb) - Maximum Compression/Maximum 1-2=-156/57, 2-3=-156/57 1-3=-1/91 Unbalanced roof live loads have been considered for Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss

Ņ

Ì

2-2-13

3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4)

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow): Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

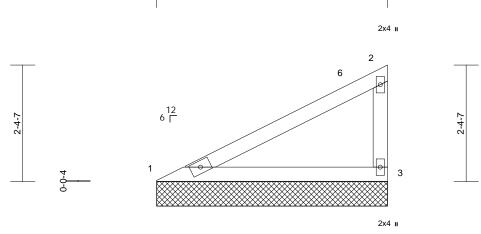
5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

MILLI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Kristie with bonus side load	
21050189-A	VJ	Valley	2	1	Job Reference (optional)	158301412


4-8-5

4-8-5

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Thu May 11 12:25:25 ID:3aO6fw1iBulunrQlWi8srJz_luS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 🍃

Scale	- 1.23	Λ

Scale = 1:23.4		1	1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC BC	0.28	Vert(LL) Vert(TL)	n/a	-	n/a	999 999	MT20	244/190
now (Pf/Pg) CDL	13.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	WB	0.30 0.00	Horiz(TL)	n/a 0.01	- 3	n/a n/a	999 n/a		
CLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP	0.00		0.01	5	n/a	Π/a		
CDL	10.0										Weight: 16 lb	FT = 20%
JMBER				ss has been designe			Opsf					
	2x4 SP No.2			ttom chord in all are								
	2x4 SP No.2			all by 2-00-00 wide v any other member		ween the botto	om					
EBS	2x4 SP No.3			gs are assumed to b		2 crushina						
RACING OP CHORD	Structural wood she	athing directly applic	conocity	of 565 psi.								
OF CHORD	4-8-5 oc purlins, ex											
OT CHORD	Rigid ceiling directly bracing.		C									
EACTIONS ((size) 1=4-8-5, 3											
	Max Horiz 1=65 (LC	,										
	Max Uplift 3=-10 (LC											
	Max Grav 1=186 (LC											
ORCES	(lb) - Maximum Corr Tension	ipression/iviaximum										
OP CHORD	1-2=-315/102, 2-3=-	119/109										
OT CHORD	1-3=-191/276											
OTES												
	E 7-10; Vult=130mph											
	nph; TCDL=6.0psf; B B; Enclosed; MWFR											
	zone; cantilever left											11
	and right exposed;C-										M' CI	AD "IL
	WFRS for reactions s	hown; Lumber								1	"aTH OF	10/11
	plate grip DOL=1.33									E	OTEESE	A. N.
	gned for wind loads in									77	201-	No Sil
	tuds exposed to wind rd Industry Gable En										:2	
	ualified building desi								-		SEA	u : =
	E 7-10; Pr=20.0 psf (=	:	SLA	
	Plate DOL=1.15); Pg:								Ξ		0363	322 <u>:</u> E
	13.9 psf (flat roof sno		5							- 8	1	1 2
Plate DOL= Ct=1.10	=1.15); Category II; E	хр В; Fully Exp.;								5	·	a
	d snow loads have be	en considered for th	nis							2.5	NGIN	EERAN
design.										11	710	BEIN
0	ires continuous botto	m chord bearing.							11111111111		11, A. C	ALLUN
	s spaced at 4-0-0 oc.	0									111111	11111
											Ma	y 11,2023
A											10 10 10 10 10 10 10 10	MERONAL AND

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

