

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 70 FaNC MILLHAVEN 2

THE PLACEMENT PLAN NOTES:

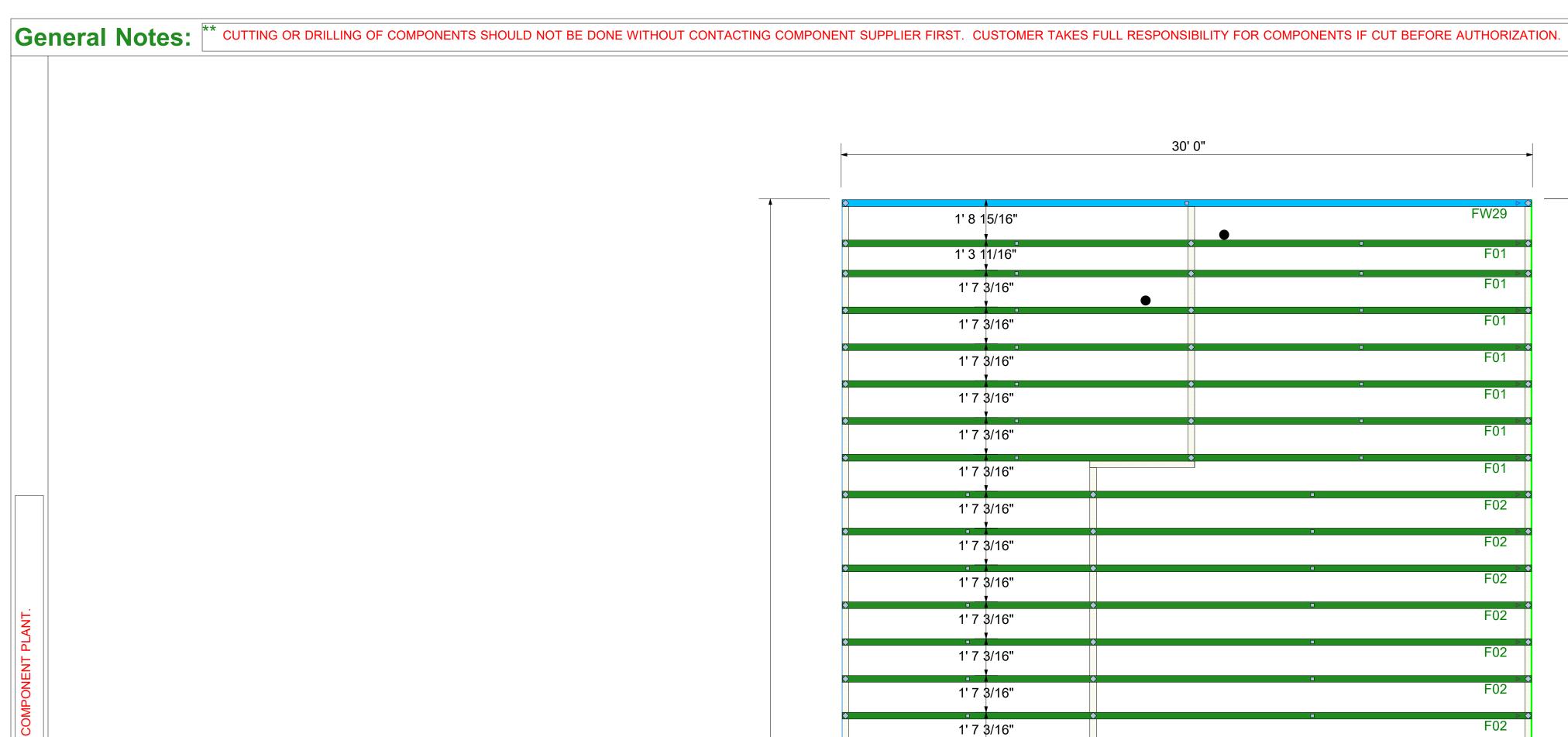
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

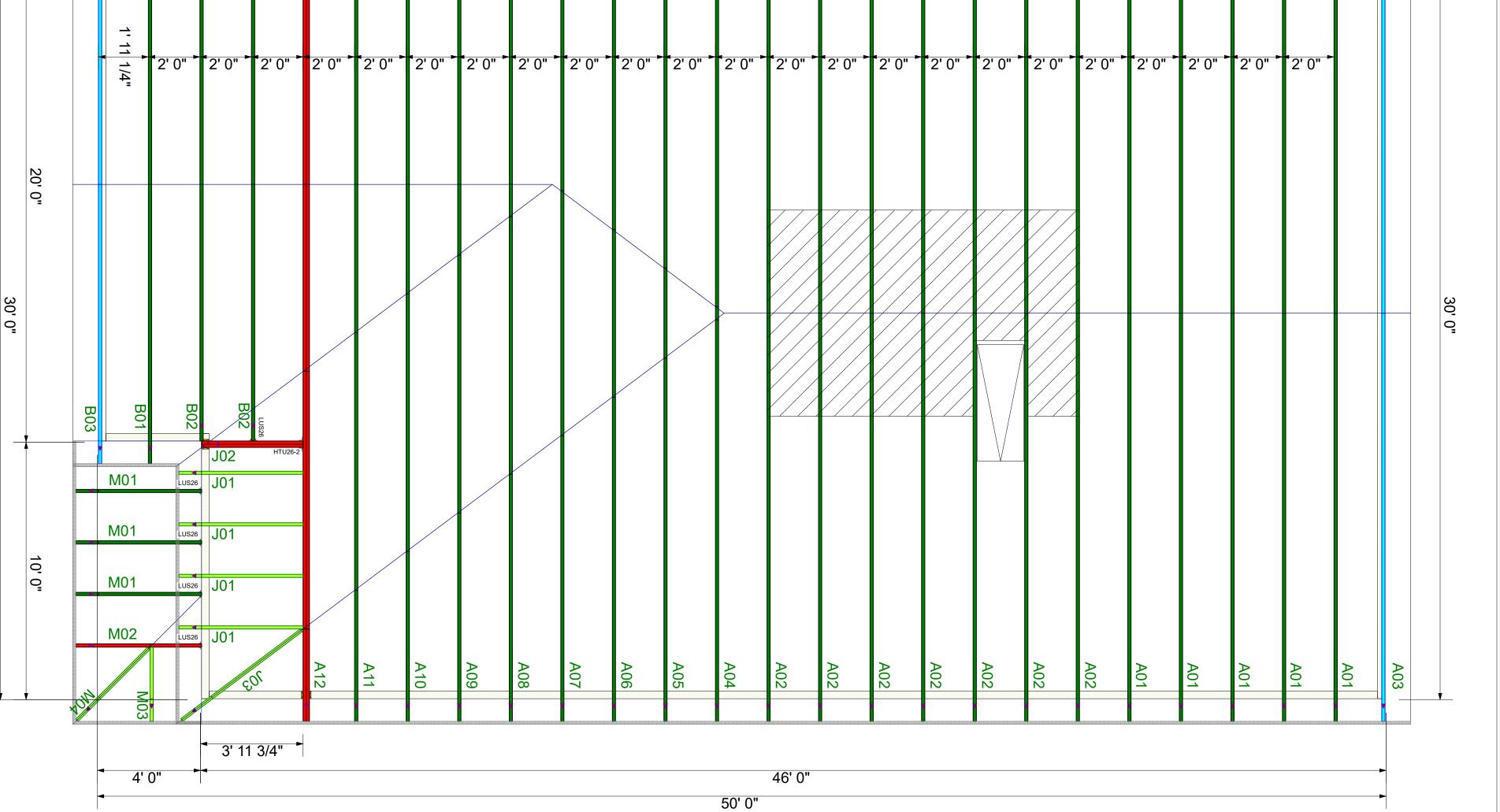
Apprved by: ____

Date: _____

*

TO BY

Truss Drawing Left End Indicator


1' 8 ⁻	15/16"			FW29	
1' 3 ⁻	1/16"		•	F01	
1' 7	3/16"			► C F01	
1' 7	3/16"			F01	
1' 7	3/16"		Ð	F01	
1' 7	3/16"		•	F01	
1'7	3/16"		•	F01	
1'7	3/16"		•	F01	
1' 7	3/16"			F02	
1'7	3/16"			F02	
1'7	3/16"			F02	
1' 7	3/16"	c		F02	
1'7	3/16"			F02	
1'7	3/16"			F02	
1' 7	3/16"			F02	46' 0"
1' 7	3/16"	C		F02	50' 0"
1' 7	3/16"	C]	► F02	20
1' 7	3/16"	C		F02 F02	
	3/8" /16"			F07	
	3/16"	•	•	F03	
1'7	3/16"		•	F03	
1' 9 ⁻	13/16"		F04		
1'4 9	/16"		F04	3' 5 1/2"	
1'7	3/16"	F05			
1'7	3/16"	F05			
1'7	3/16"	F05	10' 5"		
1'7	3/16"	F05		NOOD	
1' 7	3/16"	F05			
1'7	3/16"	F05			¥
1' 7	3/16"	F05			
	•	F05			4' 0"
		FW19		<u> </u>	
	20' 0" 30'	0"	10' 0"		

30' 0"

00/00/00 00/00/00 00/00/00 00/00/00 00/00/	systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179 Drive: Madison, WI 53179
THIS IS A designed as at the specied truss of the specied truss of the species of the species of truss of the species of	A Division of the Carter Lumber Company Certer Lumber Company Drive: Madi
70 FARM AT NEILLS CREEK	MILLHAVEN 2 COMPONENT PLACEMENT PLAN
Date: 2/14 De Proje 240	VTS /2024 signer: ND ct Number: 20059 et Number:

** FRAMER MUST REFER TO PLANS WHILE SET	TING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
Truss Drawing Left End Indicator			
Truss Drawing Left End Indicator	5 - QT	4	
	Product HTU26-2 LUS26		
	Manuf Simpson Simpson		
	7' 11 3/4"	50' 0"	

PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

** ALL BEARING POINT

00/00/00

Name

00/00/00

Name

Revisions

00/00/00

Name

00/00/00

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24020059 DRB - 70 FaNC

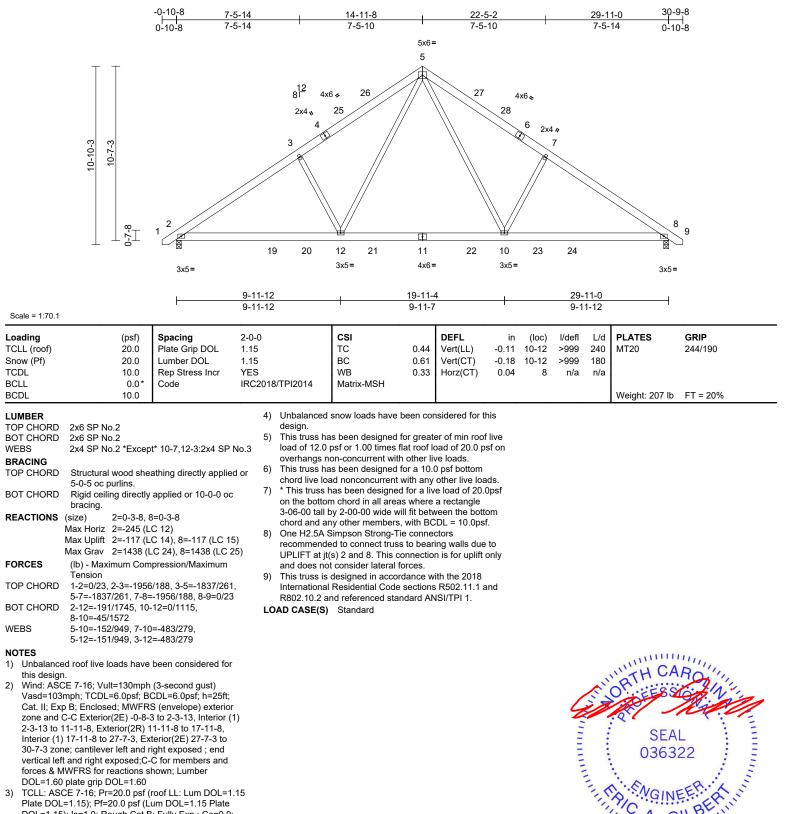
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63625969 thru I63625998

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 15,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A01	Common	5	1	Job Reference (optional)	163625969

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 10:59:50 ID:3zGhtly1P8zleGJJXcJ57uz5Pui-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

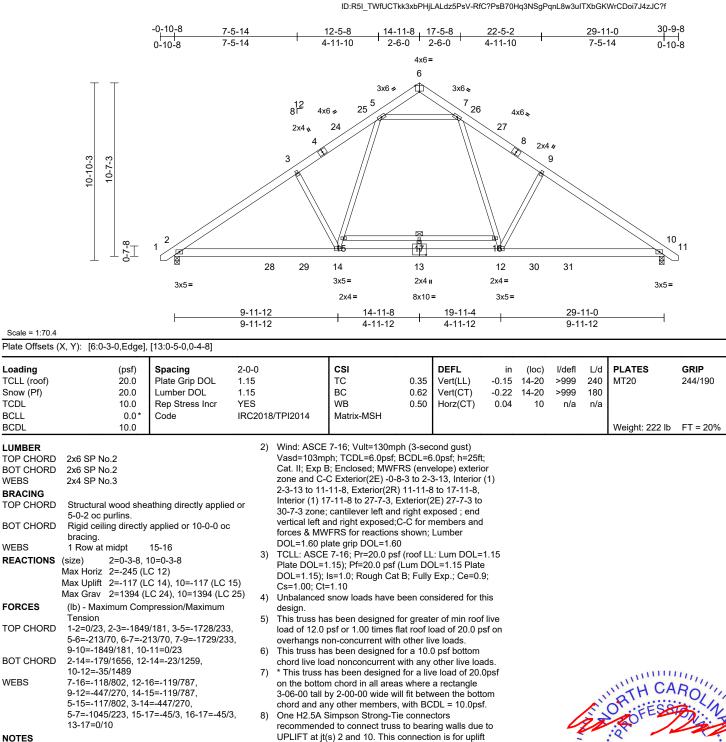
Page: 1

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


GI

mmm February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A02	Common	7	1	Job Reference (optional)	163625970

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 10:59:55

Page: 1

NOTES

WEBS

Loading

TCLL (roof)

Snow (Pf)

LUMBER

BRACING

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

1) Unbalanced roof live loads have been considered for this design.

only and does not consider lateral forces 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A03	Common	1	1	Job Reference (optional)	163625971

10-10-14 7-3

Scale = 1:65.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

5

-0-10-8 0-10-8

4

33

42

34

Spacing

Code

Rigid ceiling directly applied or 10-0-0 oc

2=29-11-0, 18=29-11-0,

20=29-11-0. 21=29-11-0.

22=29-11-0 23=29-11-0

24=29-11-0, 25=29-11-0,

26=29-11-0, 27=29-11-0,

28=29-11-0. 29=29-11-0.

30=29-11-0, 31=29-11-0,

32=29-11-0, 33=29-11-0,

34=29-11-0, 35=29-11-0,

20=-102 (LC 15), 21=-57 (LC 15),

22=-58 (LC 15), 23=-58 (LC 15),

24=-57 (LC 15), 25=-63 (LC 15),

26=-50 (LC 15), 28=-53 (LC 14),

29=-61 (LC 14), 30=-57 (LC 14),

31=-58 (LC 14), 32=-59 (LC 14),

33=-55 (LC 14), 34=-120 (LC 14),

35=-108 (LC 12), 39=-36 (LC 11)

Max Horiz 2=-248 (LC 12), 35=-248 (LC 12)

Max Uplift 2=-108 (LC 12), 18=-36 (LC 11),

39=29-11-0

Plate Grip DOL

Rep Stress Incr

10-27, 9-28, 11-26

Lumber DOL

3x6 u

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Left: 2x4 SP No.3

6-0-0 oc purlins.

1 Row at midpt

bracing.

Right: 2x4 SP No.3

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Feb 14 10:59:56 ID:g5spwPzn4S02AwaPpBoGO6z5Ps5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

30-9-8 14-11-8 29-11-0 14-11-8 14-11-8 0-10-8 4x5= 10 9 11 5x6 🛩 12 44 5x6 💊 8 43 _12 8Г 7 13 6 14 X Ø X 5 15 16 45 17 18 19 20 31 30 28 27 22 32 20 26 25 24 23 21 5x6 =3x6 u 29-11-0 Plate Offsets (X, Y): [7:0-3-0,0-3-0], [13:0-3-0,0-3-0], [27:0-3-0,0-3-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) 1.15 TC 0.08 Vert(LL) n/a 999 MT20 244/190 n/a 1.15 BC 0.05 Vert(CT) n/a n/a 999 WB Horz(CT) 18 YES 0.20 0.01 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 216 lb FT = 20% Max Grav 2=190 (LC 14), 18=151 (LC 27), 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 20=136 (LC 25), 21=174 (LC 25), Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 22=167 (LC 25), 23=169 (LC 25), Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 24=168 (LC 25), 25=222 (LC 22), zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 11-11-8, Corner(3R) 11-11-8 to 17-11-8, Exterior 26=258 (LC 22), 27=214 (LC 15), 28=258 (LC 21), 29=222 (LC 21), (2N) 17-11-8 to 27-9-8, Corner(3E) 27-9-8 to 30-9-8 30=169 (LC 24), 31=169 (LC 24), zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & 32=168 (LC 24), 33=173 (LC 24), Structural wood sheathing directly applied or 34=156 (LC 24), 35=190 (LC 14), MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 39=151 (LC 27) FORCES (Ib) - Maximum Compression/Maximum

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

Continued on page 2

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

this design.

Tension

1-2=0/29, 2-3=-268/200, 3-4=-212/177,

8-9=-110/194, 9-10=-141/230,

2-34=-137/188, 33-34=-87/188,

32-33=-87/188, 31-32=-87/188,

30-31=-87/188, 29-30=-87/188,

28-29=-87/188, 26-28=-87/188,

25-26=-87/188, 24-25=-87/188,

23-24=-87/188, 22-23=-87/188,

21-22=-87/188, 20-21=-87/188,

18-20=-87/188

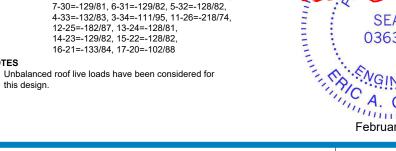
10-11=-141/230, 11-12=-110/180.

4-5=-168/155, 5-6=-145/134, 6-8=-128/159,

12-14=-77/122, 14-15=-73/48, 15-16=-94/68,

16-17=-153/90, 17-18=-205/106, 18-19=0/29

10-27=-194/62, 9-28=-218/77, 8-29=-182/86,


TOP CHORD

BOT CHORD

WEBS

NOTES

1)

Job	Truss	Truss Type		Qty	Ply	DRB - 70 FaNC	
24020059	A03	Common		1	1	Job Reference (optional)	163625971
Carter Components (Sanford N	C) Sanford NC - 27332	-	Run: 8.63 S Nov 1.2	023 Print: 8 6	- 630 S Nov 1	2023 MiTek Industries Inc. Wed Feb 14 10:59:56	Page: 2

ID:g5spwPzn4S02AwaPpBoGO6z5Ps5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2, 36 lb uplift at joint 18, 53 lb uplift at joint 28, 61 lb uplift at joint 29, 57 lb uplift at joint 30, 58 lb uplift at joint 31, 59 lb uplift at joint 32, 55 lb uplift at joint 33, 120 lb uplift at joint 34, 50 lb uplift at joint 26, 63 lb uplift at joint 25, 57 lb uplift at joint 24, 58 lb uplift at joint 23, 58 lb uplift at joint 22, 57 lb uplift at joint 21, 102 lb uplift at joint 20, 108 lb uplift at joint 2 and 36 lb uplift at joint 18.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A04	Нір	1	1	Job Reference (optional)	163625972

Loading

Snow (Pf)

LUMBER

BRACING

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

NOTES

this design.

DOL=1.60

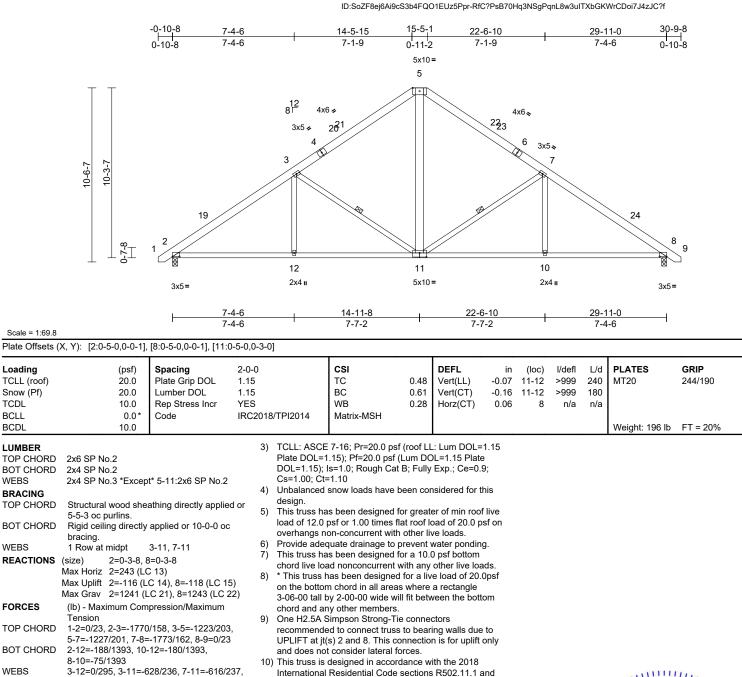
1)

2)

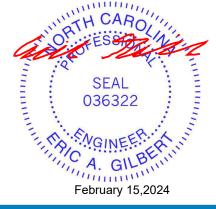
7-10=0/295, 5-11=-64/774

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior


zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1)

2-3-13 to 10-7-5, Exterior(2R) 10-7-5 to 19-1-2, Interior (1) 19-1-2 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


Wind: ASCE 7-16; Vult=130mph (3-second gust)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 10:59:57

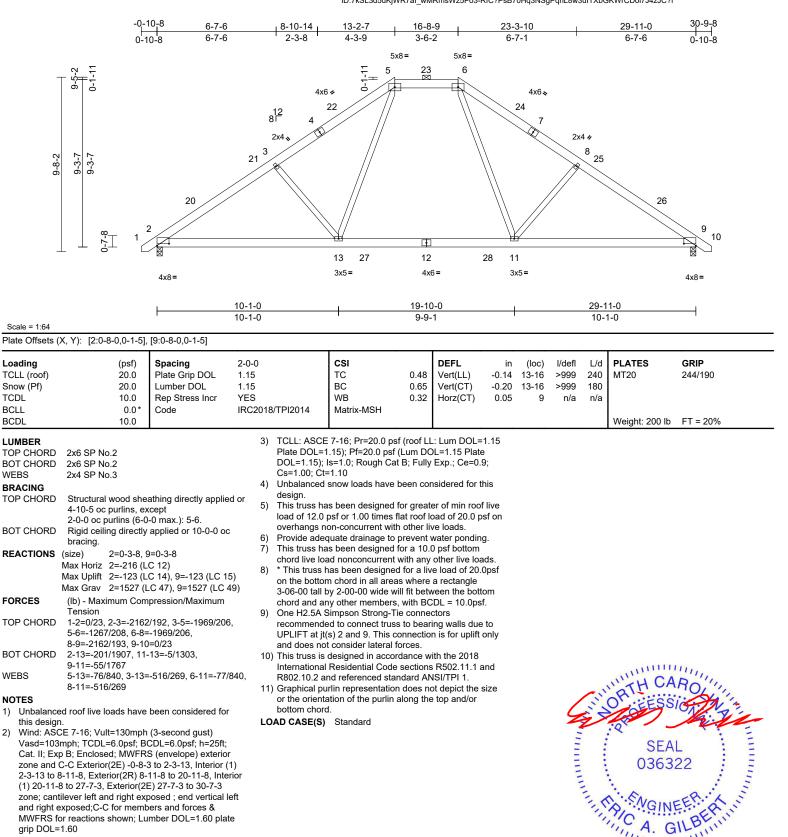
Page: 1

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A05	Нір	1	1	Job Reference (optional)	163625973

BCDL


1)

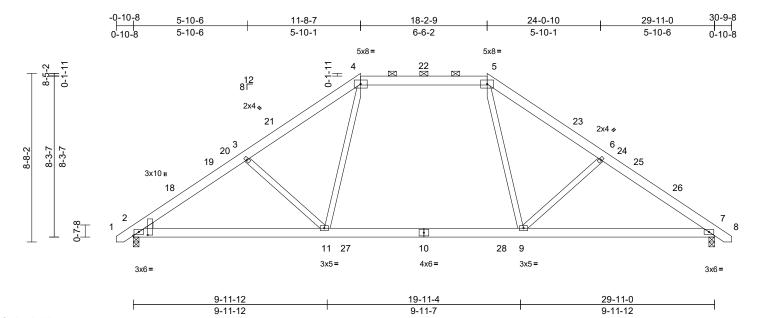
2)

arip DOL=1.60

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Feb 14 10:59:58 ID:7kSL3d5dKjWR7al wMRmsWz5Po3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

111111111 February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A06	Нір	1	1	Job Reference (optional)	163625974

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 10:59:59 ID:4w9OBlksr0Cw_jsAX?uBVhz5PnE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:59.3	

Plate Offsets (X, Y):	[2:0-6-7,0-0-13], [2:0-0-6,0-8-15]
-----------------------	------------------------------------

					-								
Loading	(psf)	Spacing	2-0-0		CSI	~	DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.44 0.75	• • •	-0.25 -0.29	9-17 9-17	>999 >999	240 180	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Rep Stress Incr	YES		WB	0.75	Vert(CT) Horz(CT)	-0.29	9-17	>999 n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.51		0.05	1	n/a	n/a		
BCDL	10.0	Code	IRC201	6/1P12014	Watrix-WISH							Weight: 196 lb	ET - 20%
BCDL	10.0											Weight. 190 lb	FT = 2070
LUMBER			3	TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x6 SP No.2				1.15); Pf=20.0 psf (l								
BOT CHORD	2x6 SP No.2				Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;					
WEBS	2x4 SP No.3			Cs=1.00; Ct									
WEDGE	Left: 2x4 SP No.3		4		snow loads have b	een cor	nsidered for t	his					
BRACING			5	design.	a been designed fo	r groot	or of min root	Flive					
TOP CHORD	Structural wood she		ed or ⁵		as been designed for psf or 1.00 times fla								
	4-11-2 oc purlins, ex				on-concurrent with			51 011					
	2-0-0 oc purlins (5-1		. 6		quate drainage to p			a					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	7		is been designed for			9.					
	bracing.				ad nonconcurrent w			ads.					
	()		8	* This truss I	nas been designed	for a liv	e load of 20.	0psf					
	Max Horiz 2=192 (LC Max Uplift 2=-127 (L		E)		m chord in all areas								
	Max Opint 2=-127 (L Max Grav 2=1478 (L				by 2-00-00 wide will								
	· · ·	<i>//</i>	,		ny other members,			f.					
FORCES	(lb) - Maximum Com Tension	ipression/iviaximum	9		Simpson Strong-Tie								
TOP CHORD		1/106 3 4- 1014/104	1		ed to connect truss								
TOP CHORD	4-5=-1337/220, 5-6=	,	+,		(s) 2 and 7. This co t consider lateral fo		n is for uplift	only					
	6-7=-2147/196. 7-8=		1		designed in accord		ith the 2018						
BOT CHORD	, .				Residential Code s			and					
	7-9=-72/1759	,			nd referenced stan								1111
WEBS	4-11=-9/742, 3-11=-	505/252, 5-9=-9/742	. 1 [.]		Irlin representation			size				IN TH UA	Roite
	6-9=-500/253				ation of the purlin a						N	1	Dalli
NOTES		bottom chord.											
1) Unbalance	ed roof live loads have	been considered for	r L	OAD CASE(S)	Standard					_			1
this desigr	າ.			.,							. 0		N 1

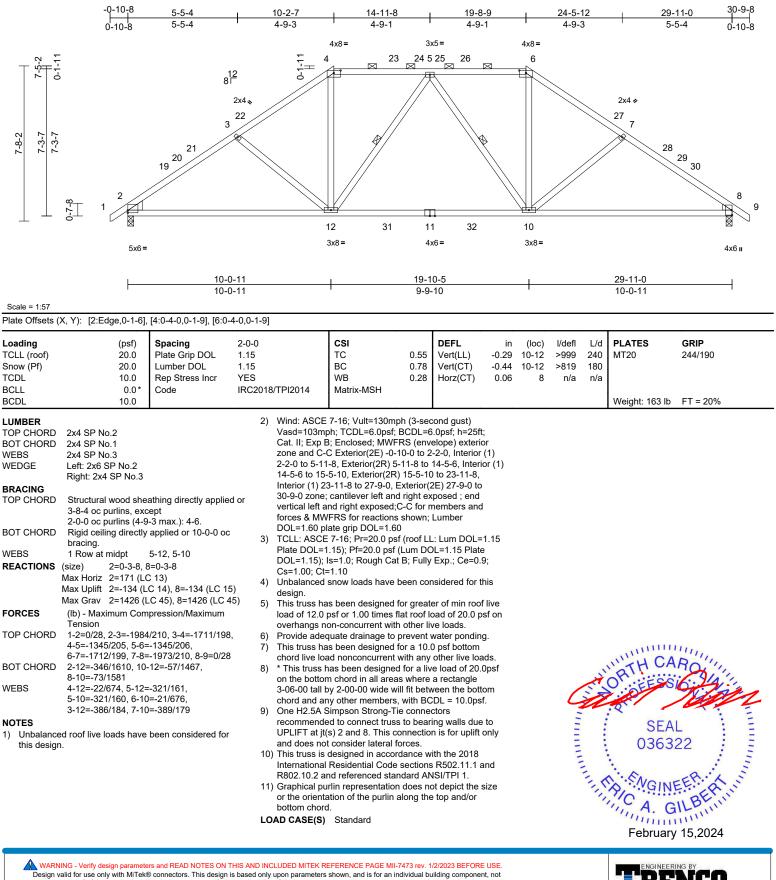
Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 7-5-8, Exterior(2R) 7-5-8 to 22-5-8, Interior (1) 22-5-8 to 27-7-3, Exterior(2E) 27-7-3 to 30-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A07	Нір	1	1	Job Reference (optional)	163625975

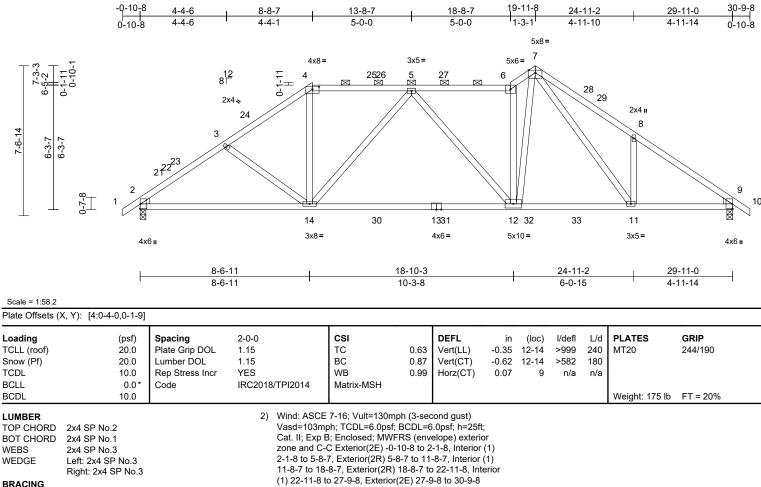

1)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 11:00:00 ID:NYcSEy1wBODWsPhox1JqTlz5Pms-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

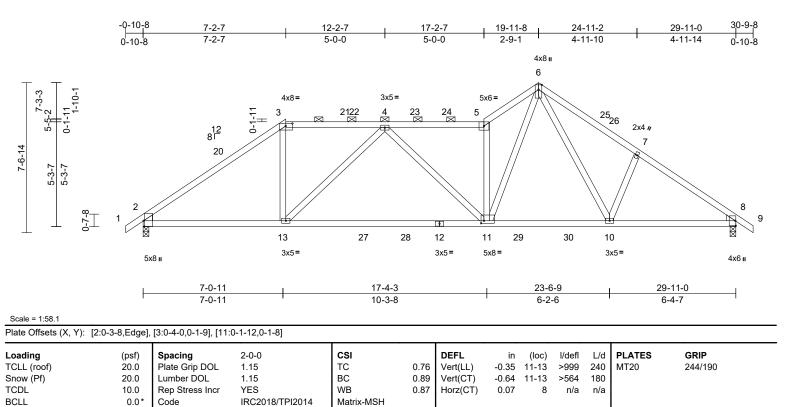
Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A08	Roof Special	1	1	Job Reference (optional)	163625976

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Feb 14 11:00:01 ID:NAm0eqGvAj4265UOvS8kcGz5PIG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- TOP CHORD Structural wood sheathing directly applied or 3-4-7 oc purlins, except 2-0-0 oc purlins (3-11-1 max.): 4-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 2=0-3-8, 9=0-3-8 (size)
- Max Horiz 2=-170 (LC 12) Max Uplift 2=-168 (LC 14), 9=-89 (LC 15) Max Grav 2=1378 (LC 5), 9=1404 (LC 37) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-1937/260, 3-4=-1789/236, 4-5=-1437/236, 5-6=-1661/204, 6-7=-1995/257, 7-8=-1974/300, 8-9=-1982/179, 9-10=0/29 BOT CHORD 2-14=-244/1550, 12-14=-164/1730, 11-12=-46/1366, 9-11=-71/1585 WEBS 3-14=-312/150, 4-14=-16/736, 5-14=-491/154, 5-12=-260/125,
- 6-12=-1322/209, 7-12=-199/1796, 7-11=-216/516, 8-11=-388/219 NOTES
- 1) Unbalanced roof live loads have been considered for this design.

- zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A09	Roof Special	1	1	Job Reference (optional)	163625977

Run: 8.63 E Dec 13 2023 Print: 8.630 E Dec 13 2023 MiTek Industries, Inc. Thu Feb 15 08:24:05 ID:o0zaqgVSStbCV90E4fVRQUz5Pky-ryD0etubETBsHoSP?LLXfue42xzIU1At_IKAoDzky5x

BCDL	10.0			
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 *Except 2x4 SP No.1 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3	* 1-3:2x4 SP No.1	2)	Wind: ASCE 7-16; Vult=1 Vasd=103mph; TCDL=6. Cat. II; Exp B; Enclosed; zone and C-C Exterior(2E 2-1-8 to 4-2-7, Exterior(2I 10-2-7 to 17-2-7, Exterior
BRACING TOP CHORD	Ū			(1) 22-11-8 to 27-9-8, Ext zone; cantilever left and r and right exposed;C-C fo MWFRS for reactions sho
BOT CHORD	Rigid ceiling directly bracing.		3)	grip DOL=1.60 TCLL: ASCE 7-16; Pr=20
REACTIONS	0	C 14), 8=-89 (LC 15)	4)	Plate DOL=1.15); Pf=20. DOL=1.15); Is=1.0; Roug Cs=1.00; Ct=1.10 Unbalanced snow loads h design.
FORCES	(lb) - Max. Comp./Ma (lb) or less except wh	ax. Ten All forces 250 nen shown.	5)	This truss has been designed of 12.0 psf or 1.00 til
TOP CHORD	· · ·	-1514/243, -2489/307,	6) 7)	overhangs non-concurrer
BOT CHORD	2-13=-165/1536, 11- 10-11=-50/1333, 8-1		8)	chord live load nonconcu * This truss has been des
WEBS		05/149, 5-11=-1616/256,	0)	on the bottom chord in all 3-06-00 tall by 2-00-00 w chord and any other mem
NOTES			9)	One RT4 MiTek connecto
1) Unbalance	ed roof live loads have	been considered for		truss to bearing walls due

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 4-2-7, Exterior(2R) 4-2-7 to 10-2-7, Interior (1) 10-2-7 to 17-2-7, Exterior(2R) 17-2-7 to 22-11-8, Interior (1) 22-11-8 to 27-9-8, Exterior(2E) 27-9-8 to 30-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Weight: 162 lb

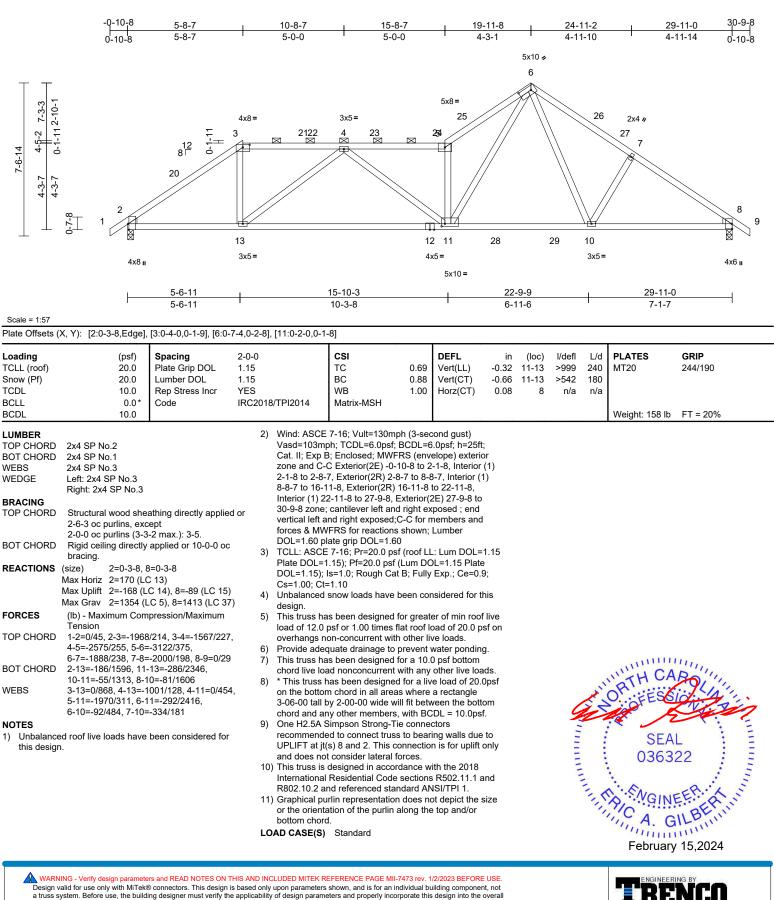
FT = 20%

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A10	Roof Special	1	1	Job Reference (optional)	163625978

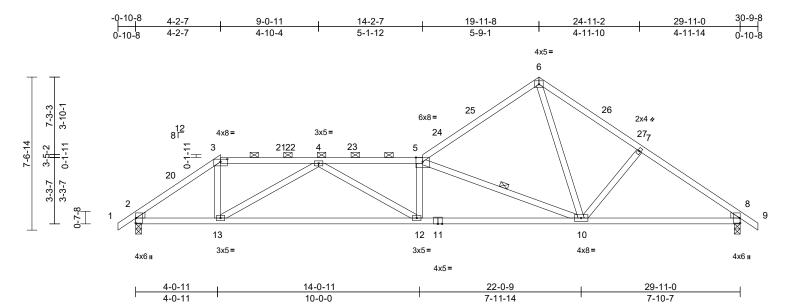

1)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 11:00:04 ID:dRsHfXnt2xUxmhHfx QqrKz5Pkb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road

Edenton, NC 27932

Page: 1



building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A11	Roof Special	1	1	Job Reference (optional)	163625979

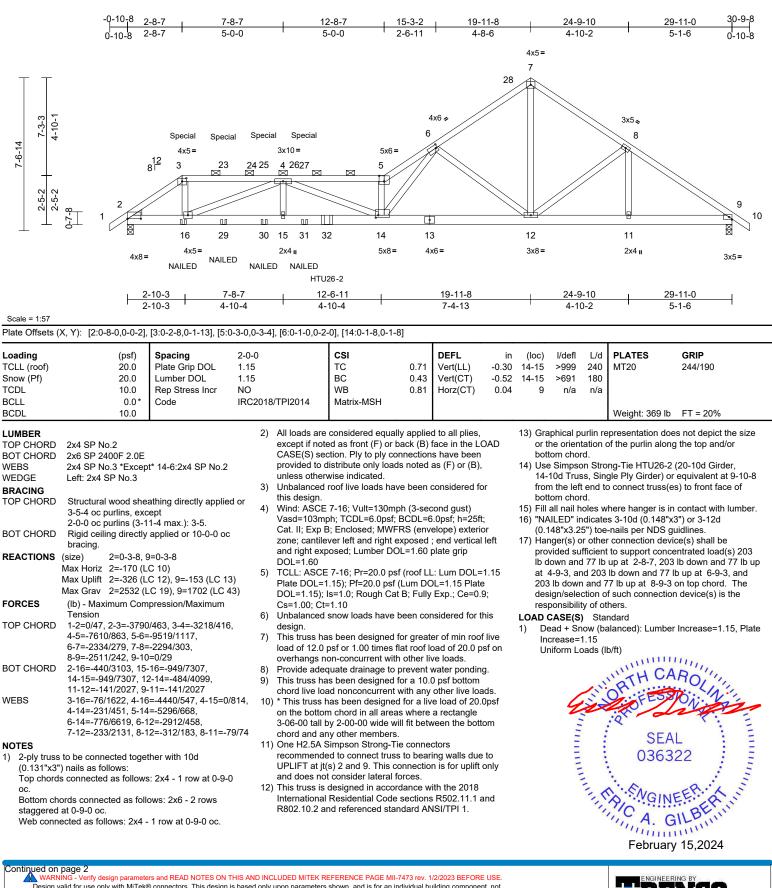
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:05 ID:_gBbH22gshGpP4yuDcp_kzz5PkF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57

Plate Offsets (X, Y): [3:0-4-0,0-1-9]

- (,, , , , [0:0 : 0,0 : 0]		_										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.75 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.60 0.10	(loc) 12-13 12-13 8	l/defl >999 >598 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she except	• • • •	2) d,	Vasd=103m Cat. II; Exp E zone and C- 2-1-8 to 7-2- 16-11-8 to 2: Exterior(2E) right expose for members	7-16; Vult=130mp h; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0 7, Interior (1) 7-2- 2-11-8, Interior (1) 27-9-8 to 30-9-8 z d; end vertical left and forces & MW	BCDL=6 RS (env 10-8 to 2 7 to 16-1 22-11-8 one; car and righ FRS for	.0psf; h=25ft elope) exterior -1-8, Exterior 1-8, Exterior to 27-9-8, tillever left ar t exposed;C reactions sho	or (2R) (2R) 1d -C					
BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (2-8 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=-170 (L Max Uplift 2=-168 (L Max Grav 2=1281 (L	applied or 10-0-0 oc 5-10 3=0-3-8 C 12) C 14), 8=-89 (LC 15)	4)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	snow loads have l s been designed f	f (roof LL (Lum DC B; Fully been cor	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof	e 9; his f live					
FORCES	(lb) - Maximum Com Tension			overhangs n	osf or 1.00 times f on-concurrent with	n other liv	/e loads.						
TOP CHORD	1-2=0/46, 2-3=-1908 4-5=-3154/323, 5-6= 6-7=-1736/218, 7-8=	-1247/179,	, .,	This truss ha chord live loa	quate drainage to s been designed f ad nonconcurrent has been designed	for a 10.0 with any) psf bottom other live loa	ds.				umm	1000
BOT CHORD	2-13=-203/1553, 12- 10-12=-323/3159, 8-	-13=-370/2738,	0)	on the bottor	n chord in all area	s where	a rectangle				1	"ATH CA	ROUT
WEBS	3-13=-4/826, 4-13=- 5-12=-164/111, 5-10 6-10=-87/1241, 7-10	1428/195, 4-12=0/69)=-2401/323,	3, 9)	chord and ar One H2.5A \$	y other members. Simpson Strong-Ti ed to connect truss	e conne	ctors			4	i	O FESS	No.
NOTES 1) Unbalance this design	ed roof live loads have		11	UPLIFT at jt(and does no) This truss is International R802.10.2 a) Graphical pu	s) 2 and 8. This can t consider lateral for designed in accor Residential Code nd referenced star rlin representation ation of the purlin a l.	onnectio orces. dance w sections ndard AN n does no	n is for uplift ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	only and			A A A A A A A A A A A A A A A A A A A	SEA 0363	22 ER R. A.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

minimum) February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	A12	Roof Special Girder	1	2	Job Reference (optional)	163625980

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:08 ID:9KPcjRbvGWwRI uXMZ7X3Tz5PjY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponent.com)

Γ	Job	Truss	Truss Type		Qty	Ply	DRB - 70 FaNC	
	24020059	A12	Roof Special Girder		1	2	Job Reference (optional)	163625980
(Carter Components (Sanford, NC	c), Sanford, NC - 27332,		Run: 8.63 S Nov 12	023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Wed Feb 14 11:00:08	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:08 ID:9KPcjRbvGWwRI_uXMZ7X3Tz5PjY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-3=-60, 3-5=-60, 5-7=-60, 7-10=-60, 17-20=-20

Concentrated Loads (lb)

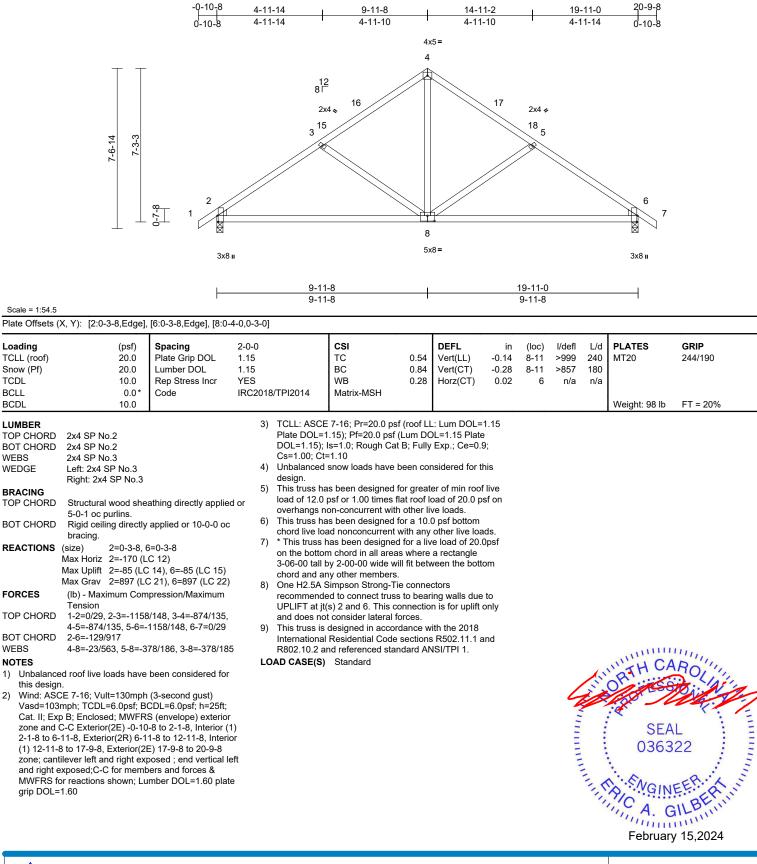
Vert: 3=-175 (F), 16=-82 (F), 23=-175 (F), 25=-175 (F), 27=-175 (F), 29=-82 (F), 30=-82 (F), 31=-82 (F), 32=-625 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	B01	Common	1	1	Job Reference (optional)	163625981

TCDL

BCLL


BCDL

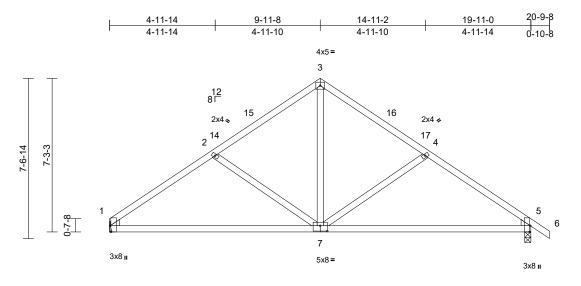
1)

2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Feb 14 11:00:09 ID:hgv4fj bVf5lm3wtn CHvQz5Pj1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	B02	Common	2	1	Job Reference (optional)	163625982

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:10 ID:LA2KTOW8ggAHa3RN?I07qCz5Pje-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

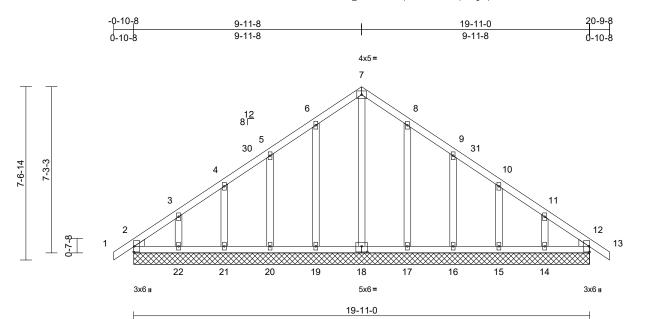
	9-11-8	19-11-0	
	9-11-8	9-11-8	
Scale = 1:54.5			
Plate Offsets (X, X): [1:0-3-8 Edge] [5:0-3.	8 Edge] [7:0_4_0 0_3_0]		

Plate Offsets ((X, Y): [1:0-3-8,Edge], [5:	o:0-3-8,Edge], [7:0-2	1-0,0-3-0]									-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 F 20.0 L 10.0 F	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.84 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.28 0.02	(loc) 7-10 7-10 5	l/defl >999 >850 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheath 4-11-12 oc purlins.	pplied or 10-0-0 oc cal, 5=0-3-8 12) 4), 5=-85 (LC 15)	3) 4) 5) 1 or 6) 7) 8)	Plate DOL=1 DOL=1.15); Cs=1.00; Ctr Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall I chord and ar	7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b us been designed for psf or 1.00 times fil on-concurrent with us been designed for ad nonconcurrent with has been designed n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru-	Lum DC B; Fully eeen cor or greate at roof lo other liv or a 10.0 vith any for a liv s where I fit betv	L=1.15 Plate Exp.; Ce=0.9 asidered for the or of min roof or do 20.0 p. ve loads.) psf bottom other live loa e load of 20.0 a rectangle veen the bottom	e 9; his f live sf on ads. 0psf					
FORCES	(lb) - Maximum Compre Tension	ession/Maximum	9)	Provide mec	hanical connection capable of withsta	(by oth	ers) of truss t						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	4-5=-1160/150, 5-6=0/2 1-5=-130/923 3-7=-25/565, 4-7=-378/ ed roof live loads have be	29 5/186, 2-7=-382/187 een considered for	10	1.) One H2.5A S recommende UPLIFT at jt(does not con) This truss is International	Simpson Strong-Tie d to connect truss s) 5. This connecti sider lateral forces designed in accorc Residential Code s of referenced stan	e connect to bear on is for a. lance w sections	ctors ng walls due uplift only ar ith the 2018 R502.11.1 a	to nd			- mil	OR SS	ROUT

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-11-8, Exterior(2R) 6-11-8 to 12-11-8, Interior (1) 12-11-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

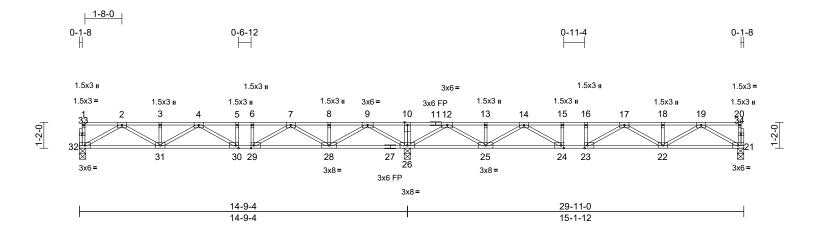
Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	B03	Common Supported Gable	1	1	Job Reference (optional)	163625983

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:10 ID:HNINbW9OCzrmRD_ZcxTZTNz5Pip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:50.3

Plate Offsets (X, Y): [18:0-3-0,0-3-0]

	(7, 1). [10.0-0-0,0-0-0						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.08 BC 0.05 WB 0.13 Matrix-MSH	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- n/a 99 - n/a 99	9 MT20 244/190 9
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.		BOT CHORD	1-2=0/28, 2-3=-139/119, 3- 4-5=-101/85, 5-6=-89/119, 7-8=-103/176, 8-9=-75/118 10-11=-71/39, 11-12=-101, 2-22=-91/126, 21-22=-54/1 20-21=-54/126, 16-17=-54, 15-16=-54/126, 16-17=-54, 12-14=-54/126 7-18=-134/27, 6-19=-212/8 4-21=-124/83, 3-22=-126/8 9-16=-176/88, 10-15=-125	6-7=-103/176, , 9-10=-60/56, /62, 12-13=0/28 26, /126, /126, /126, /126, /126, /1, 5-20=-176/88, /4, 8-17=-212/81,	 8) Gable requires (9) Gable studs spatness (10) This truss has be chord live load to (11) * This truss has on the bottom c 3-06-00 tall by 2 chord and any c (12) Provide mechan bearing plate carbonal statement (11) * This trust (11) * Th	een designed for a 10.0 psf bottom nonconcurrent with any other live loads. been designed for a live load of 20.0psf hord in all areas where a rectangle 2-00-00 wide will fit between the bottom
REACTIONS	14=19-11 16=19-11 18=19-11 20=19-11 22=19-11 27=19-11 27=19-11 27=19-11 Max Horiz 2=-164 (L Max Uplift 2=-39 (LC 14=-81 (L 16=-60 (L 19=-56 (L 21=-48 (L	C 12), 23=-164 (LC 1	this desig 2) Wind: AS Vasd=103 Cat. II; Ex 2) zone and 1-11-8 to), (2N) 12-1), zone; can and right), MVFRS f), grip DOL=	ed roof live loads have been on. CE 7-16; Vult=130mph (3-see Bmph; TCDL=6.0psf; BCDL=6 p B; Enclosed; MWFRS (env C-C Corner(3E) -0-10-8 to 1- 6-11-8, Corner(3R) 6-11-8 to 1-8 to 17-9-8, Corner(3E) 17- tilever left and right exposed exposed;C-C for members an or reactions shown; Lumber I =1.60	considered for cond gust) .0psf; h=25ft; elope) exterior 11-8, Exterior(2N) 12-11-8, Exterior 9-8 to 20-9-8 ; end vertical left d forces & DOL=1.60 plate	at joint 20, 48 lb 55 lb uplift at joi at joint 15, 81 lb and 2 lb uplift at 13) This truss is dee International Re R802.10.2 and I LOAD CASE(S)	uplift at joint 21, 88 lb uplift at joint 22, nt 17, 60 lb uplift at joint 16, 50 lb uplift uplift at joint 14, 39 lb uplift at joint 2 joint 12. signed in accordance with the 2018 sidential Code sections R502.11.1 and referenced standard ANSI/TPI 1.
FORCES	16=215 (L 18=161 (L 20=215 (L	LC 25), 15=161 (LC 2 LC 22), 17=251 (LC 2 LC 27), 19=251 (LC 2 LC 21), 21=159 (LC 2 LC 28), 23=160 (LC 2 LC 22)	 only. For see Stanc see Stanc or consult TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalanc design. This truss load of 12 	signed for wind loads in the p studs exposed to wind (norm lard Industry Gable End Deta qualified building designer as CE 7-16; Pr=20.0 psf (roof LL _=1.15); Pf=20.0 psf (Lum DC 5); Is=1.0; Rough Cat B; Fully Ct=1.10 ed snow loads have been cor has been designed for great 0.0 psf or 1.00 times flat roof lo s non-concurrent with other line	al to the face), ils as applicable, is per ANSI/TPI 1. :: Lum DOL=1.15 bJL=1.15 Plate Exp.; Ce=0.9; asidered for this er of min roof live bad of 20.0 psf on	Williaman	SEAL 036322


February 15,2024

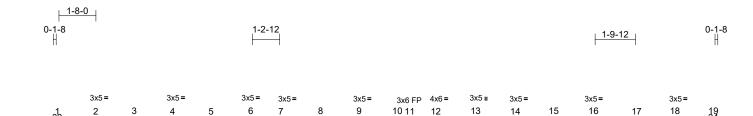
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

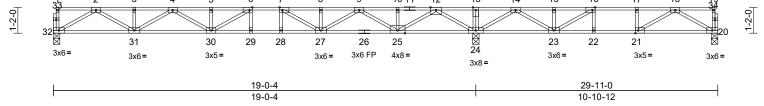
Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F01	Floor	7	1	Job Reference (optional)	163625984

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:11 ID:fCrjIItGkkqTDVyZ8TZVYuyA4Hc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.9


					E davel								
Plate Offsets (X, Y): [23:0-1-8,Edge	ej, [24:0-1-8,Edge], [2 ■	9:0-1-8,E0	age], [30:0-1-8	,Eage]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.58 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.16 0.03	(loc) 22-23 22-23 21	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	/ applied or 6-0-0 oc , 26=0-3-8, 32=0-3-8 LC 4), 26=1599 (LC ⁻	2) 3) d or 4) 5)	this design. All plates are This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer	floor live loads have a 3x5 MT20 unless designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ea) nails. Strongback ends or restraine Do not erect truss b Standard	otherwi dance w sections ndard AN on edge ach truss ks to be d by othe	se indicated. ith the 2018 SR502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to v er means.	and					
FORCES	(lb) - Maximum Com	,											
TOP CHORD	5-6=-1614/58, 6-7=-	360/0, 4-5=-1614/58 1614/58, 7-8=-680/5 =0/2040, 10-12=0/20 -14=-683/522, 16=-1696/0, 18=-1411/0,	73,									,	1111.
BOT CHORD	31-32=0/827, 30-31 29-30=-58/1614, 28 26-28=-990/0, 25-26 24-25=-260/1286, 2	=0/1624, -29=-308/1253, 5=-925/0, 3-24=0/1696,								G	A.	ORTH CA	P. A.
WEBS	9-28=0/1089, 2-31= 3-31=-126/0, 7-28=- 7-29=0/639, 4-30=-3 6-29=-213/0, 12-26= 12-25=0/1114, 19-2 18-22=-124/0, 14-25	=-1374/0, 2-32=-952/	, 8/0, 0/0, 5/47,									SEA 0363	22 EERER III


minin February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F02	Floor	11	1	Job Reference (optional)	163625985

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Wed Feb 14 11:00:12 ID:jMnp0FGKCZsx3QOj0B8?reyA4H6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.9

TOP CHORD

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

REACTIONS (size)

2x4 SP No.2(flat)

2x4 SP No.2(flat)

2x4 SP No.3(flat)

2x4 SP No.3(flat)

Max Uplift 20=-47 (LC 3)

bracing.

Max Grav

Tension

Plate Offsets (X, Y	Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge], [16:0-1-8,Edge], [21:0-1-8,Edge]												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.92	Vert(LL)	-0.28	29-30	>823	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.99	Vert(CT)	-0.37	29-30	>609	360			
BCLL	0.0	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.05	24	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 151 lb	FT = 20%F, 11%E	
LUMBER			NOTES										

Structural wood sheathing directly applied or

20=0-3-8, 24=0-3-8, 32=0-3-8

20=376 (LC 4), 24=1636 (LC 1),

2-2-0 oc purlins, except end verticals.

32=726 (LC 3)

1-32=-57/0, 19-20=-55/2, 1-2=-3/0, 2-3=-1964/0, 3-4=-1964/0, 4-5=-2867/0, 5-6=-2867/0, 6-7=-2845/0, 7-8=-2369/0, 8-9=-2369/0, 9-10=-832/143, 10-12=-832/143, 12-13=0/2179,

13-14=0/2179, 14-15=-450/946. 15-16=-450/946, 16-17=-774/421,

17-18=-774/421. 18-19=-3/0

24-25=-710/0, 23-24=-1322/0,

18-20=-611/143, 14-23=0/846, 18-21=-346/283, 15-23=-128/72,

20-21=-124/532

22-23=-421/774, 21-22=-421/774,

(Ib) - Maximum Compression/Maximum

31-32=0/1132, 30-31=0/2523, 29-30=0/2845, 28-29=0/2845, 27-28=0/2845, 25-27=0/1721,

13-24=-160/0, 12-24=-1700/0, 2-32=-1305/0, 12-25=0/1400, 2-31=0/971, 10-25=-140/0,

17-21=-127/125, 16-23=-849/0, 16-22=0/148

3-31=-138/0, 9-25=-1082/0, 4-31=-653/0, 9-27=0/798, 4-30=0/401, 8-27=-155/41, 5-30=-210/0, 7-27=-778/0, 6-30=-258/354 6-29=-146/39, 7-28=-20/165, 14-24=-1162/0,

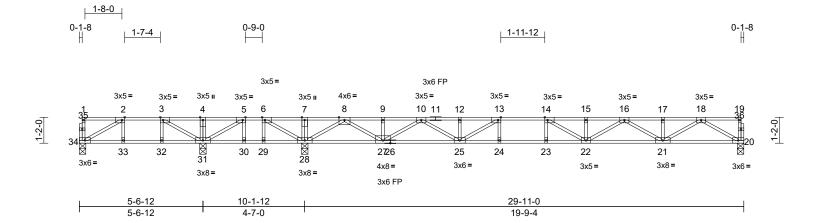
Rigid ceiling directly applied or 2-2-0 oc

- 1) Unbalanced floor live loads have been considered for
- this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

February 15,2024

Page: 1

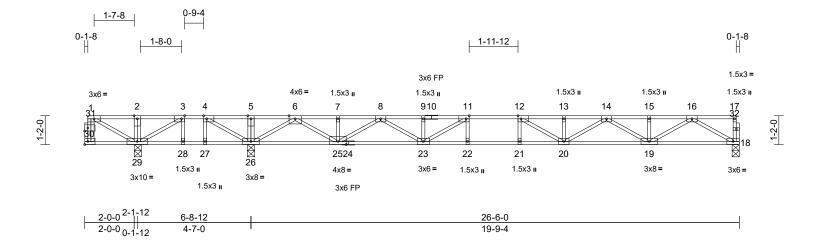

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F03	Floor	2	1	Job Reference (optional)	163625986

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:13 ID:BqtdnPUdz57NDBmA4zTDaRyA4Gq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.9

	, <u> </u>					-							
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00		CSI TC	0.84	DEFL Vert(LL)	in -0.31	(loc) 22-23	l/defl >754	L/d 480	PLATES MT20	GRIP 244/190
TCDL	40.0	Lumber DOL	1.00		BC	0.84	Vert(LL)	-0.31		>754 >549	480 360	M120	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	-0.43	22-23	n/a	n/a		
BCDL	5.0	Code		8/TPI2014	Matrix-MSH	0.00	11012(01)	0.04	20	n/a	n/a	Weight: 152 lb	FT = 20%F, 11%
						0 400/0	0.04 545/0					J	,
		veent* 11 10-2-4 CD	V	/EBS	4-31=-207/0, 7-2 2-34=-260/124, 2	,		,					
OP CHORD	2x4 SP No.1(flat) *E No.2(flat)	xcept" 11-19:2x4 SP			5-31=0/980, 6-28								
OT CHORD	2x4 SP No.2(flat) *E	xcept* 26-20:2x4 SP			6-29=0/256, 8-28								
0.000	No.1(flat)				8-27=0/1454, 18	-21=0/101	0, 9-27=-134	/0,					
VEBS	2x4 SP No.3(flat)				17-21=-137/0, 10								
THERS	2x4 SP No.3(flat)				10-25=0/829, 16			/72,					
BRACING					15-22=-217/1, 13								
OP CHORD		athing directly applie	d or		14-22=-349/298, 14-23=-158/44	13-24=-1	0/100,						
	5-7-10 oc purlins, e			OTES	17-20100/44								
SOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc			ed floor live loads h	ave heen	considered f	or.					
REACTIONS	0	28=0-3-8, 31=0-3-8,		this design									
LACHONS	(3126) 20=0-3-0, 34=0-3-8	20-0-3-0, 31-0-3-0,	2		are 1.5x3 MT20 un	less other	wise indicate	d.					
	Max Uplift 31=-66 (L	.C 4), 34=-7 (LC 4)	3		A Simpson Strong-								
	Max Grav 20=747 (L	_C 13), 28=1594 (LC	11),		ided to connect tru								
	31=359 (L	_C 3), 34=207 (LC 3)			jt(s) 34 and 31. Th			ift					
ORCES	(lb) - Maximum Com	pression/Maximum	4		oes not consider la is designed in acco								
	Tension		4		al Residential Cod			and					
OP CHORD	1-34=-81/0, 19-20=-				and referenced st			ind					
	2-3=-231/106, 3-4=0 5-6=0/1190, 6-7=0/2		5		nd 2x6 strongback								
	,	90/0, 10-12=-2357/0		10-00-00 0	oc and fastened to	each trus	with 3-10d					MILLIN	1111
	12-13=-2357/0, 13-1	,	1		3") nails. Strongba			/alls				IN'TH CA	ROUL
	14-15=-3013/0, 15-1				ter ends or restrain						1.1	R	Ull'
		8=-2032/0, 18-19=-3	VU ·		, Do not erect truss	backwar	ls.				S.	O FESS	On King
BOT CHORD	33-34=-106/231, 32-		L	OAD CASE	S) Standard					2	Z		2 and
	31-32=-106/231, 30-									1		.2	- K
	29-30=-1190/0, 28-2	29=-1190/0, 7=0/1653, 24-25=0/29	005							-		SEA	L : :
		3=0/2985, 21-22=0/2								=		OLA	•
	20-21=0/1168	0 0,2000, 21-22 - 0/2	,							Ξ		0363	22 : :
										-	1	SEA 0363	1 (d. 12)
											1		airs
											25	A SAGINI	EFICAS
											11,	710	aFin
												IN A G	ILBE IN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

10 A. GI A. GILLIN February 15,2024

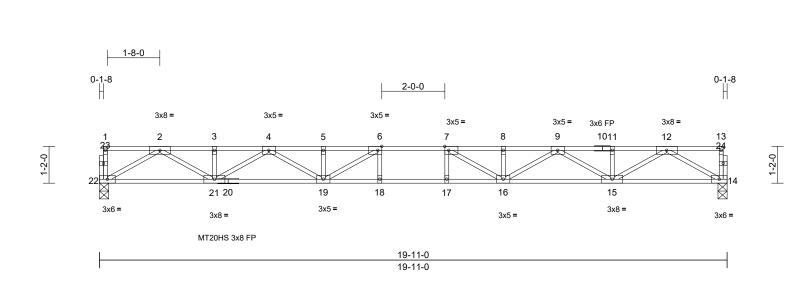
Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F04	Floor	2	1	Job Reference (optional)	163625987

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:14 ID:Q5ztp6?brJYHtoZR5VkJqWyA4G9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.6

Plate Offsets ((X, Y): [3:0-1-8,Edge]	, [4:0-1-8,Edge], [11:0)-1-8,Edge	e], [12:0-1-8,E	dge], [31:0-1-8,0-1	-8]							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES	8/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.93 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.43 0.04	(loc) 20-21 20-21 18	l/defl >750 >547 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	No.2(flat) 2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 5-7-10 oc purlins, e Rigid ceiling directly bracing.	except* 24-18:2x4 SP eathing directly applie except end verticals. applied or 2-2-0 oc , 26=0-3-8, 29=0-3-8 (LC 11) LC 11), 26=1629 (LC	2) 3) d or 5) 4)	this design. All plates ar One H2.5A recommend UPLIFT at jt does not cor This truss is Internationa R802.10.2 a Recommend 10-00-00 oc (0.131* X 3" at their oute	floor live loads ha a 3x5 MT20 unless Simpson Strong-T ed to connect trus (s) 29. This conne ssider lateral force designed in accor Residential Code nd referenced sta d 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine to not erect truss Standard	s otherwi ie conne s to bear action is f es. rdance w e sections ndard Al , on edge each truss ks to be ed by othe	se indicated. ctors ing walls due or uplift only ith the 2018 \$ R502.11.1 a SI/TPI 1. e, spaced at attached to v er means.	e to and and					
FORCES	(lb) - Maximum Com Tension	,											
TOP CHORD	1-30=-5/3, 17-18=-5 2-3=-23/104, 3-4=0/ 5-6=0/2100, 6-7=-78 8-9=-2429/0, 9-11=- 12-13=-3051/0, 13-7	1042, 4-5=0/2100, 32/0, 7-8=-782/0, 2429/0, 11-12=-3040	,									NILL CA	P
BOT CHORD	29-30=0/0, 28-29=- 26-27=-1042/0, 25-2	1042/0, 27-28=-1042/ 26=-554/0, 23-25=0/1 2=0/3040, 20-21=0/3	0, 734,							4	A.L.	ORIEESS	ic this
WEBS	2-29=-258/0, 5-26=- 3-29=0/1097, 4-26= 4-27=0/292, 6-26=- 6-25=0/1447, 16-19 15-19=-136/0, 8-25=	90/0, 1-29=-119/25, -1404/0, 3-28=-281/0 1801/0, 16-18=-1359/ =0/1021, 7-25=-134/0 -1123/0, 14-19=-709 0/456, 9-23=-150/73, 3=-883/0,	0,),								A A A A A A A A A A A A A A A A A A A	SEA 0363	22 EER C

February 15,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F05	Floor	8	1	Job Reference (optional)	163625988

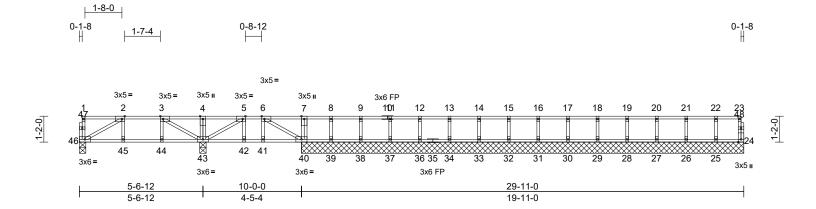
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:16 ID:YsnD6MMQmXJ0TPsCroGL2qyA4Fh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.6

Plate Offsets (X, Y): [6:0-1-8.Edge], [7:0-1-8.Edge]

Plate Offsets ((X, Y): [6:0-1-8,Edge],	[7:0-1-8,Edge]									-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.88 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.52 0.08	(loc) 17-18 17-18 14	l/defl >623 >452 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 100 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)	xcept* 20-14:2x4 SP athing directly applied	10-00-00 oc (0.131" X 3" at their oute LOAD CASE(S)	d 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Standard	ach truss ks to be	with 3-10d attached to w	valls					
BOT CHORD	5-7-14 oc purlins, e											
REACTIONS	0											
FORCES	(lb) - Maximum Com	,, (,										
TOP CHORD	2-3=-2414/0, 3-4=-2 5-6=-3739/0, 6-7=-4 8-9=-3739/0, 9-11=- 12-13=-3/0 21-22=0/1362, 19-2 17-18=0/4042, 16-1	414/0, 4-5=-3739/0,	042,									
WEBS	2-21=0/1228, 11-15= 9-15=-913/0, 4-21=- 4-19=0/635, 8-16=-1	2=-1571/0, 12-15=0/1 134/0, 3-21=-135/0 913/0, 9-16=0/635, 188/45, 5-19=-188/45 680/80, 6-18=-101/1	, ,							A.	ORTH CA	ROLLING
NOTES	1 11 102,120								Ξ		SEA	• -
 this design 2) All plates a 3) All plates a 4) This truss Internation 	ed floor live loads have n. are MT20 plates unless are 1.5x3 MT20 unless is designed in accorda al Residential Code so 2 and referenced stand	s otherwise indicated s otherwise indicated. ance with the 2018 ections R502.11.1 an							1111	A A A A A A A A A A A A A A A A A A A		ERRATION

- All plates are MT20 plates unless otherwise indicated. 2)
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


818 Soundside Road Edenton, NC 27932

GI minimum) February 15,2024

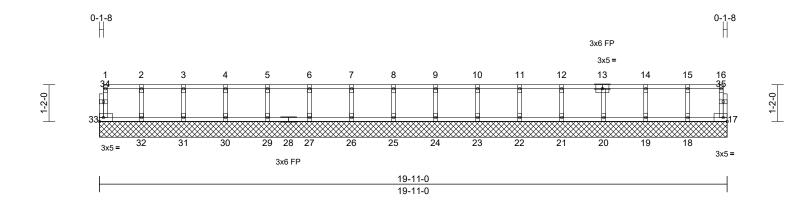
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	F07	Floor	1	1	Job Reference (optional)	163625989

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Wed Feb 14 11:00:17 ID:wSlgZyfXaPorprXmcnhRtPyA4E0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

	ge], [3:0-1-8,Edge], [5:0-1-8,I	Eugej, [0.0-1-o,Eug	ej							-	
Loading (ps TCLL 40 TCDL 10 BCLL 0 BCDL 5	 Plate Grip DOL 1.0 Lumber DOL 1.0 Rep Stress Incr NO 	00 00	CSI TC BC WB Matrix-MSH	0.52 0.41 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.03 0.01	(loc) 45-46 45-46 24	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
6-0-0 oc purlins BOT CHORD REACTIONS REACTIONS (size) 24=1: 30=1: 30=1: 32=1: 30=1: 34=1: 30=1: 32=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 30=3: 34=3: 34=3: 30=3: 34=3: 35=3:	sheathing directly applied or except end verticals. ctly applied or 10-0-0 oc -11-0, 25=19-11-0, -11-0, 27=19-11-0, -11-0, 31=19-11-0, -11-0, 33=19-11-0, -11-0, 36=19-11-0, -11-0, 38=19-11-0, -11-0, 40=19-11-0, -11-0, 40=19-11-0, 43=0-3-8	 WEBS NOTES 1) Unbalanced this design. 2) All plates are 3) Truss to be 1 braced again 4) Gable studs 5) This truss is International R802.10.2 a 6) Recommence 10-00-00 oc (0.131" X 3" at their outer 7) CAUTION, E LOAD CASE(S) 1) Dead + Flo Plate Incree Uniform Lo 	45-46=0/799, 44-45 42-43=0/648, 41-42 39-40=0/5, 38-39=0 34-36=0/5, 33-34=0 30-31=0/5, 29-30=0 26-27=0/5, 25-26=0 4-43=-457/0, 7-40=- 2-46=-904/0, 2-45=- 5-43=-756/0, 6-40=- 6-41=-75/57, 8-39=- 11-37=-306/0, 12-32 17-30=-307/0, 18-22 20-27=-306/0, 21-26 floor live loads have e 1.5x3 MT20 unless fully sheathed from onst lateral movemen spaced at 1-4-0 oc. designed in accorda I Residential Code s and referenced stance d 2x6 strongbacks, c and fastened to eaa) nails. Strongbacks, c and fastened to restrained Do not erect truss ba on tails and ard por Live (balanced): I ase=1.00	=0/648 /5, 37-(/5, 28-2 /5, 24-2 419/0, 34/18, -737/0, 302/0, 5=-308/ /5=-308/ /5=-308/ been s othen one fac t (i.e. d ance we decions and AN an edge thrusses to be by other by other ckwarc	40-41=0/64 8=0/5, 36-3; 33=0/5, 31-3; 33=0/5, 27-2; 25=0/5 3-43=-938/0 3-44=0/60, 5-42=-41/83 9-38=-323/0 0, 13-34=-30 0, 13-34=-30 0, 13-34=-30 0, 13-34=-30 0, 19-28=-30 0, 19-28=-30 considered fit vise indicate e or securely iagonal web) th the 2018 R50/211.1 , spaced at with 3-10d attached to w or means. is.	8, 7=0/5, 2=0/5, 3=0/5, 3=0/5, ,)7/0,)7/			A A A A A A A A A A A A A A A A A A A	SEA 0363 February	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SIMEEDING

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	FW19	Floor	1	1	Job Reference (optional)	163625990

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Wed Feb 14 11:00:20 ID:hXHYNJAthJ5trlir4bSHaFyA4DM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.6

Scale = 1:36.6						1		i					1	
oading		(psf)	Spacing	1-7-3		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL		40.0	Plate Grip DOL	1.00		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	1	10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES	40/7010044	WB	0.03	Horiz(TL)	0.00	17	n/a	n/a		
BCDL		5.0	Code	IRC20	18/TPI2014	Matrix-MR							Weight: 83 lb	FT = 20%F, 11%E
UMBER				١	VEBS	2-32=-103/0, 3-31								
TOP CHORD	2x4 SP No.2(1					5-29=-107/0, 6-27	,	,						
BOT CHORD	2x4 SP No.2(1					8-25=-107/0, 9-24 11-22=-107/0, 12-	,		,					
VEBS	2x4 SP No.3(1					14-19=-111/0, 15-			5/0,					
THERS	2x4 SP No.3(1	nat)			NOTES	14-13111/0, 13-	10101	10						
	<u>.</u>					e 1.5x3 MT20 unle	oo othor	wigo indigated						
OP CHORD	6-0-0 oc purli	ns, exc	athing directly applied cept end verticals.		2) Gable requi	res continuous bot	tom choi	d bearing.	•					
BOT CHORD	Rigid ceiling o bracing.	directly	applied or 10-0-0 oc		braced agai	fully sheathed from	ent (i.e. c							
REACTIONS			0, 18=19-11-0,			spaced at 1-4-0 o								
			0, 20=19-11-0,	!		designed in accor			1					
			0, 22=19-11-0,			I Residential Code			nd					
			0, 24=19-11-0,			and referenced sta d 2x6 strongbacks								
			0, 26=19-11-0,		,	and fastened to e								
			-0, 29=19-11-0, -0, 31=19-11-0,) nails. Strongbad			alls					
			·0. 33=19-11-0			r ends or restraine								
			C 1), 18=113 (LC 1),	1	OAD CASE(S)		,							
			.C 1), 20=117 (LC 1),		(-,									
	21=	=115 (L	C 1), 22=118 (LC 1),											
			C 1), 24=117 (LC 1),											
	25=	=117 (L	.C 1), 26=117 (LC 1),											
			C 1), 29=117 (LC 1),										minin	11111
			.C 1), 31=119 (LC 1),										IN'TH CA	ROUL
		,	C 1), 33=46 (LC 1)									- 51	ORTH CA	- City
FORCES	()	m Com	pression/Maximum								1	53	2 the	DANA
TOP CHORD	Tension	6-17- 3	36/0, 1-2=-9/0, 2-3=-9	2/0							-	CR		A.Y.
I OF CHORD	,		-6=-9/0, 6-7=-9/0,	<i>"</i> 0,									2	K 🕴 🚊
	,		-10=-9/0, 10-11=-9/0										CEA	1 1 1
	,	,	9/0, 14-15=-5/0,	,							=	:	SEA	·- : =
	15-16=-5/0		,,								=	:	0363	22 : =
BOT CHORD	32-33=0/9, 31	1-32=0/	9, 30-31=0/9, 29-30=	0/9,							-	1	SEA 0363	d
	27-29=0/9, 26	6-27=0/	9, 25-26=0/9, 24-25=	0/9,								-	N	- 1 B
			9, 21-22=0/9, 20-21=	0/9,								10	S. SNOW	-ERIA S
	19-20=0/5, 18	8-19=0/	5, 17-18=0/5									1	P. GIN	E. A.
												1	1CA C	II BEIN
													11, 7. 6	
													201111	15 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	FW29	Floor Supported Gable	1	1	Job Reference (optional)	163625991

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:22 ID:wGKyGOHXZ4DcQhxa6_6OR9yA4DD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.9

Plate Offsets (X, Y): [12:0-1-8 Edge] [36:0-1-8 Edge]

Plate Offsets (X	K, Y): [12:0-1-8,E	Edge], [3	36:0-1-8,Edge]												
Loading TCLL TCDL BCLL BCDL	(ps 40. 10. 0. 5.	.0 F .0 L .0 F	Pacing Plate Grip DOL umber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2	018/TPI2014		CSI TC BC WB Matrix-MSH x Grav 25=-1 (LC	0.76 0.02 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 36 2) All	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%F, 11%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, Rigid ceiling dire bracing.	t) t) l sheath , excep ectly ap	ot end verticals. plied or 6-0-0 oc	ed or		IVIA	27=121 (29=118 (31=117 (33=117 (35=113 (37=93 (L 40=389 (42=351 (44=421 (LC 1), 2 LC 1), 3 LC 1), 3 LC 1), 3 LC 1), 3 LC 1), 3 LC 6), 4 LC 6), 4	28=116 (LC 1), 30=117 (LC 1), 32=117 (LC 1), 34=118 (LC 1), 36=128 (LC 1), 3=333 (LC 6), 41=420 (LC 6), 43=384 (LC 6), 45=355 (LC 6),	3 2 8 8	3) Gal 4) Tru bra 5) Gal 5) On rec UP and cor	ble requiss to be ced aga ble studs H2.5A Dommeno LIFT at j I 37. Thi sider lat	ires con fully sh inst late s space Simps led to o t(s) 25, s conn eral for	ntinuous bottom heathed from one eral movement (i ed at 1-4-0 oc. on Strong-Tie co connect truss to t , 47, 46, 45, 44, 4 ection is for uplift rces.	chord bearing. a face or securely e. diagonal web). nnectors bearing walls due to i3, 42, 41, 40, 39, only and does not
REACTIONS (Structural wood sheathing directly applied o 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.				FORCES TOP CHORD BOT CHORD WEBS	46=369 (LC 6), 47=93 (LC 1), 48=128 (LC 1), 49=38 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-49=-34/0, 24-25=0/6, 1-2=-2/0, 2-3=-2/0, 3-4=-2/0, 4-5=-2/0, 5-6=-2/0, 6-7=-2/0, 7-8=-2/0, 8-9=-2/0, 9-10=-2/0, 10-11=-2/0, 11-12=-2/0, 12-14=0/5, 14-15=0/0, 15-16=0/0, 16-17=0/0, 17-18=0/0, 18-19=0/0, 19-20=0/0, 20-21=0/0, 21-22=0/0, 22-23=0/0, 23-24=0/0					 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walk at their outer ends or restrained by other means. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 516 lb down and 164 lb up at 4-7-8, and 516 lb down and 164 lb up at 8-7-8, and 516 lb down and 164 lb up at 12-7-8 on top chord. The design/selection of such connection device(s) is the responsibility of others. 				
					NOTES 1) Unbalance this desigr	12 ed fl	1-28=-106/0, 22-2 2-36=-9/0 oor live loads have			,			the state	AC A. C	ILBERTITUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT

February 15,2024

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	FW29	Floor Supported Gable	1	1	Job Reference (optional)	163625991
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	023 Print: 8.	630 S Nov 1	2023 MiTek Industries, Inc. Wed Feb 14 11:00:22	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:22 ID:wGKyGOHXZ4DcQhxa6_6OR9yA4DD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

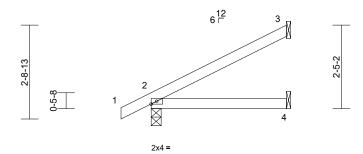
- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (lb/ft)

Vert: 25-49=-8, 1-24=-80

Concentrated Loads (lb)

Vert: 6=-190 (B), 9=-190 (B), 52=-190 (B), 53=-190 (B), 54=-190 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	J01	Jack-Open	4	1	Job Reference (optional)	163625992

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:23 ID:DxlrllZekvgj3hl9E843_2z5Pja-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 <u>3-11-4</u> 0-10-8 3-11-4

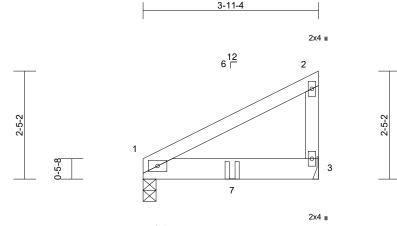
Special

3-11-4

Scale = 1:33.5

Scale = 1:33.5												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MP	0.32 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103i Cat. II; Exp zone and C exposed ; members a Lumber DC 2) TCLL: ASC Plate DOL: DOL=1.15 Cs=1.00; C 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss	3-11-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, Mechani Max Horiz 2=85 (LC Max Uplift 2=-23 (L Max Grav 2=315 (L 4=115 (L (lb) - Maximum Cor Tension 1-2=0/37, 2-3=-111 2-4=-71/66 CE 7-16; Vult=130mpl mph; TCDL=6.0psf; E b B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and r and forces & MWFRS CL=1.60 plate grip D0 CE 7-16; Pr=20.0 psf e1.15); Pf=20.0 psf e1.15); Pf=20.0 psf e1.15); Rough Cat	2 14) C 14), 3=-81 (LC 14) C 21), 3=235 (LC 21 C 7) mpression/Maximum /63 h (3-second gust) 3CDL=6.0psf; h=25ft; S (envelope) exteric e; cantilever left and right exposed; C-C for 5 for reactions shown DL=1.60 (roof LL: Lum DOL=: Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.5 een considered for th or greater of min roof at roof load of 20.0 ps other live loads. or a 10.0 psf bottom	on the 3-06-0 chord ed or 7) Bearin crushii c 9) Provid bearin 3. 10) One H recom UPLIF does n 11) This tr Interna R802. 12) Hange provid Ib down of such of such of such fr the of the c 13) In the of the c 14) Dead 1.15 Increa Conc is Ve live sf on	russ has been design bottom chord in all an 0 tall by 2-00-00 wide and any other member gs are assumed to be g capacity of 425 ps to girder(s) for truss te emechanical connect et amechanical connect tratit(s) 2. This conn- to consider lateral for iss is designed in ac- tional Residential Co- 0.2 and referenced st (s) or other connection at sufficient to suppon and 60 lb up at 3-1 t 3-10-8 on bottom of connection device(s) CAD CASE(S) secti- truss are noted as fro SE(S) Standard + Snow (balanced): isse=1.15 m Loads (lb/ft) t: 1-3=-60, 4-5=-20 entrated Loads (lb) t: 3=-108 (B), 4=-44	reas where e will fit betwers. ers. Joint 2 I i. to truss cont tion (by oth thstanding & g-Tie conne russ to bear russ to bear russ to bear russ to bear stonder so cordance w ode sections standard AN ion device(s rt concentra 10-8 on top chord. The s) is the res ion, loads a ont (F) or ba Lumber Inc	a rectangle ween the both Jser Defined inections. lers) of truss 81 lb uplift at ctors ing walls due r uplift only a with the 2018 s R502.11.1 s R502.11.1 s) shall be ated load(s) ' chord, and 4 design/select ponsibility of pplied to the ick (B).	to joint e to ind and 130 4 lb ction				SEA 0363	EER A
											Eobruor	N 15 2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com) **TRENCO**


818 Soundside Road Edenton, NC 27932

February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	J02	Jack-Closed Girder	1	2	Job Reference (optional)	163625993

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:23 ID:DxlrIIZekvgj3hl9E843_2z5Pja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

LUS26

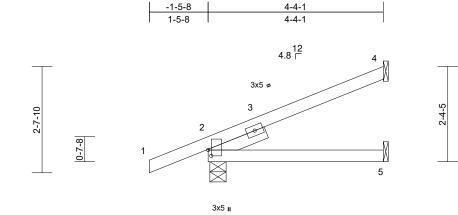
3-11-4

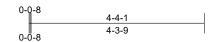
Scale = 1:25.9

00010 1.20.0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI20 5) Unba desig	anced snow loads h	0.22 0.47 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 3-6 3-6 1	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.3 Structural wood she 3-11-4 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc	6) This t chord 7) * This d or 3-06-1 chord 8) All be	 uss has been desig live load nonconcur truss has been desi bottom chord in all 00 tall by 2-00-00 wi and any other mem arings are assumed ity of 425 psi.	rent with any igned for a liv areas where de will fit betw bers.	other live loa e load of 20. a rectangle veen the both	.0psf tom					
REACTIONS	(size) 1=0-3-8, 3 Max Horiz 1=73 (LC Max Uplift 1=-52 (LC Max Grav 1=600 (LC	2 12), 3=-76 (LC 12)	9) Refer 10) Provio bearir	to girder(s) for truss le mechanical conne ig plate capable of w	ection (by oth	ers) of truss						
Top chord follows: 2) Bottom ch follows: 2) 2) All loads a except if n CASE(S) provided t unless oth 3) Wind: ASG Vasd=103 Cat. II; Ex zone; cani and right e DOL=1.6C 4) TCLL: AS Plate DOL	1-3=-35/189 s to be connected toge ls connected with 10d c4 - 1 row at 0-9-0 oc. iords connected with 1 c6 - 2 rows staggered a re considered equally noted as front (F) or ba section. Ply to ply coni o distribute only loads nerwise indicated. CE 7-16; Vult=130mph p B; Enclosed; MWFR tilever left and right ex exposed; Lumber DOL) CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	ther as follows: (0.131"x3") nails as (0.131"x3") nails as (0.131"x3") nails as at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior posed ; end vertical I =1.60 plate grip (noof LL: Lum DOL=1 um DOL=1.15 Plate	11) One H recon UPLIH does 12) This t Intern R802 13) Use S Is Truss Ieft er chord AD 14) Fill all LOAD CA 1) Dea Incre Unfre Unfre Unfre State State Stat	42.5A Simpson Stror imended to connect T at jt(s) 1. This cor not consider lateral f russ is designed in a ational Residential C 10.2 and referenced impson Strong-Tie L Single Ply Girder) of d to connect truss(e nail holes where ha SE(S) Standard d + Snow (balanced) rase=1.15 orm Loads (lb/ft) ert: 1-2=-60, 3-4=-20 sentrated Loads (lb) ert: 7=-823 (F)	truss to bear nnection is for forces. accordance w Code sections d standard AN LUS26 (4-100 or equivalent iss) to front fac inger is in cor): Lumber Inc	ing walls due ruplift only a R602.11.1 i ISI/TPI 1. Girder, 3-1(at 2-0-0 from e of bottom	nd and Od n the nber.		Contraction of the second se		SEA 0363	EEP. KIN

February 15,2024

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	J03	Jack-Open	1	1	Job Reference (optional)	163625994

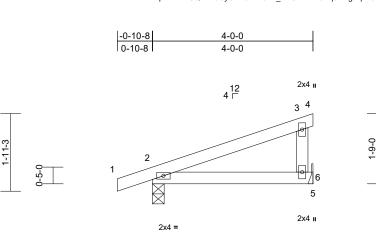
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:24 ID:LA2KTOW8ggAHa3RN?I07qCz5Pje-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

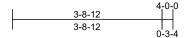
'n

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-1-12,0-0-15]

Flate Olisets	(A, T). [2.0-1-12,0-0-1	J]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	TPI2014	CSI TC BC WB Matrix-MP	0.33 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and 2-9-7 to 4 end vertic forces & M DOL=1.6(2) TCLL: AS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 4-4-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-13, Mechanic Max Horiz 2=81 (LC Max Uplift 2=-49 (LC Max Grav 2=396 (LC 5-75 (LC (lb) - Maximum Com Tension 1-2=0/50, 2-4=-193/	athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 14) 2 (1), 4=-48 (LC 14) C 21), 4=-48 (LC 14) C 21), 4=156 (LC 21) 7) pression/Maximum 55 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 2-9-7, Exterior(2R ft and right exposed d;C-C for members hown; Lumber roof LL: Lum DOL=1	d or 7) 8) 9) 10) 0 11) - LOA	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are crushing cap Refer to girde Provide mecl bearing plate 4. One H2.5A S recommende UPLIFT at jt(does not con This truss is a International	s been designed f ad nonconcurrent v has been designed in chord in all area: y 2-00-00 wide wi y other members. assumed to be: , acity of 425 psi. er(s) for truss to tr hanical connection capable of withst simpson Strong-Tii d to connect truss s) 2. This connect sider lateral forces designed in accord Residential Code nd referenced star Standard	with any l for a liv s where Il fit betw Joint 2 I russ conn (by oth anding 4 e conne t to bear ion is fo s. dance w sections	other live load e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 8 lb uplift at ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a	Opsf to joint e to nd			A A A A A A A A A A A A A A A A A A A	NHTH CA	
DOL=1.18 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps	is live								in the second se	ALC A. C	EERCALI


February 15,2024


T RENGINEERING BY A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	M01	Monopitch	3	1	Job Reference (optional)	163625995

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:24 ID:kpwBRAvCQvnw0i6yCKV0VXz5Pe_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7		CSI TC BC WB Matrix-MP	0.26 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	11(02010/	11712014	IVIAU IX-IVIF							Weight: 15 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=60 (LC Max Uplift 2=-54 (LC Max Grav 2=289 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-44/4	cept end verticals. applied or 10-0-0 oc 3= Mechanical 13) 2 10), 6=-29 (LC 14) 2 21), 6=224 (LC 21) ipression/Maximum 3, 3-4=-8/0, 3-6=-163	7) d or 8) 9) 10)	on the bottor 3-06-00 tall b chord and ar Refer to girdd Provide mec bearing plate 6. One H2.5A S recommende UPLIFT at jt(does not con This truss is International	has been designed in chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru- hanical connection capable of withsta Simpson Strong-Tie d to connect truss s) 2. This connection sider lateral forces designed in accord Residential Code s and referenced stan- Standard	where I fit betw ss conr (by oth anding 2 conne to bear on is for lance w sections	a rectangle veen the bott nections. ers) of truss 9 lb uplift at tors ing walls due uplift only a ith the 2018 5502.11.1 a	to joint e to nd				<u>.</u>	
 Wind: AS Vasd=102 Cat. II; Ex zone and exposed ; members Lumber D TCLL: AS Plate DOI DOL=1.15 Cs=1.00; Unbalanc design. This truss load of 12 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B cp B; Enclosed; MWFR C-C Exterior(2E) zone ; end vertical left and ri, and forces & MWFRS DOL=1.60 plate grip DC CC 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L L=1.5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be a has been designed fo 2.0 psf or 1.00 times fla s non-concurrent with o	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and right exposed;C-C for for reactions shown; iL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; een considered for thi r greater of min roof I t roof load of 20.0 ps	ight .15 ; is							M. HILLING	The second se	SEA 0363	• •

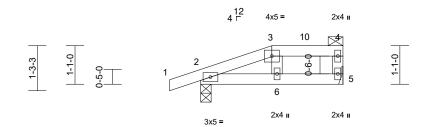
5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Campage to the properting and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILB


A. GILD February 15,2024

C

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	M02	Half Hip Girder	1	1	Job Reference (optional)	163625996

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:24 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 -0-10-8 0-10-8 2-0-0 -0-

Special

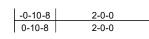
 2-1-12
 4-0-0

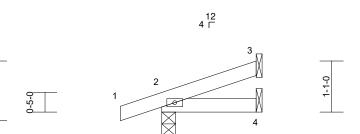
 2-1-12
 1-10-4

Scale = 1:32.4

6646 1.62.4										
BCDL 10	0 Plate Grip DOL 1 0 Lumber DOL 1 0 Rep Stress Incr N 0* Code If	2-0-0 1.15 1.15 NO RC2018/TPI2014	BC C WB C Matrix-MP	DEFL Vert(LL) 0.40 Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 6 6 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
4-0-0 oc purlins 2-0-0 oc purlins Rigid ceiling dir bracing. REACTIONS (size) 2=0-0 Max Horiz 2=36 Max Grav 2=26 FORCES (lb) - Maximum Tension	ectly applied or 10-0-0 oc 3-8, 5= Mechanical (LC 11) 9 (LC 8), 5=-22 (LC 8) 8 (LC 34), 5=-181 (LC 33) Compression/Maximum 67/10, 3-4=-10/8, 4-5=-77/25 =-10/8 mph (3-second gust) sf, BCDL=6.0psf; h=25ft; VFRS (envelope) exterior t exposed ; end vertical left DOL=1.60 plate grip psf (roof LL: Lum DOL=1.15 sf (Lum DOL=1.15 Plate Cat B; Fully Exp.; Ce=0.9; e been considered for this d for greater of min roof live s flat roof load of 20.0 psf or vith other live loads. to prevent water ponding. d for a 10.0 psf bottom	 on the bottor 3-06-00 tall t chord and ar 8) Refer to gird 9) Provide mec bearing plate 5. 10) One H2.5A S recommende UPLIFT at jtt does not cor 11) This truss is International R802.10.2 a 12) Graphical pu or the orients bottom chords 13) Hanger(s) or provided suf down and 57 down and 57 down and 57 down and 57 down and 57 14) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Sno Increase=1 Uniform Lo Vert: 1-3 Concentrat Vert: 3=- 	r other connection dev ficient to support conc 7 lb up at 2-0-0 on top 0 lb up at 2-0-0 on boj tition of such connectio y of others. CASE(S) section, loa are noted as front (F) of Standard ow (balanced): Lumbe .15	here a rectangle between the bott connections. y others) of truss i ling 22 lb uplift at j onnectors bearing walls due is for uplift only at ce with the 2018 stions R502.11.1 a rd ANSI/TPI 1. es not depict the g the top and/or fice(s) shall be centrated load(s) 4 o chord, and 17 lb ttom chord. The on device(s) is the ds applied to the or back (B).	tom to joint e to ind and size 47 lb s face				SEA 0363	22 EERER III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	M03	Jack-Open	1	1	Job Reference (optional)	163625997


1-3-3

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:26 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

Page: 1

2x4 =

2-0-0

Scalo = 1:24 4

Scale = 1:24.4					1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-MP	0.07 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 BRACING TOP CHORD 3 BOT CHORD 4 REACTIONS (s MM M FORCES (TOP CHORD 2 BOT CHORD 2 NOTES	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing. ize) 2=0-3-8, 5 Mechanic lax Horiz 2=39 (LC lax Uplift 2=-47 (LC lax Grav 2=189 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/23, 2-3=-39/2 2-4=-19/30	10) 2 10), 3=-18 (LC 14) C 21), 3=60 (LC 21), apression/Maximum 1	ed or 7) Ba ed or 7) Ba ed or 7) Ba ed or 7) Ba ed or 7) Ba er ba 3. 10) O re 4=34 do 11) Th In Ra	n the botton .06-00 tall b nord and an earings are ushing cap efer to girde rovide meck earing plate ne H2.5A S commende PLIFT at jt(bes not con his truss is of ternational	as been designed in chord in all area y 2-00-00 wide w y other members assumed to be: , acity of 425 psi. er(s) for truss to t nanical connectio capable of withsi impson Strong-T d to connect trus; s) 2. This connect sider lateral force designed in accor Residential Code d referenced star Standard	as where ill fit betw Joint 2 t truss con n (by oth tanding 1 ie conne s to bear tion is for s. rdance w s sections	a rectangle veen the bott Jser Defined nections. ers) of truss : 8 lb uplift at j ctors ing walls due uplift only au ith the 2018 : R502.11.1 a	to joint to nd				Weight: 8 lb	FT = 20%
 Vasd=103m; Cat. II; Exp E zone and C-fexposed; en members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha 	5; Enclosed; MWFR C Exterior(2E) zone id vertical left and rig d forces & MWFRS =1.60 plate grip DO F 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E =1.10; snow loads have be snow loads have be as been designed for psf or 1.00 times flat on-concurrent with o as been designed for as been designed for	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown PL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 pso bther live loads.	r ight I.15); his live sf on								SS	SEA 0363	L 22 EERRATION

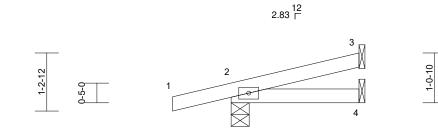
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GIL A. GIL February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 70 FaNC	
24020059	M04	Jack-Open	1	1	Job Reference (optional)	163625998

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 11:00:26 ID:dbAiHXyjU7HMUJQjRAayfNz5Pdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-8-7

2-8-7

2-8-7

Page: 1

-1-2-14

1-2-14

3x5 =

Scale = 1:24.4

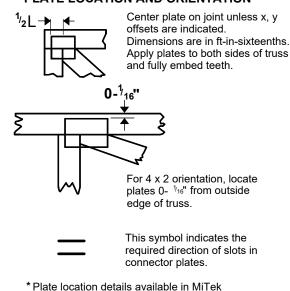
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	14 CSI TC BC WB Matrix-MP	0.13 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 Structural wood she 2-8-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-9, 1 Mechanic Max Horiz 2=37 (LC Max Uplift 2=-69 (LC Max Grav 2=259 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/23, 2-3=-87/4	applied or 10-0-0 o 3= Mechanical, 4= al 10) C 10), 3=-22 (LC 14) C 21), 3=-78 (LC 21) npression/Maximum	on the 3-06- chord ed or 7) Bearin crush c 9) Provic bearin 3. 10) One H recom UPLIF does 11) This t Interm R802.	truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member ngs are assumed to be ing capacity of 425 psi. to girder(s) for truss to de mechanical connect g plate capable of with 42.5A Simpson Strong- mended to connect tru T at jt(s) 2. This connect russ is designed in acc ational Residential Coo 10.2 and referenced st SE(S) Standard	eas where will fit betw 's.) Joint 2 l truss con on (by oth standing 2 Tie conne ss to bear with s to bear cition is fo wes. ordance w le sections	a rectangle veen the botto Jser Defined nections. ers) of truss t 22 Ib uplift at j ctors ing walls due r uplift only ar ith the 2018 5 R502.11.1 a	to oint to nd					
 Wind: AS Vasd=10: Cat. II; Eb zone and exposed members Lumber D TCLL: AS Plate DO DOL=1.1: Cs=1.00; Unbalan; This truss 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B qp B; Enclosed; MWFR C-C Corner (3) zone; c end vertical left and ri- and forces & MWFRS JOL=1.60 plate grip DC CC-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ted snow loads have be shas been designed fo 2.0 psf or 1.00 times fla	CDL=6.0psf; h=25ft S (envelope) exterio cantilever left and rig ght exposed;C-C for for reactions shown DL=1.60 (roof LL: Lum DOL= .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 ceen considered for th r greater of min roof	or ght 1.15 e); his						0.000	The second se	SEA 0363	• •

overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


A. GILB

A. GILD February 15,2024

C

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

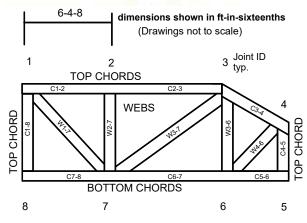
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.