

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 72 FaNC CALLAWAY 1

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

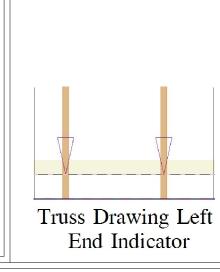
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

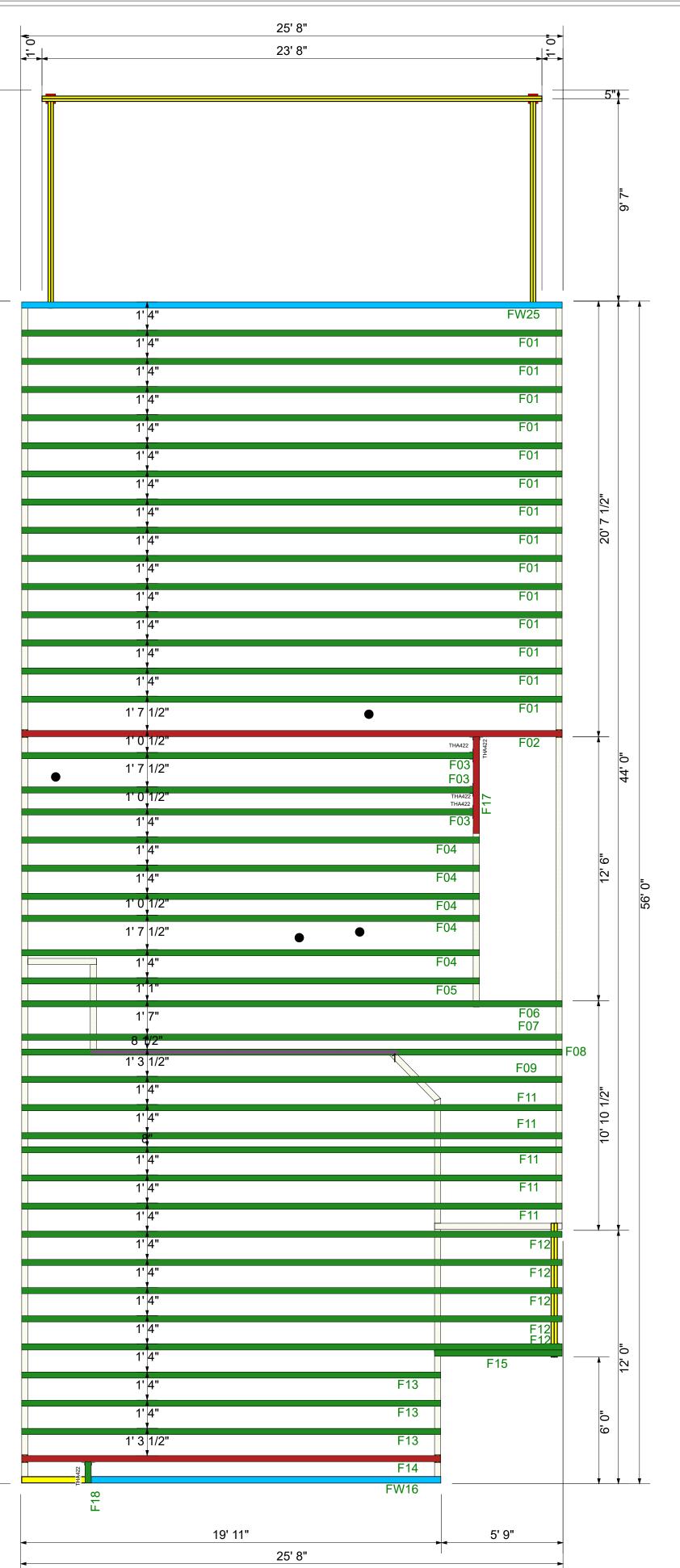
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

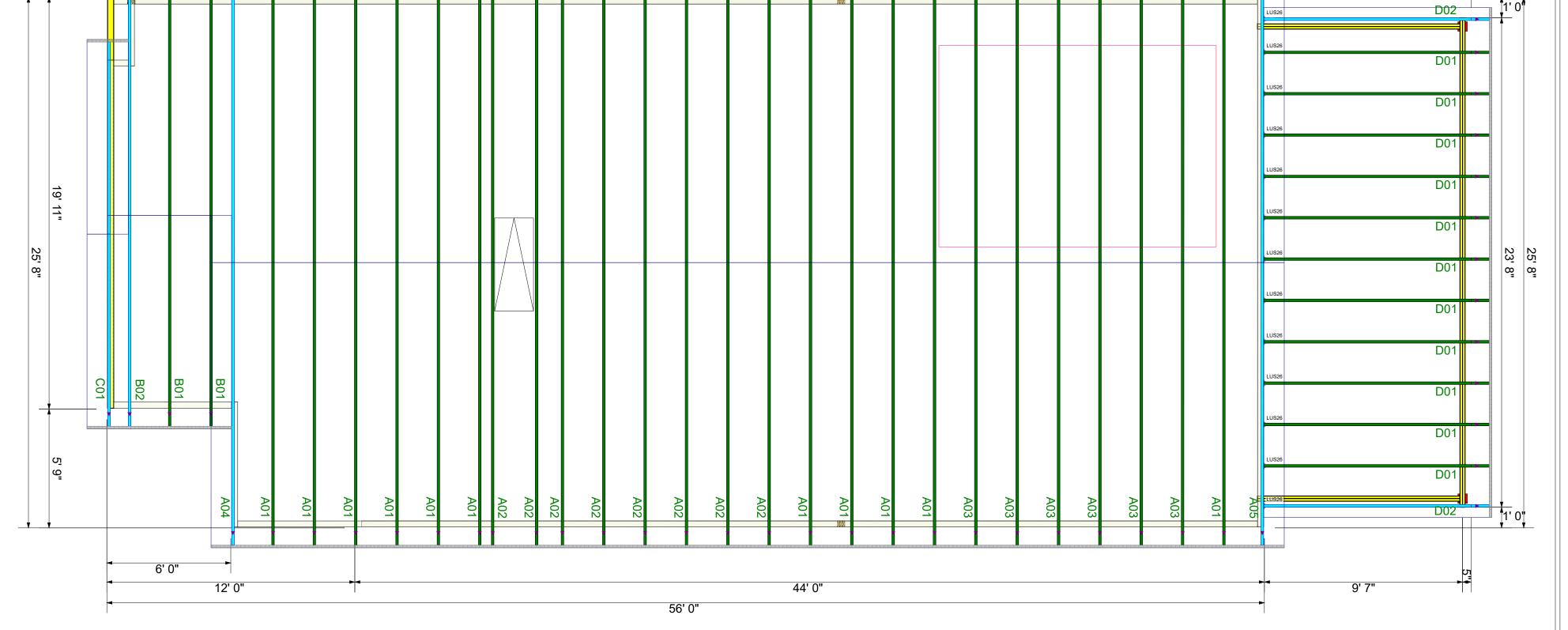
8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: ____


Date: _____

Trus	s Connector	Total List
Qty	Product	Manut
5	THA422	Simpson

MUST


IER

0\00\00 0\00\00 0\00\00 0\00\00 0\00\00 0\00\0	anent bracing of the roof and floor The design of the truss support alls, and columns is the responsibility of lance regarding the bracing, consult	Vailable from the Truss Plate Institute, 583 D'Onifrio Name Name
THIS IS A TRUSS designed as individ at the specification each truss design i		A Division of the Certer Lumber Company Drive: Madison, WI 53179
DRB HOMES	72 FARM AT NEILLS CREEK CALLAWAY 1	COMPONENT PLACEMENT PLAN
Pr 24	NTS 26/202 Designer: ND oject Num 02010 neet Num	nber:) 8

RAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
Trus		
Truss Drawing Le		
ing Left		
۹	56' 0"	10' 0"

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.

** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	Revisions
Name	Name	Name	Name	Name	sions

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24020108 DRB - 72 FaNC

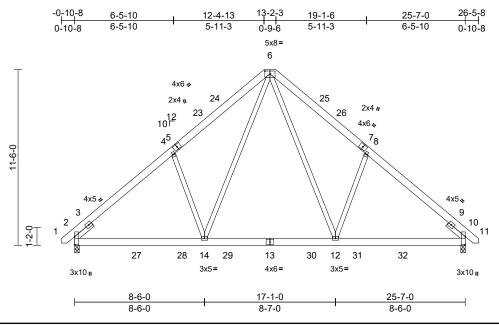
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63852215 thru I63852242

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 27,2024


Fox, Steve

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	A01	Common	11	1	Job Reference (optional)	163852215

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:16:56 ID:j97jP69sgrd5veAkaODY7wzhJJm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

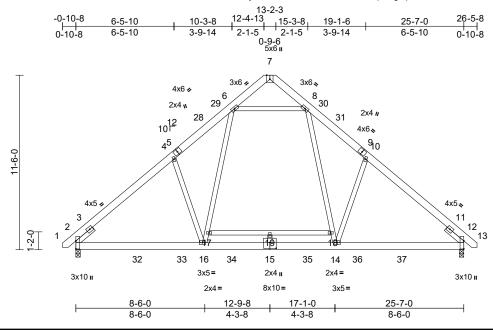
Page: 1

Scale = 1:75.5 Plate Offsets (X, Y): [6:0-4-0,0-2-4]

	(X, 1): [0:0-4-0;0-2-4]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-MSH 57-16; Pr=20.0 ps 1.15); Pf=20.0 psf			-0.12 0.03 1.15	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	 2x6 SP No.2 2x4 SP No.2 *Except Left 2x4 SP No.3	ot* 12-8,14-4:2x4 SP I 1-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc	lo.3 4) 5) d or	DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha	Is=1.0; Rough Cat	t B; Fully been co for great dat roof I n other li for a 10.	r Exp.; Ce=0. nsidered for the ter of min roof oad of 20.0 p ve loads. 0 psf bottom	9; his f live sf on					
Bracing. bracing. REACTIONS (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=-260 (LC 12) Max Uplift 2=-87 (LC 14), 10=-87 (LC 15) Max Grav 2=1240 (LC 24), 10=1240 (LC 25)				 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) One H2.5A Simpson Strong-Tie connectors 									
FORCES TOP CHORD BOT CHORD WEBS	6-8=-1303/270, 8-10	D/153, 4-6=-1303/270 D=-1390/153, 10-11=0 -14=0/783, 2=-344/285,	,)/27 9)	recommende UPLIFT at jt only and doe This truss is International	ed to connect truss (s) 2 and 10. This es not consider late designed in accor l Residential Code nd referenced star	s to bear connect eral forc dance w section	ing walls due ion is for uplif es. /ith the 2018 s R502.11.1 a	t				HTH CA	ROLIN
this desig 2) Wind: AS Vasd=10 Cat. II; Ex zone and 2-3-11 to 15-9-8 to cantilever right expo	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) -0-8- 9-9-8, Exterior(2R) 9-9 23-3-5, Exterior(2R) 23 r left and right exposed osed;C-C for members ons shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 5 to 2-3-11, Interior (1 -8 to 15-9-8, Interior (-3-5 to 26-3-5 zone; ; end vertical left and and forces & MWFRS	(1)								No. And Andrews	SEA SEA 1860	
												February	/ 27.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


mm February 27,2024

Job	Truss	Truss Type		DRB - 72 FaNC		
24020108	A02	Common	8	1	Job Reference (optional)	163852216

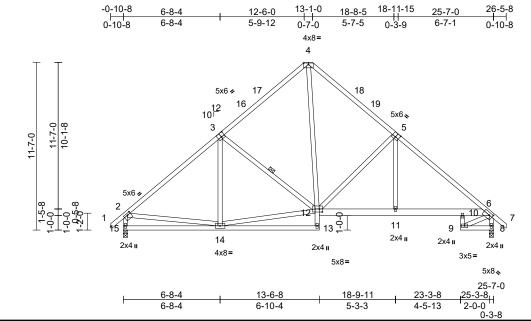
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:16:58 ID:8MzQR?Qjx6sC?nivExcAt3zhJI7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Diata Offecta (V. V):	[7:0.2.4 Edge] [15:0.5.0.0.4.9]
Plate Offsets (Λ, T) .	[7:0-3-4,Edge], [15:0-5-0,0-4-8]

	, , ,												-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	-0.09	16-22	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.49	Vert(CT)	-0.15	15-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.39	Horz(CT)	0.04	12	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 211 lb	FT = 20%
LUMBER			2	Wind ⁻ ASCE	7-16; Vult=130mp	h (3-seo	cond gust)						
TOP CHORD	2x6 SP No.2			Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-5 to 2-3-11, Interior (1)									
BOT CHORD	2x6 SP No.2												
WEBS	2x4 SP No.3												
SLIDER	Left 2x4 SP No.3 7	1-6-0, Right 2x4 SP I	No.3		9-8, Exterior(2R) 9-9								
	1-6-0	, 0			-3-5, Exterior(2E) 2			,					
BRACING				cantilever left and right exposed ; end vertical left and									
TOP CHORD	Structural wood she	athing directly applie	ed or	right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip									
	5-8-12 oc purlins.	• • • •			shown; Lumber Do	OL=1.60) plate grip						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		DOL=1.60	7 40 0 00 0 6	(
	bracing.		3	 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 									
REACTIONS	(size) 2=0-3-8, 2	12=0-3-8		DOL=1.15; $Is=1.0$; Rough Cat B; Fully Exp.; Ce=0.9;									
	Max Horiz 2=260 (LC	C 13)		Cs=1.00; Ct=1.10									
	Max Grav 2=1298 (L	_C 24), 12=1298 (LC	25) ₄	Unbalanced show loads have been considered for this									
FORCES	(lb) - Maximum Com	pression/Maximum		design.	onow loado havo b	0011 001		1110					
	Tension		5	0	as been designed fo	or great	er of min roof	f live					
TOP CHORD	1-2=0/27, 2-4=-1478	8/0, 4-6=-1371/91,	-	load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on									
	6-7=-196/87, 7-8=-1	,	1,	overhangs n	on-concurrent with	other li	ve loads.						
	10-12=-1478/0, 12-1		6	6) 200.0lb AC unit load placed on the bottom chord, 12-9-8									
BOT CHORD	2-16=-142/1197, 14-	-16=0/951,		from left end, supported at two points, 5-0-0 apart.									
	12-14=-1/1069	04/000	7	7) This truss has been designed for a 10.0 psf bottom									
WEBS	8-18=-71/708, 14-18				ad nonconcurrent w							ITH UA	Roilin
	10-14=-302/308, 16-		8) * This truss has been designed for a live load of 20.0psf										
	6-17=-71/707, 4-16= 17-19=-1/5, 18-19=-	91,	on the bottom chord in all areas where a rectangle										
	17-131/5, 10-19		3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.										
NOTES			0					Ι.		-		: 4	Y N N 2
 Unbalanced roof live loads have been considered for this design 					designed in accord Residential Code s			and				SEA	1 : 5
this desigr	1.			Residential Code s			DIE		=	:	ULA	- : =	

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

J	ob		Truss Type	Qty	Ply	DRB - 72 FaNC	
2	4020108	A03	Roof Special	6	1	Job Reference (optional)	163852217

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:16:59 ID:A9LOOOI0uErQZLufAwt_WFzhJEP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-2-12,0-1-8], [3:0-3-0,0-3-4], [5:0-3-0,0-3-4], [6:0-2-12,0-2-0], [12:0-2-8,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)		13-14	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.13		>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.59	Horz(CT)	0.06	8	n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 185 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)							
TOP CHORD	2x4 SP No.2			Vasd=103m	oh; TCDL=6.0psf; E	BCDL=6	6.0psf; h=25ft							
BOT CHORD	2x4 SP No.2 *Excep	ot* 13-12,10-9:2x4 SI	P	Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior										
	No.3, 12-6:2x6 SP N	lo.2		zone and C-C Exterior(2E) -0-9-14 to 2-2-2, Interior (1)										
WEBS	2x4 SP No.3 *Excep	ot* 12-4:2x4 SP No.2		2-2-2 to 9-9-8, Exterior(2R) 9-9-8 to 15-9-8, Interior (1)										
BRACING					4-14, Exterior(2E)									
TOP CHORD	Structural wood she	athing directly applie	ed or		t and right exposed									
	3-10-9 oc purlins, e	xcept end verticals.			d;C-C for members			RS						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c for reactions shown; Lumber DOL=1.60 plate grip											
	bracing.		0)	DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15										
WEBS	1 Row at midpt	3-12	3)	Plate DOL=1.15); Pf=20.0 psf (Loor LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate										
REACTIONS	(size) 8=0-3-8, 2	15=0-3-8			Is=1.0; Rough Cat									
	Max Horiz 15=299 (L	_C 13)		Cs=1.00; Ct		B; Fully	Exp.; Ce=0.	9,						
	Max Uplift 8=-87 (LC	C 15), 15=-90 (LC 14) 4)											
	Max Grav 8=1092 (L	LC 22), 15=1092 (LC	21) ⁴	design.										
FORCES	(lb) - Maximum Com	pression/Maximum	5)	0	as been designed fo	or areat	er of min roof	flive						
	Tension		0)		psf or 1.00 times fla									
TOP CHORD	1-2=0/37, 2-4=-1210)/199, 4-6=-1432/21 ⁻	1.		on-concurrent with			0. 0						
	6-7=0/43, 2-15=-103				is been designed for									
BOT CHORD	14-15=-298/431, 13-	-14=0/78, 12-13=0/1			ad nonconcurrent w			ads.						
	11-12=0/1024, 10-1	1=0/1021, 6-10=0/95	53, 7)		nas been designed							minin	1111	
	9-10=-10/102, 8-9=-	56/206	,		n chord in all areas			•				"TH CA	Rollin	
WEBS	3-14=-78/142, 3-12=	-318/204,			by 2-00-00 wide wil			om			N	R'	·······	
	5-12=-534/218, 2-14			chord and ar	y other members.						5.	O'.FESS	10 V	
	12-14=-107/830, 6-9	9=-154/46, 5-11=0/32	24 8)	One H2.5A S	chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. One H2.5A Simpson Strong-Tie connectors									
NOTES			recommende	ed to connect truss	to bear	ing walls due	e to				:05 7	h · · · ·		
1) Unbalance	ed roof live loads have	UPLIFT at jt	(s) 15 and 8. This c	onnecti	on is for uplif	ť				CEA.	1 1 2			
, سامعام مامه	-		only and does not consider lateral forces											

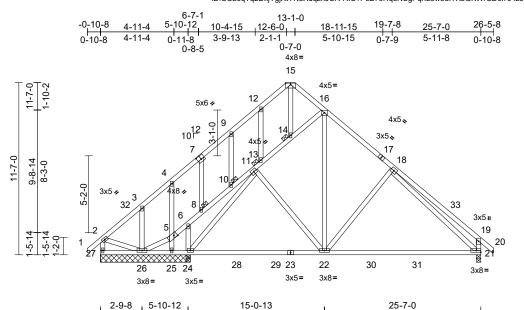
Scale = 1:79.6

this design.

only and does not consider lateral forces. This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

February 27,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC					
24020108	A04	Common	1	1	Job Reference (optional)	163852218				

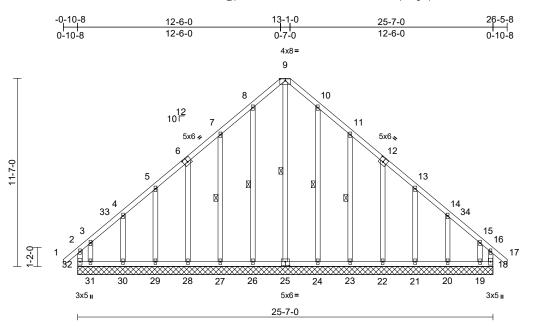
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:16:59 ID:UOz0qTq2DxjYgjXtYN8XdqzhJCR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	2-9-6 5-10-12	15-0-13		25-7-0	
Scale = 1:77.5		' :	2-9-8 3-1-4	9-2-1	I	10-6-3	'
	X, Y): [5:0-2-8,0-2-0],	, [7:0-3-0,0-3-0]					
oading	(psf)	Spacing 1	-11-4	CSI	DEFL in	n (loc) l/defl L/d	PLATES GRIP
CLL (roof)	20.0		.15	TC 0.70		3 21-22 >702 240	
now (Pf)	20.0	1 1	.15	BC 0.80		6 21-22 >417 180	
CDL	10.0		/ES	WB 0.59	Horz(CT) 0.02		
CLL	0.0*		RC2018/TPI2014		11012(01) 0.02	. 21 1/4 1/4	
CDL	10.0						Weight: 211 lb FT = 20%
JMBER			WEBS	14-15=-21/17, 12-13=-172	2/131 0-10-86/65	11) * This trues has I	been designed for a live load of 20.0ps
	2x4 SP No.2		WEB0	7-8=-136/98, 5-25=-60/80	, ,		ord in all areas where a rectangle
OF CHORD	2x4 SP No.2 2x4 SP No.1			3-26=-139/108, 6-24=-258			-00-00 wide will fit between the bottom
EBS	2x4 SP No.1 2x4 SP No.3			16-22=-107/569, 11-22=-8	,	,	ther members, with BCDL = 10.0psf.
				11-24=-613/134, 18-22=-2		12) NA/	
THERS	2x4 SP No.3			18-21=-462/0, 2-26=-174/	,	,	igned in accordance with the 2018
RACING	o				552, 5 20 102/121		sidential Code sections R502.11.1 and
OP CHORD		athing directly applied o		and woof live loads have been	accordenced for		eferenced standard ANSI/TPI 1.
	6-0-0 oc purlins, ex		,	ced roof live loads have been	considered for		representation does not depict the size
OT CHORD		applied or 10-0-0 oc	this desi		cond quat)	/ ! !	of the purlin along the top and/or
	bracing, Except:	07		SCE 7-16; Vult=130mph (3-se		bottom chord.	
	6-0-0 oc bracing: 26)3mph; TCDL=6.0psf; BCDL=			andard
DINTS	1 Brace at Jt(s): 14,			Exp B; Enclosed; MWFRS (env d C-C Corner(3E) -0-9-14 to 2		LOAD CASE(S) St	anuaru
	13, 10, 8			9-9-8, Corner(3E) -0-9-14 to 2			
EACTIONS		, 24=6-0-8, 25=6-0-8,	2-2-2 LU	o 23-4-14, Corner(3E) 23-4-14	to 26-4-14 zono:		
	,	27=6-0-8		er left and right exposed ; end			
	Max Horiz 27=-290 (and and a start of the second	osed;C-C for members and fo			
		.C 15), 24=-139 (LC 14)	, fan 110 and	ions shown; Lumber DOL=1.6			
		(LC 23), 26=-223 (LC 14	b), DOL=1.		o piate grip		
	27=-25 (L			esigned for wind loads in the r	lane of the truce		
	Max Grav 21=944 (L	_C 25), 24=1139 (LC 24	·),				SEAL 18603
		.C 34), 26=298 (LC 24),		or studs exposed to wind (norm ndard Industry Gable End Deta			A MARINE MARINE
	27=350 (L	,		It qualified building designer a			WAH CARO
ORCES	(lb) - Maximum Com	pression/Maximum		SCE 7-16; Pr=20.0 psf (roof L			A
	Tension		Plate D(DL=1.15); Pf=20.0 psf (Lum D		3	O' EESSION 1
OP CHORD		1=-520/239, 5-6=-85/127		15); Is=1.0; Rough Cat B; Fully		2.5	SO 212: 7:
	6-8=-199/233, 8-10=			; Ct=1.10	, LAP., OC-0.9,	2	· · · · · · · · · · · · · · · · · · ·
	10-11=-105/138, 11-	,	5) Unbalar	ced snow loads have been co	nsidered for this	2	
	,	-16=-631/203, 1-2=0/36	' design.				: SEAL : =
	,	283/113, 4-9=-206/71,	6) This true	s has been designed for grea	ter of min roof live		18603
		5=-118/51, 15-16=-129/5		2.0 psf or 1.00 times flat roof		2	10005
	16-18=-734/134, 18-	-19=-561/225,		gs non-concurrent with other I			A 2 4
	19-20=0/36			s are 2x4 MT20 unless otherw		2	the at 3
OT CHORD	26-27=-268/282, 25			be fully sheathed from one fa		1 B	O. WOINFER I
	24-25=-74/257, 22-2	24=0/577, 21-22=0/612		igainst lateral movement (i.e.		1	N
				uds spaced at 2-0-0 oc.	alagoliai webj.		SEAL 18603
				is has been designed for a 10	0 nsf bottom		in the second
				e load nonconcurrent with any			annun.

- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	A05	Common	1	1	Job Reference (optional)	163852219

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:00 ID:_qrWsZJexwYTmDiG3xJcR3zhJ9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71

Plate Offsets (X, Y): [6:0-3-0,0-3-0], [12:0-3-0,0-3-0], [25:0-3-0,0-3-0]

Flate Olisets (Λ, Τ). [0.0-	-3-0,0-3-0]	, [12.0-3-0,0-3-0], [2	.3.0-3-0,0	-3-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MR	0.26 0.14 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 18	- n/a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc I	o.2 o.3 o.3 *Excep I wood she purlins, ex ing directly	ot* 25-9:2x4 SP No.2 eathing directly appli ccept end verticals. / applied or 6-0-0 oc 9-25, 8-26, 7-27, 10	2 ied or		1-2=0/37, 2-3=-29 4-5=-154/154, 5-7= 8-9=-186/358, 9-10 10-11=-148/295, 1 13-14=-108/110, 1 15-16=-245/195, 1 16-18=-206/140 31-32=-138/158, 2 27-28=-139/158, 2 24-26=-139/158, 2 22-23=-139/158, 2	132/21)=-186/3 1-13=-1 4-15=-1 6-17=0/3 0-31=-1 8-29=-1 6-27=-1 3-24=-1	3, 7-8=-148/2 558, 00/213, 34/128, 37, 2-32=-260 38/158, 38/158, 39/158, 39/158, 39/158,	95, /194,	 PI D0 C: 5) Ui de 6) Tr loa ov 7) AI 8) Gi 	ate DOL= OL=1.15); s=1.00; C nbalanced esign. nis truss h ad of 12.0 verhangs I plates an able requi	1.15); ; Is=1.0 t=1.10 d snow as bee) psf or non-co re 2x4 ires co	Pf=20.0 psf (Lurr); Rough Cat B; F loads have been en designed for gi 1.00 times flat rc ncurrent with oth MT20 unless oth ntinuous bottom o	erwise indicated.
REACTIONS	Max Horiz	21=25-7-0 24=25-7-0 27=25-7-0 30=25-7-0 32=-299 (18=-241 ((LC 13), 19=-294 (L	5-7-0, 5-7-0, 5-7-0, 5-7-0 C 15),	WEBS	20-21=-137/157, 1 18-19=-137/157 9-25=-388/137, 8-2 7-27=-169/110, 6-2 5-29=-126/95, 4-30 3-31=-172/195, 10 11-23=-169/111, 1 13-21=-126/95, 14	9-20=-1 26=-229 28=-133)=-139/1 -24=-22 2-22=-1	37/157, /87, /100, 03, 9/86, 33/99,		br 10) Ga 11) Th ch 12) * ⁻ or 3-	aced aga able studs nis truss h nord live lo This truss n the botto 06-00 tall	inst late s space bas bee bad not has be om cho by 2-0	eral movement (i. ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit l er members	.e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf
	20=-70 (LC 15), 21=-73 (LC 15), 22=-75 (LC 15), 23=-87 (LC 15), 24=-62 (LC 15), 26=-63 (LC 14), 27=-87 (LC 14), 28=-75 (LC 14), 31=-324 (LC 14), 30=-69 (LC 14), 31=-324 (LC 14), 30=-69 (LC 14), 20=176 (LC 25), 21=167 (LC 25), 22=173 (LC 25), 23=209 (LC 22), 24=269 (LC 22), 25=339 (LC 15), 26=269 (LC 21), 27=209 (LC 21), 28=173 (LC 24), 30=167 (LC 24), 30=174 (LC 24), 31=344 (LC 12), 32=410 (LC 11)			15), 14), 14), C 12) (13), (25), (22), (15), (21), (24),	this design. 2) Wind: ASCC Vasd=103n Cat. II; Exp zone and C 2-2-2 to 9-9 15-9-8 to 22 cantilever le right expose for reaction	15-19=-144/181 ed roof live loads have been considered for					SEAL 18603			
FORCES	()				only. For s	30 esigned for wind loads in the plane of the truss r studs exposed to wind (normal to the face), idard Industry Gable End Details as applicable, it gualified building designer as per ANSI/TPI 1.						E FOTIN		

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

February 27,2024

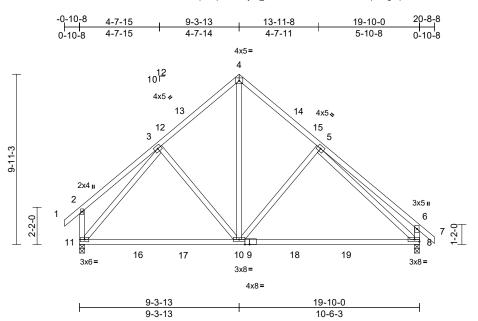
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company depresented normal. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DRB - 72 FaNC	
24020108	A05	Common	1	1	Job Reference (optional)	163852219

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 327 lb uplift at joint 32, 241 lb uplift at joint 18, 63 lb uplift at joint 26, 87 lb uplift at joint 27, 75 lb uplift at joint 28, 73 lb uplift at joint 29, 69 lb uplift at joint 30, 324 lb uplift at joint 31, 62 lb uplift at joint 24, 87 lb uplift at joint 23, 75 lb uplift at joint 22, 73 lb uplift at joint 21, 70 lb uplift at joint 20 and 294 lb uplift at joint 19.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Mon Feb 26 10:17:00 ID:_qrWsZJexwYTmDiG3xJcR3zhJ9E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	B01	Common	2	1	Job Reference (optional)	163852220

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:00 ID:poo3p3?OWRjN6_ZDvPrzF4zhJ8L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.2

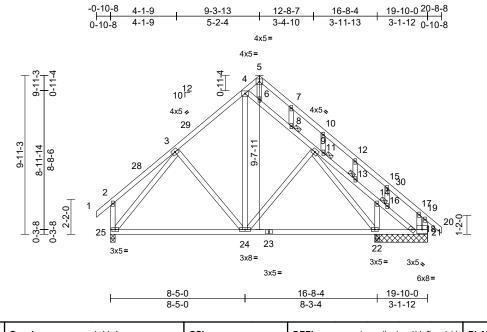
Plate Offsets (X, Y): [9:0-3-3,Edge]

													-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.85 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.55 0.02	(loc) 8-10 8-10 8	l/defl >725 >430 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. (size) 8=0-3-8, 1 Max Horiz 11=-268 (L Max Uplift 8=-74 (LC	xept end verticals. applied or 10-0-0 oc 1=0-3-8 _C 12) 15), 11=-66 (LC 14)	5) 6) 7)	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo. * This truss l on the botton	snow loads have b as been designed fr psf or 1.00 times fi on-concurrent with as been designed for ad nonconcurrent v has been designed m chord in all areas	Lum DC B; Fully eeen cor or great at roof I other li or a 10. vith any for a liv s where	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.0 a rectangle	e 9; his f live osf on ads. 0psf					
FORCES TOP CHORD BOT CHORD WEBS	Max Grav8=960 (LC 6), 11=958 (LC 5)3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.Tension8)One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11 and 8. This connection is for uplift only and does not consider lateral forces.ORD10-11=-79/663, 8-10=0/650 3-10=-148/204, 4-10=-102/613, 5-10=-278/230, 3-11=-773/53, 5-8=-589/289)Max Grav8=960 (LC 6), 11=958 (LC 5) a-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.ORD1-2=0/39, 2-3=-228/107, 3-4=-768/168, 4-5=-781/170, 5-6=-548/185, 6-7=0/39, 2-11=-284/122, 6-8=-516/1890)DRD10-11=-79/663, 8-10=0/650 3-10=-148/204, 4-10=-102/613, 5-10=-278/230, 3-11=-773/53, 5-8=-589/280)R802.10.2 and referenced standard ANSI/TPI 1.0)												
	IOTES LOAD CASE(S) Standard Unbalanced roof live loads have been considered for												

this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-3-13, Exterior(2R) 6-3-13 to 12-3-13, Interior (1) 12-3-13 to 17-8-8, Exterior(2E) 17-8-8 to 20-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

February 27,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

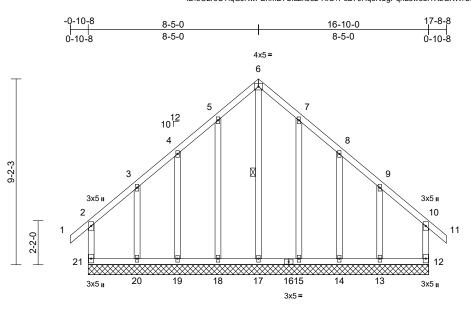
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	B02	Common	1	1	Job Reference (optional)	163852221

Scale = 1:72.1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:00 ID:QwOCt908BImgeeqJB_K8WIzhJ5k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

						-	i					i		
Loading	(ps	f) Spacing	1-11-	4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20	0 Plate Grip DOL	1.15		тс	0.39	Vert(LL)	-0.10	24-25	>999	240	MT20	244/190	
Snow (Pf)	20	0 Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.20	24-25	>982	180			
TCDL	10	0 Rep Stress Incr	YES		WB	0.50	Horz(CT)	0.01	21	n/a	n/a			
BCLL	0	0* Code	IRC2	018/TPI2014	Matrix-MSH									
BCDL	10	0				_						Weight: 160 lb	FT = 20%	
LUMBER					roof live loads ha	ve been	considered for		13) N/A	\				
TOP CHORD				this design.					14) Thi	s truss is	s desig	ned in accordanc	e with the 2018	
BOT CHORD					7-16; Vult=130m								tions R502.11.1 a	and
WEBS	2x4 SP No.3				oh; TCDL=6.0psf; 3; Enclosed; MWF							ferenced standard		
OTHERS	2x4 SP No.3				C Corner(3E) -0-1								es not depict the s	size
BRACING	<u>.</u>				13, Corner(3R) 6-							of the purlin along	J the top and/or	
TOP CHORD		sheathing directly app except end verticals.			to 17-8-8, Corne					tom cho				
BOT CHORD		ectly applied or 10-0-0			ver left and right of			eft	LOAD	CASE(S) Sta	ndard		
BOT CHORD	bracing, Excep			and right exp	osed;C-C for me	mbers ar	nd forces &							
	5-3-9 oc bracino				reactions shown;	Lumber	DOL=1.60 pla	te						
JOINTS	1 Brace at Jt(s)			grip DOL=1.										
	11, 13, 16				ned for wind loads									
REACTIONS	(size) 18=3	-3-8, 21=3-3-8, 22=3-3	-8,		ids exposed to wi d Industry Gable I									
	25=0				alified building de									
	Max Horiz 25=-2	()			7-16; Pr=20.0 ps									
		99 (LC 13), 21=-890 (I			.15); Pf=20.0 psf									
		78 (LC 15), 25=-41 (L			ls=1.0; Rough Ca									
		63 (LC 15), 21=270 (L0 23 (LC 1), 25=760 (LC	21)	Cs=1.00; Ct=										
FORCES		Compression/Maximur		,	snow loads have	been co	nsidered for th	is						
TOROLO	Tension	Compression/waximu		design.	a haan daalamad	for an ot	an of usin us of	live					CT CL	
TOP CHORD		163/116, 3-4=-575/181			is been designed psf or 1.00 times								in the	
		-7=-174/145, 7-10=-21			on-concurrent wit							"TH UA	ROUL	
	10-12=-140/35,		,		e 2x4 MT20 unles						S	OF SECO	in the	
	15-17=-231/112	, 17-19=-58/68, 19-20=			ully sheathed from						52	S. FESS	Ain 15 -	-
	2-25=-229/168,				st lateral movem							in the		-
	,	-8=-462/91, 8-9=-496/	,	9) Gable studs	spaced at 2-0-0 c	oc.	0 ,				1			Ξ
		-13=-84/63, 13-14=-11	12/109,		is been designed					-		SEA	Li	=
BOT CHORD	14-16=-69/40, 1				ad nonconcurrent					-		1860	12 :	=
BUICHURD	24-25=-100/466	, 22-24=0/424, 18-21=-1138/275			nas been designe			psf		=		1900	13 :	-
WEBS		16-211136/275 8=-163/89, 10-11=-220)/107		n chord in all area					-		SEA SEA SEA	L D3 EER. + U	-
	12-13=-87/72, 1	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		by 2-00-00 wide w by other members		ween the botto	m			-	·	a: :	-
	,	14-22=-223/240,			hanical connectio		ere) of truce to	`			1	(C. VGIN	EF + .	5
	4-24=-94/328, 3				capable of withs						11	A	FON	
	9-24=-149/102,	3-25=-623/35, 9-22=-4	78/129	joint 21.	capable of withis	canoing t	soo io upint at							
NOTES				,								in the second	mm	

February 27,2024

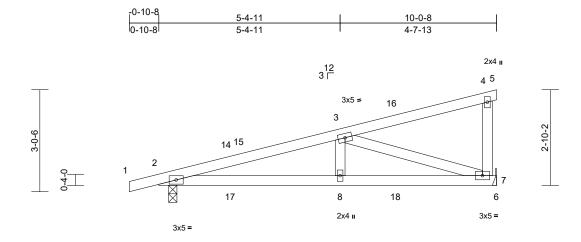

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	C01	Common Supported Gable	1	1	Job Reference (optional)	163852222

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:01 ID:802r6CYIqGJRwPBnmD7SIazhJ52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.31 BC 0.18 WB 0.22 Matrix-MR	(-)	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exc Rigid ceiling directly a bracing. 1 Row at midpt (6 (size) 12=16-10- 14=16-10- 17=16-10- 21=16-10- 21=16-10- 21=16-10- 21=16-10- 21=16-10- 14=15-10- 14=15-10- 14=15-10- 14=15-10- 14=15-10- 14=15-10- 14=15-10- 12=16-10- 21=241 (L Max Uplift 12=-143 (L 14=156 (L 14=155 (L) 14=155 (L)	applied or 6-0-0 oc 6-17 0, 13=16-10-0, 0, 15=16-10-0, 0, 15=16-10-0, 0, 20=16-10-0, 0 LC 12) LC 11), 13=-163 (LC 12) C 11), 15=-70 (LC 15) C 14), 19=-57 (LC 14) LC 11), 21=-150 (LC 25) C 22), 15=264 (LC 22) C 15), 18=264 (LC 21) C 21), 20=295 (LC 28)	 this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C- 2-5-0 to 5-5- 11-5-0 to 14. cantilever left right exposer for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct= DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0, overhangs n 	roof live loads have been 7-16; Vult=130mph (3-se ph; TCDL=6.0psf; BCDL=1 3; Enclosed; MWFRS (env C Corner(3E) -0-10-8 to 2 0, Corner(3E) 5-5-0 to 11. -5-0, Corner(3E) 14-5-0 to ft and right exposed ; end d;C-C for members and fc shown; Lumber DOL=1.6 ned for wind loads in the p uds exposed to wind (norm d Industry Gable End Deta talified building designer a 57-16; Pr=20.0 psf (roof L 1.15); Pf=20.0 psf (conf L 1.15); Pf=20.0 psf (conf L 1.15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been co as been designed for greaf psf or 1.00 times flat roof 1 on-concurrent with other li 2x4 MT20 unless otherw	cond gust) 6.0psf; h=25ft; relope) exterior 5-0, Exterior(2N) 5-0, Exterior(2N) 17-8-8 zone; vertical left and rcces & MWFRS 0 plate grip value of the truss nal to the face), ils as applicable, s per ANSI/TPI 1. L: Lum DOL=1.15 DL=1.15 Plate v Exp.; Ce=0.9; insidered for this the of min roof live oad of 20.0 psf on ve loads.	bear joint lb up joint 13. 14) This Inter	ing plate 21, 143 Jlift at jo 15, 58 I truss is national 2.10.2 a ASE(S)	e capa 3 lb upli int 19, lb uplif 3 desig I Resid and ref) Stai	able of withstandi lift at joint 12, 71 , 168 lb uplift at jo ft at joint 14 and 1 ned in accordanc dential Code sect erenced standard ndard	tions R502.11.1 and d ANSI/TPI 1.
FORCES TOP CHORD BOT CHORD	6-7=-154/402, 7-8=-1 9-10=-147/151, 10-1	0/38, 2-3=-153/157, 13/326, 5-6=-154/402, 114/324, 8-9=-75/236, 1=0/38, 10-12=-176/1 20=-125/118, 18=-125/118, 15=-125/118,	 8) Gable requir 9) Truss to be f braced agair 10) Gable studs 11) This russ ha chord live loa 12) * This truss h on the bottor 3-06-00 tall b 	es continuous bottom cho fully sheathed from one fa- sst lateral movement (i.e. of spaced at 2-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a lin m chord in all areas where by 2-00-00 wide will fit bet by 0 other members.	rd bearing. ce or securely diagonal web). 0 psf bottom other live loads. ve load of 20.0psf a rectangle		Contraction of the second	and the second sec	SEA SEA SEA	
WEBS	6-17=-434/103, 5-18= 4-19=-158/126, 3-20=	=-225/96,		iy ound memoers.					in min	E 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty Ply DRB - 72 FaNC		DRB - 72 FaNC			
24020108	D01	Monopitch	11	1	Job Reference (optional)	163852223

Scale = 1:34.3

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:01 ID:VdN9jkpYe14JZnt?2rWcBDzhJ4i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	3/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.36 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.06 0.01	(loc) 8-13 8-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Couc	11102010	# 11 12011	Matrix Mort							Weight: 43 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (Лах Horiz 2=101 (LC Лах Uplift 2=-180 (L Лах Grav 2=529 (LC	xcept end verticals. applied or 5-11-11 c 7= Mechanical C 13) C 10), 7=-148 (LC 1 C 21), 7=516 (LC 21)	7) oc 8) 9) 0)	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate joint 7. One H2.5A S recommende UPLIFT at jt(does not con	s been designed for d nonconcurrent we as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta- impson Strong-Tie d to connect truss s) 2. This connection sider lateral forces	vith any for a liv s where I fit betw uss conr (by othe anding 1 e connec to beari on is for	other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss t 48 lb uplift at tors ng walls due uplift only ar	Opsf om to t					
	(lb) - Maximum Com Tension 1-2=0/13, 2-3=-995/9 4-5=-6/0, 4-7=-182/9	938, 3-4=-92/69,	·	International R802.10.2 ar	designed in accord Residential Code id referenced stan	sections	R502.11.1 a	Ind					
	2-8=-912/935, 7-8=-9 3-8=-287/198, 3-7=-9	912/935, 6-7=0/0	LU	AD CASE(S)	Stalluaru								

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-0-8, Exterior(2E) 7-0-8 to 10-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	D02	Monopitch	2	1	Job Reference (optional)	163852224

6-0-8

6-0-8

18 19

21

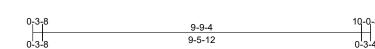
Carter Components (Sanford, NC), Sanford, NC - 27332,

3-0-6

0-4-0

-0-10-8

0-10-8


2

3x5 =

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:02 ID:ZnJFRgCc6s6nOiJ9wZ57UzzhJ4C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12 3 ∟

2x4 u

3

0

0

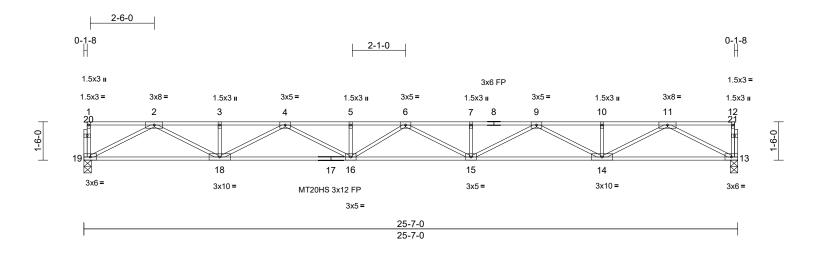
11

2x4 II

Scale = 1:34.3

Ocale - 1.04.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.45 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.09 0.01	(loc) 11-17 11-17 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 5-8-12 oc purlins, ex Rigid ceiling directly a	cept end verticals.		Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n	snow loads have as been designed psf or 1.00 times on-concurrent wit	(Lum DC t B; Fully been cor for great flat roof lo h other liv	DL=1.15 Plate Exp.; Ce=0.9 Insidered for t er of min root bad of 20.0 p	e 9; his f live					
REACTIONS	bracing. (size) 2=0-3-0, 9= Max Horiz 2=101 (LC Max Uplift 2=-180 (LC Max Grav 2=529 (LC	7)) 8	 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
FORCES	(lb) - Maximum Comp Tension		9	chord and ar	er(s) for truss to t	s.							
TOP CHORD	1-2=0/13, 2-3=-896/8 4-5=-59/42, 5-6=-41/5 6-9=-127/56	-,,	10	bearing plate	hanical connection capable of withs								
BOT CHORD	2-11=-821/843, 10-11 9-10=-821/843, 8-9=0	,	1		Simpson Strong-T			to					
WEBS	4-12=-892/912, 9-12= 4-10=-308/198, 3-11=	=-908/920, 5-12=-42	/21,	UPLIFT at jt	s) 2. This connect sider lateral force	tion is for						Mining CA	Della
Vasd=103	CE 7-16; Vult=130mph (3mph; TCDL=6.0psf; BC p B: Enclosed: MWFRS	DL=6.0psf; h=25ft;		Ínternational	designed in acco Residential Code nd referenced sta Standard	esections	R502.11.1 a	and			N. N.	OR THESS	

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-0-8, Exterior(2E) 7-0-8 to 10-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

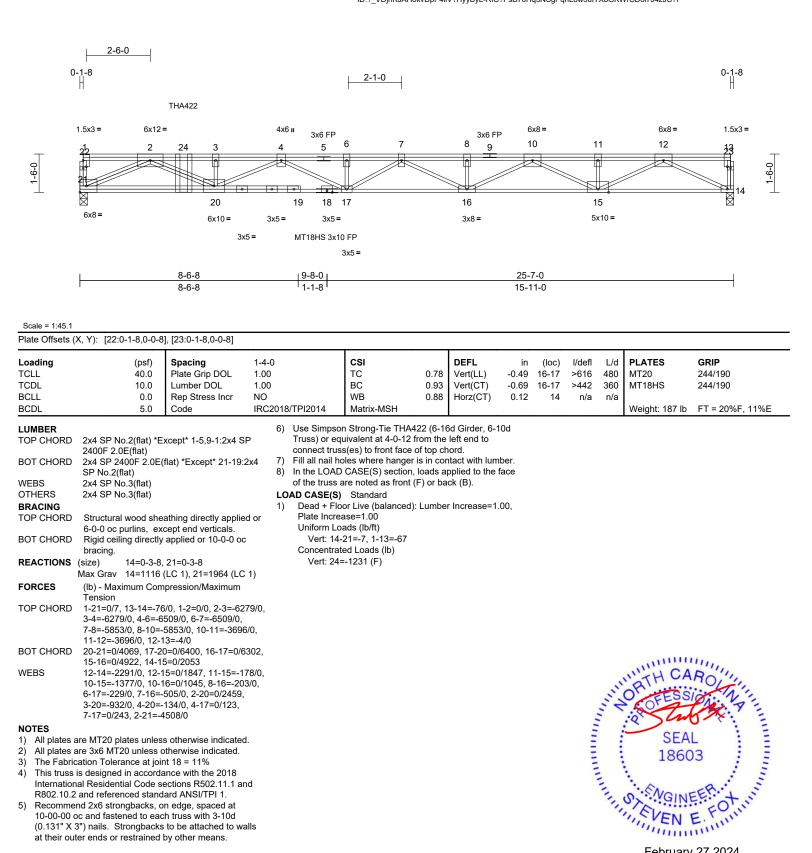
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F01	Floor	14	1	Job Reference (optional)	163852225

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:02 ID:kw0_lcw3LxOch2qP7ECb61yyC0k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.64	Vert(LL)	-0.51	15-16	>598	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.83	Vert(CT)	-0.71	15-16	>429	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.65	Horz(CT)	0.11	13	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 131 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.1(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she 5-3-4 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	2									
REACTIONS	(size) 13=0-3-8, Max Grav 13=925 (L	, 19=0-3-8 C 1) 19=925 (LC 1))									
FORCES	(lb) - Maximum Com)									
FURCES	Tension	ipression/maximum										
TOP CHORD	1-19=-69/0, 12-13=-	69/0 1-2=-3/0										
	2-3=-2815/0, 3-4=-2											
	5-6=-4147/0, 6-7=-4											
	9-10=-2815/0, 10-11	1=-2815/0, 11-12=-3/	0									
BOT CHORD	18-19=0/1609, 16-18	8=0/3648, 15-16=0/4	1284,									
	14-15=0/3646, 13-14	4=0/1609										
WEBS	11-13=-1813/0, 2-19	9=-1813/0, 11-14=0/ ⁻	1369,									
	2-18=0/1369, 10-14	=-163/0, 3-18=-162/0),									
	9-14=-943/0, 4-18=-	, ,									minin	111.
	4-16=0/567, 7-15=-1										White CA	Dalle
	6-15=-148/0, 6-16=-	162/0									athon	10/ 11
NOTES										5	OFFSS	ice Alle
	are MT20 plates unles									33	C.OFF	1. 7 -
	are 1.5x3 MT20 unless		l.							2	io n	New 3
	is designed in accorda									1 A	1	
	al Residential Code s		nd						=	:	SEA	L : =
	and referenced stand										1860	13 : =
	nd 2x6 strongbacks, o								-		1000	
	oc and fastened to eac		alla								•	1 5
	3") nails. Strongbacks		ans							-	·	ais
	ter ends or restrained	by other means.								11	SEA SEA	EE: + N
LOAD CASE	5) Standard									11	A	201
											IN VEN	E

EVEN E 11111111 Page: 1

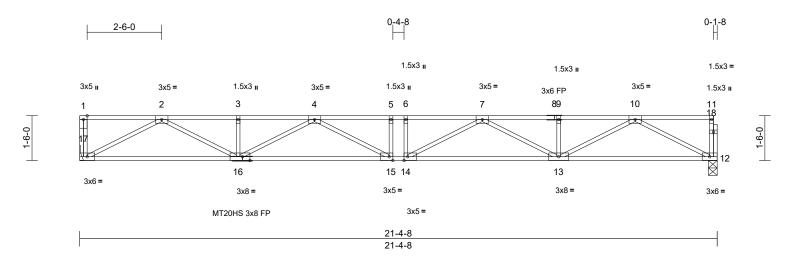

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 27,2024

Jo	b	Truss	Truss Type	Qty	Ply		
24	020108	F02	Floor Girder	1	1	Job Reference (optional)	163852226

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:02 ID:?_VDjhKJAHokvDpP4IIV?HyyByL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Ro Edenton, NC 27932

February 27,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F03	Floor	3	1	Job Reference (optional)	163852227

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon Feb 26 10:17:02 ID:V0ZtZzRPSrhfkV2Ta3zSptyyC04-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.6

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge], [16:0-3-0,Edge] PLATES GRIP Loading Spacing 1-4-0 CSI DEFL in (loc) l/defl L/d (psf) 40.0 Plate Grip DOL 1.00 тс 0.36 Vert(LL) -0.27 14-15 >936 480 MT20 244/190 10.0 Lumber DOL 1.00 BC 0.81 Vert(CT) -0.37 13-14 >678 360 MT20HS 187/143 0.0 Rep Stress Incr YES WB 0.50 Horz(CT) 0.07 12 n/a n/a 5.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 111 lb FT = 20%F, 11%E

L	u	м	в	F	R
_	U	141	D		n

TCLL

TCDL

BCLL

BCDL

TOD OULODD	
TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 12=0-3-8, 17= Mechanical
	Max Grav 12=770 (LC 1), 17=775 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-17=-70/0, 11-12=-69/0, 1-2=0/0,
	2-3=-2235/0, 3-4=-2235/0, 4-5=-2992/0,
	2-3=-2235/0, 3-4=-2235/0, 4-5=-2992/0,
BOT CHORD	2-3=-2235/0, 3-4=-2235/0, 4-5=-2992/0, 5-6=-2992/0, 6-7=-2992/0, 7-9=-2235/0,
	2-3=-2235/0, 3-4=-2235/0, 4-5=-2992/0, 5-6=-2992/0, 6-7=-2992/0, 7-9=-2235/0, 9-10=-2235/0, 10-11=-3/0

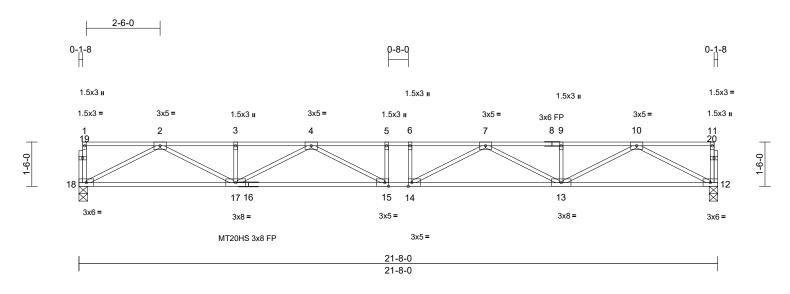
NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

February 27,2024



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F04	Floor	5	1	Job Reference (optional)	163852228

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:03 ID:szMlchVXGNJxqGwRNcYdWxyyC0?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.1

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge]

	[7, 1]. [14.0-1-0,∟uge	, [10.0-1-0,∟uge]									-	
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.42 0.83 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.39 0.07	(loc) 14-15 15-17 12	l/defl >901 >654 n/a	L/d 480 360 n/a	PLATES MT20HS MT20	GRIP 187/143 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		,					Weight: 112 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie	d or									
REACTIONS	0	, 18=0-3-8 _C 1), 18=781 (LC 1))									
FORCES	(lb) - Maximum Com Tension											
TOP CHORD	1-18=-69/0, 11-12=- 2-3=-2276/0, 3-4=-2 5-6=-3069/0, 6-7=-3 9-10=-2276/0, 10-11	276/0, 4-5=-3069/0, 069/0, 7-9=-2276/0,										
BOT CHORD	17-18=0/1336, 15-1 13-14=0/2840, 12-1	7=0/2840, 14-15=0/3	069,									
WEBS	10-12=-1504/0, 2-18 2-17=0/1067, 9-13=- 7-13=-640/0, 4-17=- 4-15=-71/459, 5-15=	8=-1504/0, 10-13=0/1 -162/0, 3-17=-162/0, 640/0, 7-14=-71/459	3								TH CA	RO
NOTES										5.	OFESS	ion N'
,	ed floor live loads have	e been considered fo	r							34		mett. 7 =
	are MT20 plates unles										2 C - A	
	are 1.5x3 MT20 unless is designed in accorda								=		SEA	• •
	nal Residential Code s		nd								1860)3 <u>;</u> E
	 VIEBS 10-121304/0, 2-13162/0, 3-17162/0, 2-17-0/1067, 2-17-0/1067, 9-13162/0, 3-17162/0, 3-17162/0, 3-17162/0, 7-13640/0, 4-17-e-640/0, 4-17-e-64/0, 4-											
	end 2x6 strongbacks, o oc and fastened to eac									1	S.S.NOINI	ERIL
(0.131" X 3	3") nails. Strongbacks	to be attached to wa	alls							14	STA SIN	EOTIN
	ter ends or restrained	by other means.									1. VEN	E
LOAD CASE(oj Stanuaru										in min	nu.

February 27,2024

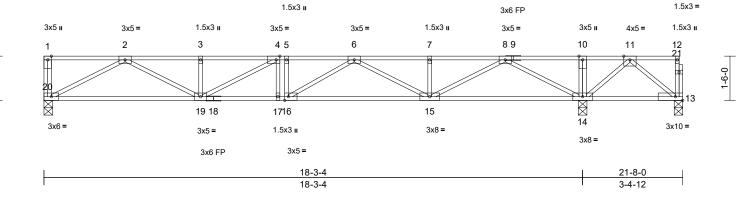
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F05	Floor	1	1	Job Reference (optional)	163852229

0-2-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-6-0


Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:03 ID:LzVQXT791MsZ3FvQQXUpdvyyC?B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8 ||

1-6-8

1-5-12 2-2-12 3x6 FP 1.5x3 **I** 3x5 II 3x5 = 3x5 =

Scale = 1:39.1

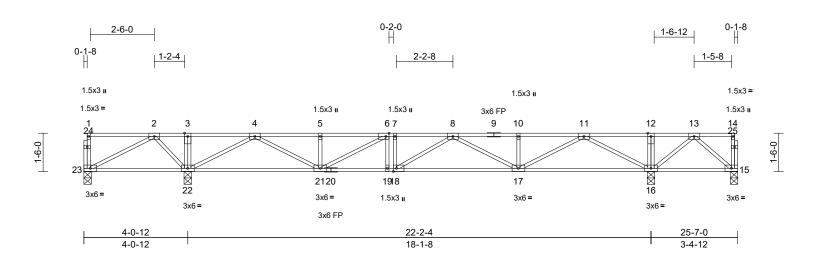
1-6-0

Plate Offsets (X, Y): [4:0-1-8,Edge], [16:0-1-8,Edge]

	∧, 1). [4.0-1-0,⊑uge]	, [10.0-1-0,⊑uge]										
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.60	Vert(LL)	-0.10		>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.46	Vert(CT)	-0.14	15-16	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.02	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	4 Matrix-MSH							Weight: 117 lb	FT = 20%F, 11%E
LUMBER			5) Recom	mend 2x6 strongbacks	s, on edge	e, spaced at						
TOP CHORD	2x4 SP No.2(flat)		10-00-0	0 oc and fastened to e	each trus	s with 3-10d						
BOT CHORD	2x4 SP No.2(flat)			X 3") nails. Strongba			valls					
WEBS	2x4 SP No.3(flat)			outer ends or restraine								
OTHERS	2x4 SP No.3(flat)		6) CAUTIO	ON, Do not erect truss	backwar	ds.						
BRACING			LOAD CAS	E(S) Standard								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	;									
	bracing.											
REACTIONS	(size) 13=0-3-8	, 14=0-3-8, 20=0-3-8	8									
	Max Uplift 13=-620	(LC 3)										
	Max Grav 13=-67 (L		1),									
	20=548 (1	,										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension	45/0 4 2-0/0										
TOP CHORD	1-20=-71/0, 12-13=- 2-3=-1383/0, 3-4=-1											
	5-6=-1500/0, 6-7=-7		,									
	8-10=0/1515, 10-11		n									
BOT CHORD	19-20=0/883, 17-19											
201 0110112	15-16=0/1276, 14-1										minin	111.
WEBS	10-14=-158/0, 8-14=										WHILL CA	Dalle
	8-15=0/1064, 2-19=										atrion	10/14
	3-19=-177/0, 6-15=-	-634/0, 4-19=-265/92	2,							1	OCEESS	in All
	6-16=0/349, 4-17=-7	132/34, 5-16=-54/12	<u>,</u>							33		NY S -
	11-13=0/1001, 11-1	4=-1058/0								2	:0 2U	17: 3
NOTES											SEA	1 1 1
1) Unbalance	ed floor live loads have	e been considered fo	or						=		SEA	L : =
this design									=		1860	13 :
/	are 3x5 MT20 unless o								-		1000	
One RT8A	MiTek connectors re	commended to conr	nect								•	1

3) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

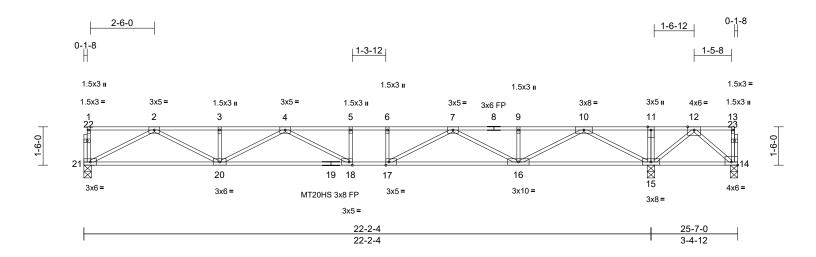
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F06	Floor	1	1	Job Reference (optional)	163852230

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:03 ID:hCqk8_Oyr7eRieafj9tzWYyyC_r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

	∧, 1). [0.0-1-0,Euge],	[:::::::::::::::::::::::::::::::::::::											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.34 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.01	(loc) 17-18 17-18 16	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%F, 11%E
	23=0-3-8 Max Uplift 15=-475 (Max Grav 15=-25 (L	cept end verticals. applied or 6-0-0 oc 16=0-3-8, 22=0-3-8, LC 6), 23=-349 (LC 6	4 d or 5 ; 6 ; 6) ;	recommende UPLIFT at jt(does not con One RT8A M truss to bear connection is forces. This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer	Simpson Strong-Tie ed to connect truss (s) 23. This connect sider lateral forces (iTek connectors rr ing walls due to Uf for uplift only and designed in accord Residential Code nd referenced stan (2x6 strongbacks, and fastened to ea nails. Strongback	to bear tion is figure ecomme PLIFT at does n dance w sections dard AN on edge ach truss is to be d by othe	ing walls due or uplift only t jt(s) 15. This ot consider la ith the 2018 5 R502.11.1 a JSI/TPI 1. a, spaced at s with 3-10d attached to v or means.	and nect s ateral and					
FORCES	(lb) - Maximum Com		1) CAUTION, E OAD CASE(S)	o not erect truss b Standard	ackwar	ls.						
TOP CHORD	Tension 1-23=-71/0, 14-15= 2-3=0/1092, 3-4=0/1 5-6=-683/0, 6-7=-10 8-10=-645/0, 10-11= 12-13=0/1174, 13-14	092, 4-5=-683/0, 26/0, 7-8=-1026/0, 645/0, 11-12=0/117											lln.
BOT CHORD	22-23=-709/0, 21-22 18-19=0/1026, 17-18 15-16=-567/0	2=-143/79, 19-21=0/1									. III	WITH CA	Routin
, this desigr	3-22=-123/0, 12-16= 4-22=-1196/0, 11-17 10-17=-170/0, 5-21= 6-21=-428/0, 8-18=- 7-18=0/26, 2-23=0/8 13-16=-859/0, 13-15	 2=0/831, 4-21=0/798, -179/0, 8-17=-400/0 132/191, 6-19=-88/7. 101, 2-22=-666/0, i=0/752 been considered for 	, 3,								and and and the	ORTH CA OFESS SEA 1860	E.F. Human


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F07	Floor	1	1	Job Reference (optional)	163852231

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:03 ID:I5EPI6aMJkWJ?xEX5ofUdiyyC_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [14:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1-8,Edge]

Plate Offsets ((X, Y): [14:Edge,0-1-8]], [17:0-1-8,Edge], [1	8:0-1-8,Edge]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TP	12014	CSI TC BC WB Matrix-MSH	0.79 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.39 0.04	(loc) 18-20 18-20 15	l/defl >967 >679 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) All plates a 3) All plates a 4) Provide m	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sheat 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 14=-898 (I Max Grav 14=-141 (I 21=667 (L (Ib) - Maximum Com Tension 1-21=-68/0, 13-14=-4 2-3=-1850/0, 3-4=-18 5-6=-2143/0, 6-7=-2 9-10=-673/0, 10-115 10-16=0/1408, 2-20= 3-20=-152/0, 7-16=-5 7-17=0/738, 4-18=-2 6-17=-244/0, 12-14= ed floor live loads have	athing directly applie cept end verticals. applied or 6-0-0 oc 15=0-3-8, 21=0-3-8 LC 3) LC 4), 15=1999 (LC C 3) pression/Maximum 42/0, 1-2=-3/0, 850/0, 4-5=-2143/0, 143/0, 7-9=-673/0, c0/2167, 11-12=0/216 0=0/2201, 17-18=0/2 5=-572/0, 14-15=-10: i=-1805/0, 2-21=-126 =0/825, 9-16=-178/0, 983/0, 4-20=-398/0, 146/230, 5-18=-77/42 0/1393, 12-15=-151; been considered for s otherwise indicated is otherwise indicated by others) of truss to	5) Th Int R8 6) Re 10 (0. d or 7) CA LOAD 1), 51/0 51/0 54/0, 7 8/0 r 1.	is truss is c ernational l 302.10.2 an ecommend -00-00 oc a .131" X 3") their outer	designed in accord Residential Code Id referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b	sections idard AN on edge ach truss (s to be d by othe	R502.11.1 a NSI/TPI 1. syspaced at with 3-10d attached to w or means.				and the second s	SEA SEA SEA SEA SEA	ROUTE ROUTE
												February	27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

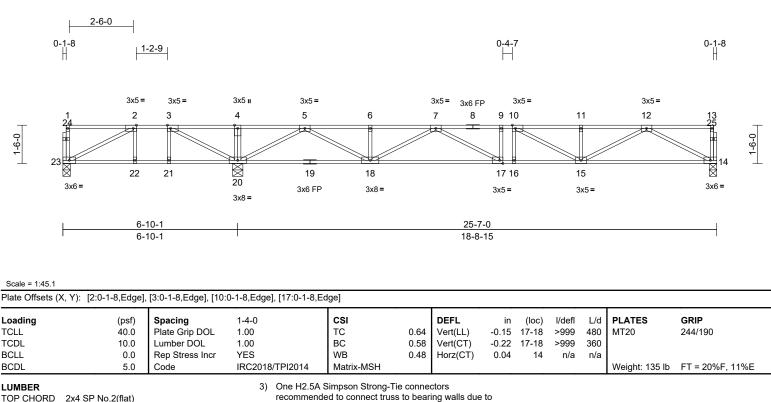
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F08	Floor	1	1	Job Reference (optional)	163852232

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:04 ID:Px0oyr7DUsJnX0INnSTHUPyyBzu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Scale - 1.45.1									 			
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC20	018/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.23 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.05 0.00	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 3	cept end verticals. applied or 6-0-0 oc	ed or	NOTES 1) Unbalanced this design. 2) All plates are 3) Truss to be	4-32=-409/0, 16-20 6-29=-229/0, 7-28 9-26=-222/0, 10-29 13-23=-222/0, 14-7 2-35=-399/0, 2-34 4-33=0/440, 17-19 floor live loads hav e 1.5x3 MT20 unle fully sheathed from	=-222/0, 5=-222/0 22=-226 =-70/59, =-84/14 ve been ss other i one fac	8-27=-223/0 0, 12-24=-222 70, 15-21=-21 3-33=-181/0 , 17-20=-123/ considered for wise indicate we or securely	2/0, 16/0, /0 or d.				
REACTIONS	22=14-6- 24=14-6- 26=14-6- 28=14-6- 31=14-6- Max Grav 19=103 (I 21=215 (I 23=230 (I 25=231 (I 27=232 (I 29=238 (I	20=14-6-14, 21=14- 14, 25=14-6-14, 14, 25=14-6-14, 14, 27=14-6-14, 14, 29=14-6-14, 14, 32=14-6-14, 35=1 C 4), 20=244 (LC 1) C 3), 22=237 (LC 7) C 3), 28=231 (LC 7) C 3), 28=231 (LC 7) C 3), 28=231 (LC 7) C 3), 31=234 (LC 7) C 1), 35=268 (LC 3)	0-3-8),),),),),	 Gable studs This truss is International R802.10.2 a Load case(s designer mu correct for th Recomment 10-00-00 oc (0.131" X 3" at their outei 	nst lateral moveme spaced at 1-4-0 or designed in accord Residential Code nd referenced star) 1 has/have been ist review loads to the intended use of 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Do not erect truss b	c. dance w sections indard AN modifie verify th this trus on edge ach trus ks to be d by othe	ith the 2018 5 R502.11.1 a ISI/TPI 1. d. Building at they are s. s, spaced at s, with 3-10d attached to w or means.	and				
FORCES	(lb) - Maximum Com Tension 1-35=-68/0, 18-19=- 2-3=-342/0, 3-4=-34 6-7=0/47, 7-8=0/47, 10-12=0/47, 12-13=1 14-15=0/47, 15-16=1 17-18=-2/0	40/0, 1-2=-3/0, 2/0, 4-5=0/47, 5-6=0 8-9=0/47, 9-10=0/47 0/47, 13-14=0/47,	/47,	Plate Increa	or Live (balanced) ase=1.00			.00,		New New	SEA	• -
BOT CHORD	34-35=0/357, 33-34: 31-32=-47/0, 29-31= 27-28=-47/0, 26-27= 24-25=-47/0, 23-24= 21-22=-47/0, 20-21=	-47/0, 28-29=-47/0, -47/0, 25-26=-47/0, -47/0, 22-23=-47/0,	,						110.000	and the second s	1860 SXGINI	E.F.

February 27,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F09	Floor	1	1	Job Reference (optional)	163852233

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:04 ID:LbgzxLM8?ij5Jxi1PyJkmPyyBzb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

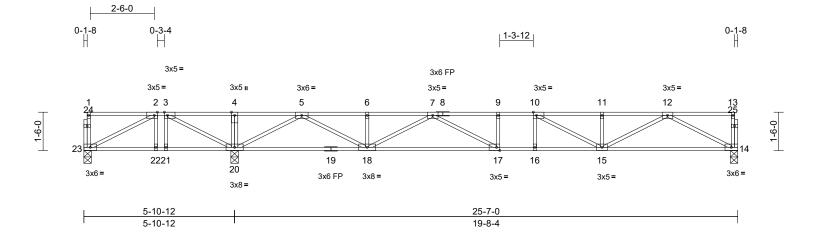
TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)	 recommended to connect truss to bearing walls due to UPLIFT at jt(s) 23. This connection is for uplift only and does not consider lateral forces. 4) This truss is designed in accordance with the 2018
OTHERS BRACING TOP CHORD	2x4 SP No.3(flat) Structural wood sheathing directly applied or	International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
BOT CHORD	6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.	 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls
REACTIONS	(size) 14=0-3-8, 20=0-4-14, 23=0-3-8 Max Uplift 23=-97 (LC 4) Max Grav 14=627 (LC 7), 20=1159 (LC 8), 23=193 (LC 3)	at their outer ends or restrained by other means.6) CAUTION, Do not erect truss backwards.LOAD CASE(S) Standard
FORCES	(lb) - Maximum Compression/Maximum Tension	
TOP CHORD	1-23=-98/0, 13-14=-69/0, 1-2=-4/0, 2-3=-193/314, 3-4=0/898, 4-5=0/898, 5-6=-1389/0, 6-7=-1389/0, 7-9=-1985/0, 9-10=-1985/0, 10-11=-1695/0, 11-12=-1695/0, 12-13=-3/0	
BOT CHORD	22-23=-314/193, 21-22=-314/193, 20-21=-314/193, 18-20=0/543, 17-18=0/1858, 16-17=0/1985, 15-16=0/1985, 14-15=0/1041	
WEBS	4-20=-162/0, 3-20=-780/0, 2-23=-212/355, 2-22=-110/0, 3-21=0/138, 5-20=-1401/0, 12-14=-1171/0, 5-18=0/1000, 12-15=0/742, 6-18=-166/0, 11-15=-181/0, 7-18=-568/0, 10-15=-415/5, 7-17=-73/323, 9-17=-59/6, 10-16=-87/73	
NOTES 1) Unbalance	ed floor live loads have been considered for	

All plates are 1.5x3 MT20 unless otherwise indicated.

this design.

2)

February 27,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

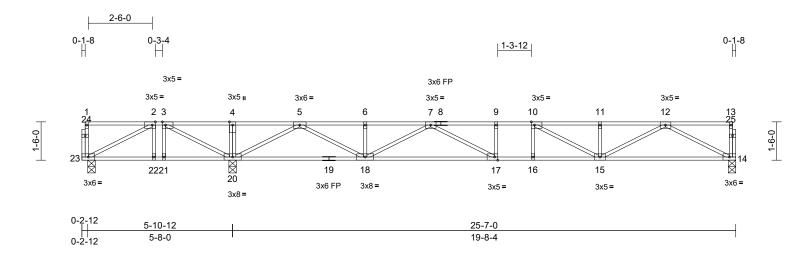
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F11	Floor	5	1	Job Reference (optional)	163852234

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:05 ID:eybdPkSXMrb5e?kNJwxNYuyyBzU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Scale = 1:45.1												
Plate Offsets (X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:	0-1-8,Edge], [17:0	-1-8,Edge]		-						
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI20	14 Matrix-MSH							Weight: 135 lb	FT = 20%F, 11%E
	Max Uplift 23=-306 (cept end verticals. applied or 6-0-0 oc 20=0-3-8, 23=0-3-8 LC 4)	Intern R802 5) Reco 10-00 (0.13 at the 6) CAUT LOAD CA	russ is designed in acco lational Residential Cod .10.2 and referenced st mmend 2x6 strongback -00 oc and fastened to "X 3") nails. Strongba ir outer ends or restrain FION, Do not erect truss ASE(S) Standard	le sections andard AN s, on edge each truss icks to be ied by othe	R502.11.1 a ISI/TPI 1. a, spaced at s with 3-10d attached to v er means.						
	Max Grav 14=608 (L 23=99 (L0		1),									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-23=-89/0, 13-14=- 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11 11-12=-1627/0, 12-1	1536, 4-5=0/1536, 3/0, 7-9=-1858/0, =-1627/0,										
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2 16-17=0/1858, 15-10	2=-694/26, 20=-160/0, 17-18=0/ ²	,								TH CA	ROUT
WEBS	4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=(12-14=-1130/0, 5-18 6-18=-168/0, 11-15= 10-15=-396/11, 7-17 10-16=-70/56	1110/0, 2-23=-25/78 0/272, 5-20=-1568/0, 3=0/1161, 12-15=0/7 199/0, 7-18=-731/0	1, 07, ,							N.C.	SEA SEA	• -
NOTES									=		1860)3 : : :
,	ed floor live loads have	been considered fo	r								N	1 3
this desigr 2) All plates a	n. are 1.5x3 MT20 unless	otherwise indicated	I.							11	O. SNGINI	ERIT
3) One H2.54 recommen UPLIFT at	A Simpson Strong-Tie ided to connect truss t jt(s) 23. This connectionsider lateral forces.	connectors o bearing walls due	to							111	EVEN	EFOTIN


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

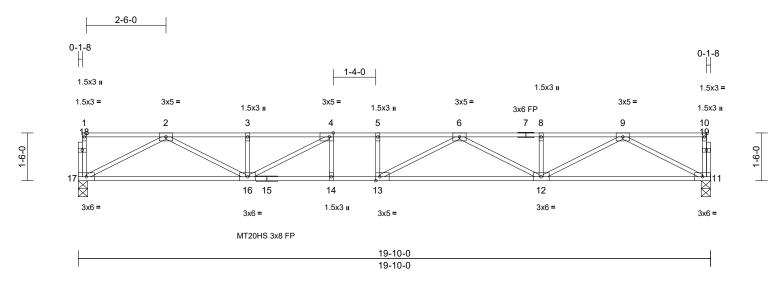
Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F12	Floor	5	1	Job Reference (optional)	163852235

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:05 ID:T5yufnWIxhLFMwBXfB2nn9yyBzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45 1

Scale = 1:45.1												
Plate Offsets (X, Y): [2:0-1-8,Edge],	, [3:0-1-8,Edge], [10:	0-1-8,Edge], [17:0	-1-8,Edge]								
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-4-0 1.00 1.00	CSI TC BC	0.77 0.65	DEFL Vert(LL) Vert(CT)	-0.22	(loc) 17-18 17-18	l/defl >999 >999	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2018/TPI20	WB 14 Matrix-MSH	0.55	Horz(CT)	0.03	14	n/a	n/a	Weight: 135 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc	Intern R802 5) Recor 10-00 (0.13 at the 6) CAUT LOAD CA	russ is designed in acc lational Residential Coc .10.2 and referenced st mmend 2x6 strongback -00 oc and fastened to "X 3") nails. Strongba ir outer ends or restrair FION, Do not erect truss ASE(S) Standard	le sections andard AN s, on edge each truss acks to be acks to be	R502.11.1 a NSI/TPI 1. e, spaced at s with 3-10d attached to v er means.						
REACTIONS	(size) 14=0-3-8, Max Uplift 23=-306 (Max Grav 14=608 (I 23=99 (L0	LC 7), 20=1406 (LC										
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-23=-89/0, 13-14=- 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11 11-12=-1627/0, 12-1	1536, 4-5=0/1536, 3/0, 7-9=-1858/0, 1=-1627/0,										
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2										"TH CA	RO
WEBS	4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=0 12-14=-1130/0, 5-18 6-18=-168/0, 11-15=	.1110/0, 2-23=-25/78 0/272, 5-20=-1568/0, 3=0/1161, 12-15=0/7 =-199/0, 7-18=-731/0 7=0/461, 9-17=-133/0	1, 07,							- N	SEA SEA	• -
this design2) All plates a3) One RT8A truss to be	ed floor live loads have	s otherwise indicated commended to conn LIFT at jt(s) 23. This	l. ect						The second se	A. A	STEVEN	E.F.OT

February 27,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F13	Floor	3	1	le Job Reference (optional)	63852236

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:05 ID:MtBPV9Zo?wshrYVIu07jy?yyBzK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.1

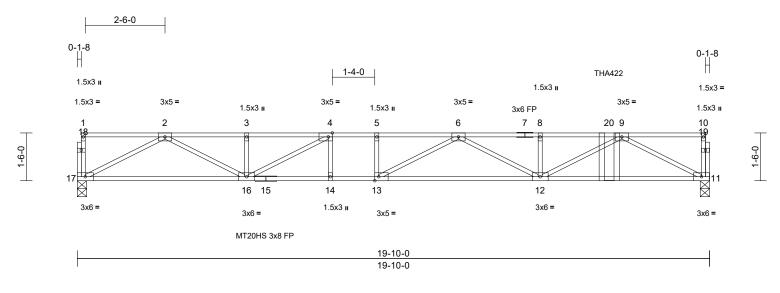
Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

									_			
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.61	Vert(LL)	-0.26	12-13	>907	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.88	Vert(CT)	-0.37	12-13	>631	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.06	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 102 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she		ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0									
	bracing.	17 0 0 0										
REACTIONS	(size) 11=0-3-8, Max Grav 11=714 (L	17=0-3-8 _C 1), 17=714 (LC 1)									
FORCES	(lb) - Maximum Com		/									
	Tension	iprocontraintaint										
TOP CHORD	1-17=-69/0, 10-11=-	68/0, 1-2=-3/0,										
	2-3=-2013/0, 3-4=-2	013/0, 4-5=-2518/0,										
	5-6=-2518/0, 6-8=-2	025/0, 8-9=-2025/0,										
	9-10=-3/0											
BOT CHORD	16-17=0/1206, 14-10		2518,									
WEBS	12-13=0/2464, 11-12 9-11=-1363/0, 2-17=		4									
WEBS	2-16=0/916, 8-12=-1											111
	6-12=-498/0, 4-16=-										White CA	Dalle
	4-14=-39/113, 5-13=		-,								athon	HO1
NOTES										5	OCEESS	ici. Nº
1) Unbalance	ed floor live loads have	e been considered fo	r							24		T. 7 -
this design	n.										ie y Ca	7. 2
	are MT20 plates unles										CEA	1 2
	are 1.5x3 MT20 unless		l.						=		SEA	• -
	is designed in accorda								=	:	1860)3 : =
	nal Residential Code s		nd									1 2
	2 and referenced stand and 2x6 strongbacks, o									-	1. S.	1 S - 3
	oc and fastened to eac									1	SXGIN	-ER. S
	3") nails Strongbacks		alls							11	GIN	E. OTS

(0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F14	Floor Girder	1	1	Job Reference (optional)	163852237

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:05 ID:nQgEN7t_Flojel1p1wXHf3yyBwM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

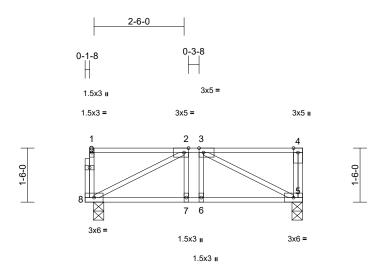
	x, i). [+.0-i-0,∟uge],	, [10.0-1-0,Edge]											
Loading	(psf)	Spacing	1-4-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.73	Vert(LL)	-0.26	12-13	>889	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00		BC	0.99	Vert(CT)	-0.38	12-13	>622	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	NO		WB	0.44	Horz(CT)	0.06	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/	FPI2014	Matrix-MSH							Weight: 102 lb	FT = 20%F, 11%E
LUMBER			6)	Use Simpso	n Strong-Tie THA	422 (Sind	gle Chord Gir	rder)					
TOP CHORD	2x4 SP No.2(flat)		, í	or equivalen	t at 16-8-4 from th	e left en	d to connect	truss					
BOT CHORD	2x4 SP No.2(flat)			(es) to front	face of top chord.								
WEBS	2x4 SP No.3(flat)		7)	Fill all nail he	oles where hanger	is in cor	ntact with lum	nber.					
OTHERS	2x4 SP No.3(flat)		8)	In the LOAD	CASE(S) section	, loads a	pplied to the	face					
BRACING				of the truss a	are noted as front	(F) or ba	ck (B).						
TOP CHORD	Structural wood she	athing directly applie	ed or LOA	D CASE(S)	Standard								
	6-0-0 oc purlins, ex		1)	Dead + Flo	or Live (balanced)	: Lumbe	r Increase=1	.00,					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C	Plate Incre									
	bracing.			Uniform Lo	()								
REACTIONS	(size) 11=0-3-8,	, 17=0-3-8			17=-7, 1-10=-67								
	Max Grav 11=716 (I	LC 1), 17=714 (LC 1)		ed Loads (lb)								
FORCES	(lb) - Maximum Com	pression/Maximum		Vert: 20	=-2 (F)								
	Tension												
TOP CHORD	1-17=-69/0, 10-11=-	68/0, 1-2=-3/0,											
	2-3=-2014/0, 3-4=-2	014/0, 4-5=-2520/0,											
	5-6=-2520/0, 6-8=-2	029/0, 8-9=-2029/0,											
	9-10=-3/0												
BOT CHORD	16-17=0/1206, 14-1		2520,										
	12-13=0/2466, 11-1												
WEBS	9-11=-1367/0, 2-17=												
	2-16=0/917, 8-12=-1											, united and the second	ing.
	6-12=-497/0, 4-16=-	,	16,									"TH CA	Roil
	4-14=-37/116, 5-13=	=-92/13									N	Bizzon	······································
NOTES											5.	FESS	OK. V.
,	ed floor live loads have	e been considered fo	or								52		- Ant -
this design												ie s'U	
All plates a	are MT20 plates unles	s otherwise indicate	d.							-	l 🗳	0.5.1	

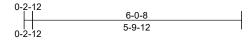
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

St. FO EN E //////// February 27,2024

SEAL

18603


Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F15	Floor	1	1	Job Reference (optional)	163852238

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:3ooBbah4e?6G24GDU7I3M6yyBzA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32	Scale	= 1	1:32
--------------	-------	-----	------

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.01	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.14	Vert(CT)	-0.02	5-6	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 37 lb	FT = 20%F, 11%

LUMBER	
	Over CD Ne Officet)

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 5=0-3-8, 8=0-3-8
REACTIONS	(size) 5=0-3-8, 8=0-3-8 Max Grav 5=212 (LC 1), 8=208 (LC 1)
FORCES	
	Max Grav 5=212 (LC 1), 8=208 (LC 1)
	Max Grav 5=212 (LC 1), 8=208 (LC 1) (lb) - Maximum Compression/Maximum
FORCES	Max Grav 5=212 (LC 1), 8=208 (LC 1) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Grav 5=212 (LC 1), 8=208 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0,
FORCES	Max Grav 5=212 (LC 1), 8=208 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0
FORCES TOP CHORD BOT CHORD	Max Grav 5=212 (LC 1), 8=208 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0, 3-4=0/0 7-8=0/258, 6-7=0/258, 5-6=0/258

NOTES

- Unbalanced floor live loads have been considered for this design.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

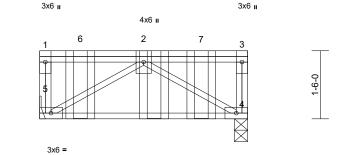
LOAD CASE(S) Standard

February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F17	Floor Girder	1	1	Job Reference (optional)	163852239

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:I3uRdHC2WCX9ih2UVfa8bAyyByV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3x6 =

Page: 1

2-0-8 THA422

THA422 THA422

1-6-0

Scale = 1:25.4	Scale = 1:25.4											
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.74	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.52	Vert(CT)	-0.04	4-5	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.41	Horz(CT)	0.01	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 34 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)											

BRACING

BIULIO		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	4=0-3-8, 5= Mechanical
	Max Grav	4=1233 (LC 1), 5=1275 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum

TOP CHORD	1-5=-429/0, 3-4=-387/0, 1-2=0/0, 2-3=0/0
BOT CHORD	4-5=0/1372
WEBS	2-4=-1605/0, 2-5=-1605/0

NOTES

1) Refer to girder(s) for truss to truss connections.

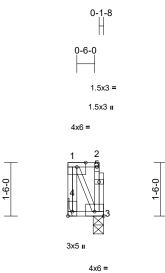
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-8 oc max. starting at 0-10-12 from the left end to 3-6-12 to connect truss(es) to back face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 4-5=-7, 1-3=-67
 - Concentrated Loads (lb)

Vert: 2=-730 (B), 6=-730 (B), 7=-730 (B)

February 27,2024



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	F18	Floor	1	1	Job Reference (optional)	163852240

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:RStLKPprRm9RYz8sENx6y0yyBwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-0-0

1-0-0

Scale =	1:32.3
---------	--------

Plate Offsets (X, Y): [3:Edge,0-1-8], [4:Edge,0-1-8]												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.00	Vert(CT)	0.00	4	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	1-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 3=0-3-8, 4= Mechanical
	Max Grav 3=24 (LC 1), 4=27 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-4=-25/0, 2-3=-23/0, 1-2=-1/0
BOT CHORD	3-4=0/0
WEBS	1-3=0/2

NOTES

1) Refer to girder(s) for truss to truss connections.

2) This truss is designed in accordance with the 2018

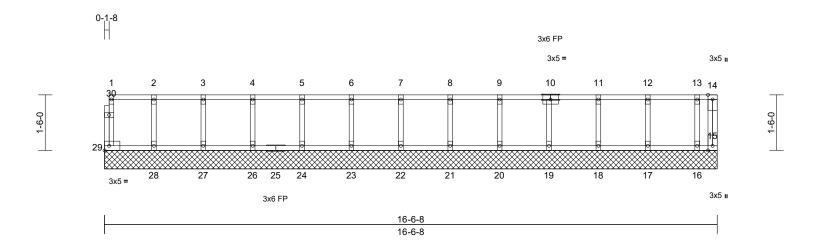
International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d

(0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

February 27,2024



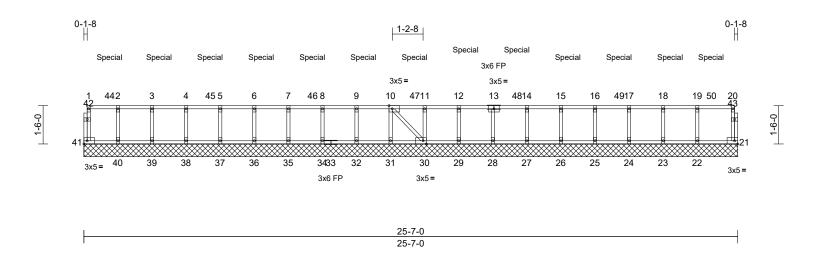
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	FW16	Floor Supported Gable	1	1	Job Reference (optional)	163852241

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:ca1VeAxIr8YtMgUzNBehuKyyBwG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.1

Scale = 1:31.1												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.05 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 15=16-6-6 24=16-6-6 24=16-6-6 28=16-6-6 28=16-6-6 Max Grav 15=16 (LC 17=103 (LC 21=97 (LC (LC 1), 24	athing directly applied cept end verticals. applied or 10-0-0 oc 8, 16=16-6-8, 20=16-6 8, 22=16-6-8, 23=16-6 8, 22=16-6-8, 27=16-6 8, 22=16-6-8, 27=16-6 8, 29=16-6-8 C 1), 16=60 (LC 1), C 1), 20=100 (LC 1), C 1), 22=98 (LC 1), 26=98 (L 1), 26=98 (LC 1), 26=98 (L 1), 28=99 (LC 1), 28=99 (LC 1)	 3) Truss to be braced aga 4) Gable studs 5) This truss is Internationa R802.10.2 a 6) Recomment 10-00-00 or (0.131" X 3' at their oute 6-8, 6-8,	fully sheathed from inst lateral movemes is spaced at 1-4-0 o designed in accor Il Residential Code and referenced star d 2x6 strongbacks, c and fastened to er) nails. Strongbac pri ends or restraine Do not erect truss b	ent (i.e. d ic. dance w sections ndard AN , on edge ach truss iks to be d by othe	iagonal web). ith the 2018 R502.11.1 at ISI/TPI 1. e, spaced at with 3-10d attached to wa er means.	nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum									, mining	11111
TOP CHORD	1-29=-32/0, 14-15=- 3-4=-3/0, 4-5=-3/0, 5	9-11=-5/0, 11-12=-5/0	,							Viel	OFESS	ROUNA
BOT CHORD	28-29=0/3, 27-28=0/ 23-24=0/3, 22-23=0/	/3, 26-27=0/3, 24-26= /3, 21-22=0/3, 20-21= /5, 17-18=0/5, 16-17=	=0/3,								SEA 1860	
, ,	2-28=-89/0, 3-27=-8 5-24=-89/0, 6-23=-8 8-21=-88/0, 9-20=-9 11-18=-86/0, 12-17= are 1.5x3 MT20 unless uires continuous botto	9/0, 7-22=-89/0, 1/0, 10-19=-89/0, 93/0, 13-16=-63/0 s otherwise indicated.							11 Providence	A A A A A A A A A A A A A A A A A A A	SEA SEA SEA SEA SEA	EEP. Tunning
											February	y 27,2024


TERSINEERING BY A MITEK Attilla

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	
24020108	FW25	Floor Supported Gable	1	1	Job Reference (optional)	163852242

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [10:0-1-8.Edge], [30:0-1-8 Edge]

Plate Offsets (X, Y	'): [10:0-1-8,Edge]	, [30:0-1-8,Edge]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.02 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x WEBS 2x OTHERS 2x BRACING TOP CHORD 81 BOT CHORD R BOT CHORD R FREACTIONS (siz	$\begin{array}{c} \text{-0-0 oc purlins, exc}\\ \text{igid ceiling directly}\\ \text{racing, Except:}\\ \text{-0-0 oc bracing: 29-}\\ \text{-0-0 oc bracing: 29-}\\ \text{-0-0 corbs}\\ \text{-0-0 corbs}$	applied or 10-0-0 oc	or BO ⁻ -0, -0, WE -0, -0, WE -0, 1)), 1) 2) 3) 4) 5) 6) 7) 8)	T CHORD T CHORD T CHORD BS BS Unbalanced this design. All plates are Gable requir Truss to be f braced agair Gable studs N/A This truss is International R802.10.2 a Recommend (0.00-00 cc (0.131" X 3")	(lb) - Maximum Con Tension 1-41=-102/26, 20-2 2-3=-5/1, 3-4=-5/1, -6-7=-5/1, 7-8=-5/1, 10-11=-1/1, 11-12= 14-15=-7/2, 15-16= 17-18=-7/2, 18-19= 40-41=-1/5, 39-40= 37-38=-1/5, 36-37= 34-35=-1/5, 32-34= 30-31=-1/5, 29-30= 27-28=-2/7, 26-27= 24-25=-2/7, 26-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27= 24-25=-27=-27=-27= 24-25=-27=-27=-27= 24-25=-27=-27=-27=-27=-27= 24-25=-27=-27=-27=-27=-27=-27=-27=-27=-27=-27	1=-156, 4-5=-5/, -1/1, 12 -7/2, 16 -7/2, 16 -1/5, 38 -1/5, 38 -1/5, 38 -1/5, 38 -1/5, 38 -2/7, 22 9=-423, 9=-423, 9=-4216, 2=-	 (42, 1-2=-5/1, 1, 5-6=-5/1, 1, 9-10=-5/1, 1-14=-7/2, -17=-7/2, -20=-7/2, -36=-1/5, -32=-1/5, -29=-1/1, -26=-2/7, -23=-2/7, '116, 25, 19/44, 21/116, 3/129, 59/124, 10-30= considered for wise indicated. d bearing. e or securely iagonal web). ith the 2018 R502.11.1 an ISJ/TPI 1. spaced at with 3-10d attached to wa 	6/1 -	prov lb d up a lb d lb u 503 158 16- dow 158 24-0 con 10) In tl of tl	vided su own and at 2-11- own and p at 8-1 lb dowr lb up at 11-8, 50 /n and 1 lb up at 6-12 on nection he LOAE case(S	fficient 1 157 II 8, 503 1 158 II 1 1-8, 5 a and 1 1 1-8, 5 a and 1 1 1-8, 5 a and 1 1 1-8, 5 a and 1 1 4-1 3 Ib dc 58 Ib 0 2 22-1 top ch device 0 CASS a ren co) Sta	b up at 1-0-4, 50 Ib down and 158 b up at 6-11-8, 5 30 Ib down and 1 158 Ib up at 12-1 1-8, 503 Ib down ym and 158 Ib up p at 20-11-8, an 1-8, and 504 Ib dc ord. The design/s (s) is the response E(S) section, loac ted as front (F) o ndard	entrated load(s) 504 3 lb down and 158 lb lb up at 4 -11-8, 503 03 lb down and 158 58 lb up at 10 -11-8, 1-8, 503 lb down and and 158 lb up at 0 at 18 -11-8, 503 lb d 503 lb down and 503

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MI-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITER connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 72 FaNC	100050040	
24020108	FW25	Floor Supported Gable	1	1	Job Reference (optional)	163852242	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 10:17:06 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

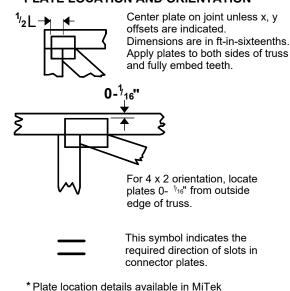
Uniform Loads (lb/ft)

Vert: 21-41=-7, 1-20=-67

Concentrated Loads (lb)

Vert: 3=-186 (B), 6=-186 (B), 9=-186 (B), 12=-186

(B), 15=-186 (B), 18=-186 (B), 44=-187 (B), 45=-186 (B), 46=-186 (B), 47=-186 (B), 48=-186 (B), 49=-186


(B), 50=-187 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

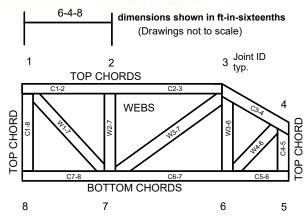
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.