

Trenco 818 Soundside Rd Edenton, NC 27932

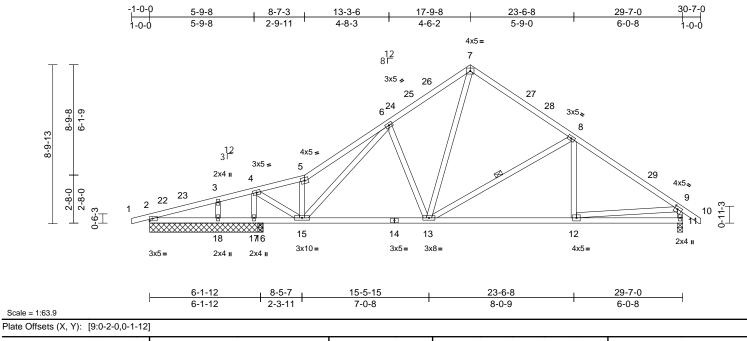
Re: 22080075-A Wyatt-Wyatt-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I64001313 thru I64001335

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


March 4,2024

Liu, Xuegang IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	A01	Roof Special Structural Gable	1	1	Job Reference (optional)	164001313

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:05 ID:AkXE3dGI9obpJysUy6viU3yp5AG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	X, Y): [9:0-2-0,0-1-12]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.44 0.50		in -0.03 -0.13 0.02	(loc) 13-15 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%
	5-3-5 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=6-3-8, 1 17=6-3-8, Max Horiz 2=167 (LC Max Uplift 2=-67 (LC 18=-14 (LC Max Grav 2=98 (L 16=328 (L	applied or 6-0-0 oc 8-13 11=0-3-8, 16=0-3-8, 18=6-3-8, 19=6-3-8 C 14), 19=167 (LC 14 C 11), 16=-33 (LC 15) C 15), 19=-67 (LC 11	Vasd=10 Cat. II; E: Exterior(2 17-9-8, E to 30-6-8 vertical le forces & I DOL=1.6 3) Truss de only. For see Stan or consul 4) TCLL: AS Plate DO DOL=1.1 Exp.; Ce= 5) Unbalance	CE 7-16; Vult=130mp mph; TCDL=6.0psf; 1 p B; Enclosed; MWFI E) -0-11-13 to 2-0-3, terior(2R) 17-9-8 to 2 cone; cantilever left a t and right exposed; (WFRS for reactions plate grip DOL=1.33 signed for wind loads studs exposed to win ard Industry Gable E qualified building des CE 7-16; Pr=20.0 psf; Plate DOL=1.15); IS 0.9; Cs=1.00; Ct=1.1 d snow loads have t has been designed f	BCDL=6 RS (env Interior 20-9-8, I and right C-C for n shown; in the p ad (norm nd Deta signer at f (roof LL Pf=13.9 =1.0; Rc 0 been cor	6.0psf; h=25ft; elope) and C-C (1) 2-0-3 to nterior (1) 20-9 exposed ; end nembers and Lumber lane of the trus: ial to the face), ils as applicabl s per ANSI/TPI : Lum DOL=1. Depsf (Lum pugh Cat B; Ful nsidered for this	8 e, 1. 15 Ily s	Ínte	rnationa)2.10.2 a	I Resident	erenced standar	tions R502.11.1 and
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-91/40		overhang	0 psf or 2.00 times fl non-concurrent with	other liv		on					1111
BOT CHORD	4-5=-700/106, 5-6=- 7-8=-757/223, 8-9=- 9-11=-900/221 2-18=-392/134, 17-1	891/217, 6-7=-918/2 1155/198, 9-10=0/45 8=-392/134,	75, 8) * This true on the bo 3-06-00 t chord and		l for a liv s where Il fit betv	a rectangle veen the botton				in the second se	OFESS	ROLL WILL
WEBS	16-17=-392/134, 15- 13-15=-31/780, 12-1 11-12=-62/215 5-15=-485/165, 7-13 8-13=-421/150, 8-12 6-13=-255/173, 6-15 4-17=-1035/165, 3-1 4-15=-155/1210	3=-46/884, 3=-143/581, 2=0/111, 9-12=0/674, 5=-158/3,	 All bearin capacity (10) One H2.5 recomme UPLIFT a uplift only 11) H10A Sin connect t 	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, 17, and 18. This connection is for uplift only and does not consider lateral forces. 11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16. This connection is for uplift only and does not consider 								
	d roof live loads have	been considered for	lateral for				•				111111	Guinn

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type C		Ply	Wyatt-Wyatt-Roof			
22080075-A	A02	Roof Special	9	1	Job Reference (optional)	l64001314		

8-9-8 6-1-9

2-8-0 2-8-0

8-9-13

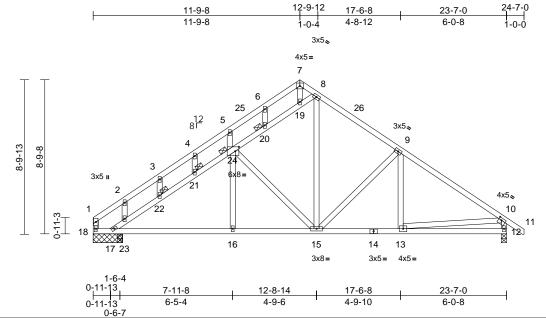
Scale = 1:61.6

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:08 Page: 1 ID:mQNW?QQ4s6Mq_6wAn29_20yp5A2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-5-11 17-9-8 23-6-8 29-7-0 30-7-0 8-7-3 13-3-6 1-0-0 4-5-11 4-1-8 4-8-3 4-6-2 5-9-0 6-0-8 4x5= 12 81 6 3x5 🍫 23 22 24 5²¹ 25 3x5、 7 12 3 4x8 -4 2x4 💊 26 4x5、 3 20 8 19 0-11-3 0-6-3 9 10) ⊠ 15 Ø 14 13 12 11 2x4 II 3x5= 3x5= 3x8= 4x5= 3x5= 3x5= 6-1-12 8-5-7 15-5-15 23-6-8 29-7-0 6-1-12 2-3-11 7-0-8 8-0-9 6-0-8

Plate Offsets (X, Y): [4:0-5-8,0-2-0], [8:0-2-0,0-1-12]

-			-					-						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0		1.15		TC	0.48	Vert(LL)		11-12		240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0		1.15		BC	0.45	Vert(CT)		11-12	>999	180			
TCDL	10.0		YES		WB	0.38	Horz(CT)	0.02	10	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 169 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	ond aust)							
TOP CHORD	2x4 SP No.2		,		oh; TCDL=6.0psf; I	•	0 /	:						
BOT CHORD					Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C									
WEBS	2x4 SP No.3			Exterior(2E) -0-11-13 to 2-0-3, Interior (1) 2-0-3 to										
BRACING					rior(2R) 17-9-8 to 2									
TOP CHORD	Structural wood she	athing directly applied	or	to 30-6-8 zor	ne; cantilever left a	nd right	exposed ; en	nd						
	5-2-12 oc purlins, et		01		nd right exposed;C									
BOT CHORD					FRS for reactions		Lumber							
	BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 2-15.				ate grip DOL=1.33									
					3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15									
WEBS	1 Row at midpt		Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum											
REACTIONS	(size) 2=0-3-8, 1	10=0-3-8, 15=0-3-8		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10										
	Max Horiz 2=173 (LC		4)											
	Max Uplift 2=-52 (LC		4)	 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live 										
	Max Grav 2=211 (LC		5)											
	15=1331		5)		osf or 2.00 times fl									
FORCES	(lb) - Maximum Com	pression/Maximum			on-concurrent with			51 011						
	Tension		6)	0	as been designed			Opsf						
TOP CHORD	1-2=0/18, 2-3=-90/18	84, 3-4=-134/453,	0)		n chord in all areas			000						
	4-5=-772/178, 5-6=-	912/272, 6-7=-758/22	2,		y 2-00-00 wide wi			om						
	7-8=-1170/197, 8-9=	0/46, 8-10=-915/224			y other members.								111.	
BOT CHORD	2-15=-172/105, 14-1	5=0/619, 12-14=-18/7	64, 7)	All bearings	are assumed to be	SP No.	2 crushing					MUL CA	Delle	
	11-12=-42/895, 10-1	1=-63/220	,	capacity of 5	65 psi.		0					ioth on	TO/ 11	
WEBS		4=0/257, 6-12=-136/5	65, 8)	One H2.5A S	Simpson Strong-Tie	e conne	ctors				S	OV. FSS	ik Alle	
	7-12=-437/156, 7-11=0/115, 8-11=0/679,				ed to connect truss	to bear	ing walls due	to			22	N.OFLOO	NA. NY	
	3-15=-444/139, 5-12	2=-240/168, 5-14=-265	/39	UPLIFT at jt(s) 2, 15, and 10. T	his conr	nection is for	uplift			-		VVV	
NOTES			only and does not consider lateral forces.											
1) Unbalance	1) Unbalanced roof live loads have been considered for				designed in accord					=		SEA SEA	L : =	
this design	1.				Residential Code			and		=	:		• -	
			R802.10.2 and referenced standard ANSI/TPI 1.								• : :			

LOAD CASE(S) Standard


March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	B01	Common	1	1	Job Reference (optional)	164001315

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:08 ID:C3z38eYv6NsDxlfluEnUWQyp560-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

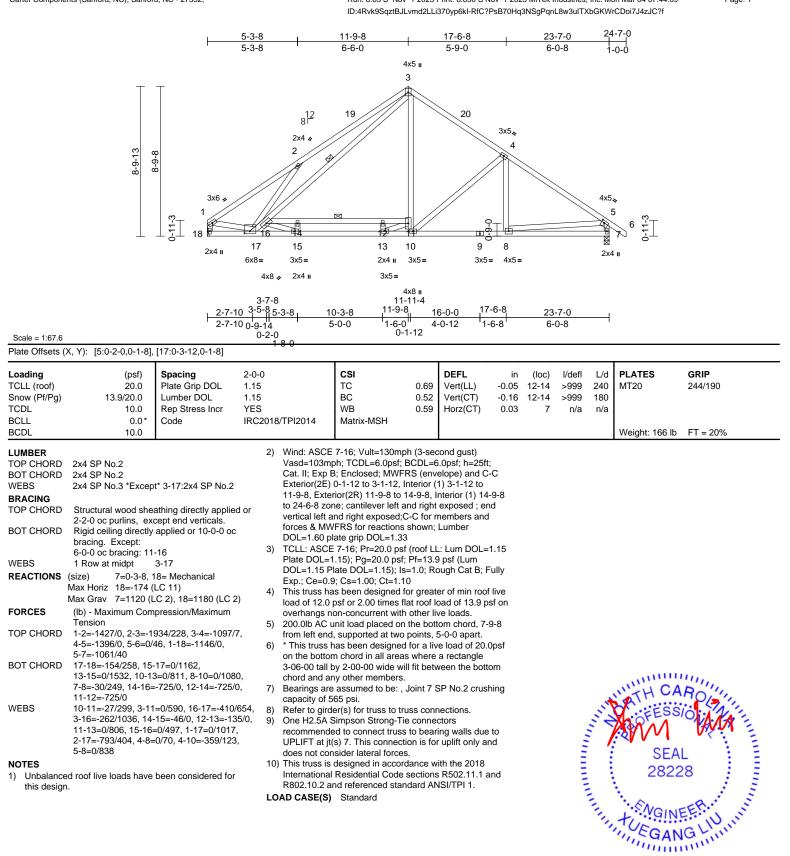
Page: 1

Scale = 1:65.7	

Plate Offsets (X, Y): 110:0-2-0.0-1-81.124:0-	ate Offsets (X, Y): [10:0-2-0,0-1-8], [24:0-2-8,0-3-0]	
---	--	--

		1											
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.50	Vert(LL)	-0.03	15-16	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.07	16-17	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.03	12	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 163 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 5-2-7 oc purlins, exx Rigid ceiling directly bracing. 1 Brace at Jt(s): 20, 21, 22, 24 (size) 12=0-3-8, Max Horiz 18=-169 (Max Uplift 17=-81 (L Max Grav 12=937 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 17=1-8-0, 18=1-8-0 LC 9) C 13), 18=-81 (LC 1 ⁻¹	3) 4)	Vasd=103mj Cat. II; Exp E Exterior(2E) 11-9-8, Exte to 24-6-8 zor vertical left a forces & MW DOL=1.60 p Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.15 P	7-16; Vult=130mp oh; TCDL=6.0psf; 3; Enclosed; MWF 0-1-12 to 3-1-12, I rior(2R) 11-9-8 to re; cantilever left a nd right exposed; (FRS for reactions late grip DOL=1.33 ned for wind loads ids exposed to wir d Industry Gable E ialified building de: 7-16; Pr=20.0 psf; late DOL=1.15); Is No Co 4.00 CO 14	BCDL=6 RS (env Interior (14-9-8, I and right C-C for r shown; a in the p nd (norm ind Deta signer a f (roof LI ; Pf=13.9 =1.0; Ro	:.0psf; h=25ft; elope) and C-C 1) 3-1-12 to nterior (1) 14-9; exposed ; end nembers and Lumber al to the face), ils as applicable s per ANSI/TPI :: Lum DOL=1. ⁻ 9 psf (Lum	-8 s e, 1. 15	Inte R80	rnationa	I Resid	erenced standard	ions R502.11.1 and
FORCES	18=101 (L	,	5)	Exp.; Ce=0.9; Cs=1.00; Ct=1.105) This truss has been designed for greater of min roof live									
FORCES	(lb) - Maximum Com Tension	ipression/iviaximum			psf or 2.00 times f			on					
TOP CHORD	1-2=-217/0, 2-3=-24 4-5=-153/2, 5-6=-18 7-8=-160/107, 8-9=- 9-10=-1122/107, 10- 10-12=-880/128	8/69, 6-7=-170/102, 847/151,	,	All plates are Truss to be f braced agair Gable studs	on-concurrent with 2x4 MT20 unless ully sheathed from 1st lateral moveme spaced at 2-0-0 of nas been designed	otherwi one fac ent (i.e. c c.	se indicated. e or securely liagonal web).	sf				H CA	ROLA
BOT CHORD	17-18=-78/213, 16-1 13-15=0/853, 12-13=			on the bottor	m chord in all area by 2-00-00 wide wi	s where	a rectangle				i k	YAMA	HART
WEBS NOTES 1) Unbalance this design	17-23=-1016/215, 22 21-22=-930/157, 21- 20-24=-653/114, 19- 8-19=-656/127, 7-19 5-24=-244/125, 4-21 2-23=-162/107, 8-15 16-24=0/117, 15-24- 10-13=0/615 ed roof live loads have	2-23=-935/156, :24=-899/143, :20=-617/98, =-60/84, 6-20=-64/3 =-58/25, 3-22=-11/0 :=-86/584, 9-13=0/83 =-420/99, 9-15=-332/	7, 11 , 96, 12	chord and ar) All bearings capacity of 5) Provide mec bearing plate 17. 2) One H2.5A S recommende UPLIFT at jtt	ny other members. are assumed to be	e SP No. n (by oth anding 8 e conne s to bear s connec	2 crushing ers) of truss to 11 lb uplift at join ctors ing walls due to tion is for uplift	nt		CONTRACT.	and the second second	SEA 2822 HUEGAN	EF. P. Martin

March 4,2024

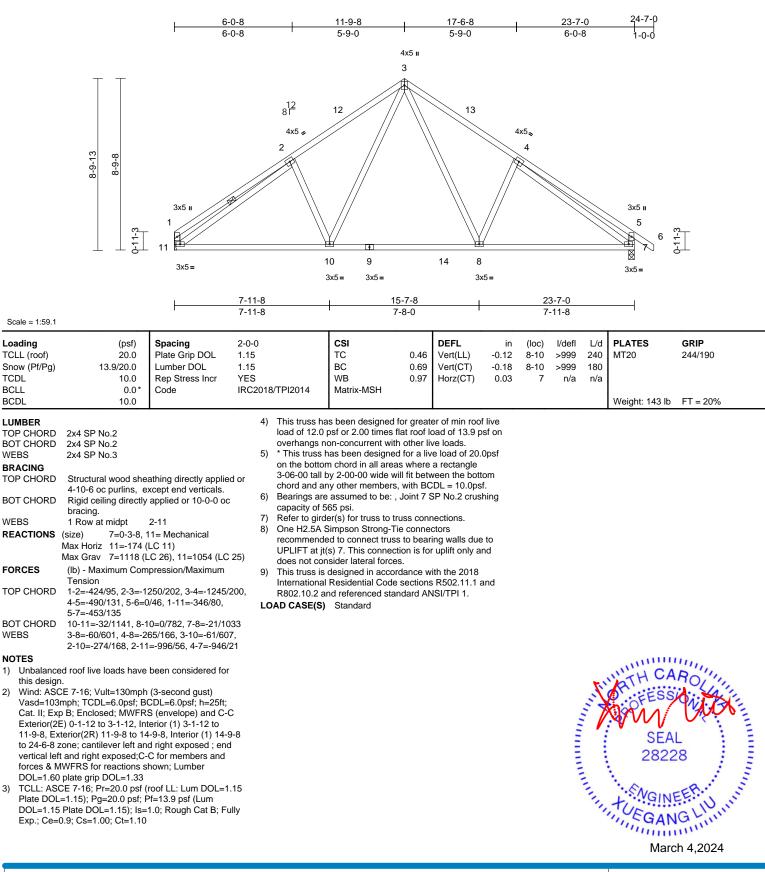


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof				
22080075-A	B02	Common	7	1	Job Reference (optional)	164001316			

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:09

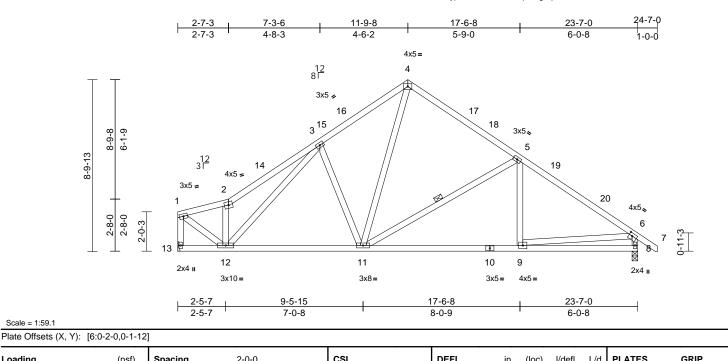
Page: 1


March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	B03	Common	2	1	Job Reference (optional)	164001317

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:09 ID:2qUupZsfgZTuuLvWDvjpuCyp54K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof				
22080075-A	B04	Roof Special	1	1	Job Reference (optional)	164001318			

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:09 ID:eXKAIM1RNsEvaV_C1rz5S9yp546-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1)	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	-0-0 .15 .15 ES RC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.46 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.14 0.02	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
	5-1-5 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 oc 5-11 3= Mechanical _C 11)	3) 4) 5) 6) 7)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced si design. This truss hai load of 12.0 p overhangs nc * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 psf (.15); Pg=20.0 psf (.15); Pg=20.0 psf; P ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be s been designed fo osf or 2.00 times fla on-concurrent with o as been designed for n chord in all areas y 2-00-00 wide will y other members. assumed to be: , J	Pf=13.9 1.0; Ro een cor r greate t roof lo other liv for a liv where fit betv	e psf (Lum pugh Cat B; F nsidered for th er of min roof pad of 13.9 ps re loads. e load of 20.0 a rectangle veen the botto	ully his live sf on)psf om					

- Bearings are assumed to be: , Joint 8 SP No.2 crushing capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.
 9) One H2.5A Simpson Strong-Tie connectors
- (a) One R2.3A Simpson strong- he connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

NOTES

WEBS

WEBS REACTIONS

FORCES

TOP CHORD

BOT CHORD

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCDL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD

 Unbalanced roof live loads have been considered for this design.

Tension

(lb) - Maximum Compression/Maximum

4-5=-813/242, 5-6=-1221/215, 6-7=0/46,

5-11=-433/155, 5-9=0/114, 6-9=0/719,

6-8=-948/236, 1-13=-918/151

9-11=-57/937, 8-9=-64/223

12-13=-157/156, 11-12=-51/862,

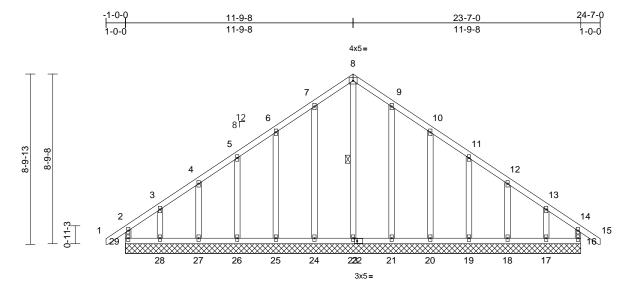
2-12=-578/189, 4-11=-161/645,

1-2=-897/146, 2-3=-1134/265, 3-4=-994/292,

1-12=-156/1054, 3-11=-303/194, 3-12=-54/92

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 6-1-12 to 8-7-3, Interior (1) 8-7-3 to 17-9-8, Exterior(2R) 17-9-8 to 20-9-8, Interior (1) 20-9-8 to 30-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

March 4,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	C01	Common Supported Gable	1	1	Job Reference (optional)	164001319

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:10 ID:tGNaeR84FdMd9uAx3EdCJ2yp53z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

23-7-0

Scale = 1:59.7

Plate Offsets (X, Y): [22:0-1-8,0-1-8]

		-1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 014 Matrix-MR	0.12 0.06 0.12	Vert(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 16=23-7- 23=23-7- 26=23-7- 29=2-37- Max Horiz 29=-173 Max Uplift 16=-41 (20=-27 (l 24=-21 (l 26=-26 (l 28=-68 (l 20=159 (l) 23=172 (l) 24=172 (l) 25=172	y applied or 6-0-0 oc 8-23 0, 17=23-7-0, 18=23-7 0, 20=23-7-0, 21=23-7 0, 24=23-7-0, 25=23-7 0, 27=23-7-0, 28=23-7 0 (LC 11) LC 10), 17=-60 (LC 14 LC 14), 19=-26 (LC 14 LC 14), 21=-20 (LC 14 LC 13), 25=-27 (LC 13 LC 13), 25=-27 (LC 13 LC 13), 25=-70 (LC 9) LC 25), 17=166 (LC 22 LC 26), 21=166 (LC 22 LC 28), 24=167 (LC 22 LC 28), 26=161 (LC 22 LC 23), 26=161 (LC 22 LC 23), 26=161 (LC 22) LC 23), 26=161 (LC 22) LC 23), 26=167 (LC 22)	WEBS 7-0, 7-0, 7-0, 7-0, 7-0, 7-0, 7-0, 7-0,	3-4=-90/89, 4 6-7=-118/19 9-10=-118/19 12-13=-63/64 14-16=-124/4 ORD 28-29=-78/85 25-26=-78/85 21-23=-78/85 18-19=-78/85 8-23=-213/74 5-26=-121/75 9-21=-127/65	26, 10-11=-86, 4, 13-14=-90/8 49 9, 27-28=-78/8 9, 24-25=-78/8 9, 20-21=-78/8 4, 7-24=-129/6 4, 7-24=-129/6 5, 4-27=-121/7 7, 10-20=-120, 75, 12-18=-12: 37 is have been of 30mph (3-sec 0psf; BCDL=6 MWFRS (env >-8, Exterior[2] 8 to 14-98, E; r left and right osed; C-C for n ctions shown; =-1.33 loads in the pi to wind (norm able End Deta able fand Deta ng designer as 0.0 psf; Pf=13.5 15); Is=1.0; Rc Ct=1.10 gned for great mes flat roof lo	6=-86/139, 6, 8-9=-148/24 (139, 11-12=-5; 1, 14-15=0/45, 9, 26-27=-78/8 9, 19-20=-78/8 9, 19-20=-78/8 9, 19-17=-78/8 7, 6-25=-120/8 6, 3-28=-123/8 (81, 2/76, considered for cond gust) 0.0psf; h=25ft; elope) and C-C N) 1-9-8 to xterior(2N) 14-5 exposed; end nembers and Lumber lane of the trus al to the face), ils as applicable s per ANSI/TPI : Lum DOL=1. 0 psf (Lum pugh Cat B; Ful er of min roof li pad of 13.9 psf	7) 16, 8) 7/84, 9) 199, 10 19, 19 19, 10 11, 10 13, 12 14, 12 14, 12 14, 12 15 14, 12 15 14 15 15 15 15 15 15 15 15 15 15) Gab brac brac brac brac brac brac brac br	ble requi ss to be ced agai ble studs his truss he botto 5-00 tall rd and a bearings acity of vide mea ring plat 41 lb up ft at joint 68 lb up ft at joint 68 lb up ft at joint 68 lb st rnationa 2.10.2 a CASE(S)	res coi fully sl nst late s space has be m cho by 2-0 ny oth are as 665 ps 25, 22 (lift at jc 25, 22 (lift at jc 2, 22 (c) ouplift a desig I Resid and ref Stan	ntinuous bottom of neathed from one eral movement (i ad at 2-0-0 oc. sen designed for rd in all areas wh 0-00 wide will fit er members. ssumed to be SP i. al connection (by able of withstandi joint 16, 21 lb uplif 6 lb uplift at joint 1 5 lb uplift at joint 1 5 lb uplift at joint 1 7. ned in accordance	e face or securely .e. diagonal web). a live load of 20.0psf here a rectangle between the bottom No.2 crushing others) of truss to ng 70 lb uplift at joint ft at joint 24, 27 lb 26, 17 lb uplift at joint ft at joint 21, 27 lb 19, 18 lb uplift at joint ewith the 2018 tions R502.11.1 and d ANSI/TPI 1.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply Wyatt-Wyatt-Roof		Wyatt-Wyatt-Roof	
22080075-A	C02	Common	1	1	Job Reference (optional)	164001320

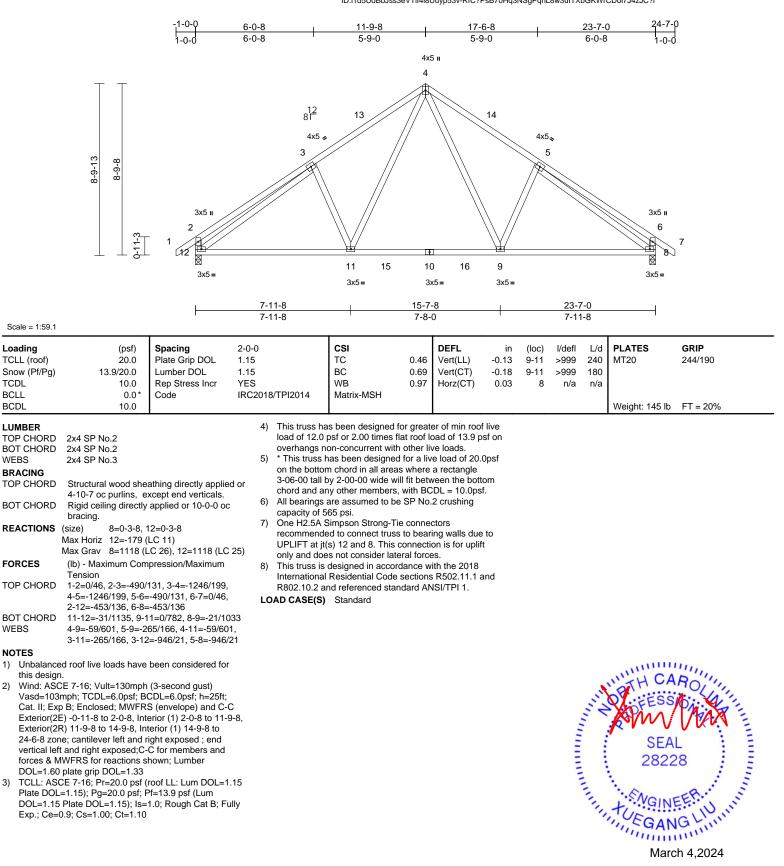
TCDL

BCLL

BCDL

WFBS

WEBS

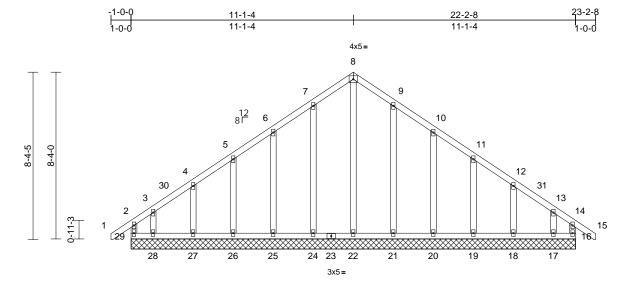

1)

2)

3)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:10 ID:I1d5UoBbJss3eVTil4i8Uuyp53v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	D01	Common Supported Gable	1	1	Job Reference (optional)	164001321

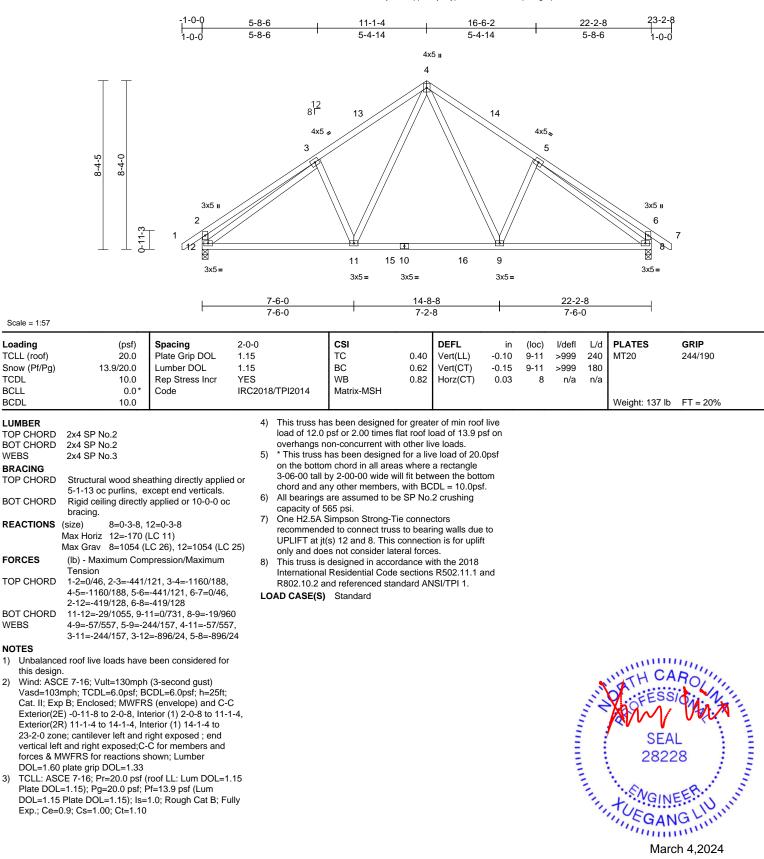
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:11 ID:2NYkyBG_f?l3zaV2C2KnGNyp53o-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

		 				22-2	-8						
Scale = 1:57.6 Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr		TC 0.12 Vert(LL) n/a BC 0.05 Vert(CT) n/a						'a - n/a 999 MT20 244/190 'a - n/a 999			
TOP CHORD 22 BOT CHORD 22 WEBS 22 OTHERS 22 BRACING TOP CHORD 8 BOT CHORD 8 CONTRACTOR 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	applied or 6-0-0 oc 3, 17=22-2-8, 18=22-2- 3, 20=22-2-8, 21=22-2- 3, 24=22-2-8, 25=22-2- 3, 27=22-2-8, 28=22-2- 3, 27=22-2-8, 28=22-2- 4, 27=2-2- 5, 27=22-2-8, 28=22-2- 4, 27=2-2- 5, 27=22-2-8, 28=22-2- 5, 27=22-2-8, 28=22-2- 4, 27=2-2-2- 5, 27=22-2-8, 28=22-2- 5, 27=20, 28=22-2- 5, 27=20, 28=25, 28=22-2-2- 5, 27=20, 28=25, 28=22-2-2, 28=2-2-2- 5, 27=20, 28=25, 28=2-2-2, 28=2-2-2, 28=2-2-2, 28=2-2-2, 28=2-2, 28=2-2, 28=2-2, 28=2, 28	WEE or 1) 8, 2) 8, 2) 8, 8, 8, 3) 3) 9, 4) 9, 4) 9, 4) 9, 5) 9, 7) 7, 8) 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	TES Unbalanced this design. Wind: ASCI Vasd=103m Cat. II; Exp Corner(3E) 11.1-4, Cor to 23-2-0 zc vertical left forces & MU DOL=1.60 p Truss desig only. For si see Standa or consult q DOL=1.15 l Exp.; Ce=0 This truss h load of 12.0 overhangs I All plates an Gable requi Truss to be braced aga	25-26=-74/91, 24 21-22=-74/91, 20 18-19=-74/91, 17 8-22=-196/58, 7- 5-26=-120/78, 4- 9-21=-128/71, 10 11-19=-120/78, 1 d roof live loads ha	I-25=-74/S I-21=-74/S I-12=-74/S I-21=-74/S I-22=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S I-23=-74/S	1, 22-24=-74 1, 19-20=-74 1, 16-75=-74 1, 16-75=-74 1, 16-75=-74 1, 16-25=-12(4, 3-28=-102 84, 5/83, 13-17= considered for considered for considered for considered for texposed; hereits considered for texposed; en- nembers and Lumber lane of the trial to the faccia is as applicat is per ANSI/T L: Lum DOL= 0 psf (Lum bugh Cat B; F er of min rooi pad of 13.0 p re loads. se indicated. d bearing. e or securely	k/91, k/91, k/91, k/91, k/91, k/91, k/91, k/92, k/92, k/94, sor c-C c-C c-C c-C c-C c-C c-C c-C c-C c-C	on t 3-06 cho 11) All t cap 12) Pro bea 29, uplii 27, uplii 18 a 13) This Inte R8C LOAD (he botto 5-00 tall rd and a bearings acity of vide me ring plat 59 lb up ft at join and 72 ll \$ truss is rnationa 12.10.2 a CASE(S	om cho by 2-0 any oth s are as 565 ps chanic te capa blift at jo t 25, 26 blift at jo t 20, 25 b uplift s desig al Resid and ref) Star	rd in all areas wh 0-00 wide will fit er members. ssumed to be SP i. al connection (by able of withstandi 5 lb uplift at joint 16 5 lb uplift at joint 28, 21 lb upli 5 lb uplift at joint at joint 17. ned in accordance dential Code sect erenced standard	ere a rectangle between the bottom No.2 crushing others) of truss to ng 98 lb uplift at joint ft at joint 24, 27 lb 26, 20 lb uplift at joint ft at joint 21, 27 lb 19, 21 lb uplift at joint ee with the 2018 ions R502.11.1 and d ANSI/TPI 1.

March 4,2024

A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

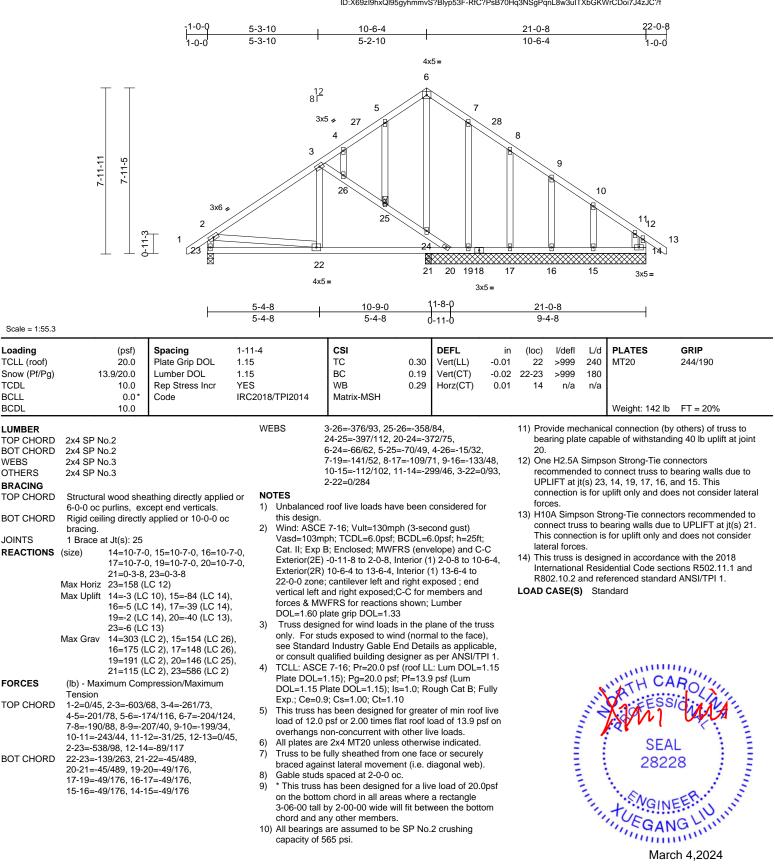

Job	Truss	russ Truss Type Qty Ply		Wyatt-Wyatt-Roof		
22080075-A	D02	Common	1	1	Job Reference (optional)	164001322

2)

3)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:11 ID:x8nFnZJVjEFVSBppRuPjQDyp53k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	E01	Common Structural Gable	1	1	Job Reference (optional)	164001323

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:11 ID:X69zI9hxQI95gyhmmvS?Blyp53F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

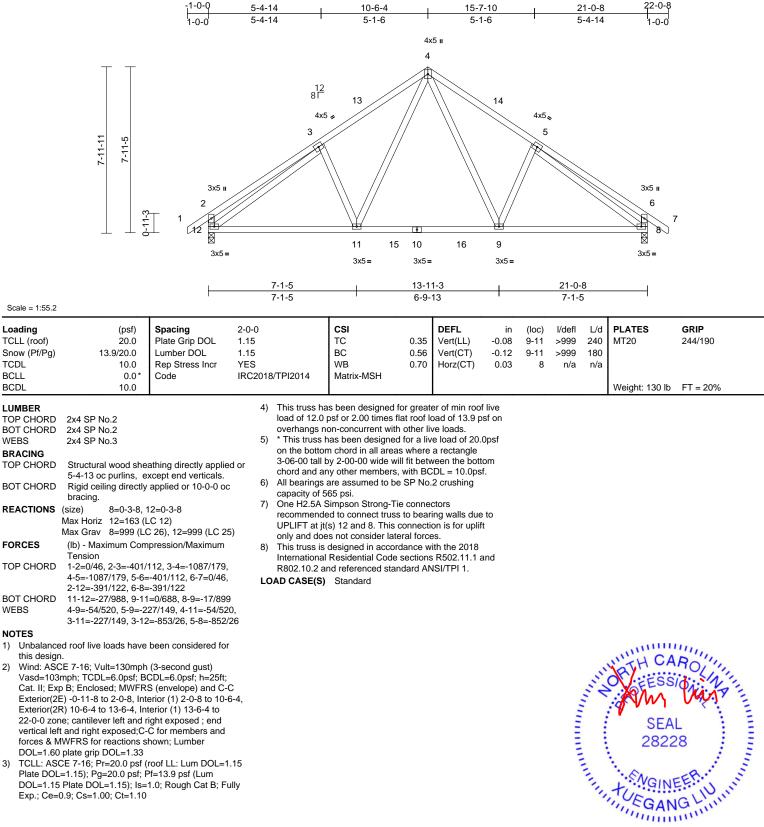
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	E02	Common	2	1	Job Reference (optional)	164001324


1)

2)

3)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:12 ID:VvpwjbnBO42f8JNqOMID3_yp47k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	E03	Common	3	1	Job Reference (optional)	164001325

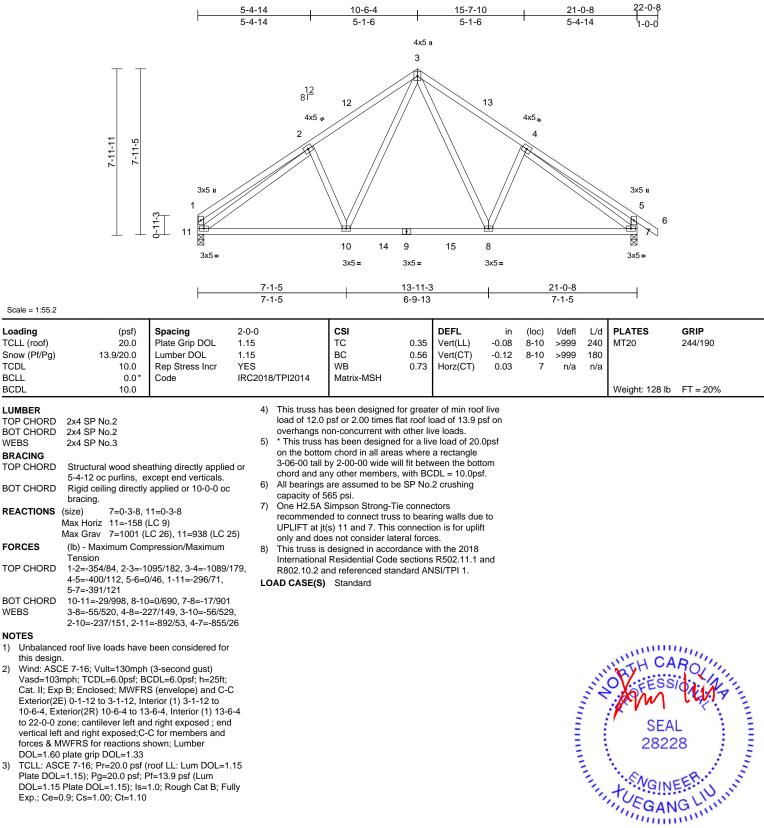
TCDL

BCLL

BCDL

WFBS

WEBS


1)

2)

3)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:12 ID:vTV3Lcq4h?RD?n6P3Urwhdyp47h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

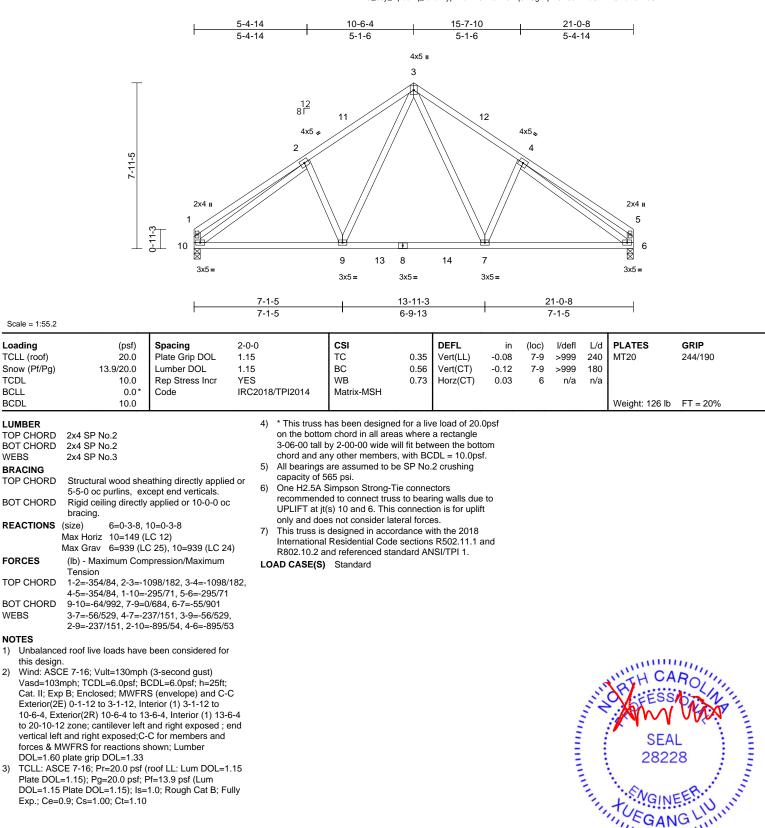
Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	E04	Common	1	1	Job Reference (optional)	164001326

TCDL

BCLL

BCDL

WFBS


1)

2)

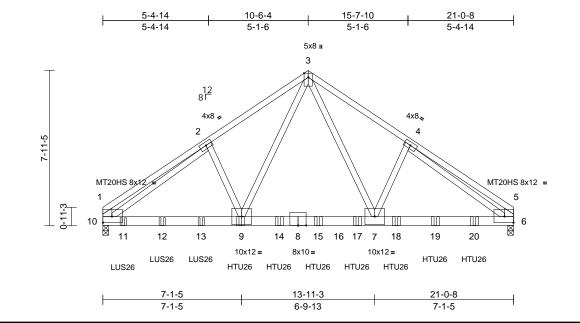
3)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 04 07:44:12 ID:K2AC_esy_wposEq_IdPdIFyp47e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	E05	Common Girder	1	2	Job Reference (optional)	164001327

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:13 ID:KsmUh4UyzaEZU4EnEqpbt0yp46r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-3-12], [5:Edge,0-3-12]

Scale = 1:59

	x, i). [i.Eugo,o o iz	j, [0:Edg0,0 0 12]	-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	77PI2014	CSI TC BC WB Matrix-MSH	0.82 0.72 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.24 0.04	(loc) 9-10 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 286 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 "Except* 10-1,6-5:2x6 SP 2400F 2.0E BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 6=0-3-8, 10=0-3-8 Max Horiz 10=-143 (LC 5) Max Grav Max Grav 6=6232 (LC 2), 10=6221 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2722/0, 2-3=-7291/0, 3-4=-7518/0, 4-5=-2907/0, 1-10=-1626/0, 5-6=-1726/0			i, 6) 7)	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Increase Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever Uniform I left and right exposed ; end vertical left and right Vert: 1 exposed; Lumber DOL=1.60 plate grip DOL=1.33 Concentr TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Vert: 9 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 13=-76							dat + Snow (balanced): Lumber Increase=1.15, Plate rease=1.15 form Loads (lb/ft) /ert: 1-3=-46, 3-5=-46, 6-10=-19 iccentrated Loads (lb) /ert: 9=-1018 (B), 11=-802 (B), 12=-768 (B), 3=-768 (B), 14=-1018 (B), 15=-1018 (B), 17=-1018 B), 18=-1018 (B), 19=-1018 (B), 20=-1018 (B)			
Tension TOP CHORD 1-2=-2722/0, 2-3=-7291/0, 3-4=-7518/0,				recommende UPLIFT at jt(only and doe This truss is International R802.10.2 at Use Simpson Truss) or equ truss(es) to b Use Simpson Truss) or equ truss(es) to b Use Simpson Truss) or equ truss or equ 3-0-8 from th back face of Use Simpson 11-10dx1 1/2 spaced at 2- end to 19-0-0	les where hanger	to bear connections dance w sections dard AN 6 (4-100 m the I n chord. 6 (4-100 2-0-0 of to conn 6 (20-1) Girder) g at 7-0 es) to b	ing walls due on is for uplifi as. it the 2018 s R502.11.1 a SI/TPI 1. d Girder, 3-10 eft end to com d Girder, 4-10 c max. startin- ect truss(es) Dd Girder, or equivalent -8 from the le ack face of	t and d nnect d g at to t t		. and the second s	and the second second	SEA 2822	ROLLUMINING	

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

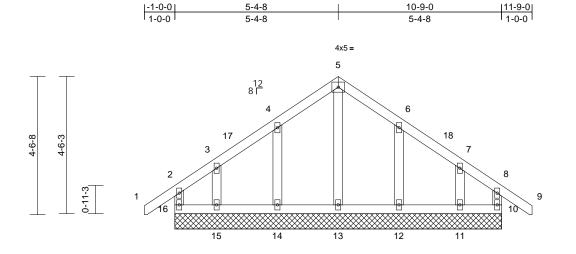
Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	G01	Common Supported Gable	1	1	Job Reference (optional)	164001328

Scale = 1:37.9 Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WFBS OTHERS

FORCE

TOP CH

WEBS


NOTES

BOT CHORD

this design.

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 04 07:44:13 ID:kdsKcgurHrBNjiZZQlyKwuyp47b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
13.9/20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999			
10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	10	n/a	n/a			
0.0*	Code	IRC2018/TPI2014	Matrix-MR									
10.0										Weight: 58 lb	FT = 20%	
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		Vasd=103mp Cat. II; Exp E Corner(3E) - Corner(3R) 5	7-16; Vult=130m bh; TCDL=6.0psf 3; Enclosed; MWI 0-11-8 to 2-0-8, E 5-4-8 to 8-4-8, Ex ver left and right	BCDL=6 FRS (enve Exterior(21 terior(2N)	.0psf; h=25ft; elope) and C- N) 2-0-8 to 5-4 8-4-8 to 11-8	C 4-8, 3-8	LOAD C	CASE(S)) Stai	ndard		

10-9-0

BRACING TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.	
REACTIONS	(size) 10=10-9-0, 11=10-9-0, 12=10-9-0, 13=10-9-0, 14=10-9-0, 15=10-9-0, 16=10-9-0	

	Max Horiz	16=95 (LC 12)
	Max Uplift	10=-26 (LC 10), 11=-35 (LC 14),
		12=-25 (LC 14), 14=-25 (LC 13),
		15=-38 (LC 10), 16=-38 (LC 9)
	Max Grav	10=120 (LC 32), 11=133 (LC 26),
		12=173 (LC 26), 13=154 (LC 2),
		14=172 (LC 31), 15=139 (LC 25),
		16=120 (LC 26)
s	(lb) - Max	imum Compression/Maximum
	Tension	•
IORD	2-16=-108	8/114, 1-2=0/45, 2-3=-54/56,
	3-4=-42/8	37, 4-5=-85/170, 5-6=-85/170,
	6-7=-42/8	8, 7-8=-40/45, 8-9=0/45,

15-16=-48/64, 14-15=-48/64, 13-14=-48/64,

12-13=-48/64, 11-12=-48/64, 10-11=-48/64

5-13=-116/3, 4-14=-134/127, 3-15=-95/102,

6-12=-134/127, 7-11=-96/102

1) Unbalanced roof live loads have been considered for

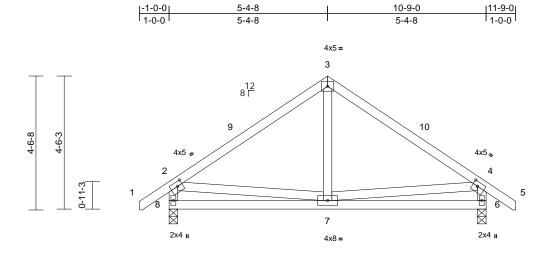
8-10=-108/113

and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Truss to be fully sheathed from one face or securely 8)
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 9)
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 16, 26 lb uplift at joint 10, 25 lb uplift at joint 14, 38 lb uplift at joint 15, 25 lb uplift at joint 12 and 35 lb uplift at joint 11.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	G02	Common	1	1	Job Reference (optional)	164001329

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:13 ID:zdQ93ZD89qThrhYZxCQQ_Nyp47B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Faye

1	5-4-8	10-9-0	
l	5-4-8	5-4-8	

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [4:0-2-0,0-1-12]

Scale = 1:39.1

Plate Offsets (X, Y)): [2:0-2-0,0-1-12]], [4:0-2-0,0-1-12]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.18 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.02 0.00	(loc) 7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 BRACING TOP CHORD Str 6-0 BOT CHORD Rig brain REACTIONS (size Max Max FORCES (lb TOP CHORD 1-2 BOT CHORD 1-2 BOT CHORD 7-5 WEBS 3-7 NOTES 1) Unbalanced ro this design. 2) Wind: ASCE 7- Vasd=103mph Cat. II; Exp B; I Exterior(2E) -0 Exterior(2R) 5- zone; cantileve and right expos MWFRS for rea grip DOL=1.33 3) TCLL: ASCE 7 Plate DOL=1.1 DOL=1.15 Plat Exp; Ce=0.9; 0 4) This truss has load of 12.0 ps	0-0 oc purlins, exc gid ceiling directly acing. e) 6=0-3-8, 8 (Horiz 8=99 (LC (Grav 6=484 (LC)) - Maximum Com insion 2=0/46, 2-3=-434/ 5=0/46, 2-3=-438/ 8=-112/262, 6-7=-1 7=0/115, 2-7=-26/ of live loads have -16; Vult=130mph ; TCDL=6.0psf; Bt Enclosed; MWFR -11-8 to 2-0-8, Inte -4-8 to 8-4-8, Inter er left and right exp sed;C-C for memb actions shown; Lu ; '-16; Pr=20.0 psf; Ft te DOL=1.15); Is=' CS=1.00; Ct=1.10	applied or 10-0-0 oc 3=0-3-8 12) C 2), 8=484 (LC 2) pression/Maximum 111, 3-4=-434/111, 171, 4-6=-438/171 89/220 145, 4-7=-30/149 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C erior (1) 2-0-8 to 5-4- tor (1) 8-4-8 to 11-8-5 bosed ; end vertical le ers and forces & mber DOL=1.60 plate roof LL: Lum DOL=1. 'f=13.9 psf (Lum 1.0; Rough Cat B; Fu	6) d or 7) 8) LC 5, 8, 3 eft e .15 .15 .115 .119	on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 One H2.5A S recommende UPLIFT at jt(and does not This truss is International	Simpson Strong-Tie ed to connect truss s) 8 and 6. This co consider lateral for designed in accord Residential Code nd referenced stan	s where Il fit betw SP No. e conne to bear onnectio orces. dance w sections	a rectangle veen the bott 2 crushing ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 a	om to only				SEA 2822 HUEGAN	EER.

March 4,2024

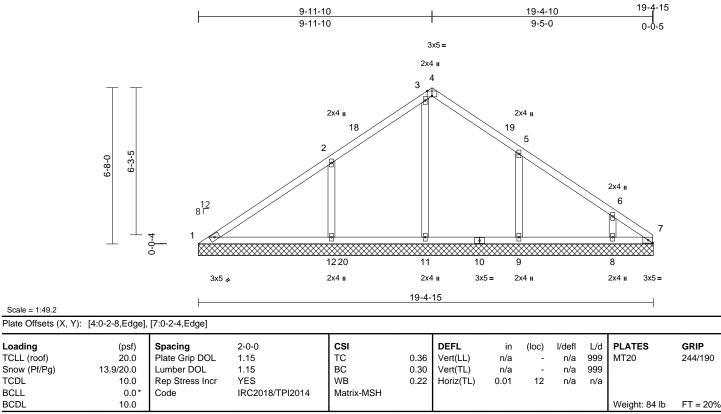
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	VL01	Valley	1	1	Job Reference (optional)	164001330

Scale = 1:49.2

Loading

TCDL


BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:14 ID:BggDJ5nSpzpwR9KH6Wd7zAyp6kM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

BOT CHORD 2x4 SP No.2 Cat. II; Exp B; Enclosed; OTHERS 2x4 SP No.3 Exterior(2E) 0-0-6 to 3-0	6.0psf; BCDL=6.0psf; h=25ft; ; MWFRS (envelope) and C-C -6, Interior (1) 3-0-6 to 10-0-0, 3-0-0, Interior (1) 13-0-0 to eft and right exposed ; end posed;C-C for members and actions shown; Lumber
 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=19-4-15, 7=19-4-15, 12=19-4-	d loads in the plane of the truss d to wind (normal to the face), Bable End Details as applicable, ling designer as per ANSI/TPI 1. 0.0 psf (roof LL: Lum DOL=1.15
9=-51 (LC 14), 12=-74 (LC 13), 15=-51 (LC 30) Max Grav 1=169 (LC 25), 7=51 (LC 14), 8=316 (LC 22), 9=455 (LC 25), 11=484 (LC 24), 12=581 (LC 24), 51=51 (LC 14), 15=51 (LC 15), PIate DOL=1.15), 10 DL=1.15 (LC 12), 11=10 DOL=1.15), 10 DL=1.15 (LC 12), 11=10 DOL=1.15 (LC 12), 12=10 DOL=1.15 (LC 12), 13=10 DOL=1.15 (LC 12), 14 (LC 12), 15=10 (LC 12), 15=10 DOL=1.15 (LC 12), 15	unless otherwise indicated. us bottom chord bearing. I-0-0 oc.
FORCES (lb) - Maximum Compression/Maximum on the bottom chord in a	esigned for a live load of 20.0psf Ill areas where a rectangle
TOP CHORD 1-2=-237/248, 2-3=-49/173, 3-4=-49/79, 4-5=-66/138, 5-6=-53/149, 6-7=-120/158 9 All bearings are assume 9 All bearings are assume	wide will fit between the bottom mbers, with BCDL = 10.0psf. d to be SP No.2 crushing
BOT CHORD 1-12=-120/198, 11-12=-120/103, capacity of 565 psi.	nection (by others) of truss to
WEBS3-11=-308/22, 2-12=-334/154, 5-9=-274/132, 6-8=-208/107bearing plate capable of 12, 51 lb uplift at joint 9, at joint 7 and 51 lb uplift1)Unbalanced roof live loads have been considered for11)This truss is designed in	withstanding 74 lb uplift at joint 47 lb uplift at joint 8, 51 lb uplift at joint 7.
R802.10.2 and reference	ed standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 4,2024

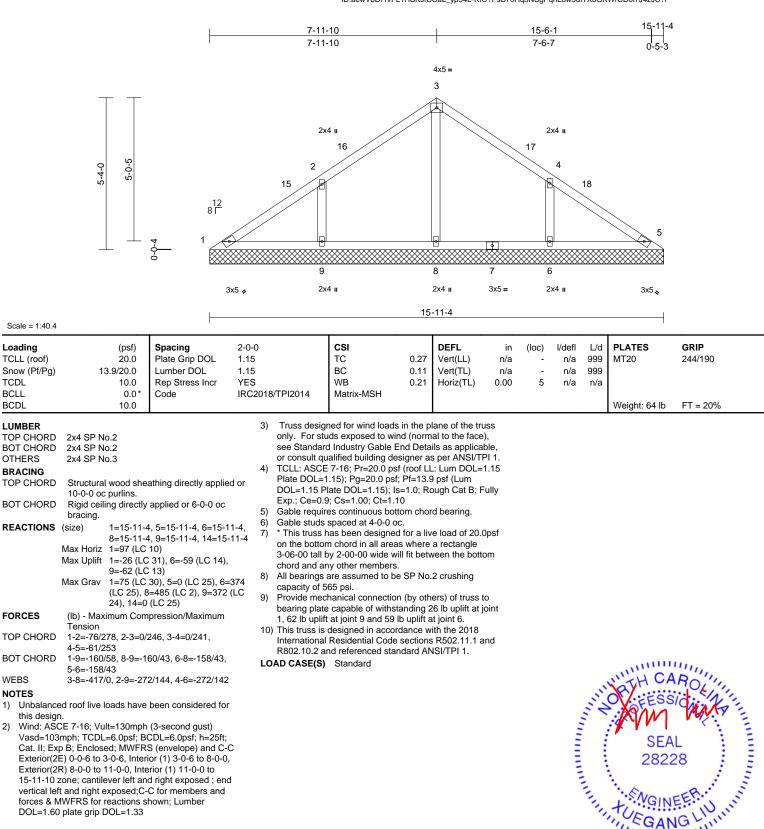
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	VL02	Valley	1	1	Job Reference (optional)	164001331

TCDL

BCLL

BCDL


WEBS

1)

2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon. Mar. 04.07:44:14 ID:aewVbDr1vFL1HBKJfCCaL_yp54L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

1111 March 4,2024

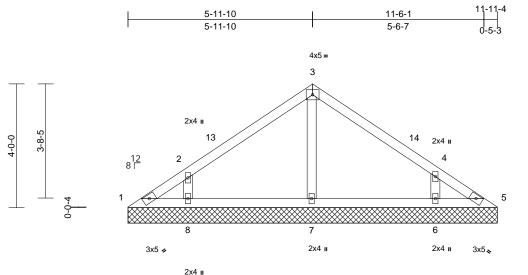
Job	Truss	Truss Type	Qty Ply W		Wyatt-Wyatt-Roof	
22080075-A	VL03	Valley	1	1	Job Reference (optional)	164001332

Scale = 1:37.2

WEBS

NOTES

this design.


grip DOL=1.33

1)

2)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:14 ID:aewVbDr1vFL1HBKJfCCaL_yp54L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-11-4

(loc)

.

5

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 45 lb

MT20

GRIP

244/190

FT = 20%

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2		3/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.09 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00			
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz	0.2 0.3 I wood shead purlins. ing directly 1=11-11-4 7=11-11-4 1=-72 (LC (LC 13) 1=61 (LC	athing directly applie applied or 10-0-0 oc 4, 5=11-11-4, 6=11-1 4, 8=11-11-4 9), 6=-47 (LC 14), 8 25), 5=53 (LC 24), 6 =260 (LC 2), 8=309	c 11-4, 8=-49 6=304	 3) 4) 5) 6) 7) 8) 9) 	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requirr Gable studs * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mecl	nanical connectio	nd (norm End Deta signer a: signer a	al to the face) iils as applicat s per ANSI/TF 2 psf (Lum ough Cat B; F rd bearing. re load of 20.0 a rectangle ween the botto .2 crushing uers) of truss to), ble, Pl 1. 1.15 ully Opsf om			
FORCES	(lb) - Max Tension	(lb) - Maximum Compression/Maximum				bearing plate capable of withstanding 15 lb uplift at jo 1, 49 lb uplift at joint 8 and 47 lb uplift at joint 6.							
TOP CHORD	1-2=-76/66, 2-3=-120/92, 3-4=-117/91, 4-5=-65/37				10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1								
BOT CHORD				R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard									

3-7=-173/17, 2-8=-260/182, 4-6=-251/176

Unbalanced roof live loads have been considered for

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 11-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		Wyatt-Wyatt-Roof			
22080075-A	VL04	Valley	1	1	Job Reference (optional)	164001333		

3-11-10

3-11-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-8-0

(psf)

20.0

10.0

0.0

10.0

Code

13 9/20 0

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon. Mar. 04 07:44:14 ID:kAvBIIJ9GHTYow95PuZII3yp473-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

7-6-1

3-6-7

2 2-4-5 12 8 Г 4 2x4 🛛 2x4 🖌 2x4 7-11-4 Spacing 2-0-0 CSI DEFL l/defl L/d in (loc) Plate Grip DOL 1.15 TC 0.20 Vert(LL) n/a n/a 999 BC 1 15 0.19 Lumber DOL Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 3 n/a n/a Matrix-MP IRC2018/TPI2014

Weight: 27 lb FT = 20%

GRIP

244/190

3

PLATES

MT20

	2X4 SP N D 2x4 SP N 2x4 SP N	0.2
BRACING		
TOP CHOR	D Structura 7-11-4 oc	I wood sheathing directly applied or purlins.
BOT CHOR	D Rigid ceil bracing.	ing directly applied or 6-0-0 oc
REACTION	S (size)	1=7-11-4, 3=7-11-4, 4=7-11-4
	Max Horiz	1=47 (LC 12)
	Max Uplift	1=-12 (LC 31), 3=-9 (LC 30)
	Max Grav	1=67 (LC 30), 3=70 (LC 31), 4=558 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHOR	D 1-2=-94/2	247, 2-3=-91/241
BOT CHOR	D 1-4=-197	/147, 3-4=-193/144
WEBS	2-4=-401	/188
NOTES		

Scale = 1:27.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

1) Unbalanced roof live loads have been considered for this design.

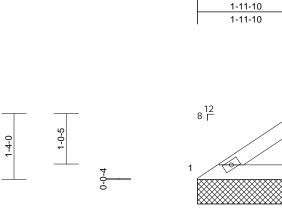
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-0-0, Exterior(2R) 4-0-0 to 7-0-7, Interior (1) 7-0-7 to 7-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

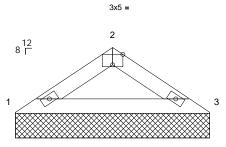
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing 8) capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 12 lb uplift at joint 1 and 9 lb uplift at joint 3.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

and a second and a s ANG 11111

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Wyatt-Wyatt-Roof	
22080075-A	VL05	Valley	1	1	Job Reference (optional)	164001334


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:15 ID:hZ1x9zKQoujG2EJUXJbmNUyp471-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-6-1

1-6-7

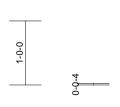
Page: 1

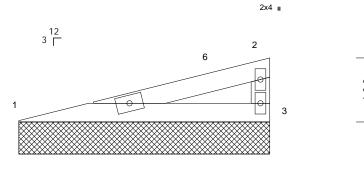
2x4 🕫 2x4 🔪

3-11-4

Scale = 1:23.4

	X, Y): [2:0-2-8,Edge]	1		-							1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-MP	0.11 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0				-						Weight: 11 lb	FT = 20%
FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-11-4 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-4, Max Horiz 1=22 (LC (lb) - Maximum Com Tension 1-2=-235/97, 2-3=-2: 1-3=-68/188	applied or 10-0-0 or 3=3-11-4 12) 2 2), 3=157 (LC 2) pression/Maximum	on th 3-06 chorr ed or 8) All b c 29) This c 9) This Inter R802	s truss has been desig e bottom chord in all a 00 tall by 2-00-00 wid d and any other memb earings are assumed f city of 565 psi. truss is designed in ar attional Residential C 2.10.2 and referenced ASE(S) Standard	areas where le will fit betw pers. to be SP No. ccordance wi ode sections	a rectangle veen the both 2 crushing ith the 2018 R502.11.1 a	om					
 this design Wind: ASC Vasd=103i Cat. II; Exp Exterior(2E vertical left forces & M DOL=1.60 3) Truss des only. For s see Standa or consult 4) TCLL: ASC Plate DOL=1.15 Exp.; Ce=(5) Gable requ 	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG b B; Enclosed; MWFRS E) zone; cantilever left t and right exposed;C- IWFRS for reactions sl plate grip DOL=1.33 igned for wind loads ir studs exposed to wind ard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf (I =1.15); Pg=20.0 psf; I Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous bottor s spaced at 4-0-0 oc.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; C for members and hown; Lumber n the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=' 2f=13.9 psf (Lum 1.0; Rough Cat B; F	C end Iss), ole, PI 1. 1.15							and the second second	GAN	




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	De Qty Ply Wyatt-Wya		Wyatt-Wyatt-Roof	
22080075-A	VL06	Valley	1	1	Job Reference (optional)	164001335

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 04 07:44:15 ID: sscpmlrKDchxF4FoBvtOm2yp47f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

3x5 =

3-11-0

3-11-0

Scale =	1:18	
50uic -	1.10	

Scale = 1:18												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.18 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-0 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc 12) 11), 3=-4 (LC 15) 2 21), 3=161 (LC 21) pression/Maximum	ed or bearing pl and 2 b u construction cons	echanical connectio ate capable of withs plift at joint 1. is designed in accornal Residential Code 2 and referenced sta	as where vill fit betv s. e SP No. on (by oth tanding 4 rdance w e sections	a rectangle veen the botto 2 crushing ers) of truss t Ib uplift at joi th the 2018 R502.11.1 a	o int 3					
NOTES 1) Wind: ASCE Vasd=103m Cat. II; Exp Exterior(2E) zone; cantili and right ex MWFRS for grip DOL=1 2) Truss desig only. For st see Standar or consult q 3) TCLL: ASCE Plate DOL= DOL=1.15 F Exp.; Ce=0. 4) Unbalanced design. 5) Gable requi	E 7-16; Vult=130mph ph; TCDL=6.0psf; B B; Enclosed; MWFR 0-1-0 to 3-1-0, Inter ever left and right exp posed;C-C for memb reactions shown; Lu	CDL=6.0psf; h=25ft; S (envelope) and C- ior (1) 3-1-0 to 3-10- boosed; end vertical I bers and forces & mber DOL=1.60 pla the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fi teen considered for th	C 4 left te ss b, ole, Pl 1. 1.15 ully							and the second second	SEA 2822	EER.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

