

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22070031-A Kris B-Kris B-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I66979287 thru I66979312

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

July 23,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166979287

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:17 ID:sp4rXe6tk2VJrox?g1Lo_6yyfYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79

Plate Offsets (X V)	[10:0-2-4 Edge] [15:0-4-4 0-2-0] [32:0-2-4 0-0-4]

	· / L	, 0		, ,										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 8.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.20 0.19 I	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 297 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p 2-0-0 oc p Rigid ceill bracing. 1 Row at	o.2 o.2 o.3 I wood shea purlins, exc purlins, (6-0 ing directly midpt	athing directly applied ept -0 max.): 10-15. applied or 10-0-0 oc 15-34, 14-35, 13-36, 12-37, 11-38, 9-40, 11	or	Max Grav 2=3 26= 28= 30= 33= 35= 37= 40= 42= 44= 46= (lb) - Maximur	302 (LC 48), 2 =424 (LC 52), =227 (LC 52), =229 (LC 44), =242 (LC 43), =241 (LC 43), =221 (LC 43), =221 (LC 43), =225 (LC 44), =117 (LC 58), =302 (LC 48), m Compression	24=231 (LC 2 27=109 (LC 29=233 (LC 31=229 (LC 34=134 (LC 36=229 (LC 38=175 (LC 41=234 (LC 43=249 (LC 45=489 (LC 49=231 (LC pp/Maximum	52), 50), 44), 61), 61), 61), 61), 44), 44), 44), 52)	WEBS NOTES 1) Un this 2) Wit	balancec design.	15-34: 13-36: 11-38: 8-41= 6-43= 16-33: 18-30: 21-28: I roof li = 7-16:	=-108/37, 14-35: =-189/78, 12-37: =-135/33, 9-40=: -194/177, 7-42=: -201/10, 5-44=: =-202/180, 17-3: =-189/94, 19-29: =-177/53, 22-27: ve loads have br		=-358/95, :6=-309/94 ed for
REACTIONS	(size) Max Horiz Max Uplift	$\begin{array}{c} 2=43-1-0,\\ 27=43-1-0,\\ 30=43-1-0,\\ 37=43-1-0,\\ 41=43-1-0,\\ 41=43-1-0,\\ 49=43-1-0,\\ 2=-145 (L),\\ 2=-145 (L),\\ 2=-24 (L),\\ 26=-24 (L),\\ 30=-41 (L),\\ 30=-41 (L),\\ 30=-41 (L),\\ 30=-41 (L),\\ 40=-15 (L),\\ 44=-13 (L),\\ 46=-49 (L),\\ 40=-40 $	$\begin{array}{c} 24=43-1-0, 26=43-1-i\\ 0, 28=43-1-0, 29=43-1\\ 0, 31=43-1-0, 33=43-1\\ 0, 35=43-1-0, 36=43-1\\ 0, 38=43-1-0, 40=43-1\\ 0, 42=43-1-0, 43=43-1\\ 0, 45=43-1-0, 46=43-1\\ 0, 45=43-1-0, 46=43-1\\ 0, 21-3, 46=-145 (LC 12)\\ C 13), 46=-145 (LC 12)\\ C 13), 46=-145 (LC 12)\\ C 16), 27=-3 (LC 12)\\ C 16), 31=-40 (LC 16)\\ C 16), 31=-40 (LC 16)\\ C 16), 37=-3 (LC 12)\\ 12), 29=-22 (LC 16)\\ C 16), 31=-40 (LC 16)\\ C 16), 41=-47 (LC 15)\\ C 15), 43=-50 (LC 15)\\ C 15), 43=-50 (LC 12)\\ C 11), 49=-33 (LC 12)\\ \end{array}$	0, -0, -0, -0, -0, -0, -0, -0, -	Tension 1-2=0/19, 2-3; 4-5=-125/99, 4; 7-8=-130/185; 10-11=-128/2(12-13) 12-13=-128/2(14-15) 12-13=-128/2(14-15) 14-15=-128/2(14-15) 14-12=-103/5(12-15) 2-45=-66/168; 43-44=-39/16(13) 38-40=-39/16(12) 34-35=-39/16(12) 29-30=-39/16(12) 27-28=-39/16(12) 24-26=-39/16(12		=-138/99, , 6-7=-143/1 88/269, 98/269, 57/297, 10/140, 71, 20-21=-5 3/43, 68, 168, 168, 168, 168, 168, 168, 168,	18, 2/307, 92/60,	Va: II; I (3E Co 24- to 4 ver forr DC	sd=103rr Exp B; Er :) -0-11-1 rrner(3R) 9-8, Corn 44-0-13 z tical left : ces & MV 0L=1.60 p	hph; TC nclosed 13 to 3- 16-3-8 ner(3R cone; c cone; c cand rig VFRS t blate gr	SDL=6.0psf; BCI d; MWFRS (env. 3-15, Exterior/(2) to 20-9-8, Exter) 24-9-8 to 29-1: antilever left and ht exposed;C-C for reactions sho rip DOL=1.33	L=6.0psf; h= slope) and C- v) 3-3-15 to 2 ior(2N) 20-9- for members wn; Lumber	225ft; Cat. C Corner I6-3-8, 8 to N) 29-1-3 ad; end and

July 23,2024

Page: 1

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166979287

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 2, 33 lb uplift at joint 24, 3 lb uplift at joint 35, 4 lb uplift at joint 36, 13 lb uplift at joint 37, 15 lb uplift at joint 40, 47 lb uplift at joint 41, 35 lb uplift at joint 42, 50 lb uplift at joint 43, 13 lb uplift at joint 44, 16 lb uplift at joint 45, 39 lb uplift at joint 33, 40 lb uplift at joint 31, 41 lb uplift at joint 30, 22 lb uplift at joint 29, 21 lb uplift at joint 28, 3 lb uplift at joint 27, 24 lb uplift at joint 26, 49 lb uplift at joint 2 and 33 lb uplift at joint 24.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:17 ID:sp4rXe6tk2VJrox?g1Lo_6yyfYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A2	Piggyback Base	9	1	Job Reference (optional)	166979288

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:19 ID: GOIzAg8l0zuuiFgaLAuVbkyyfYq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

	- <u>1-0-0 5-</u> 1-0-0 5-	<u>2-4 6-2-7</u> 2-4 1-0-3	<u>11-3-0</u> 5-0-9	<u>16-3-8</u> 5-0-9	<u>20-6-8</u> 4-3-0	+ <u>2</u> 4 4	- <u>9-8</u> -3-0	<u>29-3-8</u> 4-6-1		<u>34-0-5</u> 4-8-12	35- 1-	10-12 10-7	<u>43-1-0</u> 7-2-4	44-1-0 1-0-0
10-6-0 10-6-0 2-9-6 10-5-11 2-0-12 1 2-0-12 1 2-0-13 1	n 1 2 n 1 1	$5x6 = 4x5 = 31^{12} = 31^{12} = 31^{12} = 31^{12} = 32^{12} = 23$	10 5 32 32	12 3x5 + 33 21 20 55 = 3x6 =	5x6= 6 6 7 19 41 3x8=	34 7 35 35 34 7 35 35 36 35 36 36 36 36 36 36 36 36 36 36	5x6= 8 42 18 3x8=	17 3x6 =	3x5 x 36 9 3 16 3x5=	7 38	5x6 10 15 3x	4x5= 11 14 .8= 2x4 II	380	12 13 3x5=
	5-	<u>2-4 6-0-11</u> 2-4 0-10-7	11-3-0 5-2-5	16-5-4 5-2-5		<u>24-7-12</u> 8-2-7		<u>29-3-8</u> 4-7-13		<u>34-2-1</u> 4-10-8	35-	-10-12 -8-11	43-1-0 7-2-4	
$\frac{\text{Scale} = 1:79}{\text{Plate Offsets (}}$	X, Y): [6:0-4-4,0-2-0], [8:0-4-4,0-2-0],	[15:0-3-8,0-1-	8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DO Lumber DOL Rep Stress In Code	2-0-0 PL 1.15 1.15 cr YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.77 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.34 0.04	(loc) 18-19 18-19 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 273	GRIP 244/190 3 lb FT = 20'	%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce Structural wood sh 4-2-15 oc purlins, e 2-0-0 oc purlins (5- Rigid ceiling directl bracing. 1 Row at midpt (size) 2=0-3-8, 23=0-3-8 Max Horiz 2=-145 (Max Uplift 2=-74 (L Max Grav 2=294 (L 14=1748)	pt* 7-18,7-19:2x4 eathing directly a except 10-10 max.): 6-8 y applied or 6-0-(7-18, 7-19 12=0-3-8, 14=0- 3 LC 13) C 11), 12=-52 (Li C 48), 12=398 (I G (LC 54), 23=174	N 1) 1 SP No.2 2) pplied or 0 oc 3-8, 3) C 12) _C 52), 11 (LC 54)	OTES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 16-3-8, Exte to 24-9-8, Ex 29-3-8 to 44 exposed ; en members an Lumber DOI TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.9	roof live loads have a series of loads have a	ave been of the second second second the second second second second ave been of the second second ave been of the second second second second second the second seco	considered for ond gust) .0psf; h=25ft 2) and C-C (1) 3-3-15 to therior (1) 20 i, Interior (1) 20 i, Interio	or t; Cat. o 6-8 rr n; =1.15 Fully	LOAD C	CASE(S)	Stan	dard		
FORCES	(lb) - Maximum Con Tension 1-2=0/19, 2-3=-91/- 4-5=-1548/279, 5-6 6-7=-951/334, 7-8= 9-10=-1544/290, 10 11_12=-321/241_11	mpression/Maxim 419, 3-4=-422/85 5=-1374/357, -950/336, 8-9=-1 0-11=-782/158, 2-13=0/18	1um 5) ;, 5) 1360/362, 6) 7)	design. This truss ha load of 12.0 overhangs n Provide ade	as been designed psf or 2.00 times on-concurrent w quate drainage to has been design	d for greate s flat roof lo ith other liv o prevent v ed for a liv	er of min root bad of 13.9 p /e loads. water pondin e load of 20.	f live osf on ig. .0psf				TH (CARO	
BOT CHORD	2-23=-335/90, 22-2 21-22=-31/527, 19- 18-19=0/983, 16-18 15-16=-64/792, 14- 12-14=-191/254 4-22=-1198/204, 4- 5-21=-131/74, 5-19 6-19=-102/563, 8-1 10-15=-1038/162, \$ 7-18=-250/102, 7-1 10-16=0/378, 11-14 11-15=-154/1390, \$ 3-22=-157/1391	213=-335/90, 23=-335/90, 23=-87/1205, 8=-61/1117, -15=-191/254, -21=-59/719, -345/181, 8=-114/587, 9-18=-358/191, 9=-251/107, 9-16 4=-1462/290, 3-23=-1505/248,	8) 9) 6=-80/58, 1 ⁻	on the bottoo 3-06-00 tall 1 chord and at All bearings One H2.5A 3 recommend UPLIFT at jt uplift only ar D) This truss is International R802.10.2 a 1) Graphical pu or the orient bottom chord	m chord in all are by 2-00-00 wide are assumed to Simpson Strong- ed to connect tru (s) 2, 12, 14, and d does not cons designed in acca Residential Cod nd referenced st urlin representation ation of the purlir d.	eas where will fit betw 's, with BC be SP No. Tie connee ss to beari 1 23. This of ider lateral ordance w le sections andard AN on does no h along the	a rectangle veen the bott DL = 10.0ps 2. ctors ng walls due connection is forces. ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	tom f. ∋ to s for and size		Commune.		SI 030 SI C A	EAL 5322 MEEER. GILBE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

(R 818 Soundside Road Edenton, NC 27932

E

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A3	Piggyback Base	1	1	Job Reference (optional)	166979289

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:19 ID:gzR6ohAeJuGTZjP91IRCDNyyfYn-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A4	Piggyback Base Supported Gable	1	1	Job Reference (optional)	166979290

Run: 9 E 8.73 Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Tue Jul 23 16:13:53 ID:89?U01BG4BOJBt_La0zRmayyfYm-Woo8bipyIUmu7Byq0Ea348rSIDCFvYWJFIHDOpyvIMk

Page: 1

Scale = 1:67.6

31-0-0

Plate Offsets (X, Y): [7:0-2-8,0-0-3], [12:0-3-4,0-2-0], [27:0-1-12,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.10 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 255 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD WEBS REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt All bearings 31-0-0. Max Horiz 36=-199 (I Max Uplift All uplift 11 21, 22, 23 33, 34 ex 20=-120 (I 36=-108 (I Max Grav All reactio (s) 19, 20, 28, 29, 30 (lb) - Max. Comp./Ma (lb) or less except wi 5-6=-167/265, 9-10= 8-9=-157/265, 9-10= 10-11=-157/265, 11-	athing directly applied cept end verticals, an -0 max.): 7-12. applied or 10-0-0 oc 12-25, 11-26, 10-28, 9-29, 8-30, 6-31, 13- LC 11) 00 (lb) or less at joint i, 24, 26, 28, 29, 31, 5 cept 19=-131 (LC 12) LC 9), 35=-106 (LC 1 LC 11) ns 250 (lb) or less at , 21, 22, 23, 24, 25, 2 ax. Ten All forces 2 hen shown. 190/302, 7-8=-157/265, 12=-157/265,	2) d or d 3) 24 (s) 32, , 0), ijoint 50 8) 50 8) 55, 9) 10)	Wind: ASCE Vasd=103mp II; Exp B; End (3E) 0-1-12 tr Corner(3R) 1 19-9-0, Corne 22-10-3 to 30 exposed ; en members and Lumber DOL- Truss desigr only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 roof snow loa exposed surf accordance w Provide adeq All plates are Gable require Truss to be fu braced again Gable studs s * This truss h on the bottom 3-06-00 tall b	7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e b 3-2-15, Exterior() 1-3-0 to 14-4-4, E: er(3R) 19-9-0 to 22 -10-4 zone; cantilé d vertical left and r d forces & MWFRS =1.60 plate grip D0 led for wind loads ds exposed to win I Industry Gable Ei alified building des 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 14 DOL=1.15); Is; cs=1.00; Ct=1.11 d governs. Rain s accs with slopes le with IBC 1608.3.4. uate drainage to p 2x4 MT20 unless es continuous botto Jly sheathed from st lateral movement spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members.	h (3-sec BCDL=6 envelope 2N) 3-2- xterior(2 2-10-3, I ight exp 5 for rea OL=1.3; in the pi d (norm nd Deta signer as (roof LL Pf=18.2; =1.0; Rc 0, Lu=56 surcharg ess than or event v otherwi pom chor one fac t (i.e. d ; for a liv s where I fit betw	ond gust) .0psf; h=25ft; b) and C-C Cc 15 to 11-3-0, N) 14-4-4 to Exterior(2N) and right loosed;C-C for ctions shown ane of the tru al to the face; ils as applicat s per ANSI/TF psf (Lum bugh Cat B; F)-0-0; Min. fla ge applied to a 0.500/12 in water ponding se indicated. d bearing. e or securely iagonal web). e load of 20.0 a rectangle zeen the botto	Cat. orner ; sss), ble, PI 1. 1.15 ully t all g. Opsf om	12) This Inter R80 13) Gran or th both LOAD C	truss is rnationa 2.10.2 a phical p he orient om chor case(S)	a desig I Resi and ref urlin re tation (d.) Sta	Ined in accordance dential Code sect ferenced standard spresentation doe of the purlin along Indard	e with the 2018 ions R502.11.1 d ANSI/TPI 1. s not depict the the top and/or the top and/or	and asize
 Unbalance this design 	d roof live loads have	been considered for	11)	N/A						11.		A. G	EER. K	inne.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI mmm July 23,2024

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A5	Piggyback Base	6	1	Job Reference (ontional)	166979291

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:19 ID:z2qKiH2Mgp?tMAeERCGspGyyfYx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.2

Plate Offsets (2	X, Y): [4:0-4-0,0-1-12]	, [6:0-4-0,0-1-12]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.74 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.03	(loc) 15-20 15-20 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 260 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-1-5 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=0-3-8, Max Horiz 24=-199 (1 Max Grav 13=2315 ((lb) - Maximum Com Tension 1-2=-1157/0, 2-3=-9: 4-5=-614/14, 5-6=-8i 7-8=-136/254, 8-9=-2 1-24=-921/0, 10-11= 23-24=-188/297, 22- 15-20=0/1915, 14-15 12-13=-172/152, 11- 19-21=-1679/0, 17-1 16-17=-1679/0 2-23=0/130, 2-22=-3 7-14=-301/134, 1-23 14-16=-1454/0, 21-2 5-21=-41/725, 8-14= 9-13=-343/304, 9-12 10-12=-245/201, 15- 15-16=0/1443, 19-20	athing directly applied cept end verticals, an o max.): 4-6. applied or 4-0-3 oc 7-14, 5-16, 8-13 24= Mechanical LC 11) LC 3), 24=1016 (LC pression/Maximum 25/0, 3-4=-497/37, 3/154, 6-7=-102/62, 236/566, 9-10=-123/2 -71/85 23=0/897, 20-22=0/5 i=0/659, 13-14=-396/ 12=-66/75, 9=-1679/0, 85/164, 3-22=0/325, =0/694, 5-16=-907/1: 2=-243/237, 0/1502, 8-13=-1853/a =-210/203, 17=-199/0, =-236/0, 20-21=0/15	2) d or d 33) 32) 4) 5) 6) 291, (359, 8) 9) 31, 10 67, 11 550 LC	Wind: ASCE Vasd=103mp II; Exp B; En Exterior(2E) 11-3-0, Exterior(2E) 11-3-0, Exterior 22-10-3 to 3 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 200.0lb AC u from left end Provide aded * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird One RT7A M truss to bear connection is forces.) This truss is International R802.10.2 ar) Graphical pu or the oritor	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e 0-1-12 to 3-2-15, Ir ior(2R) 11-3-0 to 1 terior(2R) 19-9-0 to)-10-4 zone; cantilé d vertical left and r d forces & MWFRS =1.60 plate grip D0 7-16; Pr=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf; .15); Pg=20.0 psf .15); Pg=	h (3-sec BCDL=6 nivelope interior (4-4-4, I o 22-10- over left ight exp of crea DL=1.3; (rorof LL for rea DL=1.3; (rorof LL for rea DL=1.3; (rorof LL for a liv s where I fit betty points, I s where I fit betty with BC Joint 13 iss conre- comme DLIFT at does no lance w sections dard AN does no long the	cond gust) cond gust) const; h=25ft and C-C 1) 3-2-15 to Interior (1) 14 -3, Interior (1) 14 -3, Interior (1) 14 -3, Interior (1) and right bosed;C-C fo ctions showr -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	;; Cat. -4-4) r ;; :1.15 =ully 5-6-0 g. 0psf om f. som f. and size				SEA 0363		
 Unbalance this design 	ed roof live loads have	been considered for									in in	A. G	ILBERTITI'	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	A6	Piggyback Base	3	1	Job Reference (optional)	166979292

15-6-0

4-3-0

Carter Components (Sanford, NC), Sanford, NC - 27332

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

5-9-4

5-9-4

11-3-0

5-5-12

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20 ID:REOivd3_R77k_KDQ?vn5MTyyfYw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26-4-8

4-5-12

31-0-0

4-7-8

21-10-12

2-1-12

19-9-0

4-3-0

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	B1	Common Supported Gable	1	1	Job Reference (optional)	166979293

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

FORCES

TOP CHORD

BOT CHORD

BRACING

Max Horiz 25=-154 (LC 11)

Max Grav

Tension

14-15=-70/80

Max Uplift 14=-36 (LC 10), 15=-54 (LC 14),

25=164 (LC 26)

2-25=-135/73, 1-2=0/46, 2-3=-101/98,

3-4=-76/78, 4-5=-69/114, 5-6=-98/179

12-13=0/46, 12-14=-124/72

6-7=-130/238, 7-8=-130/238, 8-9=-98/179,

9-10=-66/114, 10-11=-55/59, 11-12=-75/70,

24-25=-70/80, 23-24=-70/80, 22-23=-70/80,

21-22=-70/80, 20-21=-70/80, 19-20=-70/80,

18-19=-70/80, 16-18=-70/80, 15-16=-70/80,

(Ib) - Maximum Compression/Maximum

16=-20 (LC 14), 18=-29 (LC 14),

19=-23 (LC 14), 21=-23 (LC 13),

22=-29 (LC 13), 23=-19 (LC 13),

14=145 (LC 25), 15=166 (LC 26),

16=167 (LC 32), 18=164 (LC 26),

19=172 (LC 26), 20=169 (LC 28),

21=173 (LC 25), 22=164 (LC 25),

23=167 (LC 31), 24=176 (LC 25),

24=-59 (LC 10), 25=-59 (LC 9)

LUMBER

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20 ID:rXYQzquCkpMjIB8kAzXpoWyyfZ8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

- DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely 8)
- braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf 10) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	B2	Common	1	1	Job Reference (optional)	166979294

TCDL

BCLL

BCDL

WFBS

WEBS

NOTES 1)

2)

3)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20 ID:kJnwpCxjn2t9noSVPpclyMyyfZ4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

MANDER IN THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	B3	Common	4	1	Job Reference (optional)	166979295

Loading

TCDL

BCLL

BCDL

WFBS

FORCES

WEBS

NOTES

1)

2)

3)

LUMBER

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	C1	Common Supported Gable	1	1	Job Reference (optional)	166979296

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:20 ID:ghvhEtzzJf7t06cuXEeD1nyyfZ2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-6-8

Scale = 1:59.3

Plate Offsets (X, Y): [17:0-2-4,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	13.9/	(psf) 20.0 /20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.08 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	<u> </u>
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3	10.0		B	OT CHORD 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L 24-25=-92/102, 23- 22-23=-92/102, 21- 20-21=-92/102, 19- 18-19=-92/102, 16- 15-16=-92/102, 14- 7-20=-337/118, 6-2	24=-92/ 22=-92/ 20=-92/ 18=-92/ 15=-92/ 1=-137/	(102, (102, (102, (102, (102, (102 (94, 5-22=-12	8/116,	10) * Th on t 3-00 cho 11) All t 12) Pro	his truss the botto 6-00 tall rd and a bearings vide med	has be m choi by 2-0 ny oth are as chanica	een designed for rd in all areas wh 0-00 wide will fit er members. ssumed to be SP al connection (by	a live load here a recta between th No.2.	of 20.0psf ingle ie bottom truss to
BOT CHORD	Structural wo 6-0-0 oc purl Rigid ceiling bracing.	ood shea lins, exc directly	athing directly applie cept end verticals. applied or 6-0-0 oc	ed or	2 8 1 0TES	4-23=-129/106, 3-2 3-19=-136/94, 9-18 10-16=-129/106, 11	4=-135/ =-128/1 -15=-13	/122, 16, 30/122		bea 25, upli 24, upli	ring plat 72 lb up ft at joint 31 lb up ft at joint	e capa lift at jo 22, 28 lift at jo 16 an	ble of withstand bint 14, 32 lb upli 3 lb uplift at joint bint 19, 45 lb upli d 86 lb uplift at jo	ng 95 lb up ft at joint 2 23, 95 lb uj ft at joint 1 pint 15.	lift at joint 1, 45 lb plift at joint 8, 28 lb
REACTIONS	(size) 14 (size) 14 18 21 24 Max Horiz 25 Max Uplift 14 16 19 22 Max Grav 14 16 19 21 23 24 Max Grav 14 16 19 21 23 24 19 22 24 19 22 24 19 22 24 24 19 25 24 19 25 24 19 25 26 26 26 26 26 26 26 26 26 26	4=19-6-8 4=19-6-8 1=19-6-8 4=19-6-8 4=19-6-8 5=192 (L 6=-28 (L 6=-28 (L 6=-28 (L 6=-28 (L 6=-28 (L 6=-26 (L 6=-26 (L 6=-195 (L 5=195 (L	 , 15=19-6-8, 16=19; , 19=19-6-8, 20=19; , 22=19-6-8, 23=19; , 25=19-6-8 C 12); , 15=-86 (LC 1 C 14); , 18=-45 (LC 1 C 14); , 21=-32 (LC 1 C 14); , 23=-28 (LC 1 C 10); , 25=-95 (LC 9) C 25); , 15=190 (LC 2) C 32); , 18=169 (LC 2) C 26); , 22=169 (LC 2) C 31); , 24=200 (LC 2) C 26) 	-6-8, 1) -6-8, -6-8, 2) (4), 4), (3), 3), (3), (4), (26), 3) (14), (25), 25), (26), 4)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Env (3E) -0-11-6 (3R) 9-9-4 to zone; cantile and right exp MWFRS for I grip DOL=1.3 Truss design only. For stu see Standarc or consult qu	roof live loads have 7-16; Vult=130mpl oh; TCDL=6.0psf; E closed; MWFRS (e to 1-9-4, Exterior(2 12-9-4, Exterior(2 ver left and right ex losed; C-C for mem reactions shown; Li 33 ned for wind loads i ds exposed to wind ds exposed to wind ds exposed to wind ds exposed to pulte ralified building des 7-16; Pr=20.0 psf	e been of n (3-sec SCDL=6 nvelope N) 1-9 v) 12-9- vosed bers an umber I in the pi d (norm nd Deta igner as (roof LL	considered fo cond gust) .0psf; h=25ft; 9) and C-C C 4 to 9-9-4, Cc 4 to 20-5-14 ; end vertical d forces & DOL=1.60 pla lane of the tr. al to the face lis as applical s per ANSI/TF .: Lum DOL=	r crat. prner prner left uss), ble, PI 1. 1.15	13) This Inte R8(LOAD (s truss is rnationa 12.10.2 a CASE(S)	desig I Resic Ind refi Star	ned in accordani Jential Code sec erenced standar Indard	References of the second secon	2018 11.1 and 1.
F ORCES	(lb) - Maximu Tension 2-25=-158/80 3-4=-94/100, 6-7=-169/32 ² 9-10=-83/155 12-13=0/53,	um Comj 0, 1-2=0, , 4-5=-85 1, 7-8=-1 5, 10-11 12-14=-	pression/Maximum /53, 2-3=-134/130, 5/156, 5-6=-128/245 169/321, 8-9=-128/2 =-76/80, 11-12=-110 143/61	5, 5) 245, 0/104, 6) 7) 8) 9)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs n All plates are Gable require Truss to be fi braced again Gable studs	(15): PG=20.0 pSr; late DOL=1.15); Is= is CS=1.00; Ct=1.10; s been designed fc psf or 2.00 times fla on-concurrent with a 2x4 MT20 unless es continuous bottc ully sheathed from ist lateral movemer spaced at 2-0-0 oc	PT=13.5 =1.0; Rc or greate at roof k other liv otherwi om chor one fac ont (i.e. d	p psr (Lum pugh Cat B; F er of min roof pad of 13.9 p: /e loads. se indicated. d bearing. e or securely iagonal web)	Tully live sf on		THE REAL PROPERTY OF THE PROPE	A MARINE AND		L 22 EER.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	C2	Common	3	1	Job Reference (optional)	166979297

Loading

TCDL

BCLL

BCDL

WFBS

BRACING

FORCES

WEBS

NOTES

1)

2)

3)

LUMBER

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20 ID:c41RfZ?DrHNbGPIGeegh6CyyfZ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	C3	Common	3	1	Job Reference (optional)	166979298

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:20 ID:ZT9C3F0UNudJVjvfm3i9BdyyfZ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale -	- 1.61 1
ocale -	- 1.01.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018)/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.21 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except	t* 12-2,7-6:2x4 SP N	4) 0.1 5)	This truss ha load of 12.0 overhangs n * This truss h	is been designed f psf or 2.00 times fl on-concurrent with has been designed n chord in all area	for greate lat roof lo other liv I for a liv	er of min roof bad of 13.9 p /e loads. e load of 20.0	f live sf on Opsf						

BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	7=0-3-8, 12=0-3-8
	Max Horiz	12=186 (LC 12)
	Max Grav	7=768 (LC 2), 12=837 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/53,	2-3=-864/104, 3-4=-653/169,
	4-5=-654/	(170, 5-6=-864/101, 2-12=-790/124
	6-7=-720/	/86
BOT CHORD	11-12=-17	79/247, 10-11=-35/628,
	8-10=-26/	/599, 7-8=-34/102

- 2-11=0/484, 6-8=0/505, 3-11=0/68, WEBS 3-10=-281/118. 4-10=-108/457. 5-10=-289/119, 5-8=0/68 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-11-6 to 2-0-10, Interior (1) 2-0-10 to 9-9-4, Exterior(2R) 9-9-4 to 12-9-4, Interior (1) 12-9-4 to 19-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2. 6)
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 7. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	C4	Common Girder	1	2	Job Reference (optional)	166979299

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:21 ID:dLZsDNCurVWAo0YX8jUgloyyfYI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

S	cal	e = 1:6	62.	8					
					 	_		-	-

Plate Offsets (X, Y): [6:Edge,0-2-0], [7:0-3-8,0-4-8], [9:0-5-0,0-4-12], [10:0-3-8,0-4-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.87 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.14 0.02	(loc) 7-9 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 291 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Structural wood shea 5-2-11 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, 1 Max Horiz 11=173 (L Max Grav 6=5092 (L (lb) - Maximum Com Tension 1-2=-5275/0, 2-3=-4(4-5=-5535/0, 1-11=-4) 10-11=0/926, 9-10=(6-7=0/861 1-10=0/3259, 5-7=0/ 2-9=-1467/0, 3-9=0/4 4-7=0/1976 to be connected toget	t* 11-1,6-5:2x6 SP N athing directly applier xcept end verticals. applied or 10-0-0 oc 1=0-3-8 C 6) C 21), 11=4894 (LC pression/Maximum 007/0, 3-4=-4007/0, 4031/0, 5-6=-4223/0 /4081, 7-9=0/4202, 3406, 2-10=0/1600, 4768, 4-9=-1755/0, ther with 10d	4) o.2 d or 5) 6) 20) 7) 8) 9) 10	Wind: ASCE Vasd=103mg II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 * This truss F on the bottor 3-06-00 tall b chord and ar All bearings a One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar Use MiTek T 12-10d x 1-1 2-0-0 oc max	7-16; Vult=130mph ph; TCDL=6.0psf; B closed; MWFRS (er osed; end vertical =1.60 plate grip DC 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is= ; Cs=1.00; Ct=1.10 has been designed in n chord in all areas by 2-00-00 wide will by other members. are assumed to be liTek connectors re ing walls due to UP ion is for uplift only designed in accord: Residential Code s nd referenced stance HD26 (With 18-16d /2 nails into Truss) /: starting at 1-7-4 ff	n (3-sec iCDL=6 nvelope left and DL=1.33 (roof LL Pf=13.9 for a liv where fit betw SP No. comme LIFT at and do ance w sections land AN I nails in or equir room the	ond gust) .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf (Lum DOL= .0psf (Lum .0psf	; Cat. left ed; 1.15 Fully Opsf om hect 6. der and d at					Roini
 (0.131"x3", Top chords oc, 2x6 - 2 Bottom cho staggered Web conne All loads at except if no CASE(S) s provided to unless othe Unbalance this design) nails as follows: s connected as follows: rows staggered at 0-9 ords connected as follows at 0-6-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or back section. Ply to ply conno o distribute only loads in erwise indicated. ed roof live loads have h.	:: 2x4 - 1 row at 0-9-0 -0 oc. bws: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ lections have been noted as (F) or (B), been considered for) 11 LC 1)	17-7-4 to cor Fill all nail ho Dead + Sno Increase=1 Uniform Loa Vert: 1-3: Concentrate Vert: 9=- (F), 15=- (F), 19=-	anect truss(es) to fra les where hanger is Standard ww (balanced): Lum .15 ads (lb/ft) =-48, 3-5=-48, 6-11 ed Loads (lb) 729 (F), 12=-617 (F 729 (F), 16=-729 (F 729 (F)	ont face s in cor ber Inc =-20 -), 13=- -), 17=-	e of bottom cl tact with lum rease=1.15, 617 (F), 14=- 729 (F), 18=-	hord. Iber. Plate -617 -729		M. M. Martine		SEA 0363	L L L L BER L BER L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	PB1	Piggyback	2	1	Job Reference (optional)	166979300

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:21 ID:ZT9C3F0UNudJVjvfm3i9BdyyfZ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

ni7.147.1C.2f

7-2-4

Scale = 1:32.9	
Plate Offsets (X, Y): [2:0-2-2,0-1-0], [6:0-2-2,0-1-0]	

ī.

		-			-									
Loading	(psf)	Spacing	2-0-0		CSI	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	6	n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 35 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		3) 4)	Truss desig only. For stu see Standard or consult qu TCLL: ASCE	ned for wind load uds exposed to w d Industry Gable ualified building d 7-16; Pr=20.0 p	ds in the pl vind (norm End Deta lesigner as osf (roof LL	ane of the tru al to the face ils as applica per ANSI/TI .: Lum DOL=	uss), ble, Pl 1. 1.15						
	Structural wood she	athing directly applie	, d or	Plate DOL=1	1.15); Pg=20.0 ps	sf; Pf=13.9) psf (Lum							
TOP CHORD	6-0-0 oc purlins	atiling unectly applie	u ui	DOL=1.15 P	late DOL=1.15);	ls=1.0; Ro	ough Cat B; F	ully						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; 5)	Exp.; Ce=0.9 This truss ha	9; Cs=1.00; Ct=1 as been designed	.10 I for greate	er of min roof	live						
REACTIONS	(size) 2=7-2-4, 6 10=7-2-4,	6=7-2-4, 8=7-2-4, 9= 11=7-2-4, 15=7-2-4	7-2-4, 6)	load of 12.0 overhangs n Gable requir	pst or 2.00 times on-concurrent wi es continuous bo	ith other liv ottom chor	oad of 13.9 p /e loads. d bearing.	st on						
	Max Horiz 2=-63 (LC	2 11) 11=-63 (I C 11)) 7)	Gable studs	spaced at 2-0-0	OC.								
	Max Uplift 2=-5 (I C)	9) 8=-48 (I C 14) 10)=-48 ⁸⁾	* This truss h	has been designe	ed for a liv	e load of 20.0	Opsf						
	(LC 13), 1	1=-5 (LC 9)		on the bottor	n chord in all are	as where	a rectangle							
	Max Grav 2=89 (LC	2), 6=89 (LC 2), 8=1	81	3-06-00 tall t	by 2-00-00 wide v	will fit betv	een the bott	om						
	(LC 26), 9	=107 (LC 2), 10=18	2 (LC)	chord and ar	iy other member	S.	0							
	25), 11=8	9 (LC 2), 15=89 (LC	2) 9)	All bearings	are assumed to r	be SP No.	Ζ.							
FORCES	(lb) - Maximum Com	pression/Maximum	IC IC)) IN/A										
	Tension													
TOP CHORD	1-2=0/20, 2-3=-54/4	6, 3-4=-73/91,											111	
	4-5=-71/89, 5-6=-49	/30, 6-7=0/20	11) This truss is	designed in acco	ordance w	ith the 2018					W''LL CA	DIL	
BOT CHORD	2-10=-32/82, 9-10=-	32/82, 8-9=-32/82,		International	Residential Cod	e sections	R502.11.1 a	ind			1	TH UA	ROIL	
	6-8=-32/82	0/477 5 0 450/477		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.				50	ONVESS	12. 11	1
WEB5	4-9=-67/0, 3-10=-15	0/177, 5-8=-150/177	12	See Standar	d Industry Piggy	back Trus	s Connection				22	SPLOT	N: A	-
NOTES				Detail for Co	nnection to base	truss as a	applicable, or			- U			n de la	
1) Unbalance	ed roof live loads have	been considered for		consult quali	fied building des	igner.				-	6 8	. ~		-
this design		(0 1)	LC	DAD CASE(S)	Standard					=		SEA	LÈ	=
2) Wind: ASC	JE 7-16; Vuit=130mpn	(3-second gust)	Cat							=	:	0262	22 :	-
Vasu=103	Enclosed: MW/ERS (en	velope) and C-C	Gal.							1		0303	~~ ;	
Exterior(2)	E) 0-2-15 to 3-2-15 Inf	terior (1) 3-2-15 to 4-	3-0.							-		•		Ξ
Exterior(2)	R) 4-3-0 to 7-6-5. Inter	ior (1) 7-6-5 to 8-3-0	- 0,							5	1 .	·	air	5
zone; cant	ilever left and right exp	posed ; end vertical I	eft								25	GIN	EF. a	S
and right e	exposed;C-C for memb	pers and forces &									11	10	BEN	
MWFRS for	or reactions shown; Lu	mber DOL=1.60 plat	te									11, A. G	ILLIN	
grip DOL=	1.33											in min	unu.	

July 23,2024

TRENCO A MITER Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	PB2	Piggyback	19	1	Job Reference (optional)	166979301

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:21 ID:ZT9C3F0UNudJVjvfm3i9BdyyfZ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_. F

7-2-4

Plate Offsets (X, Y): [2:0-2-2,0-1-0], [4:0-2-2,0-1-0]

Scale = 1:32.9

	(, .). [== =,],	[
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.17 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=7-2-4, 4 11=7-2-4 Max Horiz 2=63 (LC Max Uplift 2=-11 (LC 7=-11 (LC Max Grav 2=211 (LC (LC 2), 7= 2)	athing directly applied applied or 10-0-0 oc 4=7-2-4, 6=7-2-4, 7=7 12), 7=63 (LC 12) 13), 4=-17 (LC 14), 13), 11=-17 (LC 14), 2 2), 4=211 (LC 2), 6= -211 (LC 2), 11=211 (3) 4) d or 5) 7-2-4, 6) 7) 8) =203 (LC	Truss desig only. For stu- see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss h on the bottor 3-06-00 tall t chord and ar	ned for wind loads uds exposed to wind d Industry Gable E ualified building des 7-16; Pr=20.0 psf; late DOL=1.15); Pg=20.0 psf; late DOL=1.15); s s; Cs=1.00; Ct=1.1 ss been designed f psf or 2.00 times fi on-concurrent with es continuous bott spaced at 4-0-0 on has been designed n chord in all areas by 2-00-00 wide wi by other members.	in the p ad (norm nd Deta signer a f (roof L) Pf=13.9 =1.0; R 0 or great at roof I other Ii om cho c. I for a liv s where II fit betw	lane of the tru al to the face ils as applica is s per ANSI/TI :: Lum DOL= 9 psf (Lum bugh Cat B; F er of min roof bad of 13.9 p; ve loads. d bearing. re load of 20.0 a rectangle veen the botto	uss), ble, Pl 1. 1.15 Fully f live sf on Opsf om						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-3=-158/ 4-5=-0/20	pression/Maximum 128, 3-4=-158/126,	10) N/A										
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 II; Exp B; Exterior(2 Exterior(2 zone; can and right e MWFRS f grip DOL=	2-6=-43/78, 4-6=-40 3-6=-62/0 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bi Enclosed; MWFRS (er E) 0-2-15 to 3-2-15, Int R) 4-3-0 to 7-6-5, Inter tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33	/78 been considered for (3-second gust) CDL=6.0psf; h=25ft; 0 velope) and C-C terior (1) 3-2-15 to 4-3 ior (1) 7-6-5 to 8-3-0 posed ; end vertical le pers and forces & imber DOL=1.60 plate	11 12 Cat. LC 3-0, oft) This truss is International R802.10.2 a See Standar Detail for Co consult quali DAD CASE(S)	designed in accord Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	dance w sections idard Al ack Trus ack Trus uss as ner.	ith the 2018 \$ R502.11.1 a \SI/TPI 1. s Connection applicable, or	and				SEA 0363	L 22 EEERER MININ	Name of the second seco

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL1	Valley	1	1	Job Reference (optional)	166979302

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:21 ID:1fiaHb168CIA7tUrKnEOkryyfYz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.7

Plate Offsets (X, Y): [9:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.50 0.14 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 143 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=19-1-4,	athing directly applied cept end verticals. applied or 10-0-0 oc 8-17, 10-15 13=19-1-4, 14=19-1-	BC WE d or 1) -4, 2)	DT CHORD	1-22=-116/196, 21-2 20-21=-102/113, 19- 18-19=-102/113, 17- 15-17=-102/113, 17- 13-14=-102/113, 14- 13-14=-102/113, 14- 13-14=-102/113, 14- 13-14=-102/113, 14- 10-15=-146/69, 11-1 roof live loads have 7-16; Vult=130mph	22=-102 -20=-1(-18=-1(-15=-1(-130/6 -122/8 4=-12(been c (3-sec	2/113,)2/113,)2/113,)2/113, 1, 3-21=-102, 1, 8-17=-136, i/89 considered fo cond gust) 0.05f; h=25f;	/56, /70, r	10) Prov bear 13, 3 at jo 35 lt joint 11) This Inter R80 LOAD C	vide mee ring plat 35 lb up int 20, 2 o uplift a 15 and truss is rnationa 2.10.2 a :ASE(S)	chanic e capa lift at jo 6 lb uj t joint 33 lb desig I Resid nd ref Star	al connection (by able of withstandi joint 1, 24 lb uplift plift at joint 21, 28 18, 20 lb uplift at uplift at joint 14. ned in accordanc dential Code sect erenced standard ndard	others) of tru ng 28 lb uplift at joint 19, 26 b lb uplift at joi joint 17, 25 lb we with the 20 ions R502.11 d ANSI/TPI 1.	ss to at joint b lb uplift nt 22, uplift at 18 .1 and
FORCES TOP CHORD	(size) 1=19-1-4, 15=19-1-4, 19=19-1-4, 22=19-1-4, Max Horiz 1=256 (LC Max Uplift 1=-35 (LC 14=-33 (L 17=-20 (L 19=-24 (L 21=-26 (L Max Grav 1=174 (LC 14=178 (I 17=176 (I 19=162 (I 21=118 (I (Ib) - Maximum Com Tension 1-2=-300/253, 2-3=- 4-5=-176/138, 5-7=- 8-9=-160/194, 9-10= 10-11=-179/213, 11: 12-13=-140/139	13=19-1-4, 14=19-1 4, 17=19-1-4, 18=19- 4, 20=19-1-4, 21=19- 4 C 10) C 9), 15=-25 (LC 12) C 10), 18=-35 (LC 13) C 13), 20=-26 (LC 13) C 13), 22=-28 (LC 13) C 25), 13=73 (LC 25). C 25), 13=73 (LC 25). C 25), 13=73 (LC 25). C 24), 18=163 (LC 2 C 24), 22=286 (LC 2). C 24), 22=286 (LC 2). pression/Maximum 244/195, 3-4=-200/17 163/142, 7-8=-165/19. -118/137, -12=-161/178,	(4, 2) 1-4, 1-4, (5), (4), (4), (4), (4), (4), (4), (4), (4), (4), (4), (5), (6), (7), (8), (7), (8), (8), (9),	Vasd=103mp II; Exp B; En Exterior(2E) Exterior(2R) to 18-11-14 <i>z</i> vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.15 Pl Exp.; Ce=0.9 All plates are Gable requiri Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings	sh; TCDL=6.0psf; Bi closed; MWFRS (er 0-0-6 to 3-0-6, Interi 14-11-13 to 17-11-1 zone; cantilever left and right exposed;C- FRS for reactions s ate grip DOL=1.33 ned for wind loads ir ids exposed to wind d Industry Gable En- alified building desig. 7-16; Pr=20.0 psf; C 14te DOL=1.15); Is= bits; Cs=1.00; Ct=1.10 c 2x4 MT20 unless co es continuous botton spaced at 2-0-0 oc. has been designed fin a chord in all areas by 2-00-00 wide will by other members. are assumed to be S	(c) USE (c) DL=6 ivelope ior (1) 3, Inte C for n hown; I c) for n hown; I	one gas, j opsr, h=25ft;) and C-C 3-0-6 to 14-17 rior (1) 17-11 ht exposed ; nembers and Lumber ane of the tru ane of the tru al to the face is as applicat s per ANSI/TF : Lum DOL=7 psf (Lum ough Cat B; F se indicated. d bearing. e load of 20.0 a rectangle reen the botto 2.	c Cat. 1-13, -13 end uss), ble, Pl 1. 1.15 ully Dpsf om		Within		SEA 0363	ROUN L 22 L L BERIN	and an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL2	Valley	1	1	Job Reference (optional)	166979303

1)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:21 ID:1fiaHb168CIA7tUrKnEOkryyfYz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL3	Valley	1	1	Job Reference (optional)	166979304

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:21 ID:VrGyUx2kvVt0k132tUIdH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL4	Valley	1	1	Job Reference (optional)	166979305

1)

2)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:21 ID:VrGyUx2kvVt0k132tUldH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL5	Valley	1	1	Job Reference (optional)	166979306

4-11-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:21 ID:VrGyUx2kvVt0k132tUldH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

9-6-1

Page: 1

9-11-4

9-11-4

Scale	- 1.30.4	
Scale	= 1.30.4	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.26 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-11-4 oc purlins. Rigid ceiling directly bracing. (size) 1=9-11-4, Max Horiz 1=-59 (LC Max Uplift 1=-28 (LC Max Uplift 1=-28 (LC Max Uplift 1=-28 (LC Max Grav 1=71 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-102/343, 2-3=- 1-4=-241/151, 3-4=- 2-4=-562/223	athing directly applied applied or 6-0-0 oc 3=9-11-4, 4=9-11-4 11) 31), 3=-25 (LC 30) 30), 3=74 (LC 31), 4: pression/Maximum 99/337 236/149	d or	 4) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 5) Gable requir 5) Gable studs 7) * This truss I on the bottor 3-06-00 tall I chord and ar 8) All bearings 8) Provide mec bearing plate 1 and 25 lb u 10) This truss is International R802.10.2 a CADC CASE(S) 	7-16; Pr=20.0 p 1.15); Pg=20.0 p late DOL=1.15); 2; Cs=1.00; Ct=1 es continuous bu spaced at 4-0-0 nas been design n chord in all are by 2-00-00 wide y other membeu are assumed to hanical connecti e capable of with uplift at joint 3. designed in acco Residential Coc nd referenced st Standard	osf (roof LL sf; Pf=13.9 Is=1.0; Rd .10 oottom chor oc. ed for a live eas where will fit betw rs. be SP No. ion (by oth ustanding 2 ordance w de sections andard AN	L: Lum DOL= 9 psf (Lum bugh Cat B; F rd bearing. re load of 20.0 a rectangle veen the bott 2 . ers) of truss i 28 lb uplift at j ith the 2018 s R502.11.1 a NSI/TPI 1.	1.15 Fully Opsf om oont					
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1030 II; Exp B; E Exterior(2E	td roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (er E) 0-0-6 to 3-0-6, Interi	been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) and C-C for (1) 3-0-6 to 5-0-0,	Cat.								A MARINE	NHTH CA	ROUT

Exterior(2R) 5-0-0 to 8-0-0, Interior (1) 8-0-0 to 9-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Noomanna Contraction and SEAL 036322 GI minin July 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL6	Valley	1	1	Job Reference (optional)	166979307

2-5-10

2-5-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:22 ID:VrGyUx2kvVt0k132tUldH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-6-1

2-0-7

-11-4

Page: 1

4-11-4

Scale = 1:24.5

					-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.07 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		-								Weight: 16 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-4 oc purlins. Rigid ceiling directly bracing. (size) 1=4-11-4, Max Horiz 1=-28 (LC Max Uplift 3=-3 (LC	athing directly applied applied or 6-0-0 oc 3=4-11-4, 4=4-11-4 : 9) 14)	 6) Gables 7) * This tr on the b 3-06-00 chord at 8) All bearing 9) Provide bearing 10) This trus Internati R802.10 	uds spaced at 4-0-0 c uss has been designe ottom chord in all area tall by 2-00-00 wide w d any other members ngs are assumed to b mechanical connectio plate capable of withs as is designed in accoo onal Residential Code .2 and referenced sta E(S) Standard	oc. d for a liv as where vill fit betv s. on (by oth tanding 3 rdance w e sections indard AN	e load of 20.0 a rectangle veen the botte 2 . ers) of truss t b uplift at jo ith the 2018 ; R502.11.1 a ISI/TPI 1.	Opsf om to int 3.					
	Max Grav 1=62 (LC	30), 3=65 (LC 31), 4	=292									
FORCES	(LC 2)											
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(2E vertical lef forces & M DOL=1.60 3) Truss des only. For see Stand. or consult 4) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 5) Gable requ	Tension 1-2=-58/99, 2-3=-63, 1-4=-85/78, 3-4=-82, 2-4=-179/91 ed roof live loads have b CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (en- E) zone; cantilever left t and right exposed;C- WFRS for reactions si plate grip DOL=1.33 signed for wind loads ir plate grip DOL=1.33 signed for wind loads ir plate grip DOL=1.33 signed for wind loads ir plate grip DOL=1.35; Plate DOL=1.15; F= 0.9; Cs=1.00; Ct=1.10 uires continuous bottor	/94 /76 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C and right exposed; c C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPr roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu m chord bearing.	Cat. end ss le, l 1. .15 lly						A statistics		SEA 0363	L 22 LBERTITION 23.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL7	Valley	1	1	Job Reference (optional)	166979308

6-1-7

-0-0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

12 8 Г

2-0-0

1.15

1 15

YES

2)

3)

4)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:22 ID:VrGyUx2kvVt0k132tUIdH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-1-12 6 5 4 3 6-1-7 13 2 7 10 9 8 3x6 = 9-1-12 CSI DEFL in l/defl L/d PLATES GRIP (loc) тс 0.34 Vert(LL) n/a n/a 999 MT20 244/190 BC 0.10 999 Vert(TL) n/a n/a WB 0.07 Horiz(TL) 0.00 7 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 56 lb FT = 20%Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10 All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.

- 5) 6) Gable studs spaced at 2-0-0 oc.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2. Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 32 lb uplift at joint 7, 5 lb uplift at joint 1, 27 lb uplift at joint 9, 19 lb uplift at joint 10 and 30 lb uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:34.5 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 00 1	ourlins except end verticals
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
Der enere	bracing	ing anoonly applied of 10 0 0 00
REACTIONS	(size)	1-0-1-12 7-0-1-12 8-0-1-12
REACTIONS	(3126)	$q_{-0.1-12}$, $7_{-9-1-12}$, $0_{-9-1-12}$, $0_{-0.1-12}$
	Max Hariz	3 = 3 = 1 = 12, $10 = 3 = 1 = 12$
	Max Uplin	1=-5 (LC 9), 7=-32 (LC 10), 8=-30
		(LC 13), 9=-27 (LC 13), 10=-19 (LC
		13)
	Max Grav	1=116 (LC 25), 7=109 (LC 24),
		8=185 (LC 24), 9=145 (LC 24),
		10=217 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-307/	207, 2-3=-257/168, 3-4=-193/140,
	4-5=-116/	/99, 5-6=-64/66, 6-7=-35/36
BOT CHORD	1-10=-128	8/161, 9-10=-92/102, 8-9=-92/102,
	7-8=-92/1	02
WEBS	3-9=-117/	/91, 2-10=-143/85, 4-8=-136/115,
	5-7=-132/	/133
NOTES		

(psf)

20.0

10.0

0.0

10.0

13 9/20 0

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 9-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL8	Valley	1	1	Job Reference (optional)	166979309

TCDL

BCLL

BCDL

1)

2)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:22 ID:VrGyUx2kvVt0k132tUIdH2yyfYy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

ATTEND IN THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL9	Valley	1	1	Job Reference (optional)	166979310

Scale = 1:39 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

Snow (Pf/Pg)

Run: 8 73 S. Jul 11 2024 Print: 8 730 S. Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:22

Page: 1

and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G mm July 23,2024

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL10	Valley	1	1	Job Reference (optional)	166979311

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries. Inc. Fri Jul 19 06:32:22 ID:1fiaHb168CIA7tUrKnEOkryyfYz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-11-6

Scale = 1:30.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MP	0.20 0.19 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-11-6 oc purlins. Rigid ceiling directly bracing. (size) $1=7-11-6$, Max Horiz $1=59$ (LC Max Uplift $1=-16$ (LC Max Grav $1=63$ (LC (LC 2) (lb) - Maximum Com Tension 1-2=-123/230, 2-3=- 1-4=-190/184, 3-4=- 2-4=-412/241 ed roof live loads have 2-4=-412/241	athing directly applie applied or 6-0-0 oc 3=7-11-6, 4=7-11-6 10) 31), 3=-14 (LC 30), 30), 3=66 (LC 31), 4 pression/Maximum 115/226 187/182 been considered for (3-second rust)	4) T P D 5) G 6) G 7) * 0 3 3 8) A 9) P b 5 9) P 5 9 10) T R EOAL	CLL: ASCE late DOL=1 IOL=1.15 P xp.; Ce=0.9 iable require cable studs This truss h n the bottor -06-00 tall b hord and ar Il bearings rovide mec earing plate , 14 lb uplift his truss is ternational 2802.10.2 ai	F7-16; Pr=20.0 ps i.15); Pg=20.0 ps late DOL=1.15); Is cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 o nas been designed n chord in all area by 2-00-00 wide w y other members are assumed to be hanical connection e capable of withst at joint 3 and 16 i designed in accor Residential Code nd referenced star Standard	f (roof LI ; Pf=13.5 =1.0; R 0 tom chor c. d for a liv s where ill fit betv - e SP No. n (by oth tanding 1 b uplift a dance w sections ndard AN	: Lum DOL=1) psf (Lum) ugh Cat B; Fu d bearing. e load of 20.0 a rectangle /een the botto 2. ers) of truss to 6 lb uplift at jot t joint 4. ith the 2018 R502.11.1 ar ISI/TPI 1.	.15 illy osf int					
Vasd=103 II; Exp B; I Exterior(2) Exterior(2) zone; cant and right e	In the second se	CDL=6.0psf; h=25ft; ivelope) and C-C ior (1) 3-0-5 to 4-0-0, ior (1) 7-2-5 to 7-11- oosed ; end vertical le vers and forces &	Cat. 11 eft							4		SEA	L

grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

MWFRS for reactions shown; Lumber DOL=1.60 plate

7 The second second - THE CONTRACT OF SEAL 036322 G minim July 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Kris B-Kris B-Roof	
22070031-A	VL11	Valley	1	1	Job Reference (optional)	166979312

1-11-11

1-11-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Fri Jul 19 06:32:22 ID:1fiaHb168CIA7tUrKnEOkryyfYz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-6

3-7-4

1-7-9

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 2014 Matrix-MP	0.03 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-6 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-6 Max Horiz 1=-28 (LC Max Uplift 3=-1 (LC Max Grav 1=54 (LC (LC 2) (lb) - Maximum Con Tension 1-247(61 2-3-56)	eathing directly applie y applied or 6-0-0 oc , 3=3-11-6, 4=3-11-6 C 9) 14) 30), 3=56 (LC 31), 4 hpression/Maximum 1/57	6) Gat 7) * Th on t 3-0(cho 8) All t 9) Pro bea ; 10) This Inte R80 4=221 LOAD C	le studs spaced at 4-0-0 is truss has been designe he bottom chord in all are 5-00 tall by 2-00-00 wide e rd and any other member pearings are assumed to l vide mechanical connecti ring plate capable of with a truss is designed in accor rnational Residential Cod (2.10.2 and referenced sta CASE(S) Standard	oc. ed for a liv as where will fit betw 's. be SP No. on (by oth standing 1 ordance w le sections andard AN	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t lb uplift at joi ith the 2018 : R502.11.1 a ISI/TPI 1.	opsf om nt 3. nd						
BOT CHORD WEBS	1-2=-47/01, 2-3=-50 1-4=-55/65, 3-4=-53 2-4=-123/68	8/64											
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1037 II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 3) Truss desi only. For s see Standa or consult of 4) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=C 5) Gable requ	ed roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (ei) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33 igned for wind loads i studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Is= Date DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous botto	been considered for (3-second gust) CDL=6.0psf; h=25ft; hvelope) and C-C : and right exposed ; C for members and shown; Lumber n the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF (roof LL: Lum DCL=1 Pf=13.9 psf (Lum :1.0; Rough Cat B; Fi m chord bearing.	r Cat. end ss ble, Pl 1. I.15 ully						William.		SEA 0363	EER. K	-

July 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB_2CH_Building Component Sciev Information** available from the Structural Building Component Association (www.stpacromonents.com) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

