

Carter Sanford Component Plant
298 Harvey Faulk Rd
Sanford, NC 27332

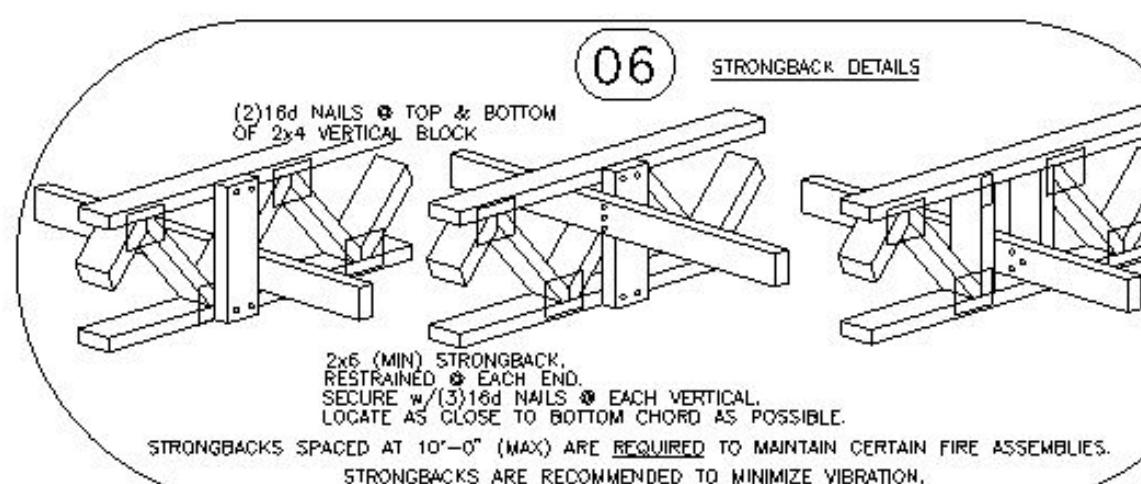
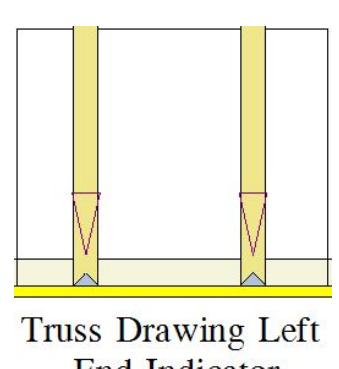
Phone #: 919-775-1450

Builder: CRH Homes LLC

**Model: Chatham C - K20 Carolina
Seasons**

THE PLACEMENT PLAN NOTES:

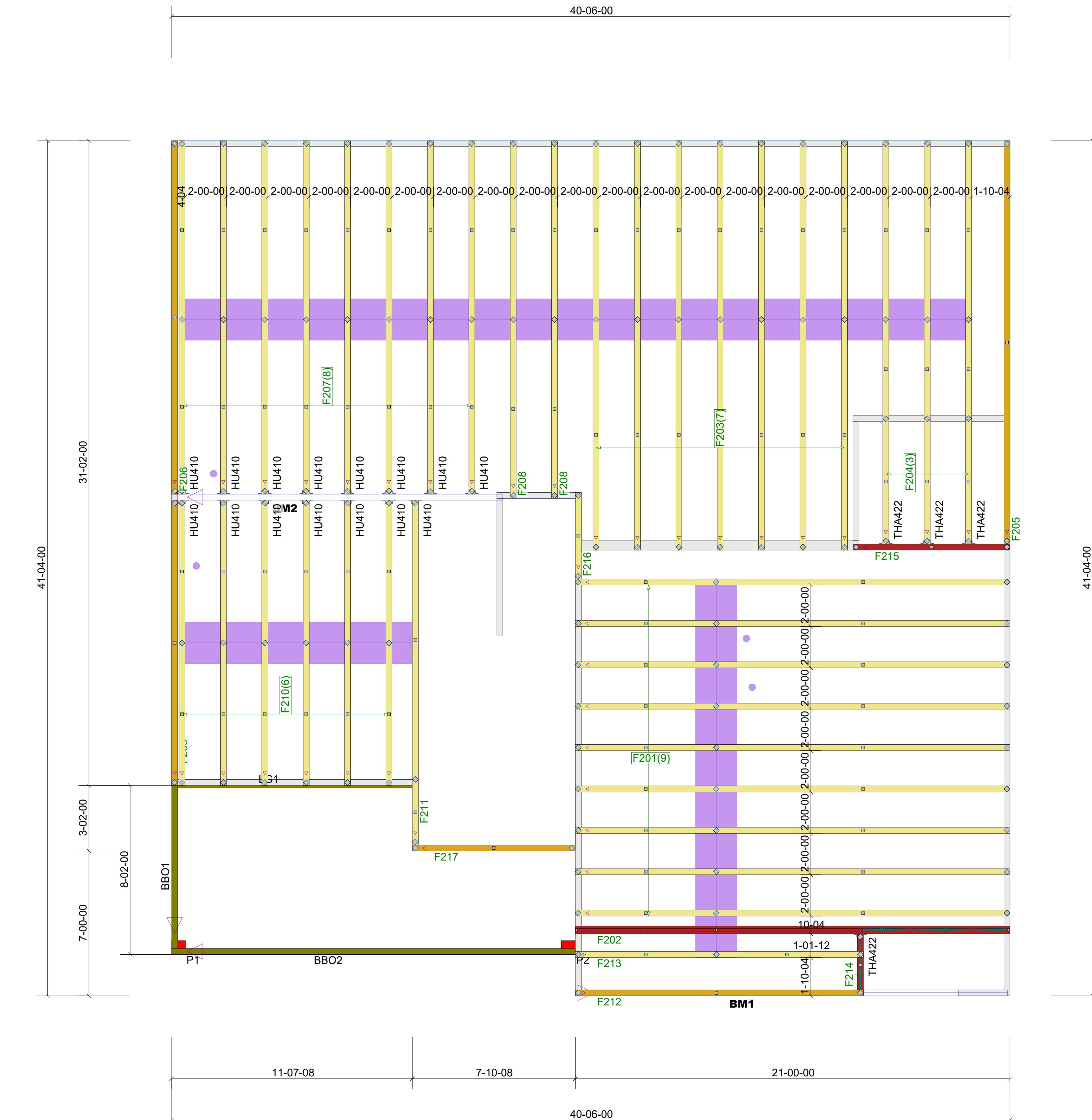
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TPI 1 unless otherwise indicated.
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.
9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.



Approved By: _____

Date: _____

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION. ** ALL POINT LOADS FROM ABOVE MUST BE TRANSFERRED TO BEARING FROM UNDER SIDE OF SHEATHING.


** FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS. ** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT. ** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

** TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS.

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSSES.

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

Products					
PlotID	Length	Product	Plyes	Net Qty	Fab Type
BM1	22-00-00	2.0 RigidLam DF LVL 1-3/4 x 11-7/8	2	2	FF
BM2	16-00-00	2.0 RigidLam DF LVL 1-3/4 x 14	2	2	FF

Truss Connector Total List		
Manuf	Product	Qty
Simpson	HU410	15
Simpson	THA422	4

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design as specified by the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 Donniford Drive, Madison, WI 53179.

CARTER
Lumber

CRH Homes LLC
K20 Carolina Seasons-2nd
Floor-Chatham C

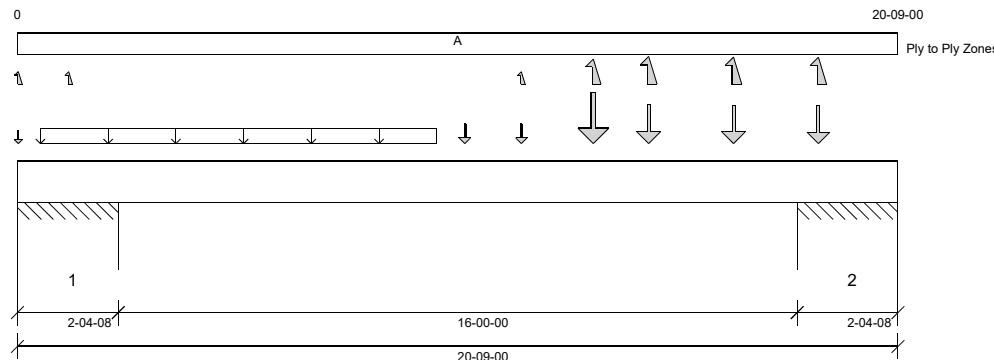
FLOOR PLACEMENT PLAN

Scale: NTS
Date: 11/11/2025
Designer: Mike Finch
Project Number: 25100169-A
Sheet Number:

1/1

Customer:
Job Name:
City:
Customer Ph...

Job Name: **A**
Level: **2nd floor**
Label: **BM1 - i52**
Type: **Beam**


2 Ply Member
2.0 RigidLam DF LVL 1-3/4
x 11-7/8

Status:
Design Passed

Illustration Not to Scale. Pitch: 0/12

Designed by Single Member Design Engine in MiTek® Structure Version
8.7.3.303.Update13.26

Report Version: 2023.09.18 11/11/2025 09:42

DESIGN INFORMATION a

Building Code: IRC 2018
Design Methodology: ASD
Risk Category: II (General Construction)
Service Condition: Residential
System Spacing: Dry
LL Deflection Limit: L/360, 0.75" (absolute)
TL Deflection Limit: L/240, 1.00" (absolute)

Lateral Restraint Requirements:

Both ends of the member and the outer supports must be laterally restrained. Top and bottom edges of the member must be fully restrained or have the following maximum unbraced length:

Top: 13'- 6" Bottom: 20'- 9"

ANALYSIS RESULTS

Design Criteria	Location	Load Combination	LDF	Design	Limit	Result
Max Pos. Moment:	10'- 6 1/2"	D + L	1.00	1192 lb ft	19472 lb ft	Passed - 6%
Max Neg. Moment:	18'- 6"	D + 0.75(L + S)	1.15	2207 lb ft	17439 lb ft	Passed - 13%
Max Shear:	17'- 4 5/8"	D + 0.75(L + S)	1.15	878 lb	9241 lb	Passed - 10%
Live Load (LL) Pos. Defl.:	10'- 9 15/16"	0.75(L + Lr + 0.6W)	0.021"	L/360	L/999	Passed - L/999
Total Load (TL) Pos. Defl.:	10'- 10 1/16"	D + 0.75(L + Lr + 0.6W)	0.041"	L/240	L/999	Passed - L/999

SUPPORT AND REACTION INFORMATION

ID	Input Bearing Length	Controlling Load Combination	LDF	Downward Reaction	Uplift Reaction	Resistance of Member	Resistance of Support	Result
1	9-08	D + L	1.00	-810 lb	-	-	-	
1	1-06-00	D + L	1.00	1604 lb	-	47250 lb	55125 lb	Passed - 3%
2	1-06-00	D + 0.75(L + S)	1.15	2111 lb	-	47250 lb	55125 lb	Passed - 4%
2	1-06-00	0.6D + 0.6W	1.60	-70 lb	-	-	-	
2	8-08	D + L	1.00	-902 lb	-	-	-	

LOADING

Type	Start Loc	End Loc	Source	Face	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
Self Weight	0'	20'- 9"	Self Weight	Top	11 lb/ft	-	-	-	-
Uniform	0'- 6 1/2"	9'- 10 1/2"	Smoothed Load	Top	20 lb/ft	46 lb/ft	-	-	-
Point	0'- 1/4"	0'- 1/4"	F212(Cond01)	Top	-	12/-2 lb	-	-	-
Point	1'- 2 1/2"	1'- 2 1/2"	F212(Cond01)	Top	-	-	0 lb	-1 lb	-
Point	10'- 6 1/2"	10'- 6 1/2"	F212(Cond01)	Top	26 lb	61 lb	-	-	-
Point	11'- 10 1/2"	11'- 10 1/2"	F212(Cond01)	Top	27 lb	60 lb	0 lb	0 lb	-
Point	13'- 6 7/8"	13'- 6 7/8"	-	Top	169 lb	185/-24 lb	36 lb	85 lb	28/-143 lb
Point	14'- 10 1/2"	14'- 10 1/2"	I02(Cond03)	Top	86 lb	-	116 lb	116 lb	35/-202 lb
Point	16'- 10 1/2"	16'- 10 1/2"	I02(Cond02)	Top	84 lb	-	111 lb	111 lb	33/-194 lb
Point	18'- 10 1/2"	18'- 10 1/2"	I02(Cond01)	Top	83 lb	-	109 lb	109 lb	33/-191 lb

UNFACTORED REACTIONS

ID	Start Loc	End Loc	Source	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
1	0'	2'- 4 1/2"	W27(i39)	1006/-557 lb	1195/-659 lb	210/-146 lb	292/-203 lb	0 lb/-77 lb
==>	0'- 1 1/2"	0'- 1 1/2"	W27(i39)	-557 lb	40/-641 lb	-146 lb	1/-201 lb	-
==>	2'- 3"	2'- 3"	W27(i39)	1006 lb	1155/-18 lb	210 lb	291/-2 lb	-
2	18'- 4 1/2"	20'- 9"	W4(i13)	449 lb	217/-42 lb	308 lb	355 lb	0 lb/-77 lb
==>	18'- 6"	18'- 6"	W4(i13)	449 lb	193/-42 lb	308 lb	338 lb	-
==>	20'- 7 1/2"	20'- 7 1/2"	W4(i13)	-	24 lb	-	17 lb	-

DESIGN NOTES

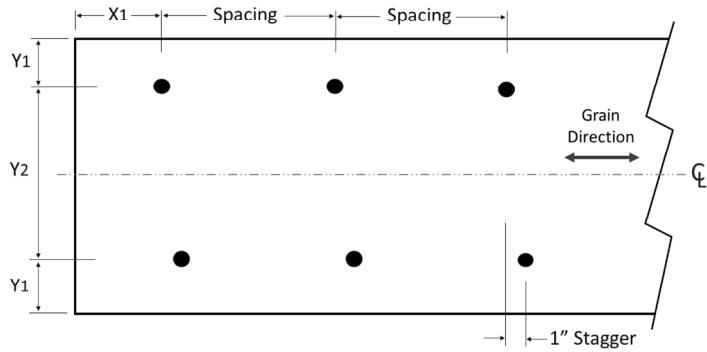
- The dead loads used in the design of this member were applied to the structure as projected dead loads.
- Analysis and Design has been performed using precision loading from actual modeled conditions. Some loads may have been modified to simplify reporting.
- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.76

PLY TO PLY CONNECTION

Customer:
Job Name:
City:
Customer Ph...

Job Name: **A**
Level: **2nd floor**
Label: **BM1 - i52**
Type: **Beam**

2 Ply Member
2.0 RigidLam DF LVL 1-3/4
x 11-7/8


Status:
Design Passed

PLY TO PLY CONNECTION

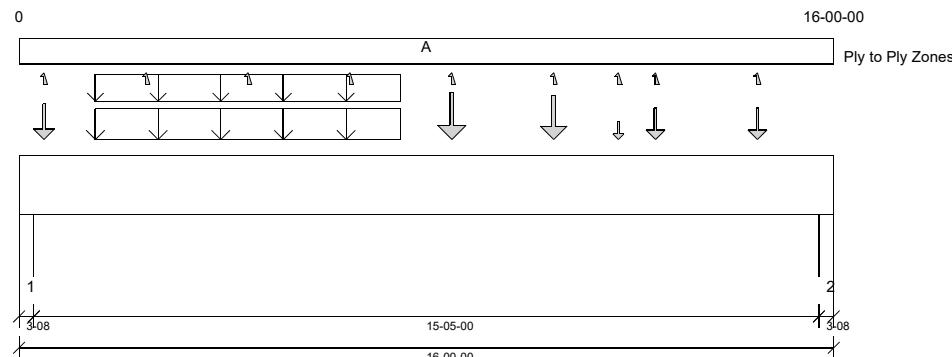
- Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 42. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 117 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face.

X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION – 2 ROWS (FROM ONE FACE)

Customer:
Job Name:
City:
Customer Ph...

Job Name: **A**
Level: **2nd floor**
Label: **BM2 - i55**
Type: **Beam**


2 Ply Member
2.0 RigidLam DF LVL 1-3/4
x 14

Status:
Design Passed

Illustration Not to Scale. Pitch: 0/12

Designed by Single Member Design Engine in MiTek® Structure Version
8.7.3.303.Update13.26

Report Version: 2023.09.18 11/11/2025 09:42

DESIGN INFORMATION a

Building Code: IRC 2018
Design Methodology: ASD
Risk Category: II (General Construction)
Service Condition: Residential
System Spacing: -
LL Deflection Limit: L/360, 0.75" (absolute)
TL Deflection Limit: L/240, 1.00" (absolute)

Lateral Restraint Requirements:

Both ends of the member and the outer supports must be laterally restrained. Top and bottom edges of the member must be fully restrained or have the following maximum unbraced length:

Top: 0' Bottom: 1'-8 1/2"

Bearing Stress of Support Material:

- 875 psi Wall @ 0'-2 1/2"
- 875 psi Wall @ 15'-9 1/2"

ANALYSIS RESULTS

Design Criteria	Location	Load Combination	LDF	Design	Limit	Result
Max Pos. Moment:	8'- 6"	D + L	1.00	25210 lb ft	28972 lb ft	Passed - 87%
Max Shear:	1'- 5 1/2"	D + L	1.00	6675 lb	9473 lb	Passed - 70%
Live Load (LL) Pos. Defl.:	7'- 11 5/16"	L		0.484"	L/360	Passed - L/382
Total Load (TL) Pos. Defl.:	7'- 11 3/8"	D + L		0.680"	L/240	Passed - L/272

SUPPORT AND REACTION INFORMATION

ID	Input Bearing Length	Controlling Load Combination	LDF	Downward Reaction	Uplift Reaction	Resistance of Member	Resistance of Support	Result
1	3-08	D + L	1.00	6711 lb		9187 lb	10719 lb	Passed - 73%
2	3-08	D + L	1.00	5417 lb		9187 lb	10719 lb	Passed - 59%

LOADING

Type	Start Loc	End Loc	Source	Face	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
Self Weight	0'	16'	Self Weight	Top	13 lb/ft	-	-	-	-
Uniform	1'- 6"	7'- 6"	Smoothed Load	Back	130 lb/ft	348 lb/ft	1 lb/ft	1 lb/ft	0 lb/ft
Uniform	1'- 6"	7'- 6"	Smoothed Load	Front	106 lb/ft	282 lb/ft	1 lb/ft	2 lb/ft	1 lb/ft
Point	2'- 6"	2'- 6"	-	Front	-	-	-	-	-11 lb
Point	4'- 6"	4'- 6"	-	Front	-	-	-	-	-11 lb
Point	6'- 6"	6'- 6"	-	Front	-	-	-	-	-11 lb
Point	8'- 6"	8'- 6"	-	Front	471 lb	1258 lb	2 lb	5 lb	2/-11 lb
Point	10'- 6"	10'- 6"	-	Front	446 lb	1156 lb	2 lb	6 lb	2/-11 lb
Point	11'- 9 1/4"	11'- 9 1/4"	F211(Cond01)	Front	117 lb	196 lb	7 lb	7/0 lb	2/-9 lb
Point	12'- 6"	12'- 6"	F207(Cond03)	Back	263 lb	701 lb	1 lb	3/0 lb	1/-5 lb
Point	14'- 6"	14'- 6"	F207(Cond04)	Back	262 lb	703 lb	1 lb	3/0 lb	1/-5 lb
Point	0'- 5 7/8"	0'- 5 7/8"	-	Top	349 lb	786 lb	8 lb	22 lb	7/-2 lb

UNFACTORED REACTIONS

ID	Start Loc	End Loc	Source	Dead (D)	Live (L)	Snow (S)	Roof Live (Lr)	Wind (W)
1	0'	0'- 3 1/2"	W1(i14)	1973 lb	4760 lb	16 lb	40 lb	23 lb/-45 lb
2	15'- 8 1/2"	16'	-	1574 lb	3822 lb	11 lb	21 lb	-
++>	15'- 10 3/4"	15'- 10 3/4"	W29(i43)	1124 lb	2730 lb	8 lb	15 lb	-
++>	15'- 11 1/2"	15'- 11 1/2"	W28(i41)	450 lb	1092 lb	3 lb	6 lb	-

DESIGN NOTES

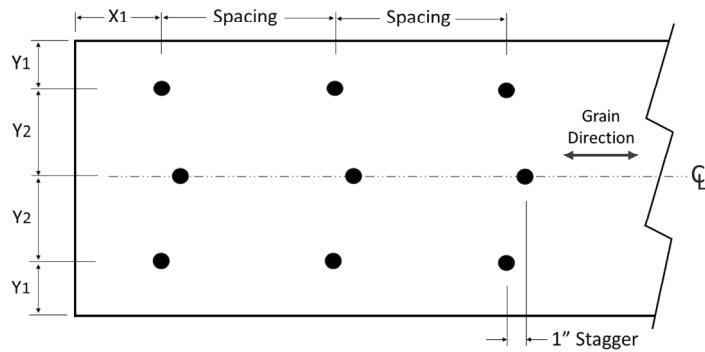
- CAUTION: One or more plies are not supported properly at 15-10-04. At least 75% of every ply must be contacting support.
- CAUTION: One or more plies are not supported properly at 15-10-04. At least 75% of every ply must be contacting support.
- The dead loads used in the design of this member were applied to the structure as projected dead loads.
- Analysis and Design has been performed using precision loading from actual modeled conditions. Some loads may have been modified to simplify reporting.
- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 1.00
- Bearing length at support 2 was calculated based on the actual bearing area divided by the supported member width and may not match expected value when bearing is not rectangular or when the supported member is not supported by its full width.
- One or more plies are not properly supported at 2. Verify with structural engineer or EWP manufacturer if this condition is acceptable.

PLY TO PLY CONNECTION

Customer:
Job Name:
City:
Customer Ph...

Job Name: **A**
Level: **2nd floor**
Label: **BM2 - i55**
Type: **Beam**

2 Ply Member
2.0 RigidLam DF LVL 1-3/4
x 14

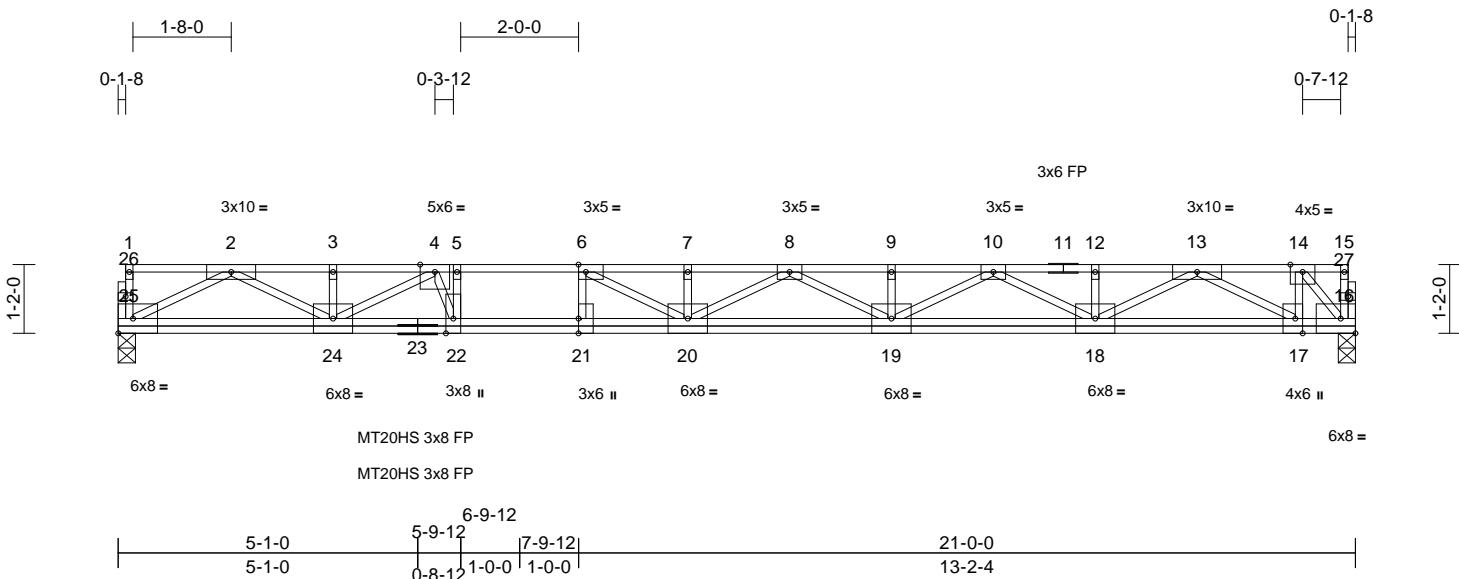

Status:
Design Passed

PLY TO PLY CONNECTION

- Zone A: Factored load = 965 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 72. Row = 3, Spacing = 8" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 117 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face.

X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION – 3 ROWS (FROM ONE FACE)



Job 25100169-A	Truss F201	Truss Type Floor	Qty 9	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709408
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:02
ID: v_TJsgAdoDIAamZcDGALJ1yeAvH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?!

Page: 1

Scale = 1:39.1

Plate Offsets (X, Y): [6:0-1-8,Edge], [17:0-3-0,Edge], [21:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.61	Vert(LL)	-0.43	20-21	>575	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.60	Vert(CT)	-0.59	20-21	>418	360	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.03	16	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 136 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat) *Except* 11-1:2x4 SP 2400F 2.0E(flat)

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD 2x4 SP 2400F 2.0E(flat)

6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WEBS 2x4 SP No.3(flat)

LOAD CASE(S)

OTHERS 2x4 SP No.3(flat)

BRACING Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Standard

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 16=0-3-8, 25=0-3-8

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav 16=1134 (LC 1), 25=1134 (LC 1)

6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-25=-71/0, 15-16=-11/0, 1-2=0/0,

LOAD CASE(S)

2-3=-3257/0, 3-4=-3257/0, 4-5=-5134/0,

5-6=-5134/0, 6-7=-5939/0, 7-8=-5939/0,

8-9=-5533/0, 9-10=-5533/0, 10-12=-3855/0,

12-13=-3855/0, 13-14=-897/0, 14-15=0/0

BOT CHORD 24-25=0/1926, 22-24=0/4724, 21-22=0/5134,

20-21=0/5134, 19-20=0/5896, 18-19=0/4866,

17-18=0/2539, 16-17=0/906

WEBS 2-25=-2145/0, 2-24=0/1533, 3-24=-173/0,

4-24=-1686/0, 4-22=0/1319, 6-20=-59/1129,

7-20=-234/0, 8-20=-57/236, 8-19=-416/0,

9-19=-155/0, 10-19=0/767, 10-18=-1161/0,

12-18=-155/0, 13-18=0/1513, 13-17=-1887/0,

14-17=0/843, 14-16=-1338/0, 5-22=-648/0,

6-21=-580/0

NOTES

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

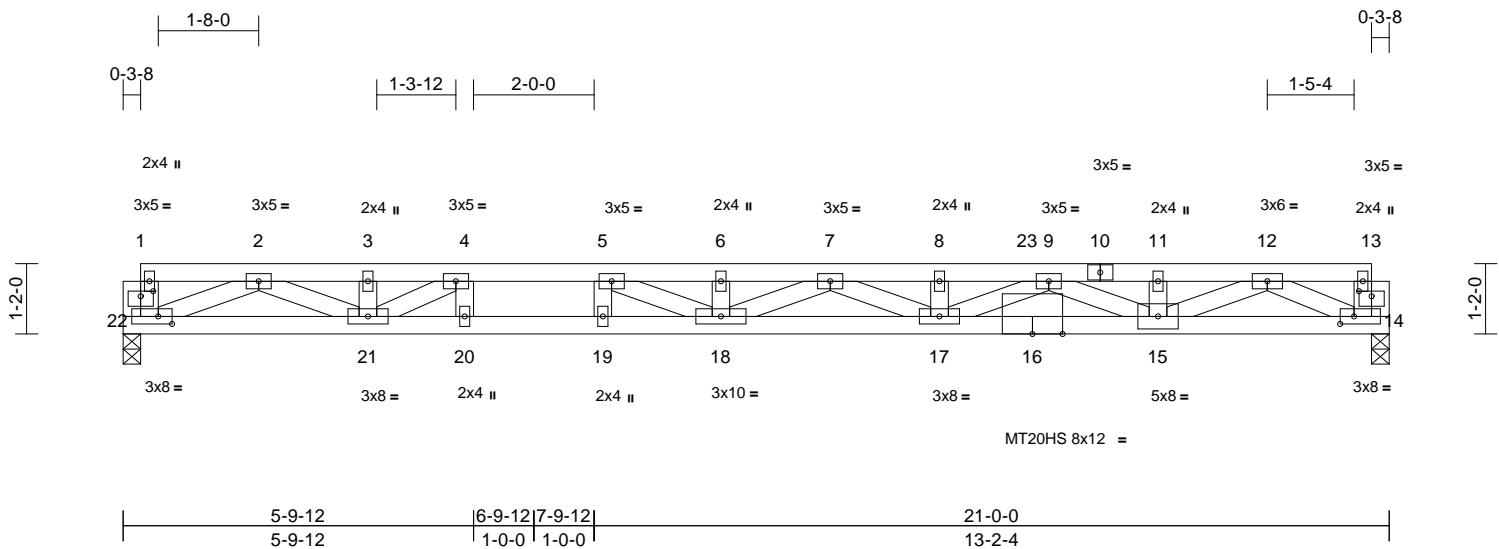
4) All bearings are assumed to be SP 2400F 2.0E.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F202	Truss Type Floor Girder	Qty 1	Ply 3	K20 Carolina Seasons-2nd Floor-Chatham C I77709409
-------------------	---------------	----------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:03
ID:prrsKp43K5Ztn1X6qlCC5yeBkK-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.2

Plate Offsets (X, Y): [1:0-2-8,0-1-0], [13:0-2-8,0-1-0], [14:0-2-12,0-1-8], [22:0-2-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.80	Vert(LL)	-0.33	17-18	>744	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.67	Vert(CT)	-0.67	17-18	>366	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	NO	WB	0.29	Horz(CT)	0.07	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 287 lb	FT = 11%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP 2400F 2.0E
WEBS 2x4 SP No.1
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-7-10 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 14=0-3-8, 22=0-3-8
Max Grav 14=3019 (LC 5), 22=1668 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-22=-135/0, 13-14=-330/0, 1-2=-176/0, 2-3=-5819/0, 3-4=-5819/0, 4-5=-9439/0, 5-6=-12187/0, 6-7=-12187/0, 7-8=-14009/0, 8-9=-14009/0, 9-11=-9435/0, 11-12=-9435/0, 12-13=-247/0

BOT CHORD 21-22=0/3375, 20-21=0/9439, 19-20=0/9439, 18-19=0/9439, 17-18=0/13318, 15-17=0/12562, 14-15=0/5357

WEBS 4-20=0/1098, 5-19=-918/0, 2-22=-3503/0, 2-21=0/2714, 3-21=0/441, 4-21=-4196/0, 5-18=0/3401, 6-18=-395/0, 7-18=-1404/0, 7-17=0/1005, 8-17=-141/0, 9-17=-84/1813, 9-15=-3472/0, 11-15=-484/0, 12-15=0/4528, 12-14=-5726/0

NOTES

1) 3-ply truss to be connected together with 10d (0.131" x 3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc.
Bottom chords connected as follows: 2x4 - 2 rows staggered at 0-7-0 oc.
Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced floor live loads have been considered for this design.

4) All plates are MT20 plates unless otherwise indicated.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) The Fabrication Tolerance at joint 16 = 11%, joint 10 = 11%

7) All bearings are assumed to be SP 2400F 2.0E.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Load case(s) 1, 4 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

10) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 93 lb down and 16 lb up at 15-0-0, and 93 lb down and 16 lb up at 17-0-0, and 93 lb down and 16 lb up at 19-0-0 on top chord, and 932 lb down at 13-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (lb/ft)
Vert: 14-22=-10, 1-8=-100, 8-13=-270 (F=-70)
Concentrated Loads (lb)

Vert: 17=-890 (F), 11=-35 (F), 12=-35 (F), 23=-35 (F)
4) Dead + Roof Live (balanced): Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90

Uniform Loads (lb/ft)

Vert: 14-22=-10, 1-8=-20, 8-13=-260 (F=-140)

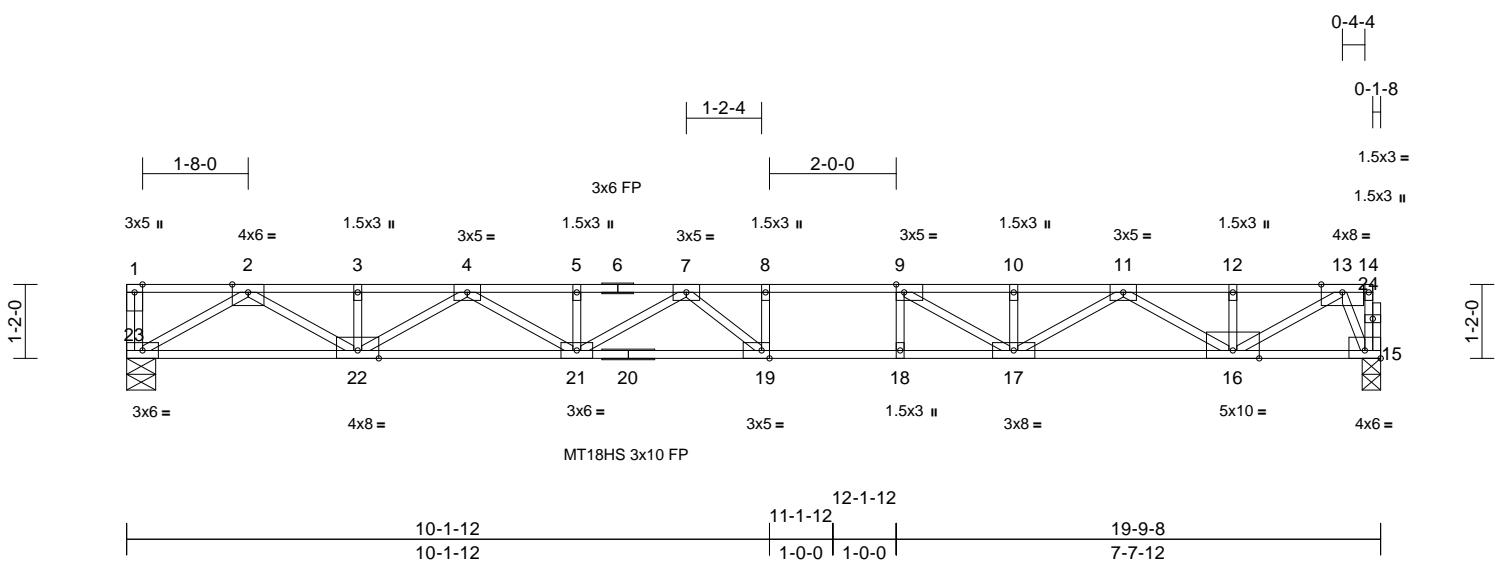
Concentrated Loads (lb)

Vert: 17=-672 (F), 11=-86 (F), 12=-86 (F), 23=-86 (F)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F203	Truss Type Floor	Qty 7	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709410
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:03
ID:Q5efzC5M3glQZU?iisbEtzyeAxy-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.4

Plate Offsets (X, Y): [9:0-1-8,Edge], [15:Edge,0-1-8], [19:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.64	Vert(LL)	-0.44	19-21	>534	480	MT18HS	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.97	Vert(CT)	-0.61	19-21	>386	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.08	15	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 101 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat) *Except* 6-14:2x4 SP

2400F 2.0E(flat)

BOT CHORD 2x4 SP No.1(flat) *Except* 20-15:2x4 SP

2400F 2.0E(flat)

WEBS 2x4 SP No.3(flat)

OTHERS 2x4 SP No.3(flat)

4) Bearings are assumed to be: Joint 23 SP No.1 , Joint 15

SP 2400F 2.0E .

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

2-2-0 oc bracing: 19-21.

REACTIONS (size) 15=0-3-8, 23=0-5-8

Max Grav 15=1069 (LC 1), 23=1075 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-23=-73/0, 14-15=0/35, 1-2=0/0,

2-3=-2991/0, 3-4=-2991/0, 4-5=-4644/0,

5-7=-4644/0, 7-8=-4909/0, 8-9=-4909/0,

9-10=-4128/0, 10-11=-4128/0, 11-12=-2043/0,

12-13=-2043/0, 13-14=0/2

BOT CHORD 22-23=0/1692, 21-22=0/3968, 19-21=0/4959,

18-19=0/4909, 17-18=0/4909, 16-17=0/3246,

15-16=0/502

WEBS 8-19=-214/119, 9-18=-39/207, 2-23=-1957/0,

2-22=0/1517, 3-22=-161/0, 4-22=-1140/0,

4-21=0/789, 5-21=-160/0, 7-21=-462/0,

7-19=-384/441, 9-17=-1173/0,

10-17=-200/113, 11-17=0/1030,

11-16=-1405/0, 12-16=-174/0, 13-16=0/1799,

13-15=-1206/0

NOTES

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

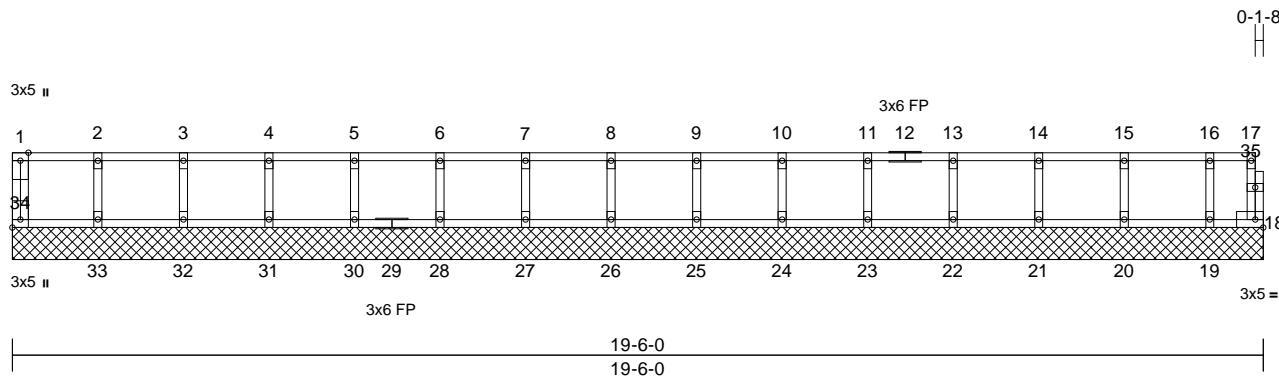
November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932



Job 25100169-A	Truss F205	Truss Type Floor Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709412
-------------------	---------------	-------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:R_KfxuY02EYLmbcALE8C3yeAw5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7JzJC?f

Page: 1

Scale = 1:35.9

Plate Offsets (X, Y): [34:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	18	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-R						Weight: 82 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

WEBS

2-33=-133/0, 3-32=-134/0, 4-31=-133/0,
5-30=-133/0, 6-28=-133/0, 7-27=-133/0,
8-26=-133/0, 9-25=-133/0, 10-24=-133/0,
11-23=-133/0, 13-22=-134/0, 14-21=-132/0,
15-20=-138/0, 16-19=-107/0

NOTES

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) All bearings are assumed to be SP No.2 .
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S)

Standard

REACTIONS (size) 18=19-6-0, 19=19-6-0, 20=19-6-0,
21=19-6-0, 22=19-6-0, 23=19-6-0,
24=19-6-0, 25=19-6-0, 26=19-6-0,
27=19-6-0, 28=19-6-0, 30=19-6-0,
31=19-6-0, 32=19-6-0, 33=19-6-0,
34=19-6-0

Max Grav 18=27 (LC 1), 19=113 (LC 1),
20=153 (LC 1), 21=145 (LC 1),
22=147 (LC 1), 23=147 (LC 1),
24=147 (LC 1), 25=147 (LC 1),
26=147 (LC 1), 27=147 (LC 1),
28=147 (LC 1), 30=147 (LC 1),
31=147 (LC 1), 32=147 (LC 1),
33=148 (LC 1), 34=58 (LC 1)

FORCES (lb) - Maximum Compression/Maximum
Tension
TOP CHORD 1-34=-54/0, 17-18=-20/0, 1-2=-6/0, 2-3=-6/0,
3-4=-6/0, 4-5=-6/0, 5-6=-6/0, 6-7=-6/0,
7-8=-6/0, 8-9=-6/0, 9-10=-6/0, 10-11=-6/0,
11-13=-6/0, 13-14=-6/0, 14-15=-6/0,
15-16=-6/0, 16-17=-6/0

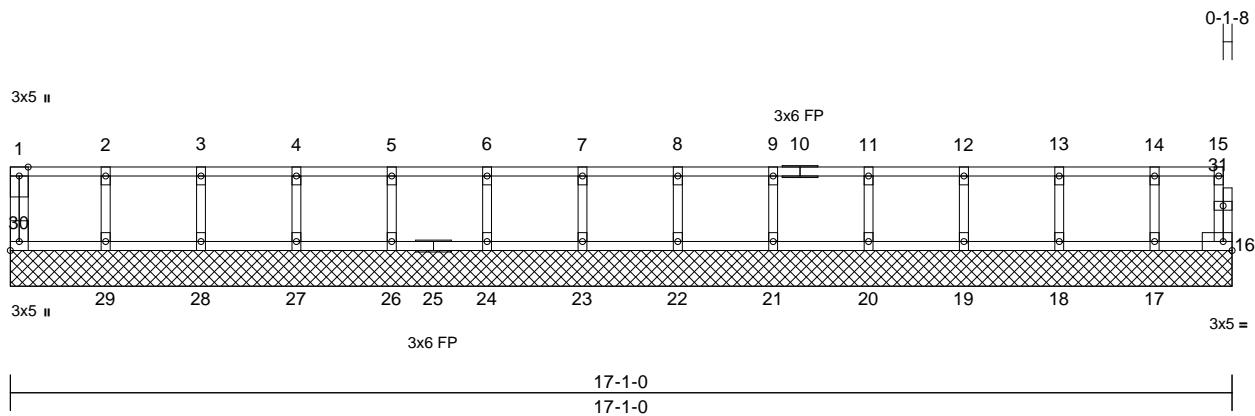
BOT CHORD 33-34=0/6, 32-33=0/6, 31-32=0/6, 30-31=0/6,
28-30=0/6, 27-28=0/6, 26-27=0/6, 25-26=0/6,
24-25=0/6, 23-24=0/6, 22-23=0/6, 21-22=0/6,
20-21=0/6, 19-20=0/6, 18-19=0/6

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F206	Truss Type Floor Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709413
-------------------	---------------	-------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:iYtKtVl6RGeJ7GRD8KbzKMyeAzi-RfC?PsB70Hq3NSgPqnL8w3u1TxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

Plate Offsets (X, Y): [30:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	16	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-R						Weight: 72 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) All bearings are assumed to be SP No.2 .
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

REACTIONS (size) 16=17-1-0, 17=17-1-0, 18=17-1-0,
19=17-1-0, 20=17-1-0, 21=17-1-0,
22=17-1-0, 23=17-1-0, 24=17-1-0,
26=17-1-0, 27=17-1-0, 28=17-1-0,
29=17-1-0, 30=17-1-0

Max Grav 16=42 (LC 1), 17=127 (LC 1),
18=151 (LC 1), 19=146 (LC 1),
20=147 (LC 1), 21=147 (LC 1),
22=147 (LC 1), 23=147 (LC 1),
24=147 (LC 1), 26=147 (LC 1),
27=147 (LC 1), 28=147 (LC 1),
29=146 (LC 1), 30=60 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-30=-55/0, 15-16=-36/0, 1-2=-8/0, 2-3=-8/0,
3-4=-8/0, 4-5=-8/0, 5-6=-8/0, 6-7=-8/0,
7-8=-8/0, 8-9=-8/0, 9-11=-8/0, 11-12=-8/0,
12-13=-8/0, 13-14=-8/0, 14-15=-8/0

BOT CHORD 29-30=0/8, 28-29=0/8, 27-28=0/8, 26-27=0/8,
24-26=0/8, 23-24=0/8, 22-23=0/8, 21-22=0/8,
20-21=0/8, 19-20=0/8, 18-19=0/8, 17-18=0/8,
16-17=0/8

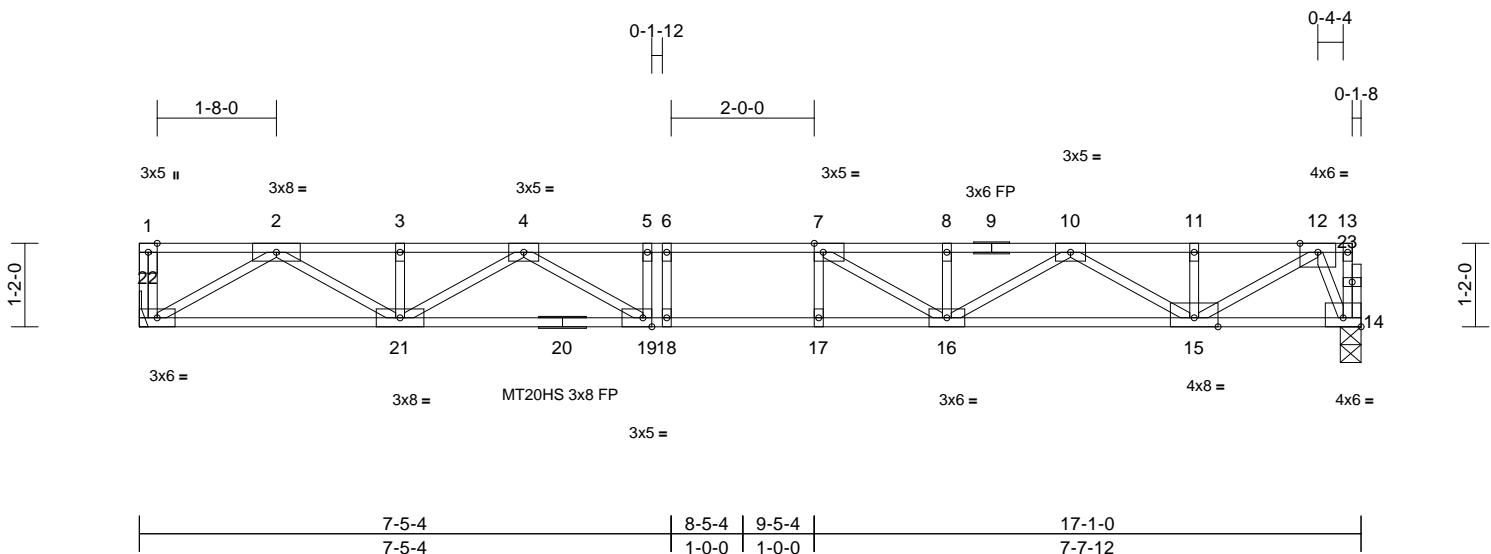
WEBS 2-29=-132/0, 3-28=-134/0, 4-27=-133/0,
5-26=-133/0, 6-24=-133/0, 7-23=-133/0,
8-22=-133/0, 9-21=-133/0, 11-20=-134/0,
12-19=-132/0, 13-18=-137/0, 14-17=-117/0

NOTES

1) All plates are 1.5x3 MT20 unless otherwise indicated.

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-A	Truss F207	Truss Type Floor	Qty 8	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709414
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:rLICTYHd1z8VaBcb9hebj8yeD_7-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

Plate Offsets (X, Y): [7:0-1-8,Edge], [14:Edge,0-1-8], [19:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.83	Vert(LL)	-0.28	16-17	>713	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.96	Vert(CT)	-0.38	16-17	>527	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.06	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 88 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD 2x4 SP No.2(flat) *Except* 20-14:2x4 SP

7) Recommend 2x6 strongbacks, on edge, spaced at

No.1(flat)

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WEBS 2x4 SP No.3(flat)

8) CAUTION, Do not erect truss backwards.

OTHERS 2x4 SP No.3(flat)

LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-11 oc purlins, except end verticals.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

2-2-0 oc bracing: 17-18,16-17.

7) Recommend 2x6 strongbacks, on edge, spaced at

REACTIONS (size) 14=0-3-8, 22= Mechanical

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Max Grav 14=920 (LC 1), 22=926 (LC 1)

8) CAUTION, Do not erect truss backwards.

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-22=-74/0, 13-14=0/32, 1-2=0/0,

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2-3=-2492/0, 3-4=-2492/0, 4-5=-3684/0,

7) Recommend 2x6 strongbacks, on edge, spaced at

5-6=-3684/0, 6-7=-3684/0, 7-8=-3357/0,

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8-10=-3357/0, 10-11=-1726/0, 11-12=-1726/0,

12-13=0/2

12-13=0/2

BOT CHORD 21-22=0/1436, 19-21=0/3216, 18-19=0/3684,

7) Recommend 2x6 strongbacks, on edge, spaced at

17-18=0/3684, 16-17=0/3684, 15-16=0/2686,

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

14-15=0/431

8) CAUTION, Do not erect truss backwards.

WEBS 6-18=-69/0, 7-17=-120/1, 2-22=-1661/0,

9) Recommend 2x6 strongbacks, on edge, spaced at

2-21=0/1233, 3-21=-170/0, 4-21=-845/0,

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4-19=0/806, 5-19=-273/0, 7-16=-378/84,

11-15=0/1512, 12-14=-1037/0

8-16=-244/0, 10-16=0/783, 10-15=-1120/0,

12-13=0/2

11-15=-177/0, 12-15=0/1512, 12-14=-1037/0

9) Recommend 2x6 strongbacks, on edge, spaced at

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

NOTES

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Bearings are assumed to be: , Joint 14 SP No.1 .

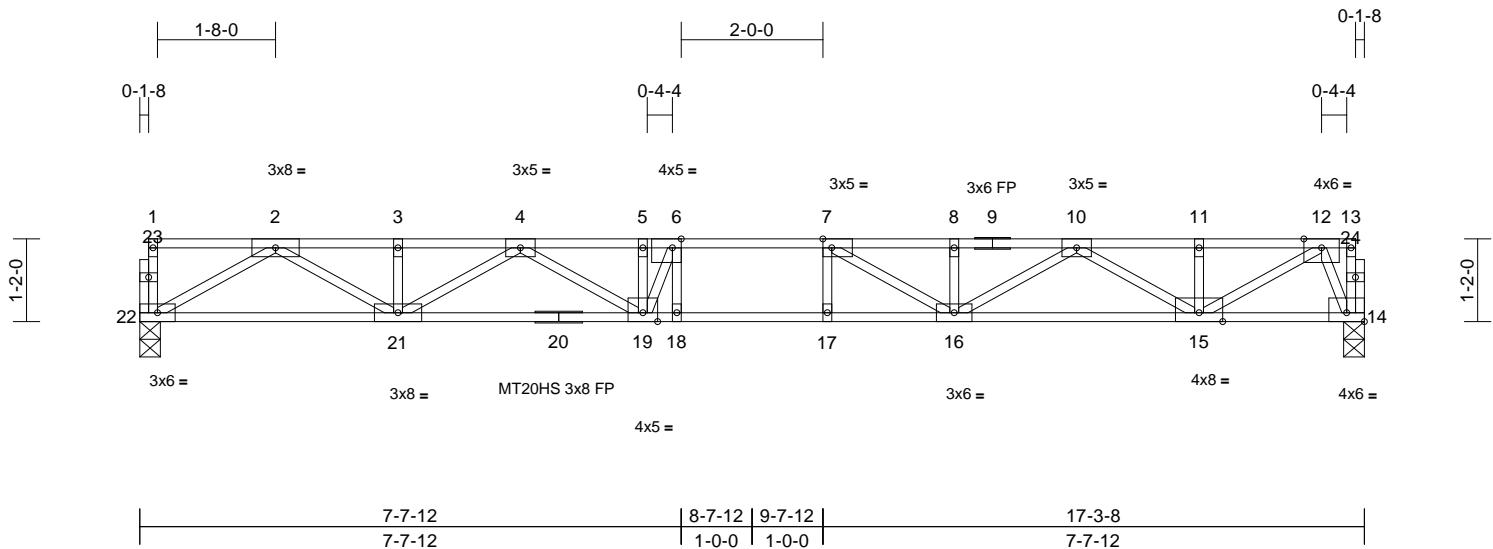
5) Refer to girder(s) for truss to truss connections.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F208	Truss Type Floor	Qty 2	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709415
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:ERQfXpZ8gr4pfZ35VlhYUyeAyf-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:32.5

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge], [14:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.69	Vert(LL)	-0.28	17-18	>742	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.94	Vert(CT)	-0.38	17-18	>537	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.06	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 90 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat) *Except* 20-14:2x4 SP
No.1(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S)

Standard

BRACING
TOP CHORD Structural wood sheathing directly applied or 5-10-6 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
2-2-0 oc bracing: 19-21.

REACTIONS (size) 14=0-3-8, 22=0-3-8
Max Grav 14=931 (LC 1), 22=931 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-22=-71/0, 13-14=0/32, 1-2=-4/0,
2-3=-2533/0, 3-4=-2533/0, 4-5=-3708/0,
5-6=-3708/0, 6-7=-3789/0, 7-8=-3414/0,
8-10=-3414/0, 10-11=-1751/0, 11-12=-1751/0,
12-13=0/2

BOT CHORD 21-22=0/1456, 19-21=0/3274, 18-19=0/3789,
17-18=0/3789, 16-17=0/3789, 15-16=0/2729,
14-15=0/437

WEBS 6-18=-252/255, 7-17=-95/130, 2-22=-1680/0,
2-21=0/1257, 3-21=-164/0, 4-21=-865/0,
4-19=0/549, 5-19=-233/221, 6-19=-727/339,
7-16=-734/0, 8-16=-217/36, 10-16=0/799,
10-15=-1142/0, 11-15=-175/0, 12-15=0/1534,
12-14=-1050/0

NOTES

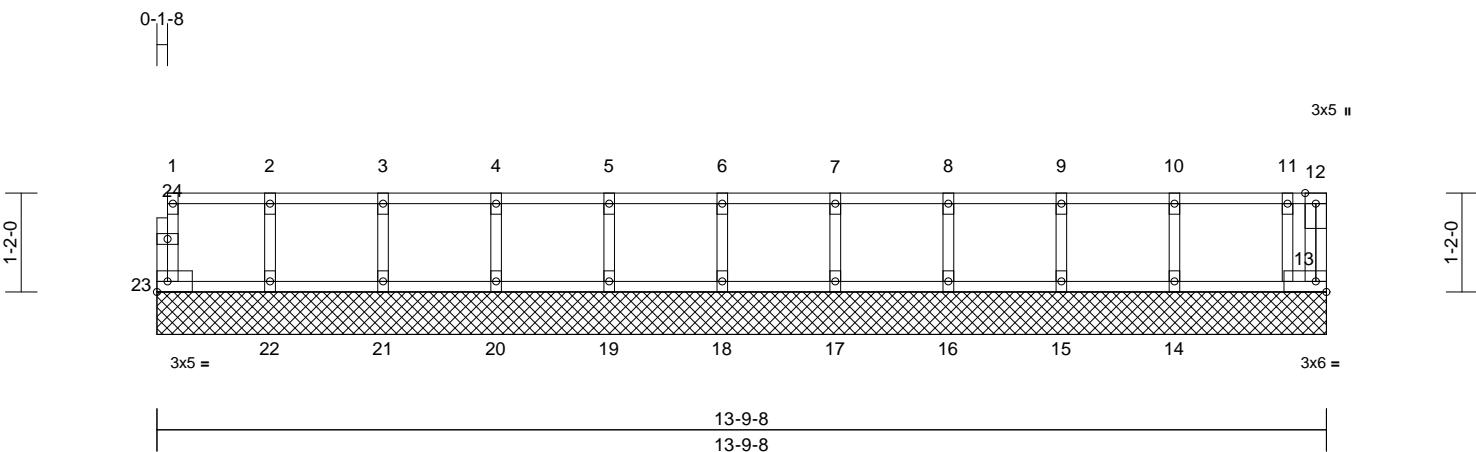
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Bearings are assumed to be: Joint 22 SP No.2 , Joint 14 SP No.1 .

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F209	Truss Type Floor Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709416
-------------------	---------------	-------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:LJY?rOUJdVtRUul_riBpRjyeB_2-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.2

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.09	Vert(LL)	n/a	-	n/a	999	
TCDL	10.0	Lumber DOL	1.00	BC	0.03	Vert(TL)	n/a	-	n/a	999	
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	13	n/a	n/a	
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 60 lb FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

5) All bearings are assumed to be SP No.2 .

BOT CHORD 2x4 SP No.2(flat)

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WEBS 2x4 SP No.3(flat)

7) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

OTHERS 2x4 SP No.3(flat)

8) CAUTION, Do not erect truss backwards.

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

LOAD CASE(S) Standard

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 13=13-9-8, 14=13-9-8, 15=13-9-8, 16=13-9-8, 17=13-9-8, 18=13-9-8, 19=13-9-8, 20=13-9-8, 21=13-9-8, 22=13-9-8, 23=13-9-8

Max Grav 13=97 (LC 1), 14=162 (LC 1), 15=142 (LC 1), 16=148 (LC 1), 17=146 (LC 1), 18=147 (LC 1), 19=147 (LC 1), 20=146 (LC 1), 21=150 (LC 1), 22=134 (LC 1), 23=64 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-23=-55/0, 12-13=0/1, 1-2=-17/0, 2-3=-17/0, 3-4=-17/0, 4-5=-17/0, 5-6=-17/0, 6-7=-17/0, 7-8=-17/0, 8-9=-17/0, 9-10=-17/0, 10-11=-17/0, 11-12=0/1

BOT CHORD 22-23=0/17, 21-22=0/17, 20-21=0/17, 19-20=0/17, 18-19=0/17, 17-18=0/17, 16-17=0/17, 15-16=0/17, 14-15=0/17, 13-14=0/17

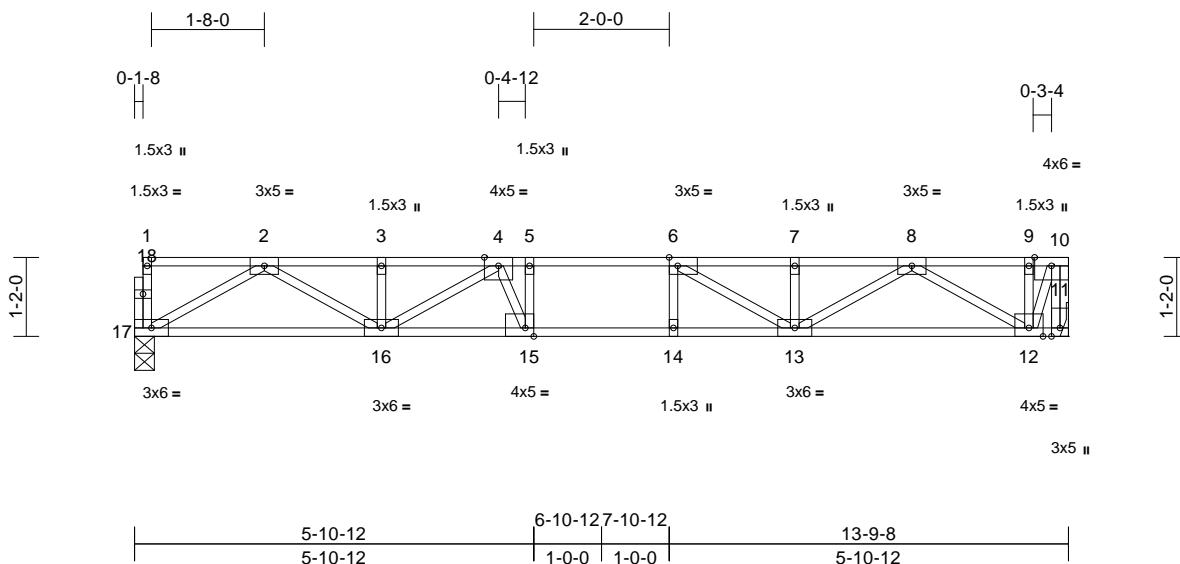
WEBS 2-22=-126/0, 3-21=-135/0, 4-20=-133/0, 5-19=-133/0, 6-18=-133/0, 7-17=-133/0, 8-16=-134/0, 9-15=-130/0, 10-14=-144/0, 11-13=-94/0

NOTES

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


TRENCO
Engineering by
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F210	Truss Type Floor	Qty 6	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C Job Reference (optional) I77709417
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:89d?pJyhOgkKr12P4Wf7RyeD_Y-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:34

Plate Offsets (X, Y): [6:0-1-8,Edge], [15:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	-0.13	15-16	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(CT)	-0.17	15-16	>943	360		
BCLL	0.0	Rep Stress Incr	YES	WB	Horz(CT)	0.04	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH						Weight: 73 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

LOAD CASE(S)

Standard

BRACING
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 11= Mechanical, 17=0-3-8
Max Grav 11=745 (LC 1), 17=739 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-17=-71/0, 10-11=-761/0, 1-2=-4/0,
2-3=-1886/0, 3-4=-1886/0, 4-5=-2382/0,
5-6=-2382/0, 6-7=-2009/0, 7-8=-2009/0,
8-9=-344/0, 9-10=-344/0
BOT CHORD 16-17=0/1125, 15-16=0/2304, 14-15=0/2382,
13-14=0/2382, 12-13=0/1323, 11-12=0/0
WEBS 5-15=-394/56, 6-14=-54/88, 2-17=-1296/0,
2-16=0/889, 3-16=-173/0, 4-16=-505/0,
4-15=-113/518, 6-13=-632/0, 7-13=-214/31,
8-13=0/800, 8-12=-1144/0, 9-12=-155/0,
10-12=0/853

NOTES

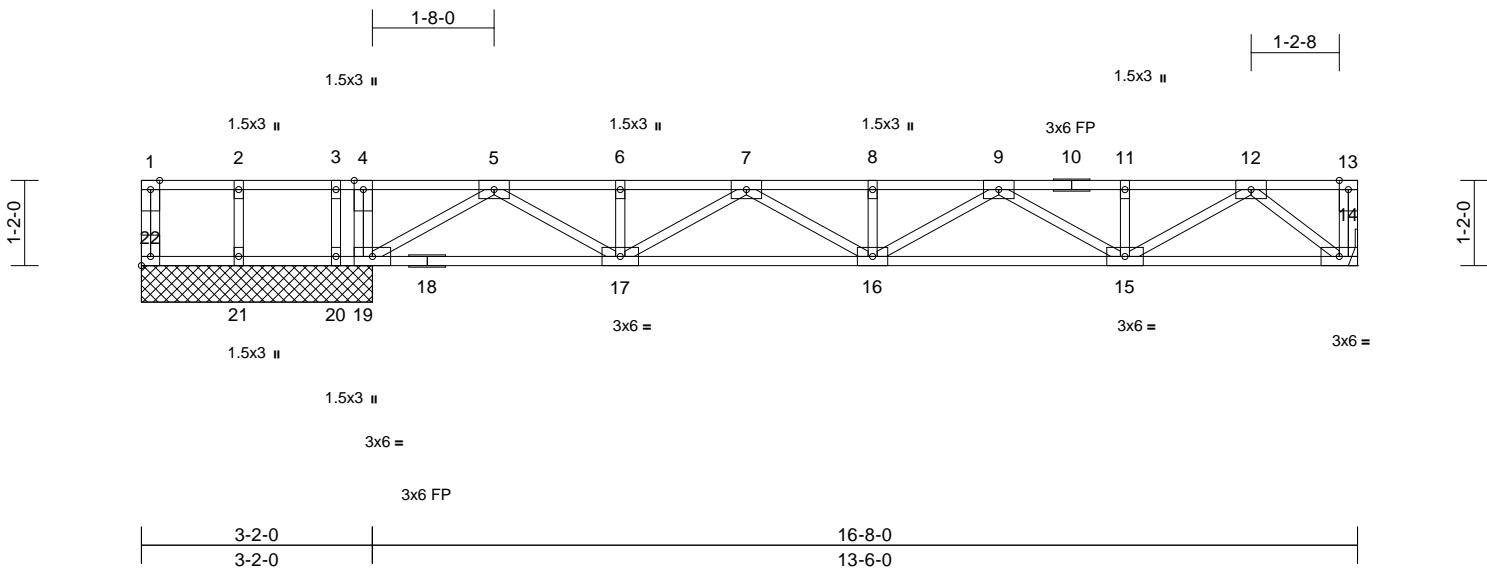
- 1) Unbalanced floor live loads have been considered for this design.
- 2) Bearings are assumed to be: Joint 17 SP No.2 .
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F211	Truss Type Floor	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709418
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:9KVAivn9KDncx4PpLRpucpye9Sq-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Plate Offsets (X, Y): [22:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.34	Vert(LL)	-0.12	16-17	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.67	Vert(CT)	-0.16	16-17	>985	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.46	Horz(CT)	0.04	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 87 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

BOT CHORD 2x4 SP No.2(flat)

WEBS 2x4 SP No.3(flat)

OTHERS 2x4 SP No.3(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 14= Mechanical, 19=3-2-0, 20=3-2-0, 21=3-2-0, 22=3-2-0
Max Uplift 20=278 (LC 4)

Max Grav 14=735 (LC 4), 19=1049 (LC 4), 20=18 (LC 3), 21=172 (LC 1), 22=50 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-22=-46/0, 13-14=-50/0, 1-2=0/0, 2-3=0/0, 3-4=0/0, 4-5=0/0, 5-6=-1800/0, 6-7=-1800/0, 7-8=-2376/0, 8-9=-2376/0, 9-11=1689/0, 11-12=-1689/0, 12-13=0/0

BOT CHORD 21-22=0/0, 20-21=0/0, 19-20=0/0, 17-19=0/1033, 16-17=0/2231, 15-16=0/2177, 14-15=0/859

WEBS 4-19=-313/0, 5-19=-1195/0, 5-17=0/895, 6-17=-181/0, 7-17=-503/0, 7-16=0/170, 8-16=-171/0, 9-16=0/233, 9-15=-570/0, 11-15=-171/0, 12-15=0/968, 12-14=-1090/0, 2-21=-152/0, 3-20=-58/177

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x5 MT20 unless otherwise indicated.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Bearings are assumed to be: Joint 20 SP No.2.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 278 lb uplift at joint 20.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 10) CAUTION, Do not erect truss backwards.

LOAD CASE(S)

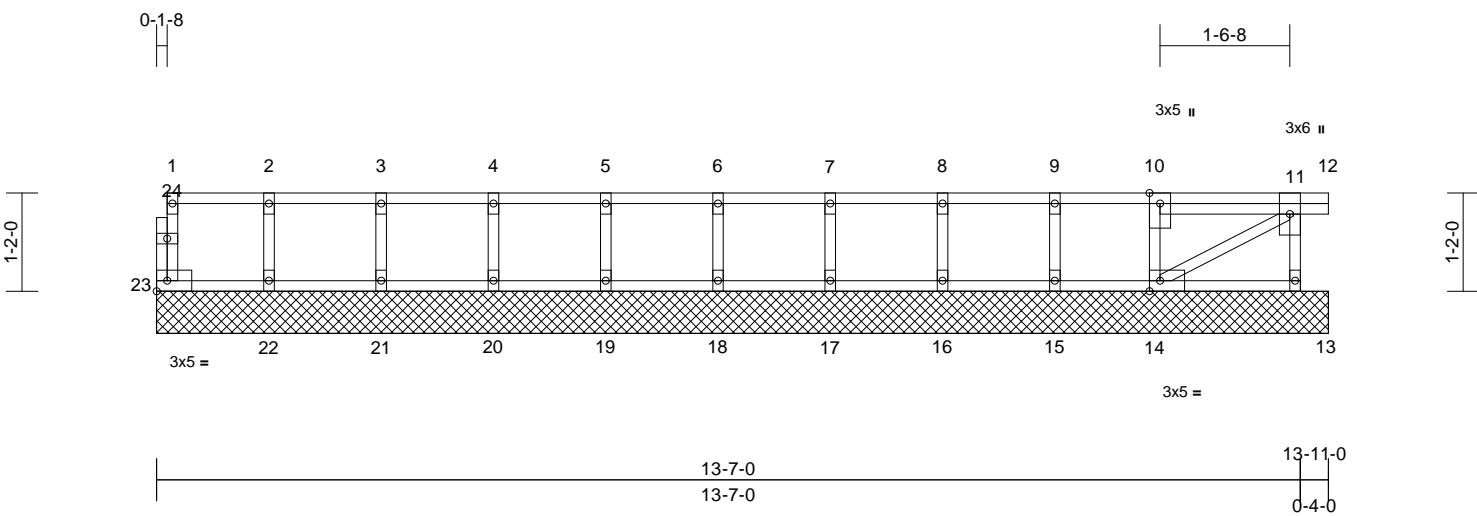
Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from the Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcaccomponents.com](#))

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F212	Truss Type Floor Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709419
-------------------	---------------	-------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:2i5xpBBGH7rrCwNRgmBTfyB_Q-Rfc?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJc?f

Page: 1

Scale = 1:27.4

Plate Offsets (X, Y): [14:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	13	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 62 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

2) All plates are 1.5x3 MT20 unless otherwise indicated.

BOT CHORD 2x4 SP No.2(flat)

3) Gable requires continuous bottom chord bearing.

WEBS 2x4 SP No.3(flat)

4) Truss to be fully sheathed from one face or securely

OTHERS 2x4 SP No.3(flat)

braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

6) All bearings are assumed to be SP No.2.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS (size) 13=13-11-0, 14=13-11-0, 15=13-11-0, 16=13-11-0, 17=13-11-0, 18=13-11-0, 19=13-11-0, 20=13-11-0, 21=13-11-0, 22=13-11-0, 23=13-11-0

8) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

9) CAUTION, Do not erect truss backwards.

LOAD CASE(S)

Standard

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-23=-44/0, 11-13=-120/0, 1-2=-3/0, 2-3=-3/0, 3-4=-3/0, 4-5=-3/0, 5-6=-3/0, 6-7=-3/0, 7-8=-3/0, 8-9=-3/0, 9-10=-3/0, 10-11=-6/1, 11-12=0/0

BOT CHORD 22-23=0/3, 21-22=0/3, 20-21=0/3, 19-20=0/3, 18-19=0/3, 17-18=0/3, 16-17=0/3, 15-16=0/3, 14-15=0/3, 13-14=0/0

WEBS 10-14=-150/0, 11-14=0/3, 2-22=-138/0, 3-21=-133/0, 4-20=-134/0, 5-19=-133/0, 6-18=-134/0, 7-17=-133/0, 8-16=-136/0, 9-15=-121/0

NOTES

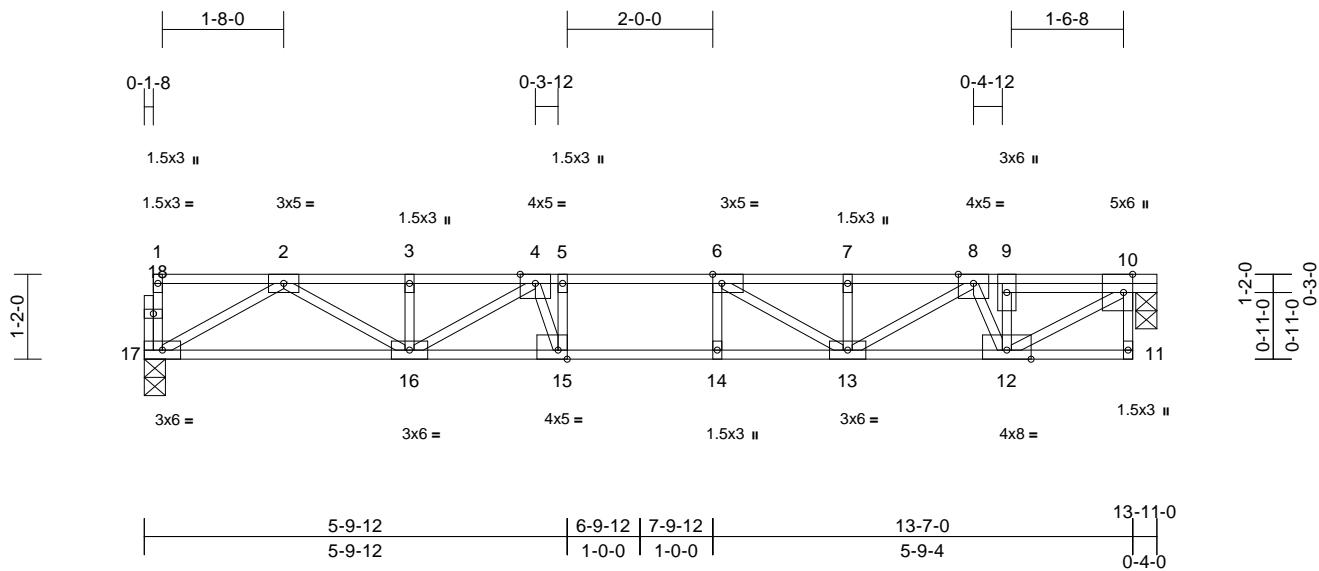
1) Unbalanced floor live loads have been considered for this design.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F213	Truss Type Floor	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709420
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:prrsKp43K5Ztn1X6qlCC5yeBkK-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [6:0-1-8,Edge], [10:0-3-0,Edge], [15:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	-0.12	15-16	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(CT)	-0.16	15-16	>978	360		
BCLL	0.0	Rep Stress Incr	YES	WB	Horz(CT)	0.01	10	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-SH						Weight: 74 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

BRACING
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 10=0-3-8, 17=0-3-8
Max Grav 10=737 (LC 1), 17=731 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-17=-71/0, 10-11=0/9, 1-2=-4/0,
2-3=-1859/0, 3-4=-1859/0, 4-5=-2331/0,
5-6=-2331/0, 6-7=-1958/0, 7-8=-1958/0,
8-9=-1095/0, 9-10=-1090/0
BOT CHORD 16-17=0/1111, 15-16=0/2265, 14-15=0/2331,
13-14=0/2331, 12-13=0/1281, 11-12=0/0
WEBS 9-12=-187/0, 10-12=0/1265, 5-15=-437/80,
6-14=-51/90, 2-17=-1281/0, 2-16=0/873,
3-16=-172/0, 4-16=-505/0, 4-15=-136/549,
6-13=-632/0, 7-13=-217/33, 8-13=0/790,
8-12=-474/0

NOTES

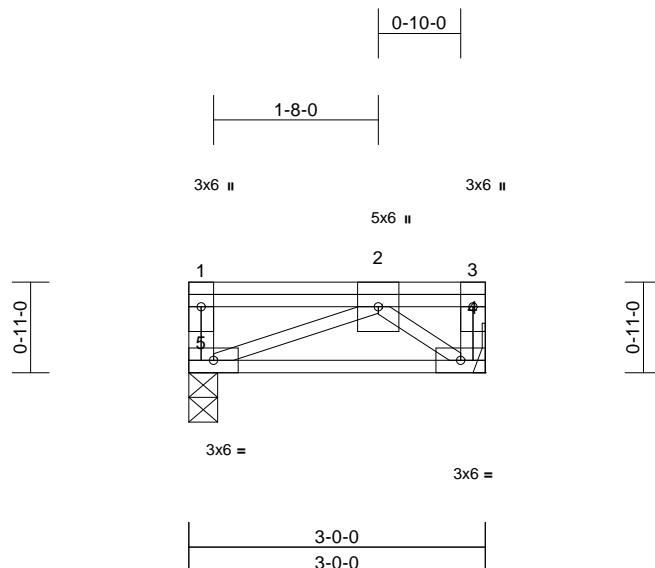
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All bearings are assumed to be SP No.2 .
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F214	Truss Type Floor Girder	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709421 Job Reference (optional)
-------------------	---------------	----------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:04
ID:prrsKp43K5Ztn1X6qlCC5yeBkK-RfC?PsB70Hq3NSgPqnL8w3uTxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(CT)	-0.01	4-5	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 21 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

Vert: 2=643

3) Dead + Roof Live (balanced): Lumber Increase=0.90,
Plate Increase=0.90 Plt. metal=0.90
Uniform Loads (lb/ft)
Vert: 4-5=-10, 1-3=-400 (F=-380)
Concentrated Loads (lb)
Vert: 2=-182

BRACING

TOP CHORD Structural wood sheathing directly applied or
3-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing.

REACTIONS (size) 4= Mechanical, 5=0-3-8

Max Grav 4=942 (LC 4), 5=782 (LC 4)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-5=-348/0, 3-4=-142/0, 1-2=0/0, 2-3=0/0

BOT CHORD 4-5=0/1034

WEBS 2-5=-1116/0, 2-4=-1299/0

NOTES

- Unbalanced floor live loads have been considered for this design.
- Bearings are assumed to be: Joint 5 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Load case(s) 1, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Floor Live (balanced): Lumber Increase=1.00,
Plate Increase=1.00
Uniform Loads (lb/ft)
Vert: 4-5=-10, 1-3=-340 (F=-240)
Concentrated Loads (lb)

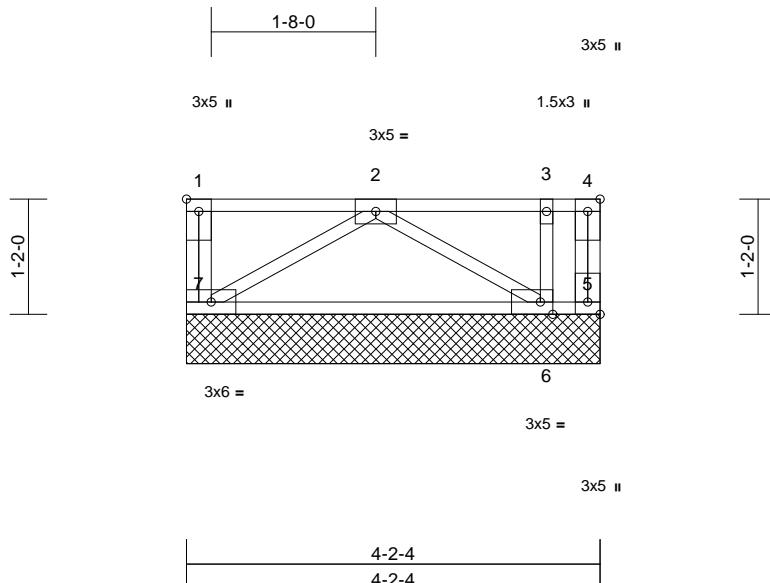
November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI95 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
Engineering by
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932



Job 25100169-A	Truss F216	Truss Type Floor	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709423
-------------------	---------------	---------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:05
ID:vtFJvt7pEBY_mmvPENWUwVyeAot-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Plate Offsets (X, Y): [1:Edge,0-1-8], [5:Edge,0-1-8], [6:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 25 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-2-4 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 5=4-2-4, 6=4-2-4, 7=4-2-4
Max Uplift 5=-53 (LC 1)
Max Grav 5=-53 (LC 1), 6=302 (LC 1), 7=185 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-7=-71/0, 4-5=0/22, 1-2=0/0, 2-3=0/0, 3-4=0/0

BOT CHORD 6-7=0/171, 5-6=0/0

WEBS 2-7=-198/0, 2-6=-200/0, 3-6=-142/0

NOTES

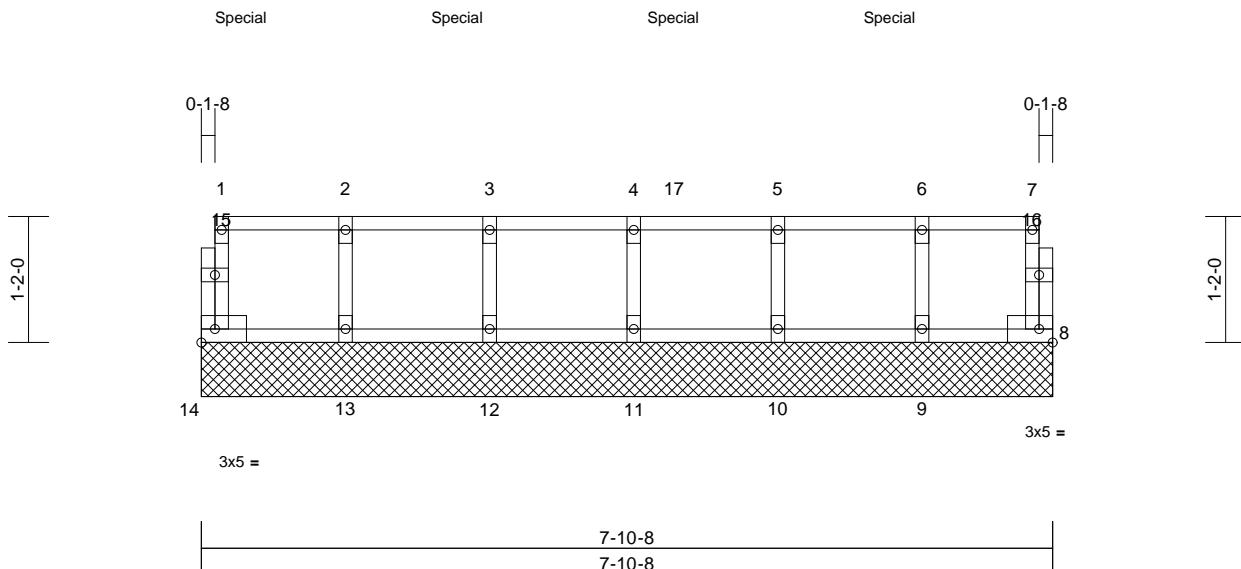
- 1) Gable requires continuous bottom chord bearing.
- 2) All bearings are assumed to be SP No.2.
- 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 5.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 25100169-A	Truss F217	Truss Type Floor Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-2nd Floor-Chatham C I77709424
-------------------	---------------	-------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:46:05
ID: ?qVap0tEvAEiM3tA2yEp?ye9RP-RfC?PsB70Hq3NSgPqnL8w3uTxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:21.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-R						Weight: 35 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

BOT CHORD 2x4 SP No.2(flat)

WEBS 2x4 SP No.3(flat)

OTHERS 2x4 SP No.3(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 8=7-10-8, 9=7-10-8, 10=7-10-8, 11=7-10-8, 12=7-10-8, 13=7-10-8, 14=7-10-8
Max Uplift 14=-4 (LC 7)

Max Grav 8=54 (LC 1), 9=249 (LC 6), 10=175 (LC 6), 11=256 (LC 6), 12=259 (LC 6), 13=150 (LC 1), 14=208 (LC 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-14=-205/8, 7-8=-48/0, 1-2=-13/0, 2-3=-13/0, 3-4=-13/0, 4-5=-13/0, 5-6=-13/0, 6-7=-13/0

BOT CHORD 13-14=0/13, 12-13=0/13, 11-12=0/13, 10-11=0/13, 9-10=0/13, 8-9=0/13

WEBS 2-13=-135/0, 3-12=-246/0, 4-11=-242/0, 5-10=-161/0, 6-9=-240/2

NOTES

- Unbalanced floor live loads have been considered for this design.
- All plates are 1.5x3 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 14.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Recommend 2x6 strongbacks, on edge, spaced at 10-00-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 197 lb down and 14 lb up at 0-2-4, 189 lb down and 19 lb up at 2-4-8, and 189 lb down and 19 lb up at 4-4-8, and 189 lb down and 19 lb up at 6-4-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 8-14=-10, 1-7=-100

Concentrated Loads (lb)

Vert: 1=-84 (F), 3=-76 (F), 6=-76 (F), 17=-76 (F)

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

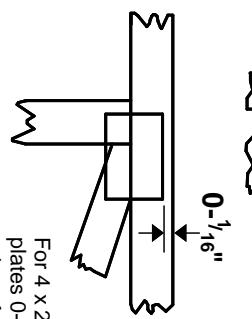

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.


* Plate location details available in MiTek software or upon request.

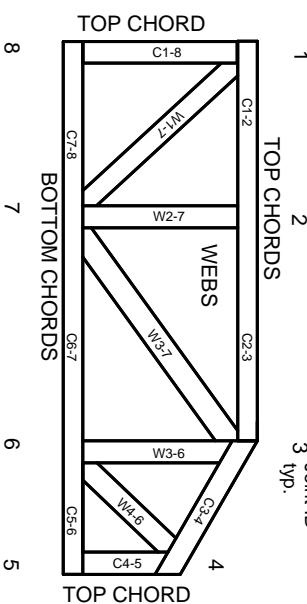
PLATE SIZE

4 x 4

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

- ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
- DSB-22: Design Standard for Bracing.
- BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

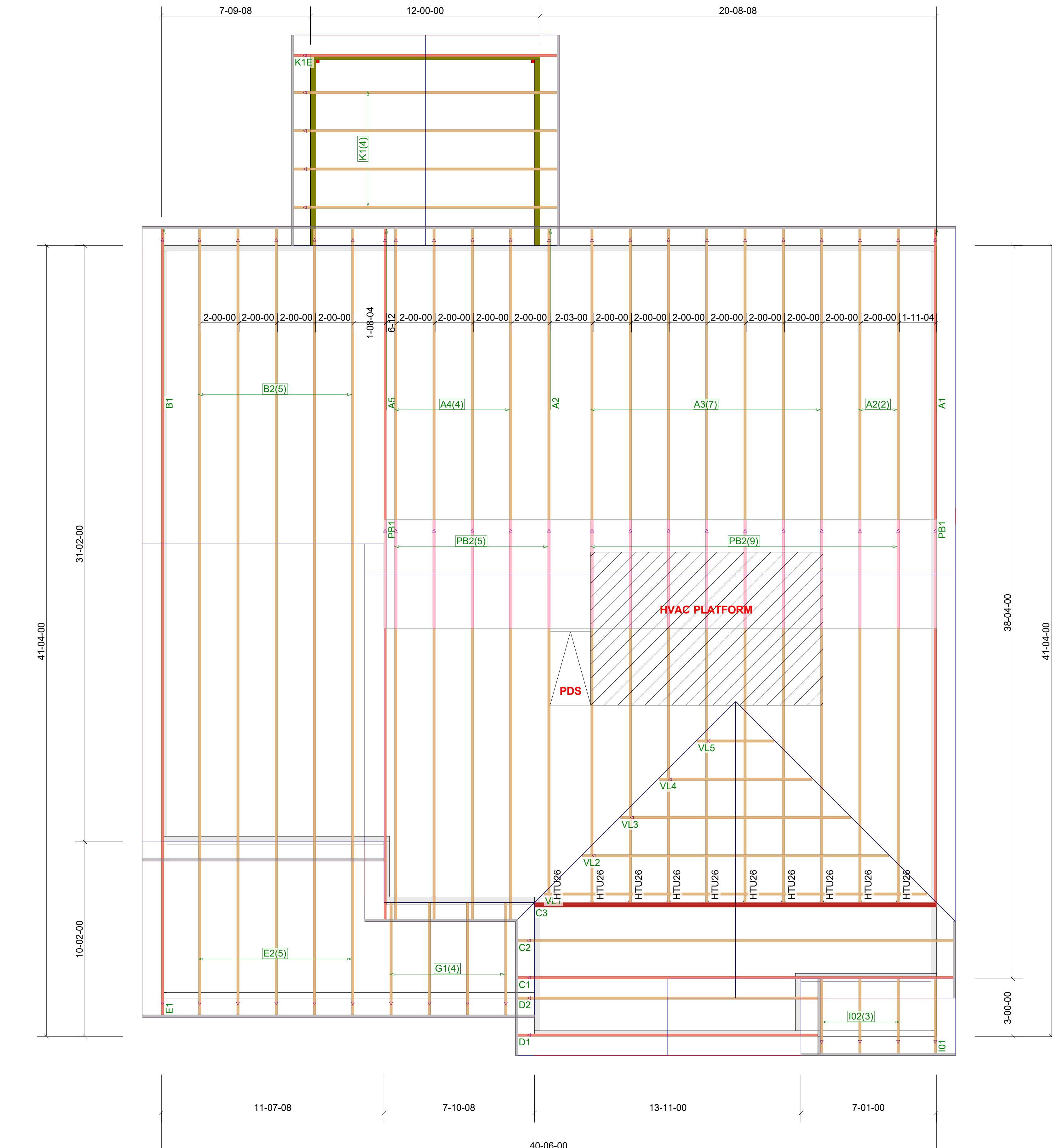
16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.


21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®
ENGINEERING BY
TRENGO
A MiTek Affiliate

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

Truss Connector Total List		
Manuf	Product	Qty
Simpson	HTU26	10
	One H2.5A	68

38-04-00

41-04-00

300.00

CRH Homes LLC

**K20 Carolina
Seasons-Roof-Chatham C**

ROOF PLACEMENT PLAN

Scale:	NTS
Date:	11/11/2025
Designer:	Mike Finch
Project Number:	25100169-01
Sheet Number:	

1/1

** FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS. ** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT. ** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. ** UPLIFT CONNECTORS SHOWN WITHIN THESE DOCUMENTS ARE RECOMMENDATIONS ONLY. PER ANSI/TPI 1, ALL UPLIFT CONNECTORS ARE THE RESPONSIBILITY OF THE BLDG DESIGNER AND OR CONTRACTOR.

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult 'Bracing of Wood Trusses' available from the Truss Plate Institute, 583 Donniford Drive: Madison, WI 53179

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

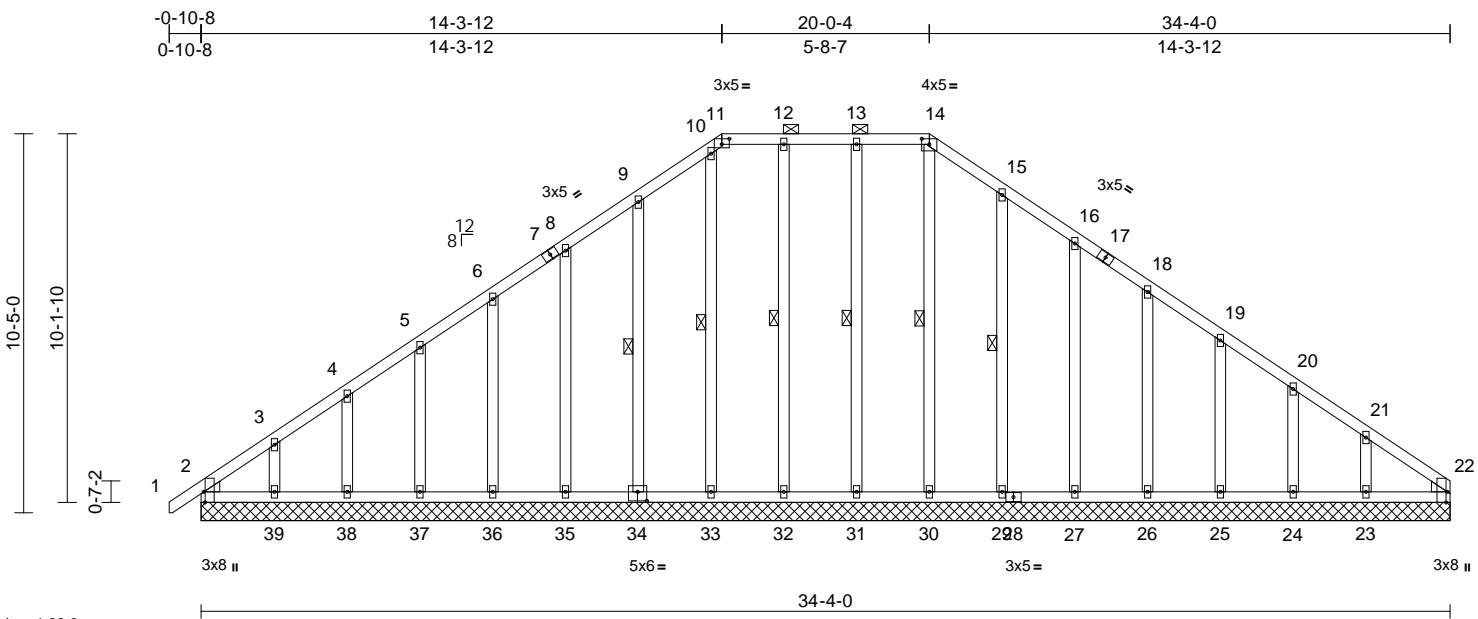
**

**

**

**

**


**

Job 25100169-01	Truss A1	Truss Type Piggyback Base Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709483
--------------------	-------------	--	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:30
ID:1zIIFTs?cQzklsRryhC29lyeBE9-RfC?PsB70Hq3NsPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.3

Plate Offsets (X, Y): [2:0-3-8,Edge], [11:0-2-8,0-1-13], [14:0-2-8,0-1-13], [22:0-3-8,Edge], [34:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.01	22	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							
BCDL	10.0										
Weight: 257 lb FT = 20%											

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 11-14.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 14-30, 13-31, 12-32, 10-33, 9-34, 15-29

REACTIONS (size) 2=34-4-0, 22=34-4-0, 23=34-4-0, 24=34-4-0, 25=34-4-0, 26=34-4-0, 27=34-4-0, 29=34-4-0, 30=34-4-0, 31=34-4-0, 32=34-4-0, 33=34-4-0, 34=34-4-0, 35=34-4-0, 36=34-4-0, 37=34-4-0, 38=34-4-0, 39=34-4-0

Max Horiz 2=186 (LC 12)

Max Uplif 2=53 (LC 9), 23=52 (LC 14), 24=18 (LC 14), 25=28 (LC 14), 26=25 (LC 14), 27=27 (LC 14), 29=25 (LC 14), 31=5 (LC 10), 32=1 (LC 10), 34=33 (LC 13), 35=26 (LC 13), 36=25 (LC 13), 37=28 (LC 13), 38=19 (LC 13), 39=55 (LC 13)

Max Grav 2=176 (LC 30), 22=105 (LC 32), 23=212 (LC 30), 24=151 (LC 30), 25=168 (LC 30), 26=164 (LC 30), 27=165 (LC 30), 29=171 (LC 30), 30=137 (LC 36), 31=168 (LC 35), 32=159 (LC 36), 33=152 (LC 32), 34=169 (LC 29), 35=164 (LC 29), 36=165 (LC 29), 37=166 (LC 29), 38=159 (LC 2), 39=189 (LC 29)

FORCES

TOP CHORD (lb) - Maximum Compression/Maximum Tension
1-2=0/35, 2-3=-176/154, 3-4=-144/129, 4-5=-127/112, 5-6=-117/108, 6-8=-109/107, 8-9=-119/162, 9-10=-150/222, 10-11=-132/186, 11-12=-131/206, 12-13=-131/206, 13-14=-131/206, 14-15=-153/227, 15-16=-123/171, 16-18=-99/115, 18-19=-75/59, 19-20=-70/37, 20-21=-80/52, 21-22=-125/79

BOT CHORD 2-39=-93/126, 38-39=-61/126, 37-38=-61/126, 36-37=-61/126, 35-36=-61/126, 33-35=-61/126, 32-33=-61/125, 31-32=-61/125, 30-31=-61/125, 29-30=-61/125, 27-29=-61/125, 26-27=-61/125, 25-26=-61/125, 24-25=-61/125, 23-24=-61/125, 22-23=-61/125

WEBS 14-30=-97/7, 13-31=-135/45, 12-32=-119/25, 10-33=-112/15, 9-34=-150/87, 8-35=-143/75, 6-36=-143/76, 5-37=-143/76, 4-38=-143/75, 3-39=-146/83, 15-29=-148/75, 16-27=-144/78, 18-26=-143/75, 19-25=-145/77, 20-24=-138/72, 21-23=-163/90

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-0 to 2-7-4, Exterior(2N) 2-7-4 to 14-3-12, Corner(3R) 14-3-12 to 18-0-4, Exterior(2N) 18-0-4 to 20-0-4, Corner(3R) 20-0-4 to 23-5-7, Exterior(2N) 23-5-7 to 34-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss A1	Truss Type Piggyback Base Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
--------------------	-------------	--	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:30
ID:1zlFTs?cQkzlSRyhC29lyeBE9-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 2

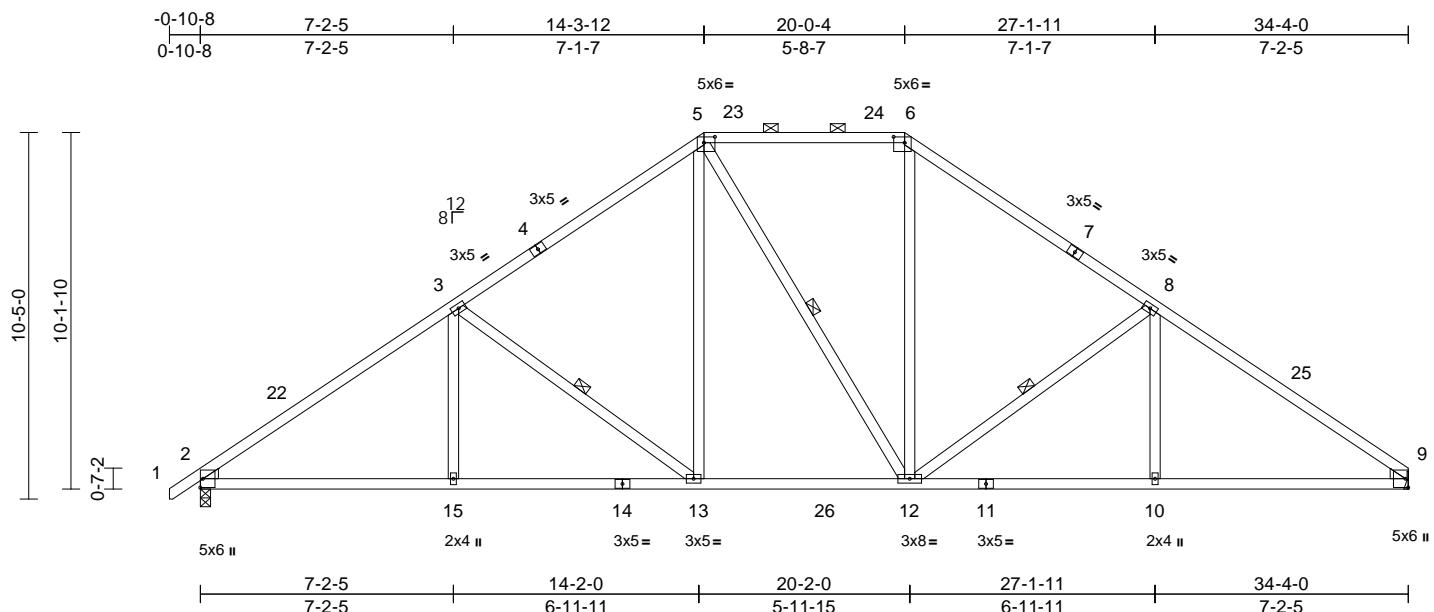
12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2, 5 lb uplift at joint 31, 1 lb uplift at joint 32, 33 lb uplift at joint 34, 26 lb uplift at joint 35, 25 lb uplift at joint 36, 28 lb uplift at joint 37, 19 lb uplift at joint 38, 55 lb uplift at joint 39, 25 lb uplift at joint 29, 27 lb uplift at joint 27, 25 lb uplift at joint 26, 28 lb uplift at joint 25, 18 lb uplift at joint 24, 52 lb uplift at joint 23 and 53 lb uplift at joint 2.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss A2	Truss Type Piggyback Base	Qty 3	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709484
--------------------	-------------	------------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:31
ID:9kZbl6MQMyITu3kci_k4NdyeBDh-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.5

Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-3-12,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.12	12-13	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.24	13-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.09	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 198 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except* 12-5:2x4 SP No.2
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (4-6-3 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 3-13, 5-12, 8-12

REACTIONS (size) 2=0-3-8, 9= Mechanical
Max Horiz 2=187 (LC 12)
Max Grav 2=1563 (LC 29), 9=1513 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/35, 2-3=-2446/94, 3-5=-1910/164, 5-6=-1505/184, 6-8=-1904/166, 8-9=-2442/100

BOT CHORD 2-15=-77/1936, 13-15=-33/1936, 12-13=0/1409, 10-12=8/1933, 9-10=-37/1933

WEBS 3-15=0/267, 3-13=-640/111, 5-13=0/645, 5-12=-148/150, 6-12=0/633, 8-12=-643/112, 8-10=0/268

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-7-4, Interior (1) 2-7-4 to 14-3-12, Exterior(2R) 14-3-12 to 19-2-1, Interior (1) 19-2-1 to 20-0-4, Exterior(2R) 20-0-4 to 24-10-8, Interior (1) 24-10-8 to 34-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearings are assumed to be: Joint 2 SP No.2 .
- 8) Refer to girder(s) for truss to truss connections.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

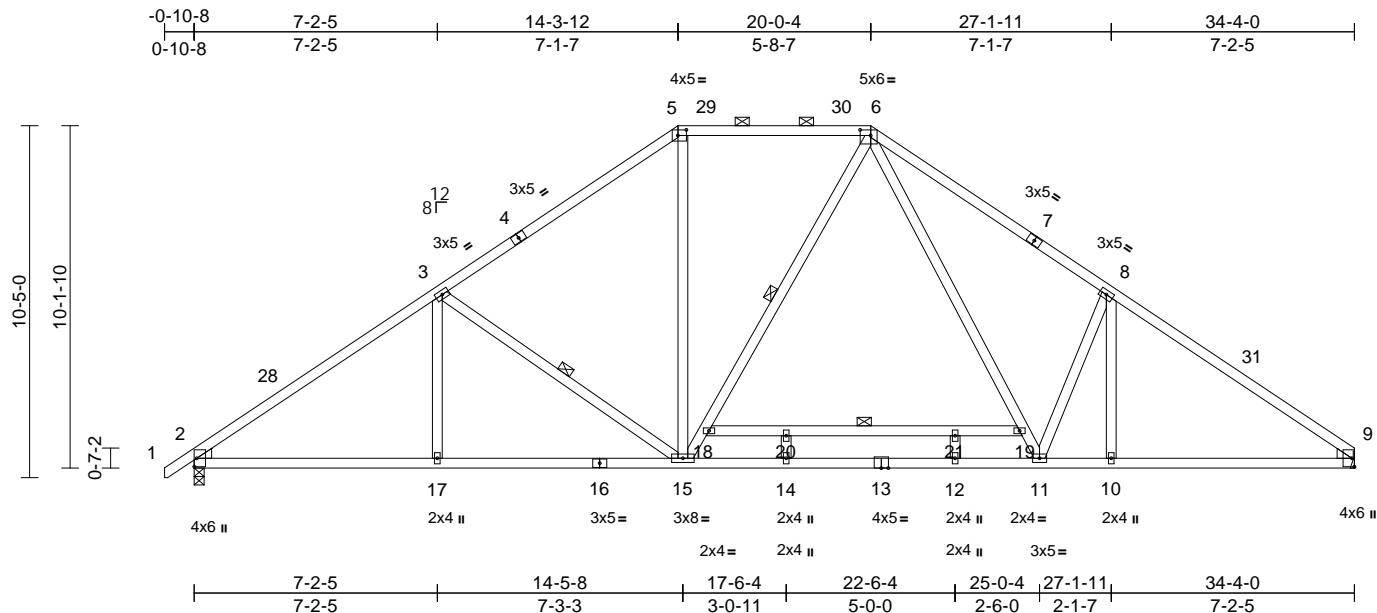
LOAD CASE(S) Standard

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss A3	Truss Type Piggyback Base	Qty 7	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709485
--------------------	-------------	------------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:31
ID:WKK1DfX9qEHEVPAUy9ACByeBC0-Rfc?PsB70Hq3NSgPqnL8w3uTxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.2

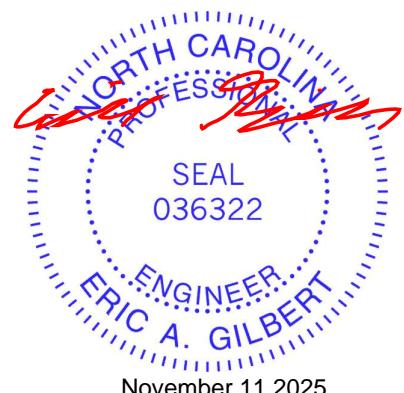
Plate Offsets (X, Y): [5:0-3-0,0-2-0], [6:0-3-12,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.08	15-17	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.50	12-14	>830	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.08	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 211 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except* 13-9:2x4 SP No.1
WEBS 2x4 SP No.3 *Except* 6-15,6-11,18-19:2x4
SP No.2
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING


TOP CHORD Structural wood sheathing directly applied, except
2-0-0 oc purlins (4-6-13 max.): 5-6.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing.
WEBS 1 Row at midpt 3-15, 6-15, 18-19
REACTIONS (size) 2=0-3-8, 9= Mechanical
Max Horiz 2=187 (LC 12)
Max Grav 2=1507 (LC 2), 9=1489 (LC 2)
FORCES (lb) - Maximum Compression/Maximum
Tension
TOP CHORD 1-2=0/35, 2-3=-2171/0, 3-5=-1734/5,
5-6=-1381/49, 6-8=-2139/0, 8-9=-2221/0
BOT CHORD 2-17=-43/1713, 15-17=0/1713, 14-15=0/1323,
12-14=0/1323, 11-12=0/1323, 10-11=0/1756,
9-10=0/1756
WEBS 3-17=0/117, 3-15=-531/135, 5-15=0/538,
8-10=-86/0, 15-18=-157/146, 6-18=-81/214,
6-19=0/792, 11-19=0/734, 8-11=-369/242,
18-20=-43/0, 20-21=-43/0, 19-21=-43/0,
14-20=0/77, 12-21=0/35

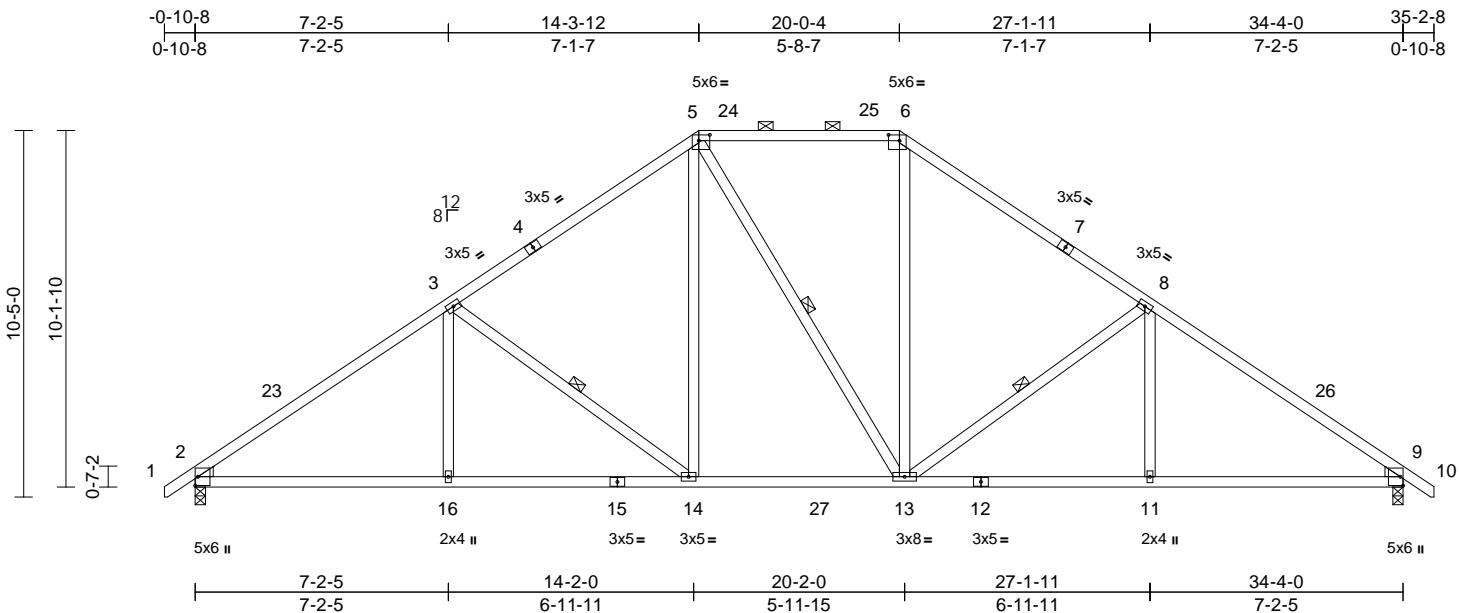
NOTES

1) Unbalanced roof live loads have been considered for
this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -0-10-0 to 2-7-4, Interior (1) 2-7-4 to
14-3-12, Exterior(2R) 14-3-12 to 19-2-1, Interior (1)
19-2-1 to 20-0-4, Exterior(2R) 20-0-4 to 24-10-8, Interior
(1) 24-10-8 to 34-4-0 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum
DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully
Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live
load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on
overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 20-0-4
from left end, supported at two points, 5-0-0 apart.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018
International Residential Code sections R502.11.1 and
R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss A4	Truss Type Piggyback Base	Qty 4	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709486
--------------------	-------------	------------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:31
ID:EtINj?0onELOgjz1T9RlpyeBAG-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCdoi7J4zJC?f

Page: 1

Scale = 1:65.5

Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-3-12,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.12	13-14	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.24	14-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.09	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 199 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 13-5:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (4-6-3 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 3-14, 5-13, 8-13

REACTIONS (size) 2=0-3-8, 9=0-3-8

Max Horiz 2=190 (LC 11)

Max Grav 2=1562 (LC 29), 9=1559 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/35, 2-3=-2445/93, 3-5=-1909/163,

5-6=-1504/183, 6-8=-1903/163,

8-9=-2438/93, 9-10=0/35

BOT CHORD 2-16=-72/1938, 14-16=-9/1938,

13-14=0/1411, 11-13=0/1934, 9-11=-12/1934

WEBS 3-16=0/267, 3-14=-640/111, 5-14=0/645,

5-13=-148/150, 6-13=0/631, 8-13=-640/111,

8-11=0/267

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-7-4, Interior (1) 2-7-4 to 14-3-12, Exterior(2R) 14-3-12 to 19-2-1, Interior (1) 19-2-1 to 20-0-4, Exterior(2R) 20-0-4 to 24-10-8, Interior (1) 24-10-8 to 35-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2 .
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

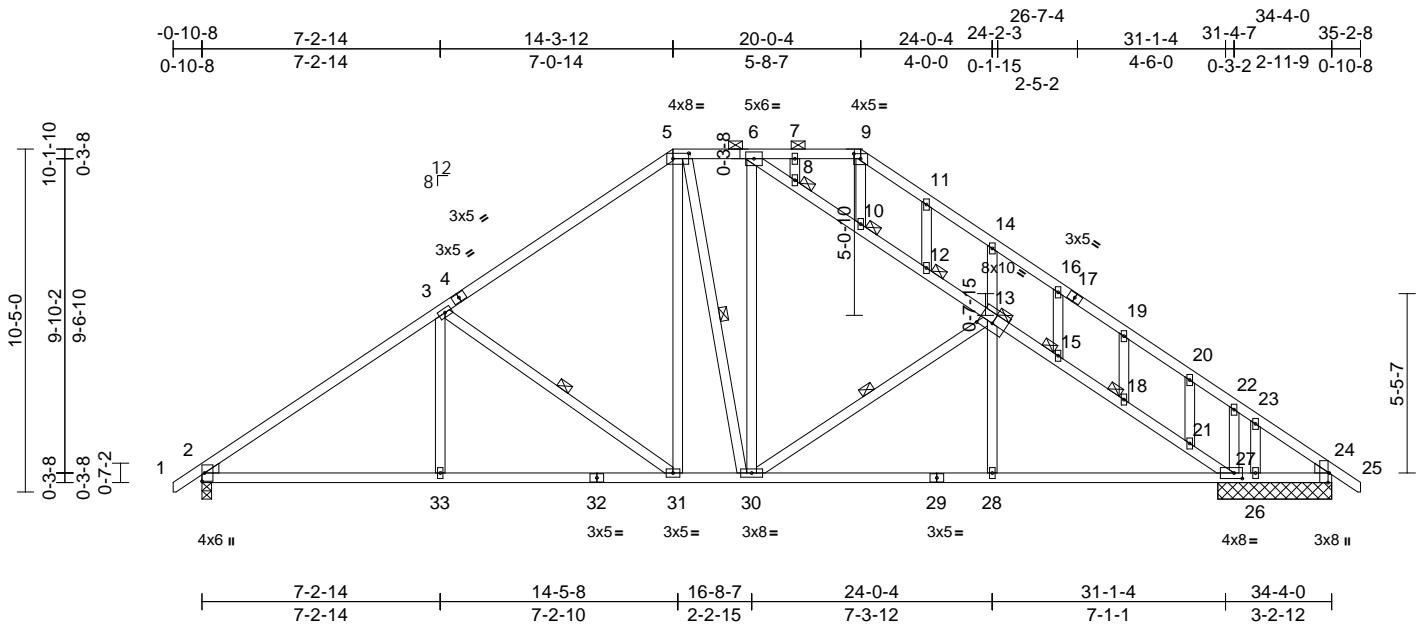
LOAD CASE(S) Standard

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss A5	Truss Type Piggyback Base Structural Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709487
--------------------	-------------	---	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32
ID:Rt9W?RbLAAjyGhvgfnVw0DyeB8E-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70

Plate Offsets (X, Y): [5:0-5-12,0-2-0], [9:0-2-8,0-1-13], [13:0-5-0,0-2-12], [24:0-3-8,Edge], [27:0-3-0,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.07	31-33	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.18	31-33	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.07	24	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							
BCDL	10.0										
Weight: 249 lb FT = 20%											

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

WEBS

9-10=-33/98, 7-8=-29/19, 11-12=-88/45,
13-14=-262/148, 15-16=-74/39,
18-19=-68/35, 20-21=-82/56, 23-26=-40/181,
3-33=0/155, 3-31=-618/196, 5-31=-53/440,
5-30=-164/152, 6-30=-56/397,
13-30=-486/121, 13-28=0/150,
22-27=-437/174

10) All bearings are assumed to be SP No.2 .

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 637 lb uplift at joint 26.

12) N/A

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-6-5 oc purlins, except 2-0-0 oc purlins (5-3-12 max.): 5-9, 6-27.

NOTES

1) Unbalanced roof live loads have been considered for this design.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust)

WEBS 1 Row at midpt 3-31, 5-30, 13-30
JOINTS 1 Brace at Jt(s): 10, 8, 12, 15, 18, 13

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-10-0 to 2-7-4, Exterior(2N) 2-7-4 to 14-3-12, Corner(3R) 14-3-12 to 18-0-4, Exterior(2N) 18-0-4 to 20-0-4, Corner(3R) 20-0-4 to 23-5-7, Exterior(2N) 23-5-7 to 35-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber

REACTIONS (size) 2=0-3-8, 24=3-5-8, 26=3-5-8, 27=3-5-8
Max Horiz 2=190 (LC 11)

DOL=1.60 plate grip DOL=1.33

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Max Uplift 26=-637 (LC 2), 27=-112 (LC 14)
Max Grav 2=1318 (LC 2), 24=476 (LC 2), 26=15 (LC 14), 27=1690 (LC 2)

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

FORCES (lb) - Maximum Compression/Maximum Tension

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

TOP CHORD 1-2=0/35, 2-3=-1944/256, 3-5=-1453/275, 5-6=-1148/274, 6-7=-444/170, 7-9=-445/170, 9-11=-542/181, 11-14=-548/142,

14-16=-461/48, 16-19=-486/11, 19-20=-528/0, 20-22=-535/0, 22-23=-356/18, 23-24=-508/0, 24-25=0/35, 6-8=-858/124,

8-10=-875/135, 10-12=-820/117, 12-15=-1280/218, 15-18=-1321/240, 18-21=-1359/259, 21-27=-1405/290

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

BOT CHORD 2-33=-94/1514, 31-33=-94/1514, 30-31=0/1027, 28-30=-26/1411, 27-28=-26/1412, 26-27=0/393, 24-26=0/393

6) Provide adequate drainage to prevent water ponding.

7) All plates are 2x4 MT20 unless otherwise indicated.

8) Gable studs spaced at 2-0-0 oc.

9) * This truss has been designed for a live load of 20.0psf

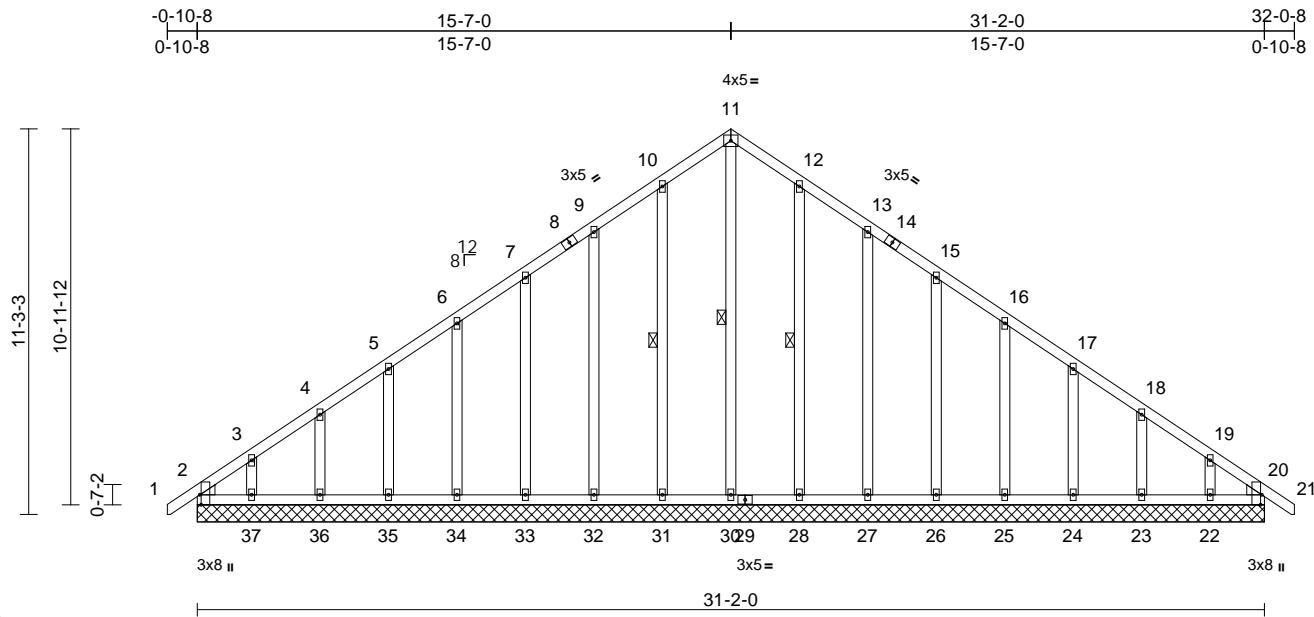
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members.

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss B1	Truss Type Common Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32 ID:9us0N6XGo8YudtgD9uCAgyeB70-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32
ID:9us0N6XGo8YudtgD9uCAgyeB70-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Scale = 1:67.3

Plate Offsets (X, Y): [2:0-3-8,Edge], [20:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.01	20	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							
BCDL	10.0										
Weight: 229 lb FT = 20%											

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3 *Except* 30-11:2x4 SP No.2
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 11-30, 10-31, 12-28

REACTIONS (size) 2=31-2-0, 20=31-2-0, 22=31-2-0, 23=31-2-0, 24=31-2-0, 25=31-2-0, 26=31-2-0, 27=31-2-0, 28=31-2-0, 30=31-2-0, 31=31-2-0, 32=31-2-0, 33=31-2-0, 34=31-2-0, 35=31-2-0, 36=31-2-0, 37=31-2-0

Max Horiz 2=206 (LC 12)
Max Uplift 2=63 (LC 9), 20=12 (LC 10), 22=51 (LC 14), 23=22 (LC 14), 24=27 (LC 14), 25=26 (LC 14), 26=25 (LC 14), 27=29 (LC 14), 28=19 (LC 14), 31=21 (LC 13), 32=29 (LC 13), 33=25 (LC 13), 34=25 (LC 13), 35=27 (LC 13), 36=20 (LC 13), 37=58 (LC 13)

Max Grav 2=170 (LC 30), 20=130 (LC 29), 22=157 (LC 30), 23=167 (LC 30), 24=164 (LC 30), 25=165 (LC 30), 26=165 (LC 30), 27=165 (LC 30), 28=169 (LC 30), 30=172 (LC 14), 31=172 (LC 29), 32=164 (LC 29), 33=165 (LC 29), 34=165 (LC 29), 35=165 (LC 29), 36=165 (LC 29), 37=168 (LC 29)

FORCES

TOP CHORD (lb) - Maximum Compression/Maximum Tension
1-2=0/35, 2-3=-194/166, 3-4=-164/145, 4-5=-137/127, 5-6=-122/110, 6-7=-113/109, 7-8=-104/135, 9-10=-125/193, 10-11=-154/243, 11-12=-154/243, 12-13=-125/193, 13-15=-98/135, 15-16=-75/80, 16-17=-67/41, 17-18=-76/54, 18-19=-105/73, 19-20=-156/97, 20-21=0/35
BOT CHORD 2-37=-106/167, 36-37=-82/167, 35-36=-82/167, 34-35=-82/167, 33-34=-82/167, 32-33=-82/167, 31-32=-82/167, 30-31=-82/167, 28-30=-82/167, 27-28=-82/167, 26-27=-82/167, 25-26=-82/167, 24-25=-82/167, 23-24=-82/167, 22-23=-82/167, 20-22=-82/167
WEBS 11-30=-208/77, 10-31=-143/65, 9-32=-145/82, 7-33=-143/75, 6-34=-143/76, 5-35=-143/76, 4-36=-146/77, 3-37=-131/78, 12-28=-143/65, 13-27=-145/82, 15-26=-143/75, 16-25=-143/76, 17-24=-143/76, 18-23=-146/77, 19-22=-132/79

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-10-0 to 2-3-7, Exterior(2N) 2-3-7 to 15-7-0, Corner(3R) 15-7-0 to 18-8-6, Exterior(2N) 18-8-6 to 32-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .

November 11, 2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss B1	Truss Type Common Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
--------------------	-------------	--------------------------------------	----------	----------	---

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32
ID:9us0N6XGo8YudgtgD9uCAgyeB70-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

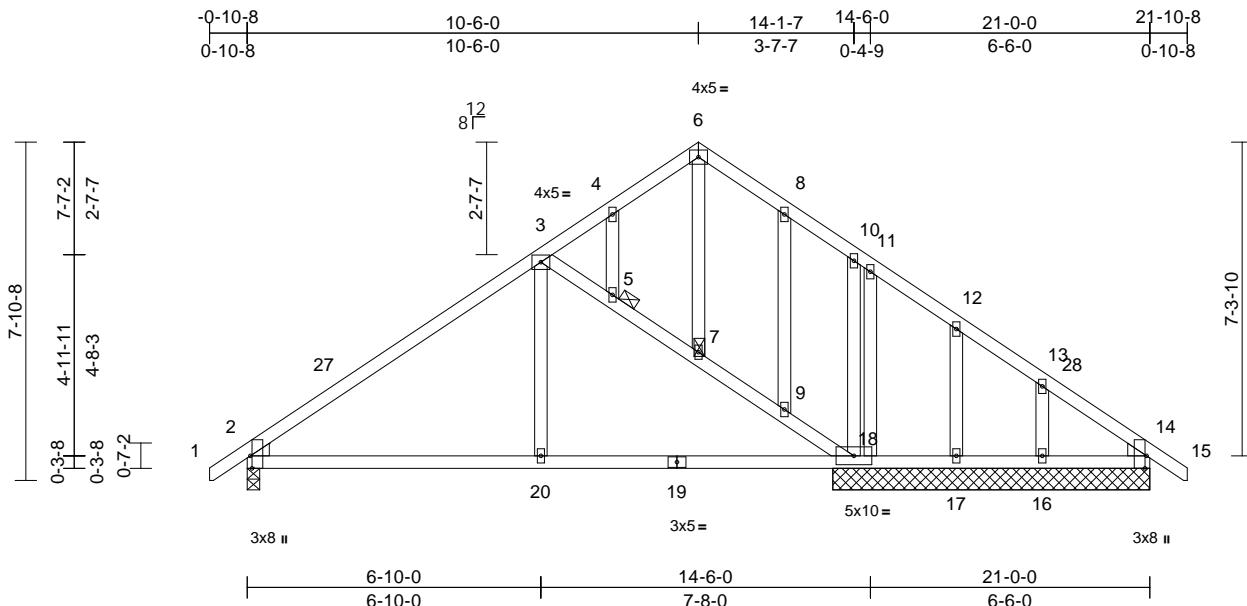
Page: 2

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 2, 12 lb uplift at joint 20, 21 lb uplift at joint 31, 29 lb uplift at joint 32, 25 lb uplift at joint 33, 25 lb uplift at joint 34, 27 lb uplift at joint 35, 20 lb uplift at joint 36, 58 lb uplift at joint 37, 19 lb uplift at joint 28, 29 lb uplift at joint 27, 25 lb uplift at joint 26, 26 lb uplift at joint 25, 27 lb uplift at joint 24, 22 lb uplift at joint 23, 51 lb uplift at joint 22, 63 lb uplift at joint 2 and 12 lb uplift at joint 20.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job 25100169-01	Truss C1	Truss Type Common Structural Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709490
--------------------	-------------	---------------------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32
ID:YXksLuvKYM9W2JYFRBO5r0yeB1M-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [14:0-3-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	0.05	20-23	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.09	20-23	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 131 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-0 to 2-2-0, Exterior(2N) 2-2-0 to 10-6-0, Corner(3R) 10-6-0 to 13-6-0, Exterior(2N) 13-6-0 to 21-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

JOINTS 1 Brace at Jt(s): 7, 5

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

REACTIONS (size) 2=0-3-8, 14=7-4-8, 16=7-4-8, 17=7-4-8, 18=7-4-8

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Max Horiz 2=137 (LC 12)

- All plates are 2x4 MT20 unless otherwise indicated.

Max Uplift 16=-51 (LC 14), 17=-27 (LC 14), 18=-3 (LC 14)

- Gable studs spaced at 2-0-0 oc.

Max Grav 2=626 (LC 2), 14=228 (LC 2), 16=202 (LC 30), 17=108 (LC 2), 18=580 (LC 2)

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

FORCES (lb) - Maximum Compression/Maximum Tension

- All bearings are assumed to be SP No.2 .

TOP CHORD 1-2=0/34, 2-3=701/87, 3-4=202/50,

- 10/11=-109/0, 11-12=-167/0, 12-13=-172/5, 13-14=-187/38, 14-15=0/34, 3-5=-519/160, 5-7=-542/174, 7-9=-530/163, 9-18=-563/194

BOT CHORD 2-20=-67/542, 18-20=0/542, 17-18=-46/207, 16-17=-46/207, 14-16=-46/207

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WEBS 6-7=-20/21, 4-5=-40/26, 8-9=-58/56,

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11-18=-35/62, 12-17=-127/75,

13-16=-158/109, 3-20=0/174, 10-18=-167/37

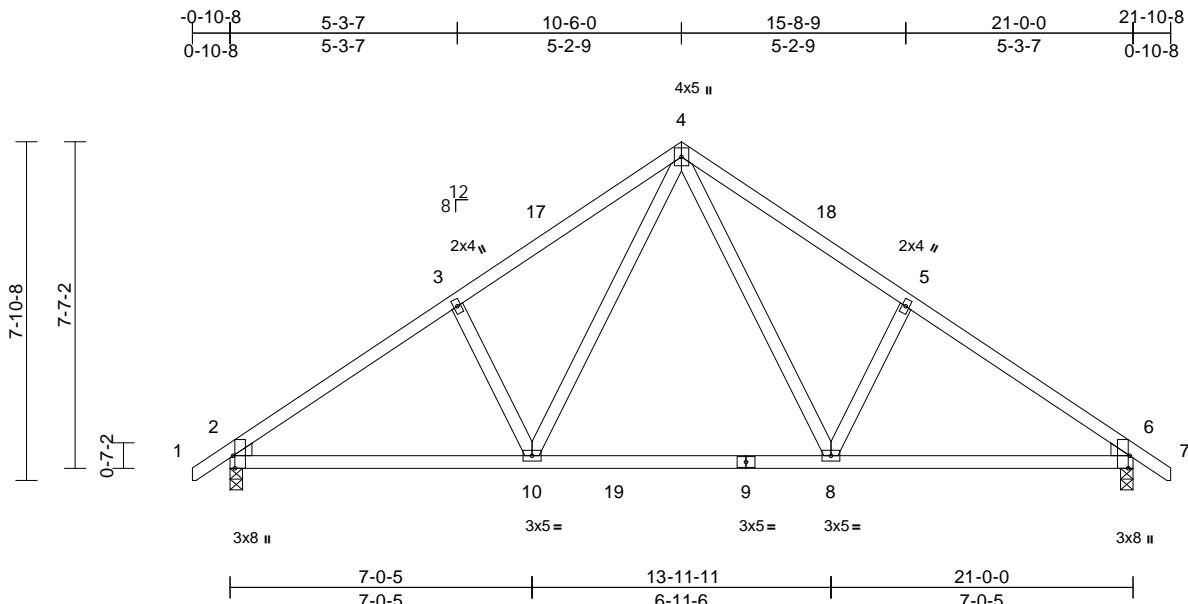
NOTES

- Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss C2	Truss Type Common	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709491
--------------------	-------------	----------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:32
ID:rQjMywP2uzKitcB7Kldj0fyB0j-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:53.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.10	8-10	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.15	8-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 108 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-9-11 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 6=0-3-8
Max Horiz 2=137 (LC 12)
Max Grav 2=965 (LC 29), 6=965 (LC 30)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/34, 2-3=-1418/121, 3-4=-1336/173, 4-5=-1335/173, 5-6=-1418/121, 6-7=0/34

BOT CHORD 2-10=-44/1111, 8-10=0/716, 6-8=-22/1112

WEBS 4-8=-50/603, 5-8=-314/138, 4-10=-50/604, 3-10=-314/138

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 10-6-0,
Exterior(2R) 10-6-0 to 13-6-0, Interior (1) 13-6-0 to 21-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.00

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be SP No.2 .

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

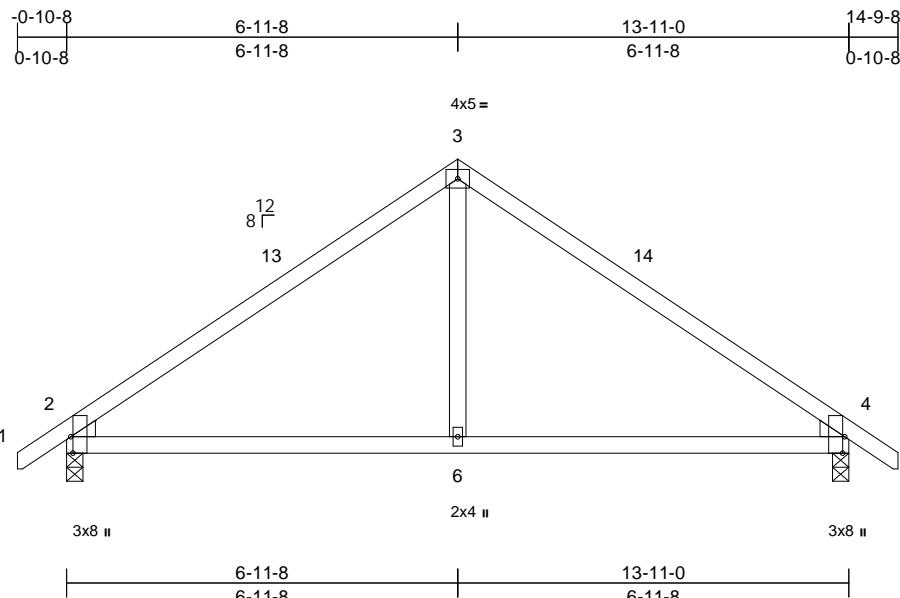
LOAD CASE(S)

Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss D2	Truss Type Common	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:33 ID:54Z2VEAWKQEMUqQsqqLeqryeB6B-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:41

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.07	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.12	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 57 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
WEDGE Left: 2x4 SP No.3
Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-9 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 4=0-3-8
Max Horiz 2=-94 (LC 11)
Max Grav 2=588 (LC 2), 4=588 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/34, 2-3=-672/124, 3-4=-672/124, 4-5=0/34

BOT CHORD 2-6=-36/456, 4-6=-35/456

WEBS 3-6=0/227

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 6-11-8,
Exterior(2R) 6-11-8 to 9-11-8, Interior (1) 9-11-8 to 14-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

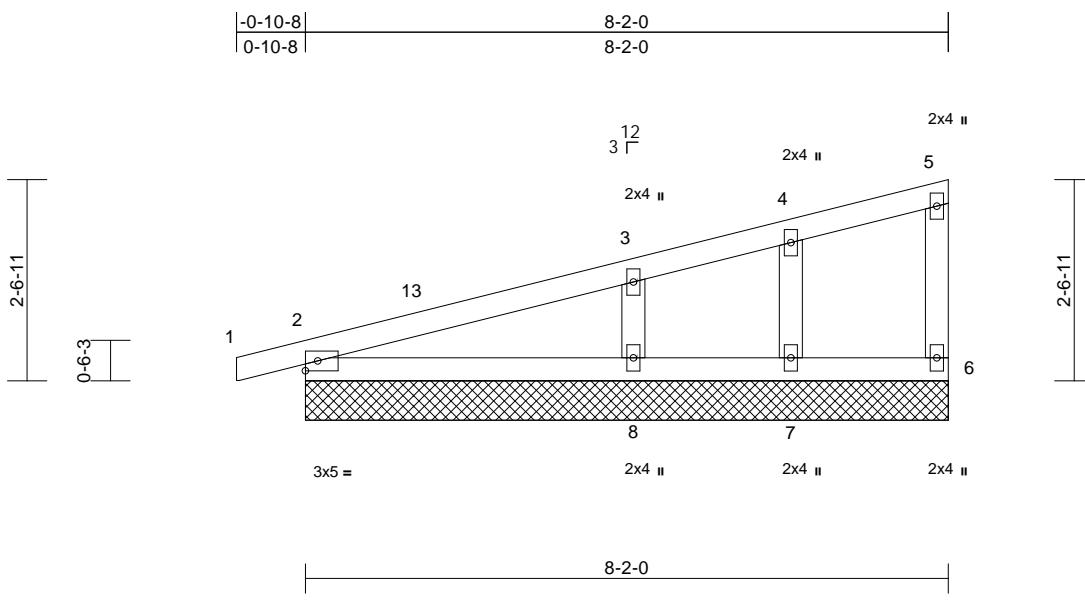
- All bearings are assumed to be SP No.2 .
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S)

Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss E1	Truss Type Monopitch Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709495
--------------------	-------------	---	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:33
ID:QxLELCxXdUy0qssgBgR63wyeB2d-RfC?PsB70Hq3Ns9PqnL8w3uTxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 33 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=8-2-0, 6=8-2-0, 7=8-2-0, 8=8-2-0
Max Horiz 2=66 (LC 14)
Max Uplift 2=19 (LC 11), 7=4 (LC 11), 8=16 (LC 15)
Max Grav 2=194 (LC 2), 6=77 (LC 22), 7=114 (LC 22), 8=354 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/16, 2-3=-154/87, 3-4=-79/55, 4-5=-48/49, 5-6=-65/67
BOT CHORD 2-8=-147/101, 7-8=-38/52, 6-7=-38/52
WEBS 4-7=-99/108, 3-8=-259/263

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-5 to 2-1-11, Exterior(2N) 2-1-11 to 8-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 4 lb uplift at joint 7, 16 lb uplift at joint 8 and 19 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S)

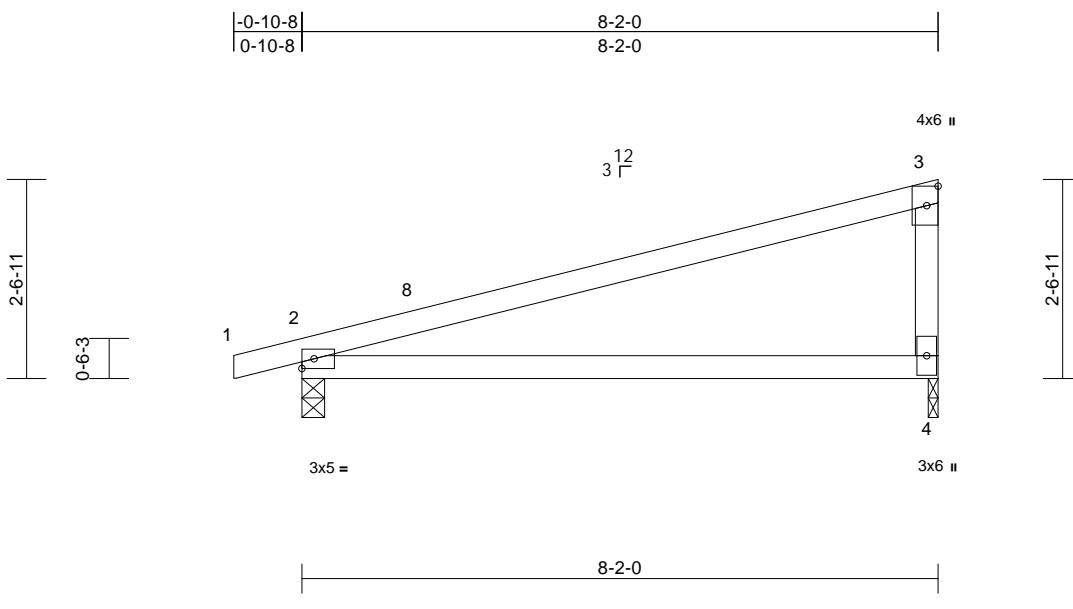
Standard

November 11, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate
818 Soundside Road
Edenton, NC 27932


Job 25100169-01	Truss E2	Truss Type Monopitch	Qty 5	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709496
--------------------	-------------	-------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:33
ID: 4XbCR6HjoOcvpJaFOGSvI2yeB2A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Page: 1

Scale = 1:29.6

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10'-0" oc bracing.

REACTIONS

Max Horiz 2=75 (LC 12)
Max Uplift 2=25 (LC 11), 4=12 (LC 15)
Max Grav 2=375 (LC 2), 4=349 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP 814

TOP CHORD 1-2=0/16, 2-3=-329/110, 3-4=-230/19
BOT CHORD 2-4=-285/304

NOTES

1) Wine

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-10-5 to 2-1-11, Interior (1) 2-1-11 to 8-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

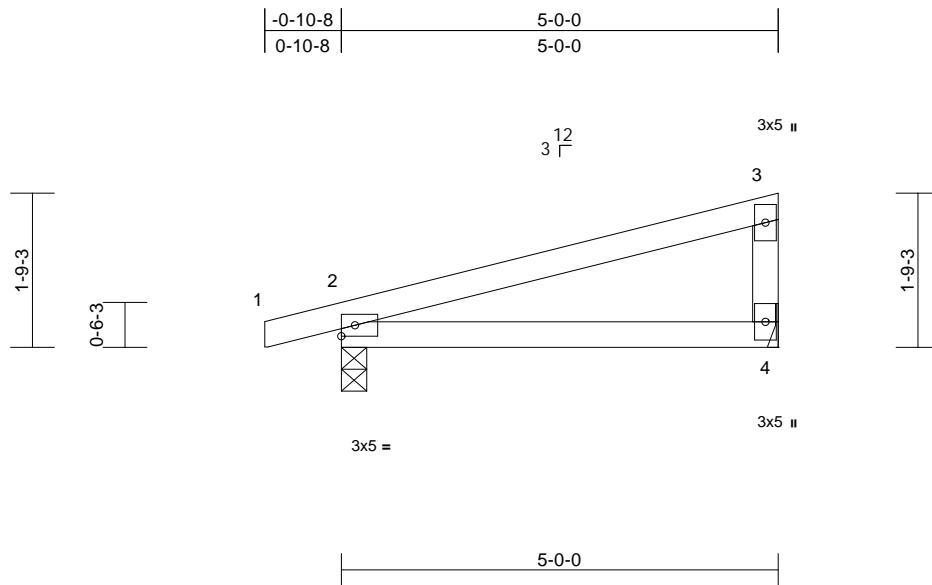
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2 .
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

LOAD CASE(S) Standard

A circular seal for a professional engineer. The outer ring contains the text "NORTH CAROLINA" at the top and "PROFESSIONAL" at the bottom. The inner circle contains the word "SEAL" at the top and the number "036322" in the center. The bottom half of the inner circle contains the words "ENGINEER" and "ERIC A. GILBERT". The entire seal is rendered in blue ink on a white background, with the name "ERIC A. GILBERT" partially crossed out with a red marker.

November 11, 2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK PREFERENCE PAGE MIL-Z173 rev. 1/2/2023 BEFORE USE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MI-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MitTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
ENGINEERING BY
A MITek Affiliate

Job 25100169-01	Truss G1	Truss Type Monopitch	Qty 4	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:33 ID: MtWrWN68YUv9OcbIE4YXWyeB23-RfC?PsB70Hq3NSgPqnL8w3uTxGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:26.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	0.01	4-7	>999	240		
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.02	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR						Weight: 18 lb	FT = 20%
BCDL	10.0										

LUMBER
 TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP No.2
 OTHERS 2x4 SP No.2

BRACING
 TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins.
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical
 Max Horiz 2=48 (LC 12)
 Max Uplift 2=25 (LC 11), 4=-7 (LC 15)
 Max Grav 2=278 (LC 22), 4=209 (LC 22)

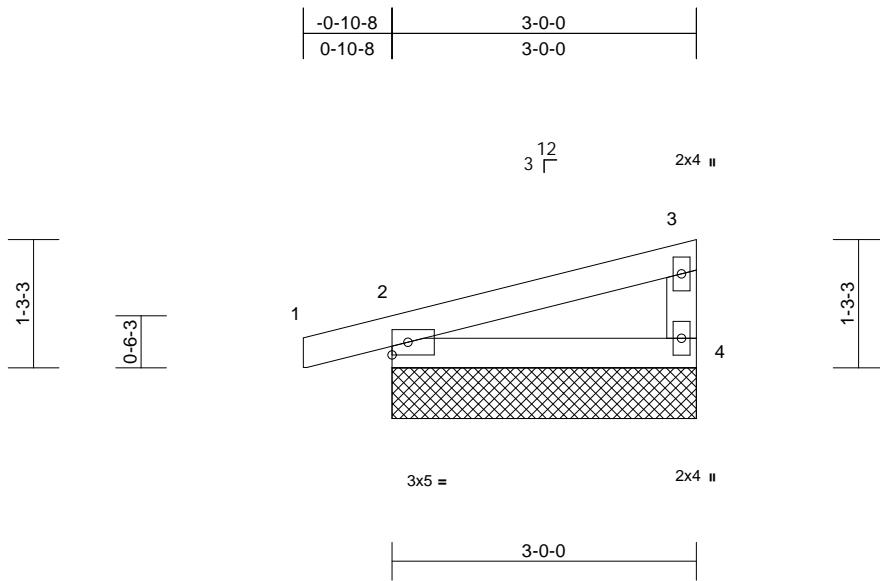
FORCES (lb) - Maximum Compression/Maximum Tension
 TOP CHORD 1-2=0/16, 2-3=-184/63, 3-4=-146/120
 BOT CHORD 2-4=-138/176

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
 $V_{asd}=103\text{ mph}$; $TCDL=6.0\text{ psf}$; $BCDL=6.0\text{ psf}$; $h=25\text{ ft}$; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E)-0-10-5 to 2-1-11, Interior (1) 2-1-11 to 4-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; $P_r=20.0\text{ psf}$ (roof LL: Lum DOL=1.15 Plate DOL=1.15); $P_g=20.0\text{ psf}$; $P_f=13.9\text{ psf}$ (Lum DOL=1.15 Plate DOL=1.15); $I_s=1.0$; Rough Cat B; Fully Exp.; $C_e=0.9$; $C_s=1.00$; $C_t=1.10$
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss I01	Truss Type Monopitch Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:33 ID:SmrW_81_8kj32_VY7G7qLyeB6N-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:22.7

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 12 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=3-0-0, 4=3-0-0
Max Horiz 2=28 (LC 14)
Max Uplift 2=26 (LC 11), 4=-1 (LC 15)
Max Grav 2=186 (LC 22), 4=116 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/16, 2-3=-91/42, 3-4=-91/103
BOT CHORD 2-4=-70/57

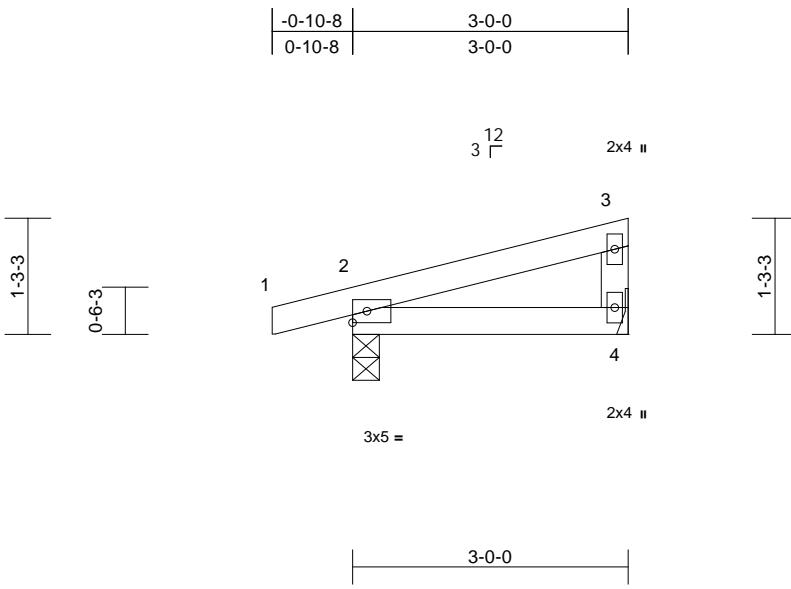
NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-5 to 2-1-11, Exterior(2N) 2-1-11 to 2-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- N/A
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

November 11, 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss I02	Truss Type Monopitch	Qty 3	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34 ID:5p1dxQzrKC5nxDdbKjYfeB6S-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:25.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	0.00	4-7	>999	240		
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	0.00	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR						Weight: 12 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical

Max Horiz 2=31 (LC 12)
Max Uplift 2=25 (LC 11), 4=-4 (LC 15)
Max Grav 2=186 (LC 22), 4=113 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/16, 2-3=-88/38, 3-4=-85/69
BOT CHORD 2-4=-62/89

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C
Exterior(2E)-0-10-5 to 2-1-11, Interior (1) 2-1-11 to 2-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

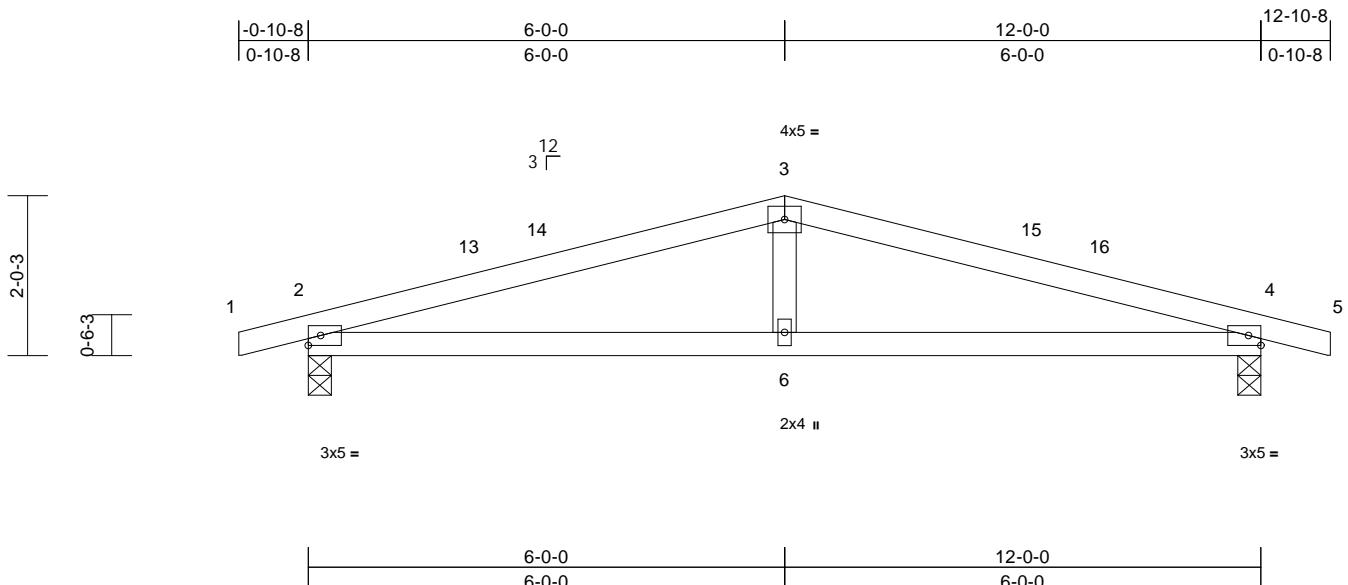
LOAD CASE(S) Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO
A MiTek Affiliate


818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss K1	Truss Type Common	Qty 4	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709500
--------------------	-------------	----------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34
ID:2RMYgZBFgcGqugwAZywshyTAvg-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	-0.04	6-9	>999	240	MT20	244/190
Snow (PfPg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	-0.08	6-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 41 lb	FT = 20%
BCDL	10.0										

LUMBER
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING
TOP CHORD Structural wood sheathing directly applied or 5-4-3 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 4=0-3-8
Max Horiz 2=17 (LC 11)
Max Uplift 2=20 (LC 11), 4=20 (LC 12)
Max Grav 2=531 (LC 2), 4=531 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/16, 2-3=-1027/317, 3-4=-1027/317, 4-5=0/16
BOT CHORD 2-6=-248/952, 4-6=-248/952
WEBS 3-6=0/140

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E)-0-10-5 to 2-1-11, Interior (1) 2-1-11 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 12-10-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL; Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 .
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at j(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

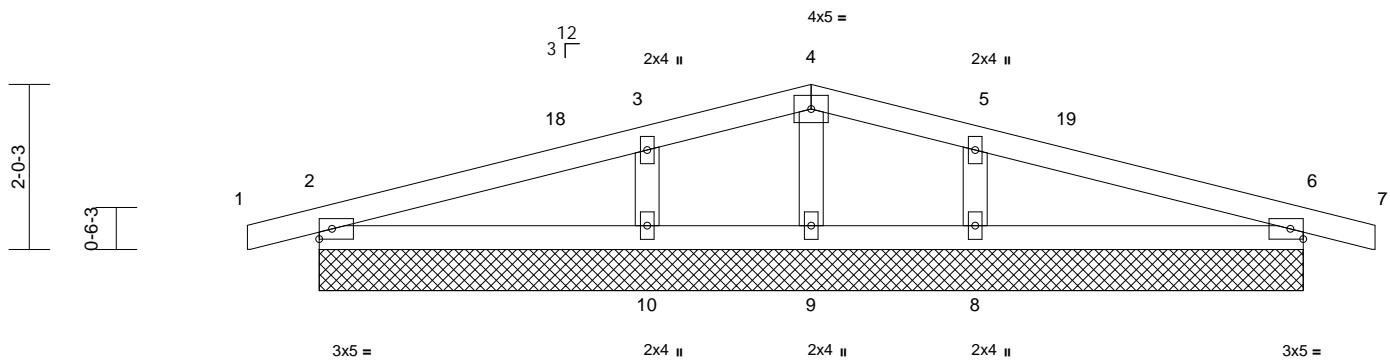
November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932


Job 25100169-01	Truss K1E	Truss Type Common Supported Gable	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)	I77709501
--------------------	--------------	--------------------------------------	----------	----------	---	-----------

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34
ID:2RMYgZBFgcGqugwAZywshyTAvp-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 | 6-0-0 | 12-0-0 | 12-10-8
0-10-8 | 6-0-0 | 6-0-0 | 0-10-8

Scale = 1:28.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 44 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=12-0-0, 6=12-0-0, 8=12-0-0,
9=12-0-0, 10=12-0-0
Max Horiz 2=17 (LC 11)
Max Uplift 2=24 (LC 11), 6=26 (LC 12),
8=13 (LC 16), 9=12 (LC 2),
10=14 (LC 15)
Max Grav 2=241 (LC 22), 6=241 (LC 23),
8=345 (LC 23), 9=13 (LC 16),
10=345 (LC 22)

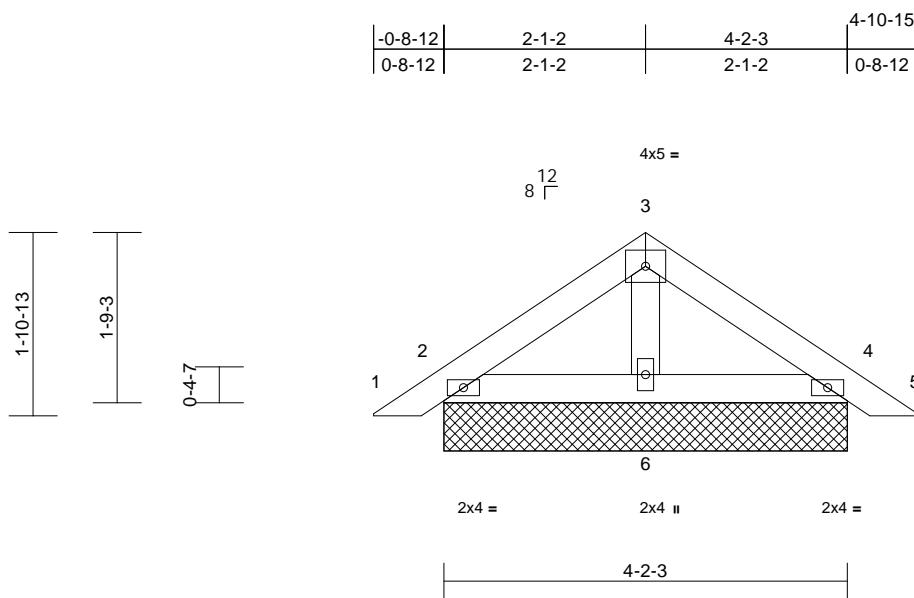
FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/16, 2-3=149/87, 3-4=161/139,
4-5=161/138, 5-6=150/86, 6-7=0/16
BOT CHORD 2-10=-29/120, 9-10=-26/120, 8-9=-26/120,
6-8=-28/120
WEBS 4-9=-5/27, 3-10=-247/218, 5-8=-247/218

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-5 to 2-1-11, Exterior(2N) 2-1-11 to 6-0-0, Corner(3R) 6-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 12-10-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 26 lb uplift at joint 6, 12 lb uplift at joint 9, 14 lb uplift at joint 10, 13 lb uplift at joint 8, 24 lb uplift at joint 2 and 26 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S)


Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS8-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job 25100169-01	Truss PB1	Truss Type Piggyback	Qty 2	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34 ID:ZmBsFW_zfQrtglseOzgpc5yeBEA-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:23.9

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999		
Snow (PfPg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 18 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-8-7 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=4-2-3, 4=4-2-3, 6=4-2-3
Max Horiz 2=32 (LC 11)
Max Uplift 2=7 (LC 13), 4=-10 (LC 14)
Max Grav 2=121 (LC 2), 4=121 (LC 2), 6=150 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/20, 2-3=-66/54, 3-4=-70/54, 4-5=0/20
BOT CHORD 2-6=5/35, 4-6=2/35
WEBS 3-6=-7/17

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

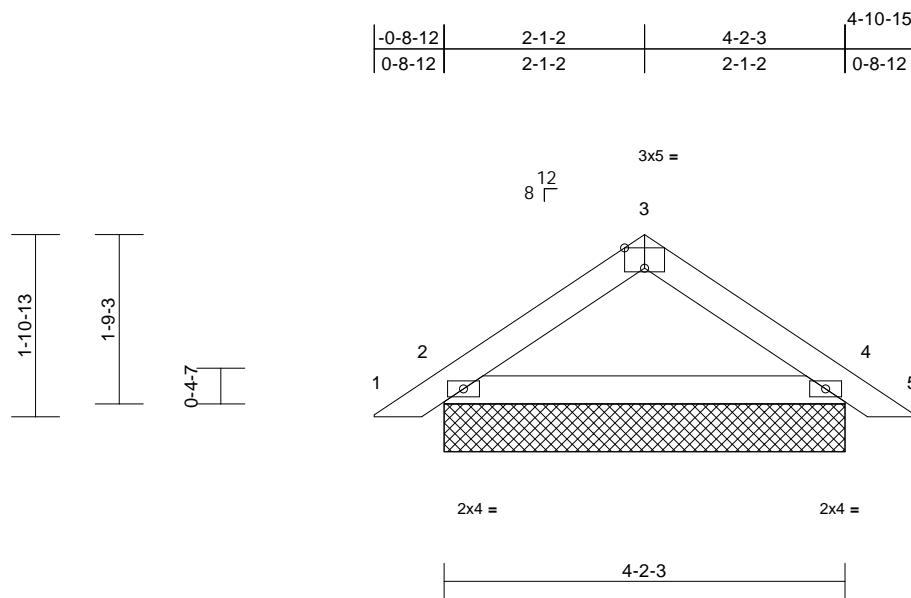
9) All bearings are assumed to be SP No.2 .

10) N/A

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

November 11, 2025

Job 25100169-01	Truss PB2	Truss Type Piggyback	Qty 14	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34 ID:hY?CYmMokedcHv9P9GDrqPyeBDi-RfC?PsB70Hq3NsPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1:24

Plate Offsets (X, Y): [3:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 16 lb	FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2**BRACING**

TOP CHORD Structural wood sheathing directly applied or 5-8-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=4-2-3, 4=4-2-3

Max Horiz 2=-32 (LC 11)

Max Grav 2=197 (LC 2), 4=204 (LC 2)

FORCES (lb) - Maximum Compression/Maximum TensionTOP CHORD 1-2=0/20, 2-3=-154/74, 3-4=-154/72,
4-5=0/20

BOT CHORD 2-4=-1/107

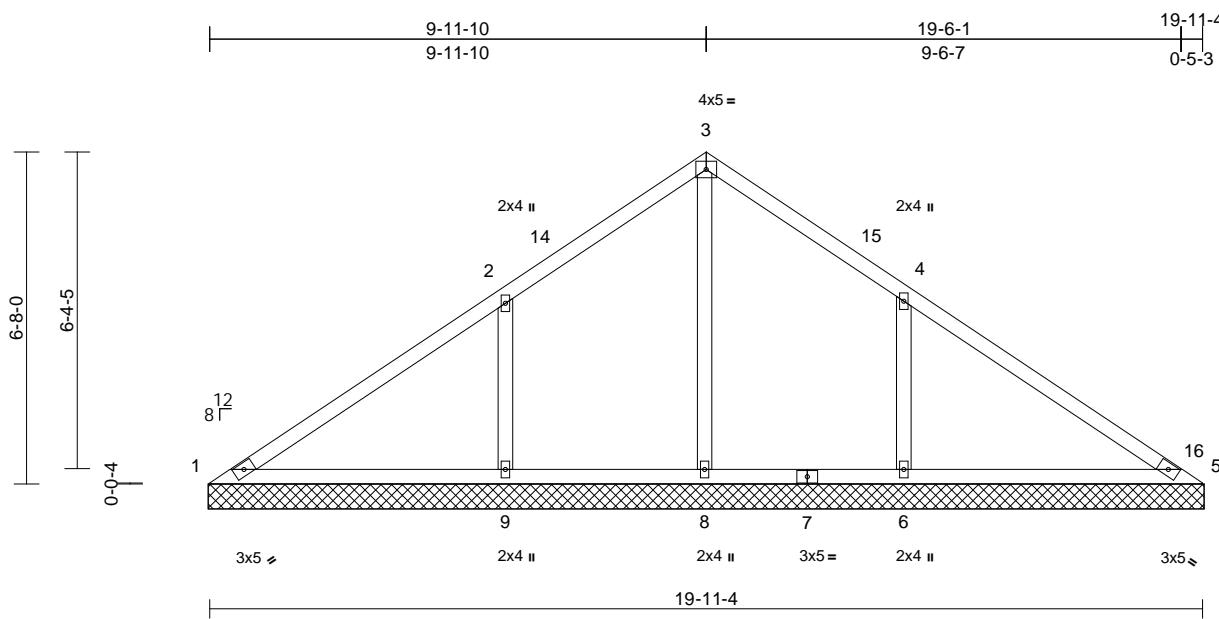
NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

November 11, 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-743 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcacomponents.com](#))

ENGINEERING BY
TRENCO
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

Job 25100169-01	Truss VL1	Truss Type Valley	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34 ID:hY?CYmMokedcHv9P9GDrqPyeBDi-RFC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	Page: 1			

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 83 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (size) 1=20-0-0, 5=20-0-0, 6=20-0-0, 8=20-0-0, 9=20-0-0
Max Horiz 1=122 (LC 10)
Max Uplift 1=-8 (LC 35), 5=-15 (LC 34), 6=-76 (LC 14), 9=-77 (LC 13)
Max Grav 1=88 (LC 34), 5=64 (LC 35), 6=619 (LC 29), 8=634 (LC 28), 9=618 (LC 28)

FORCES (lb) - Maximum Compression/Maximum Tension

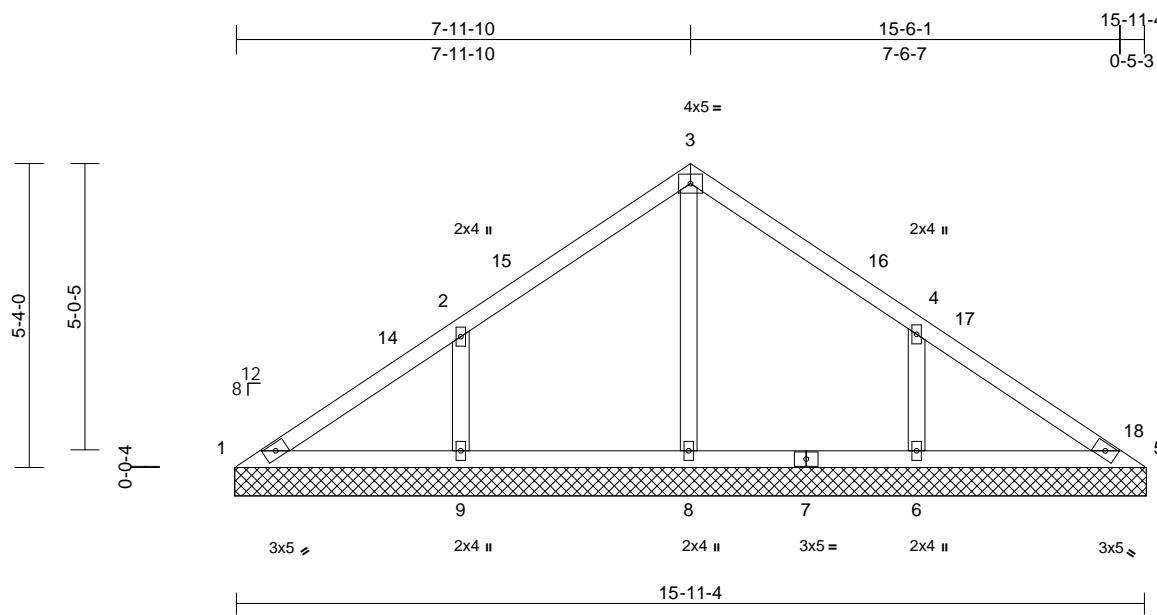
TOP CHORD 1-2=-85/456, 2-3=0/356, 3-4=0/339, 4-5=-79/453
BOT CHORD 1-9=-333/105, 8-9=-333/105, 6-8=-330/105, 5-6=-330/105
WEBS 3-8=-518/1, 2-9=-404/160, 4-6=-404/160

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-0-0, Exterior(2R) 10-0-0 to 13-0-0, Interior (1) 13-0-0 to 19-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) All bearings are assumed to be SP No.2 .
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 15 lb uplift at joint 5, 77 lb uplift at joint 9 and 76 lb uplift at joint 6.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from the Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcacomponents.com](#))

Job 25100169-01	Truss VL2	Truss Type Valley	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:34 ID:WKX1DifX9qEHEVPAUy9ACByeBC0-Rfc?PsB70Hq3NSgPqnL8w3uTxbGKWrCDoi7J4zJC?f	I77709505 Page: 1			

Scale = 1:40.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999		
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 64 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (size) 1=16-0-0, 5=16-0-0, 6=16-0-0, 8=16-0-0, 9=16-0-0
Max Horiz 1=97 (LC 10)
Max Uplift 6=58 (LC 14), 9=60 (LC 13)
Max Grav 1=97 (LC 34), 5=74 (LC 35), 6=379 (LC 29), 8=352 (LC 2), 9=382 (LC 28)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-124/171, 2-3=-27/131, 3-4=-26/123, 4-5=-102/148

BOT CHORD 1-9=-89/115, 8-9=-89/61, 6-8=-88/61, 5-6=-88/87

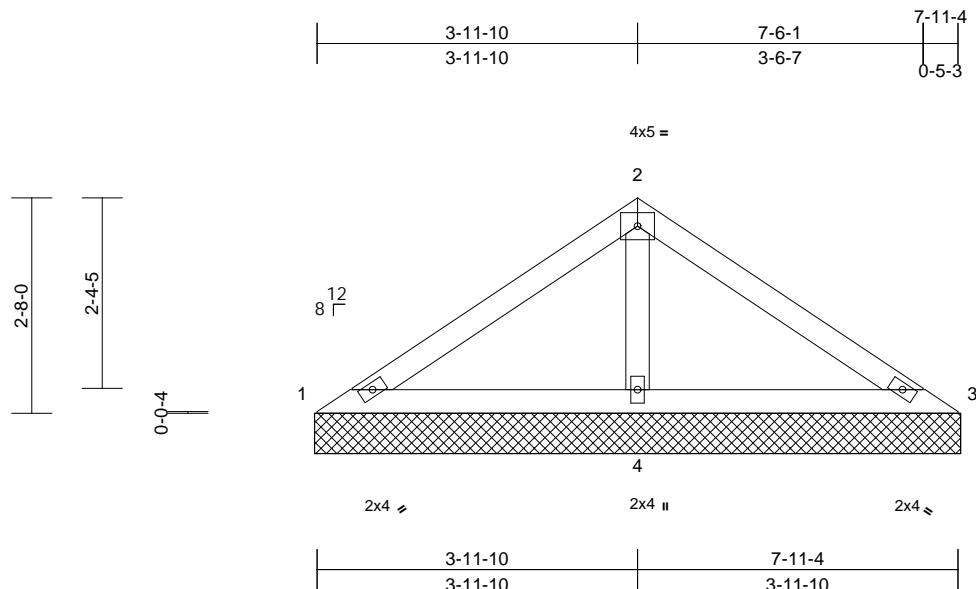
WEBS 3-8=-285/4, 2-9=-316/143, 4-6=-313/141

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 8-0-0, Exterior(2R) 8-0-0 to 11-0-0, Interior (1) 11-0-0 to 15-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 9 and 58 lb uplift at joint 6.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss VL4	Truss Type Valley	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 E Aug 13 2025 Print: 8.730 E Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 12:06:00 ID:GXSLjZsGBK_SPIWE?zoO0SyeB08-wk6Jdx_DkMJB9coWoy7WMTLdVt5N1je5nR8RwQyKGy7	I77709507 Page: 1			

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999		
Snow (PfPg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 27 lb	FT = 20%
BCDL	10.0										

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 7-11-4 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

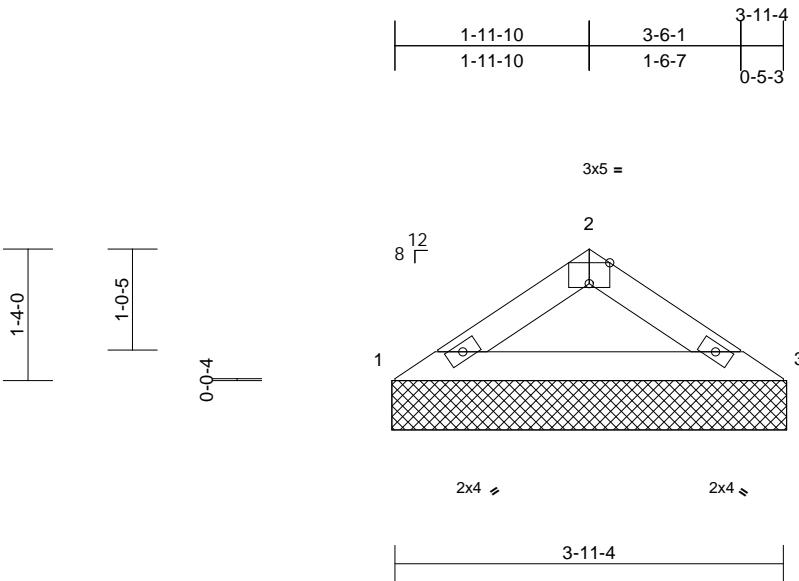
REACTIONS (lb/size) 1=30/8-0-0, 3=30/8-0-0,
4=481/8-0-0
Max Horiz 1=47 (LC 11)
Max Uplift 1=13 (LC 31), 3=13 (LC 30)
Max Grav 1=67 (LC 30), 3=67 (LC 31), 4=569 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=-97/254, 2-3=-97/254
BOT CHORD 1-4=-203/150, 3-4=-203/150
WEBS 2-4=-412/193

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-0-0, Exterior(2R) 4-0-0 to 7-0-7, Interior (1) 7-0-7 to 8-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1 and 13 lb uplift at joint 3.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria** and **DSB-22** available from the Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job 25100169-01	Truss VL5	Truss Type Valley	Qty 1	Ply 1	K20 Carolina Seasons-Roof-Chatham C Job Reference (optional)
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Tue Nov 11 08:47:35 ID:g67UMbu8TFM1GmEpgiL5e5yeB05-RFc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f	I77709508	Page: 1		

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP						Weight: 11 lb	FT = 20%

LUMBER
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING
TOP CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=4-0-0, 3=4-0-0
Max Horiz 1=22 (LC 10)
Max Grav 1=160 (LC 2), 3=160 (LC 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-282/101, 2-3=-282/101
BOT CHORD 1-3=-72/226

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) All bearings are assumed to be SP No.2 .
9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

November 11, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria](#) and [DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcacomponents.com](#))

TRENCO
Engineering by
A MiTek Affiliate

818 Soundside Road
Edenton, NC 27932

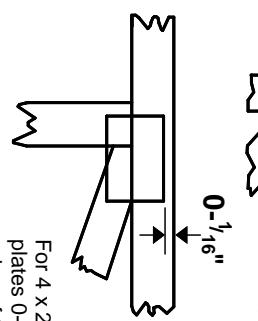

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

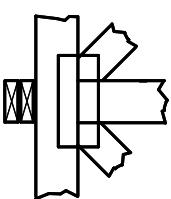
For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.


* Plate location details available in MiTek software or upon request.

PLATE SIZE

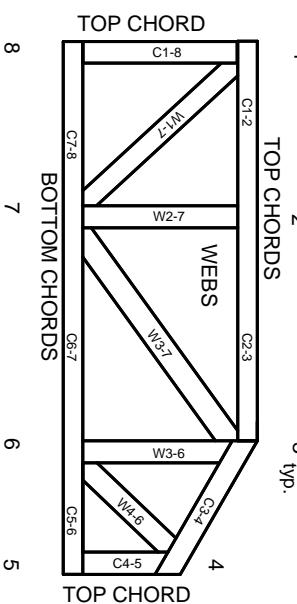
4 x 4


LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

BEARING


ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-22: Design Standard for Bracing.

BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®
ENGINEERING BY
TRENO®
A MiTek Affiliate