

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Q2400926-27 Value Build Homes - Carter

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I65417032 thru I65417072

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

May 8,2024

Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F01	Floor	1	1	Job Reference (optional)	165417032

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:12 ID:kTBSH0wLYJnd5iyj60ZTU5zKKYc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26.2

1-2-0

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC C BC C WB C	0.56 0.73 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.17 0.03	(loc) 10-11 10-11 9	l/defl >999 >896 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S		(0)		-			Weight: 66 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exx	athing directly applie cept end verticals.	d or									
BOT CHORD	bracing.	applied of 10-0-0 oc										
REACTIONS	(size) 9=0-3-8, 1 Max Grav 9=702 (LC	14=0-3-8 C 1), 14=708 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	1ension 1-14=-39/0, 8-9=-37/ 3-4=-2147/0, 4-5=-2 6-7=-1390/0, 7-8=-2	/0, 1-2=0/0, 2-3=-138 147/0, 5-6=-2147/0, /0	32/0,									
BOT CHORD	13-14=0/869, 12-13= 10-11=0/1869, 9-10=	-0 =0/1868, 11-12=0/21 =0/869	47,									
WEBS	7-9=-1087/0, 2-14=- 2-13=0/668, 6-10=-6 6-11=0/534, 3-12=0/ 5-11=-211/0	1090/0, 7-10=0/679, 523/0, 3-13=-632/0, 556, 4-12=-258/0,										
NOTES											munn	1111
 Unbalance this design All bearing This truss Internation R802.10.2 Recomment 10-00-00 co (0.131" X co at their out CAUTION, LOAD CASE(5) 	ad floor live loads have by are assumed to be S is designed in accorda- ial Residential Code su and referenced stand nd 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks ter ends or restrained I , Do not erect truss ba S) Standard	been considered for SP No.2 . ance with the 2015 actions R502.11.1 ar ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to wa by other means. ckwards.	Id						CONTINUE.		SEA 02359	POLITICAL POLICIES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

May 8,2024

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F02	Floor	2	1	Job Reference (optional)	165417033

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:13

Page: 1

ID:KA2IDp57FcYems1Pxzpm22zKKYO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-0-0 1-7-2 1-3-0 3x3 = 3x3 II 3x3 = 3x3 = 1.5x3 u 3x3 # 3 4 5 6 12 7 P Ŷ 2 P 1þ Ŧ 9 10 11

3x6 =

3x3 =

3x3 =

3x6 =

9-4-4
9-4-4

Scale = 1:23.9													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.47	Vert(LL)	-0.08	10-11	>999	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.64	Vert(CT)	-0.09	10-11	>999	360			
BCLL	0.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.01	8	n/a	n/a			
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 48 lb	FT = 20%F, 11%E	
LUMBER													
TOP CHORD	2x4 SP No.2(flat)												
BOT CHORD	2x4 SP No.2(flat)												
WEBS	2x4 SP No.3(flat)												

WEBS

BRACING	
	Ctruct

TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	8=0-3-8, 12= Mechanical
	Max Grav	8=500 (LC 1), 12=514 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 2-12=-46/0, 7-8=-60/0, 1-2=0/0, 2-3=0/0, 3-4=-860/0, 4-5=-1054/0, 5-6=-1054/0, 6-7=0/0 BOT CHORD 11-12=0/605, 10-11=0/1054, 9-10=0/1054, 8-9=0/574

6-8=-720/0, 3-12=-760/0, 6-9=0/584, 3-11=0/332, 4-11=-307/0, 4-10=-96/35,

WEBS

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- Bearings are assumed to be: , Joint 8 SP No.2 . 2)

5-9=-234/0

- Refer to girder(s) for truss to truss connections. 3)
- 4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F03	Floor	5	1	Job Reference (optional)	165417034

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES 1)

2)

3)

4)

this design.

15 SP No.2

REACTIONS (size)

bracing.

Max Grav

Tension

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

15=0-3-8, 21=0-3-8, 25=

24-25=0/584, 23-24=-17/958, 22-23=-17/958, 21-22=-315/427, 19-21=0/524, 18-19=0/1602, 17-18=0/1946, 16-17=0/1750, 15-16=0/827

6-21=-143/0, 2-25=-733/0, 5-21=-814/0, 2-24=-11/294, 5-22=0/789, 3-24=-190/123,

9-19=-745/0. 12-17=0/377. 9-18=0/601. 10-18=-275/0. 4-22=-306/0. 11-17=-160/0

3-23=-141/0. 13-15=-1035/0. 7-21=-1160/0. 13-16=0/634, 7-19=0/752, 12-16=-567/0,

15=670 (LC 7), 21=1316 (LC 1),

Rigid ceiling directly applied or 6-0-0 oc

Mechanical

25=480 (LC 3)

1-25=-29/1, 14-15=-38/0, 1-2=0/0, 2-3=-810/0, 3-4=-958/17, 4-5=-958/17, 5-6=0/737, 6-7=0/737, 7-9=-1075/0, 9-10=-1946/0, 10-11=-1946/0, 11-12=-1946/0,

12-13=-1314/0, 13-14=-2/0

Unbalanced floor live loads have been considered for

All plates are 3x3 MT20 unless otherwise indicated.

Refer to girder(s) for truss to truss connections.

Bearings are assumed to be: , Joint 21 SP No.2 , Joint

(lb) - Maximum Compression/Maximum

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:13

Page: 1 ID:Pmjh23KAgSsOTIgzGJd823zKKVV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-0-0 2-0-0 0-1-8 1-3-0 1-7-0 1-7-4 1.5x3 = 3x4 = 1.5x3 II 1.5x3 II 1.5x3 ı 3x4 = 1.5x3 ı 3x6 FP 2 3 4 6 8 9 10 12 13 5 7 11 1 14 26 1-2-0 15 ĕ Ĕ 24 23 22 20 19 18 17 16 3x6 = 21 1.5x3 u 3x4 = 3x4 = 3x6 = 3x6 = 3x6 FP 9-2-8 22-2-4 9-2-8 12-11-12 Scale = 1:40 Plate Offsets (X, Y): [22:0-1-8,Edge] Loading 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing TCLL 40.0 Plate Grip DOL 1.00 TC 0.63 Vert(LL) -0.13 16-17 >999 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.76 Vert(CT) -0.18 16-17 >875 360 BCLL Rep Stress Incr YES WB 0.0 0.38 Horz(CT) 0.03 15 n/a n/a BCDL Code IRC2015/TPI2014 Matrix-S Weight: 110 lb FT = 20%F, 11%E 5.0 LUMBER 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and TOP CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2x4 SP No.3(flat) Recommend 2x6 strongbacks, on edge, spaced at WEBS 2x4 SP No.3(flat) 10-00-00 oc and fastened to each truss with 3-10d OTHERS (0.131" X 3") nails. Strongbacks to be attached to walls BRACING

at their outer ends or restrained by other means.

7)	CAUTION	Do not	erect	truss	backwar	40
''	0/10/10/14,	Do not	CICCL	11033	backwart	10

LOAD CASE(S) Standard

Contraction of the anninninna. SEAL 3594 minn

May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F04	Floor	7	1	Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:7DNJH6smJzP8k31QrZQSqKzKKUp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-2

Page: 1

Scale = 1:39.6

Plate Offsets (X, Y): [24:0-1-8,Edge]

	Λ, Ι). [24.0	J-1-0,Euge]												
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.63 0.76 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.15 0.03	(loc) 18-19 18-19 17	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size)	0.2(flat) 0.2(flat) 0.3(flat) wood shea ourlins, exo ng directly 17= Mech	athing directly applie cept end verticals. applied or 6-0-0 oc anical, 23=0-3-8, 27:	5) 6) d or 7) LC	This truss is of International R802.10.2 ar Recommend 10-00-00 cc : (0.131" X 3") at their outer CAUTION, D DAD CASE(S)	designed in accor Residential Code ad referenced star 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine o not erect truss l Standard	rdance wi sections ndard AN , on edge ach truss ks to be a d by othe backward	ith the 2015 R502.11.1 a ISI/TPI 1. a, spaced at with 3-10d attached to w or means. Is.	and valls						
	Max Grav	Mechanica 17=662 (L 27=482 (L	al .C 7), 23=1300 (LC 1 .C 3)	1),											
FORCES	(lb) - Maxi	imum Com	pression/Maximum												
TOP CHORD	2-27=-38/ 3-4=-808/ 6-7=0/739 10-11=-18 12-13=-18 15-16=0/0	0, 15-17=-{ 0, 4-5=-956 0, 7-8=0/73 349/0, 11-1 349/0, 13-1)	53/0, 1-2=0/0, 2-3=0/ 6/19, 5-6=-956/19, 9, 8-10=-1038/0, 2=-1849/0, 4=-1267/0, 14-15=0/	/0, /0,											
BOT CHORD	26-27=0/5 23-24=-31 19-20=0/1	583, 25-26= 17/427, 21- 1849, 18-19	=-19/956, 24-25=-19/ 23=0/504, 20-21=0/ [,] 9=0/1683, 17-18=0/8	/956, 1543, 805									TH CA	Rojin	
WEBS	7-23=-144 3-26=-12/ 4-25=-141 14-18=0/6 10-21=-71 11-20=-25	4/0, 3-27=-7 293, 6-24= 1/0, 14-17= 601, 8-21=0 17/0, 13-19 58/0, 12-19	732/0, 6-23=-812/0, :0/784, 4-26=-188/12 :-1010/0, 8-23=-1136 0/732, 13-18=-542/0,)=0/356, 10-20=0/556)=-172/0, 5-24=-306/0	24, 5/0, 6, 0							WITH I	N. A.	SEA 02350	W. A.	
NOTES											Ξ		0235	7 / 3	
 Unbalance this design All plates a Bearings a Refer to gi 	ed floor live l n. are 3x3 MT2 are assumed rder(s) for ti	loads have 20 unless o d to be: , Jo russ to trus	been considered for therwise indicated. bint 23 SP No.2 . is connections.	r								ALL THE STATE		E.R MILLER y 8,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F05	Floor	2	1	Job Reference (optional)	165417036

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:0XggF6KcMfBIluxj4X6NMLzKKUD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

¹⁰⁻⁵⁻⁸

Scale = 1:26.9

Plate Offsets (X, Y): [11:0-1-8,Edge]

Fiale Oliseis (
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.87	Vert(LL)	-0.14	9-10	>871	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.82	Vert(CT)	-0.19	9-10	>649	360			
BCLL	0.0	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.02	8	n/a	n/a			
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 53 lb	FT = 20%F, 11%E	i i
LUMBER	2x4 SP No 2(flat)												

BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 8= Mechanical, 12=0-3-8
	Max Grav 8=561 (LC 1), 12=555 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-12=-74/0, 7-8=-43/0, 1-2=-4/0, 2-3=-1243/0,
	3-4=-1243/0, 4-5=-1243/0, 5-6=-1041/0,
	6-7=0/0
BOT CHORD	11-12=0/652, 10-11=0/1243, 9-10=0/1327,
	8-9=0/678
WEBS	6-8=-851/0, 2-12=-813/0, 6-9=0/472,
	2-11=0/766, 5-9=-373/0, 5-10=-185/174,
	4-10=-89/17, 3-11=-361/0

NOTES

- Unbalanced floor live loads have been considered for this design.
- 2) Bearings are assumed to be: Joint 12 SP No.2 .
- 3) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

SEAL 023594 May 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter				
Q2400926-27	2F06	Floor	1	1	Job Reference (optional)	165417037			

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:U?mU1GYv7ASCSfJB7JQb58zKKTx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.4

1-2-0

Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI TC BC	0.61 0.80	DEFL Vert(LL) Vert(CT)	in -0.15 -0.21	(loc) 14-15 14-15	l/defl >999 >792	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2015/TPI2014	WB Matrix-S	0.36	Horz(CT)	0.03	11	n/a	n/a	Weight: 70 lb	FT = 20%F, 11%E
L UMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)			· · ·		· · · ·						
BRACING TOP CHORD	Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly	athing directly applie cept end verticals.										
REACTIONS	bracing. (size) 11= Mech Max Grav 11=764 (L	anical, 17= Mechani	cal									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	2-17=-58/0, 9-11=-50 3-4=-1498/0, 4-5=-22 6-7=-2403/0, 7-8=-14	0/0, 1-2=0/0, 2-3=0/0 265/0, 5-6=-2403/0, 479/0 8-9=0/0 9-10), =0/0									
BOT CHORD	16-17=0/914, 15-16= 13-14=0/2403, 12-13	=0/2053, 14-15=0/24 3=0/2031 11-12=0/9	-0,0 103, 121									
NEBS	8-11=-1155/0, 3-17= 3-16=0/760, 7-12=-7 7-13=0/649, 4-15=0/ 5-14=-159/71, 6-13=	-1147/0, 8-12=0/727 '18/0, 4-16=-723/0, '355, 5-15=-386/44, -257/0	7 ,									
NOTES												
 Unbalance this design 	ed floor live loads have n.	been considered fo	r								WITH CA	Bolin
 Refer to g This truss Internation 	irder(s) for truss to trus is designed in accorda nal Residential Code se	as connections. ance with the 2015 actions R502.11.1 ar	nd							I. I.	OFESS	IONING
R802.10.2 4) Recomme 10-00-00 (0.131" X	2 and referenced stands and 2x6 strongbacks, or oc and fastened to eac 3") nails. Strongbacks	ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to wa	alls						11111		SEA	L
at their ou LOAD CASE(ter ends or restrained b S) Standard	by other means.									0255	

Page: 1

1-2-0

3x3 II

g10

• 11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F07	Floor	1	1	Job Reference (optional)	165417038

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:jGsk3z3t?Ot57G6R9rigLDzKKTG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.8

Plate Offsets (X, Y): [12:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.57 0.79 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.21 0.04	(loc) 13-14 13-14 10	l/defl >999 >798 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 10=0-3-8, Max Grav 10=761 (L (lb) - Maximum Com Tension 2-16=-58/0, 9-10=-3i 3-4=-1539/0, 4-5=-2: 6-7=-2523/0, 7-8=-1i 15-16=0/937, 14-15= 12-13=0/2523, 11-12	athing directly applie cept end verticals. applied or 10-0-0 oc 16= Mechanical .C 1), 16=781 (LC 1) pression/Maximum 6/0, 1-2=0/0, 2-3=0/(347/0, 5-6=-2523/0, 526/0, 8-9=-2/0 =0/2112, 13-14=0/25 2=0/2090, 10-11=0/2	ed or ;)), ;23, ;43										
WEBS	8-10=-1181/0, 3-16= 3-15=0/784, 7-11=-7 7-12=0/685, 4-14=0/ 5-13=-152/90, 6-12=	1175/0, 8-11=0/758 /35/0, 4-15=-746/0, /380, 5-14=-430/23, 231/0	3,									200	
NOTES 1) Unbalanced this design. 2) Bearings al 3) Refer to gir 4) This truss is Internationa R802.10.2 5) Recommer 10-00-00 or (0.131" X 3 at their oute 6) CAUTION, LOAD CASE(S	d floor live loads have re assumed to be: , Jo der(s) for truss to trus s designed in accorda al Residential Code se and referenced stand d 2x6 strongbacks, o c and fastened to eac ") nails. Strongbacks er ends or restrained I Do not erect truss bac c) Standard	been considered fo bint 10 SP No.1 . ss connections. ance with the 2015 ections R502.11.1 ar ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to wa by other means. ckwards.	r nd alls						A MILLING.		SEA 0235	PO 1 94 94 1 1 1 1 1 1 1 1 1 1 1 1 1	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F08	Floor	5	1	Job Reference (optional)	165417039

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:niKGLjfcSS28VoLsWe4AqYzKKSV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [28:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.80	Vert(LL)	-0.16	29-30	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.86	Vert(CT)	-0.22	29-30	>837	360		
BCLL	0.0	Rep Stress Incr	YES		WB	0.54	Horz(CT)	0.04	18	n/a	n/a		
BCDL	5.0	Code	IRC201	5/TPI2014	Matrix-S							Weight: 148 lb	FT = 20%F, 11%E
			1)	Unholoncod	floor live loads hav	o boon	considered fo	.r					
	Ov 4 CD Na O/flat)		1)	this design	noor live loads hav	e been		1					
	2x4 SP No.2(IIat)		2)	All plates are	3x3 MT20 unless	otherwi	se indicated						
WERS	2x4 SF No.1(liat)		3)	All hearings :	are assumed to be	SP No	1						
OTHERS	2x4 SP No.3(flat)		4)	This truss is	designed in accord	dance w	ith the 2015						
BRACING			.,	International	Residential Code	sections	R502.11.1 a	nd					
	Structural wood she	athing directly applied	tor	R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.						
		cent end verticals	5)	Recommend	2x6 strongbacks,	on edge	, spaced at						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		10-00-00 oc	and fastened to ea	ach truss	with 3-10d						
	bracing.	racing. (0.131" X 3") nails. Strongbacks to be attached to walls											
REACTIONS	(size) 18=0-3-8,	24=0-3-8, 32=0-3-8	•	at their outer	ends or restrained	by othe	er means.						
	Max Grav 18=679 (L	_C 4), 24=1938 (LC 1), 6)	CAUTION, D	o not erect truss b	ackward	ls.						
	32=746 (L	_C 3)	^{//} LC	DAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-32=-44/0, 17-18=-	39/0, 1-2=-3/0,											
	2-3=-1502/0, 3-4=-2	274/0, 4-5=-2417/0,											
	5-6=-2417/0, 6-7=-1	787/143, 7-8=-558/62	21,										
	8-9=0/2161, 9-11=0/	/2161, 11-12=-490/73	2,										
	12-13=-1579/243, 13	3-14=-2004/0,	10										
	14-15=-2004/0, 15-1	0/2060 20 20 0/24	17										
BUICHORD	31-32=0/917, 30-31	=0/2000, 29-30=0/24 8-0/2258	17,									minin	1111.
	20-29=0/2417, 27-20	5=0/2250, 1-261013/0										WHI CA	Pall
	23-24=-1131/0 22-2	23=-472/1185										official	10/11/
	21-22=0/2004 20-2	1=0/2004 19-20=0/17	784								X	O . EFSS	CAR A
	18-19=0/838	1-0/2001, 10 20-0/1	01,							-	12		Marthan
WEBS	9-24=-113/0. 2-32=-	1147/0. 8-24=-1529/0).							/		<u> </u>	1 1 1
	2-31=0/763, 8-26=0/	1135, 3-31=-725/0,	,									0.5.4	1 1
	7-26=-1087/0, 3-30=	-25/279, 7-27=0/664									:	SEA	L : =
	4-30=-221/181, 6-27	/=-720/0, 16-18=-104	9/0,									0235	94 E
	11-24=-1444/0, 16-1	9=0/649, 11-23=0/10	36,									0200	- I E
	15-19=-582/0, 12-23	8=-990/0,									-	N .	1 2
	15-20=-166/254, 12-	-22=0/625, 13-22=-80	01/0,								-	N. E.	Ain i
	13-21=0/230, 14-20	=-135/41, 4-29=-205/	в,								21	GIN	1 1 1 N
	5-28=-522/0, 6-28=0	/010									1	NV -	all bene
NOTES												11, R. I	VIIII
												- minn	mu.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

May 8,2024

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F09	Floor	2	1	Job Reference (optional)	165417040

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:NOAZHVqO9lp9AyQYLaKSOVzKKSH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.3

Plate Offsets (X, Y): [11:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.60 0.82 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.23 0.04	(loc) 12-13 12-13 9	l/defl >999 >752 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190			
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 72 lb	FT = 20%F, 11%E			
LUMBER TOP CHOR	RD 2x4 SP No.2(flat)											,			
WEBS OTHERS	2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)														
BRACING															
TOP CHO	RD Structural wood sheat 6-0-0 oc purlins, exc	 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc 													
BOT CHO	RD Rigid ceiling directly bracing.	applied or 10-0-0 or	0												
REACTION	IS (size) 9=0-3-8, 1 Max Grav 9=778 (LC	15=0-3-8 C 1), 15=784 (LC 1)													
FORCES	(lb) - Maximum Com Tension	pression/Maximum													
TOP CHOP	RD 1-15=-46/0, 8-9=-37/ 3-4=-2430/0, 4-5=-2/ 6-7=-1570/0, 7-8=-2/	/0, 1-2=0/0, 2-3=-15 636/0, 5-6=-2636/0, /0	82/0,												
	RD 14-15=0/960, 13-14= 11-12=0/2636, 10-11	=0/2173, 12-13=0/26 1=0/2152, 9-10=0/96	636, 65												
WEBS	7-9=-1209/0, 2-15=- 2-14=0/809, 6-10=-7 6-11=0/734, 3-13=0/ 4-12=-150/103, 5-11	1205/0, 7-10=0/787, 758/0, 3-14=-769/0, /407, 4-13=-472/5, =-232/0										11111			
NOTES											TH UA	HOIL			
 Unbala this de 	inced floor live loads have sign.	been considered fo	r							11 s	FESS	ION N			
All bea	rings are assumed to be S	SP No.1 .							-	1	is L	Willi			
 This tru 	uss is designed in accorda	ance with the 2015							- 3	9	X /				
Interna	tional Residential Code se	ections R502.11.1 a	nd						=		SEA	L 1 1 1			
4) Recom 10-00- (0.131' at their	 0.2 and referenced stand imend 2x6 strongbacks, o 00 oc and fastened to eac 1 X 3") nails. Strongbacks outer ends or restrained h 	n edge, spaced at h truss with 3-10d to be attached to w by other means.	alls						III WAR		0235	94			
5) CAUTI	ON, Do not erect truss ba	ckwards.								21	GIN	E. CAN			
LOAD CAS	SE(S) Standard									11	WY R. N	MILLIN			

May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F10	Floor	1	1	Job Reference (optional)	165417041

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:vT8cez0QOfqu5PedHxcC2tzKKS1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1:30 1

00010 = 1													
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI TC 0.1 BC 0.1	63 76	DEFL Vert(LL) Vert(CT)	in -0.18 -0.25	(loc) 13-14 13-14	l/defl >999 >729	L/d 480 360	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2015/TPI2014	WB 0.4 Matrix-S	43	Horz(CT)	0.05	10	n/a	n/a	Weight: 79 lb	FT = 20%F, 11%E	
	1	•	LOAD CASE(S)	Standard			-					· · · · · ·	
TOP CH	DRD 2x4 SP No.2(flat)		()										
вот сно	ORD 2x4 SP No.1(flat)												
WEBS	2x4 SP No.3(flat)												
OTHERS	2x4 SP No.3(flat)												
BRACIN	G												
TOP CHO	ORD Structural wood she	athing directly applie	ed or										
	6-0-0 oc purlins, ex	cept end verticals.											
BOLCH	DRD Rigid ceiling directly bracing.	applied or 10-0-0 of	С										
REACTIO	DNS (size) 10=0-3-8 Max Grav 10=850 (I	, 17=0-3-8 LC 1), 17=844 (LC 1)										
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CH	DRD 1-17=-41/0, 9-10=-4 2-3=-1747/0, 3-4=-2 5-6=-3112/0, 6-7=-2 8-9=0/0	2/0, 1-2=-2/0, 2758/0, 4-5=-3112/0, 2758/0, 7-8=-1747/0,											
BOT CH	DRD 16-17=0/1050, 15-1 13-14=0/3112, 12-1 10-11=0/1050	6=0/2408, 14-15=0/3 3=0/3076, 11-12=0/2	3112, 2411,										
WEBS	8-10=-1317/0, 2-17= 2-16=0/907, 7-11=-{ 7-12=0/452, 3-15=0 4-15=-617/0, 4-14=- 6-13=-239/489	=-1314/0, 8-11=0/90 364/0, 3-16=-861/0, /508, 6-12=-456/0, .96/155, 5-13=-322/1	8, 114,								TH CA	Roffin	
	0 10- 200/ 100									5	and the second	the M'	
1) Unha	lanced floor live loads have	been considered fo	۱r						2	Ìĕ		AULS -	
this c	lesian.										:02	1 2	
2) All pl	ates are 3x3 MT20 unless of	otherwise indicated.									· •	=	
3) All be	earings are assumed to be	SP No.1 .							=		SEA	L : E	
4) This	truss is designed in accorda	ance with the 2015							- E		0235	94 : E	
Inter	national Residential Code s	ections R502.11.1 a	nd								0200	1 3	
K802	.10.2 and referenced stand	ara ANSI/TPT1.							-			1 5	
) Kecc 10-0	-00 oc and fastened to each of the second second second to each other the second	trues with 3-10d								1	X. SNOW	ERIA S	
(0.13	1" X 3") nails. Stronobacks	s to be attached to w	alls							14	O HIN	1. C.S.	
at the	eir outer ends or restrained	by other means.								1	VY D	ALLEN	
6) CAU	TION, Do not erect truss ba	ackwards.									111 n. 1	111111	

May 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TREERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss Truss Type Qt		Qty	Ply	Value Build Homes - Carter		
Q2400926-27	2F11	Floor	13	1	Job Reference (optional)	165417042	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:onRzczUGRLcVfFYxVwl6auzKKRR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Page: 1

1-2-0

13-0-8	
13-0-8	

Scale = 1:26

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.55 0.71 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.16 0.03	(loc) 10-11 10-11 9	l/defl >999 >937 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	d or									
REACTIONS	(size) 9= Mecha Max Grav 9=704 (LC	nical, 14= Mechanic C 1), 14=704 (LC 1)	al									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	Tension RD 1-14=-39/0, 8-9=-41/0, 1-2=0/0, 2-3=-1372/0, 3-4=-2119/0, 4-5=-2119/0, 5-6=-2119/0, 6-7=-1378/0, 7-8=0/0 RD 13-14=0/863, 12-13=0/1850, 11-12=0/2119, 10-11=0/1851, 9-10=0/863 7-9=-1083/0, 2-14=-1083/0, 7-10=0/669, 2-13=0/662, 6-10=-616/0, 3-13=-623/0, 6-11=0/526, 3-12=0/544, 4-12=-253/0, 5-11=-217/0											
NOTES												
 Onbalance this design All plates a Refer to gii This truss i Internation R802.10.2 Recommen 10-00-00 o (0.131" X 3 at their out LOAD CASE(S 	a floor five loads have irre 3x3 MT20 unless o rder(s) for truss to trus is designed in accorda al Residential Code se and referenced stand nd 2x6 strongbacks, o ic and fastened to eac 3") nails. Strongbacks er ends or restrained f 5) Standard	therwise indicated to sconnections. Ince with the 2015 ections R502.11.1 ar and ANSI/TPI 1. In edge, spaced at h truss with 3-10d to be attached to wa by other means.						CONTRACTOR OF CONTRACTOR	in the second se	SEA 0235 NGINI		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2F12	Floor	2	1	Job Reference (optional)	165417043

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:14 ID:sgrem5fgvyVMyYCpta3dh2zKKRC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

. . . .

Scale = 1:26.4													
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.39	Vert(LL)	-0.03	9-10	>999	480	MT20	244/190	
FCDL	10.0	Lumber DOL	1.00	BC	0.31	Vert(CT)	-0.05	9-10	>999	360			
BCLL	0.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.00	7	n/a	n/a			
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 37 lb	FT = 20%F, 11%E	
UMBER													

TOP CHORD	2x4 SP No	D.2(flat)
BOT CHORD	2x4 SP No	p.2(flat)
WEBS	2x4 SP No	p.3(flat)
OTHERS	2x4 SP No	p.3(flat)
BRACING		
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	7= Mechanical, 10=0-3-8
	Max Grav	7=371 (LC 1), 10=365 (LC 1)
FORCES	(lb) - Maxi Tension	mum Compression/Maximum
TOP CHORD	1-10=-51/	0, 6-7=-63/0, 1-2=-3/0, 2-3=-568/0,
	3-4=-568/	0, 4-5=-568/0, 5-6=0/0
BOT CHORD	9-10=0/39	4, 8-9=0/568, 7-8=0/407
WEBS	5-7=-511/	0, 2-10=-491/0, 5-8=0/408,
		0.0. 111/0 1.0. 000/0

or

NOTES

Unbalanced floor live loads have been considered for 1) this design.

2) Bearings are assumed to be: Joint 10 SP No.2 .

Refer to girder(s) for truss to truss connections. 3)

This truss is designed in accordance with the 2015 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	russ Truss Type Qty		Qty	Ply	Value Build Homes - Carter				
Q2400926-27	2F13	Floor	2	1	Job Reference (optional)	165417044			

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:n12PFHCSvzQoca57YcqL3rzKKMd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.7

Plate Offsets (X, Y): [13:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.58 0.99 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.25 0.05	(loc) 13-14 13-14 10	l/defl >999 >731 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 10= Mech Max Grav 10=834 (L (lb) - Maximum Com Tension 1-17=-41/0, 9-10=-4: 2-3=-1707/0, 3-4=-26	athing directly applie cept end verticals. applied or 2-2-0 oc anical, 17=0-3-8 .C 1), 17=828 (LC 1) pression/Maximum 2/0, 1-2=-2/0, 679/0, 4-5=-3001/0,	6) CAUTION, E LOAD CASE(S) ed or	io not erect truss ba Standard	ackwarc	ls.							
BOT CHORD WEBS 1) Unbalance this design 2) Bearings 3) Refer to gir 4) This truss i Internation R802.10.2 5) Recommer 10-00-00 o (0.131" X 3 at their out	5-6=-3001/0, 6-7=-24 8-9=0/0 16-17=0/1028, 15-16 13-14=0/3001, 12-13 10-11=0/1029 8-10=-1291/0, 2-17= 2-16=0/884, 7-11=-8 7-12=0/428, 3-15=0/ 4-15=-569/0, 4-14=-9 6-13=-322/539 ed floor live loads have the assumed to be: Join roder(s) for truss to trus is designed in accorda al Residential Code se and referenced stand ind 2x6 strongbacks, ou co and fastened to eac 3") nails. Strongbacks er ends or restrained to	680/0, 7-8=-1707/0, 6=0/2351, 14-15=0/3 3=0/2984, 11-12=0/2 -1287/0, 8-11=0/883 38/0, 3-16=-839/0, 483, 6-12=-452/0, 92/134, 5-13=-397/2 the been considered for int 17 SP No.2. iss connections. ance with the 2015 ections R502.11.1 at ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to with by other means.	8001, 2351, 3, 115, r nd						V SUBURNIN		SEA 0235	RO L 94 MILLER M	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter				
Q2400926-27	2K01	Floor Supported Gable	1	1	Job Reference (optional)	165417045			

Page: 1

Scale = 1:40

														_
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 20=22-2-4 26=22-2-4 33=22-2-4 33=22-2-4 33=22-2-4 36=22-2-2 Max Grav 20=28 (LC 20=28 (LC 20=147 (L 33=147 (L 33=147 (L 35=147 (L 37=148 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 4, 21=22-2-4, 22=22 4, 24=22-2-4, 28=22 4, 31=22-2-4, 38=22 21, 31=22-2-4, 38=22 21, 31=22-2-4, 38=22 21, 21=115 (LC 1), C 1), 23=145 (LC 1) .C 1), 23=147 (LC 1) .C 1), 23=147 (LC 1) .C 1), 23=147 (LC 1) .C 1), 32=147 (LC 1) .C 1), 33=147 (LC 1) .C 1), 34=147 (LC 1) .C 1), 38=147 (LC 1) .C 1), 38=58 (LC 1)	VEBS 2 NOTES 2 All plates are Content of the second sec	2-37=-133/0, 3-36= -34=-133/0, 6-33= 3-31=-133/0, 9-29= 1-27=-133/0, 13-2 5-24=-134/0, 16-2 8-21=-108/0 1.5x3 MT20 unless es continuous botto ully sheathed from st lateral movements spaced at 1-4-0 oct are assumed to be designed in accord Residential Code : nd referenced stan 2x6 strongbacks, and fastened to ea nails. Strongbacks ends or restrained o not erect truss b Standard	134/0, 133/0, 133/0, 6=-133/0, 6=-133/0, 23=-132/ ss other on chor one fac nt (i.e. d SP No. dance w sections dard AN on edge ch truss is to be a by othe ackward	4-35=-133/0, 7-32=-133/0, 10-28=-133/0, 10-28=-133/0, 17-22=-138 wise indicated d bearing. e or securely iagonal web). 2 . ith the 2015 R502.11.1 ar ISI/TPI 1. e, spaced at s with 3-10d attached to was or means. ds.	, 3/0, 3/0,				NUM CA			
TOP CHORD	(ib) - Maximum Com Tension 1-38=-54/0, 19-20=- 3-4=-6/0, 4-5=-6/0, 5 7-8=-6/0, 8-9=-6/0, 5 11-13=-6/0, 13-14=- 15-16=-6/0, 16-17=- 18-19=-6/0 37-38=0/6, 36-37=0, 33-34=0/6, 32-33=0, 28-29=0/6, 27-28=0, 24-25=0/6, 23-24=0, 20-21=0/6	pression/Maximum 22/0, 1-2=-6/0, 2-3=: 5-6=-6/0, 6-7=-6/0, 3-10=-6/0, 10-11=-6/ 6/0, 14-15=-6/0, 6/0, 17-18=-6/0, /6, 35-36=0/6, 34-35 /6, 31-32=0/6, 29-31 /6, 26-27=0/6, 25-26 /6, 22-23=0/6, 21-22	-6/0, 0, =0/6, =0/6, =0/6, =0/6,							1. minimum		SEA 0235	L 94 MILLER MILLER	

May 8,2024

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:J6?ScIOV8uRWX2JCUz65jCzKKMN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss Type		Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K02	Floor Supported Gable	1	1	Job Reference (optional)	165417046

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:kVGtyD2NQUEs?LSaeJ4lvbzKKLX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%F, 11 ^o	%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or	6) This trus: Internatic R802.10. 7) Recomm 10-00-00 (0.131" X at their o LOAD CASE c	is designed in accor nal Residential Code 2 and referenced star end 2x6 strongbacks, oc and fastened to e 3") nails. Strongbac tier ends or restraine (S) Standard	dance w sections ndard AN on edge ach truss ks to be d by othe	ith the 2015 is R502.11.1 a ISI/TPI 1. a, spaced at s with 3-10d attached to w er means.	nd ralls						
REACTIONS	(size) 11=11-8- 13=11-8-1 15=11-8-1 17=11-8-1 19=11-8-1 Max Grav 11=47 (LC 13=151 (L 15=147 (L 17=147 (L 17=146 (L	12, 12=11-8-12, 12, 14=11-8-12, 12, 16=11-8-12, 12, 18=11-8-12, 12, 20=11-8-12, 12, 20=11-8-12, 12, 20=11-8-12, 12, 10=11-8-12, 12, 10=11-8-12, 12, 10=147 (LC 1), 13, 14=147 (LC 1), 14=147 (LC 1), 14=147 (LC 1), 15, 10, 20=60 (LC 1), 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10),),),										
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-20=-55/0, 10-11=- 3-4=-8/0, 4-5=-8/0, 5 7-8=-8/0, 8-9=-8/0, 9	41/0, 1-2=-8/0, 2-3= 5-6=-8/0, 6-7=-8/0, 9-10=-8/0	-8/0,									Politi	
BOT CHORD	19-20=0/8, 18-19=0/ 15-16=0/8, 14-15=0/ 11-12=0/8	/8, 17-18=0/8, 16-17 /8, 13-14=0/8, 12-13	Z=0/8, 3=0/8,								OFES	ON AL	5
WEBS	2-19=-132/0, 3-18=- 5-16=-133/0, 6-15=- 8-13=-137/0, 9-12=-	134/0, 4-17=-133/0, 134/0, 7-14=-132/0, 117/0									SEA		1111
NOTES 1) All plates a 2) Gable requ 3) Truss to be braced aga 4) Gable stuc 5) All bearing	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement is spaced at 1-4-0 oc. Is are assumed to be \$	s otherwise indicated m chord bearing. one face or securely t (i.e. diagonal web). SP No.2 .	ł.						THUR .	A A A A A A A A A A A A A A A A A A A			ALL IN THE REAL PROPERTY OF A

May 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K03	Floor Supported Gable	1	1	Job Reference (optional)	165417047

1-2-0

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:84y?aF5FjPdRsoA9KRdSWEzKKLU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x3 II

Page: 1

3x3 🛛

Scale = 1:21.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-R							Weight: 19 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING	. ,											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-9-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 of	С									
	bracing.											
REACTIONS	(size) 5=3-9-0, 6	6=3-9-0, 7=3-9-0, 8=	=3-9-0									
	Max Grav 5=48 (LC	1), 6=127 (LC 1), 7=	=150									
	(LC 1), 8=	=60 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-8=-55/0, 4-5=-42/0), 1-2=-8/0, 2-3=-8/0),									
	3-4=-8/0	0.0/0										
	7-8=0/8, 6-7=0/8, 5-	0=0/8 8/0										
NOTEO	2-7=-135/0, 3-6=-11	0/0										
NUIES	uiree eentieveve hette	a chard hearing										
 Gable requ Truce to be 	a fully cheethod from a	m chord bearing.										
2) Truss to be	ainst lateral movemen	t (i.e. diagonal web)										
3) Gable stud	anscialeral movement	(i.e. diagonal web)	•								mmm	1111
 All bearing 	is are assumed to be \$	SP No 2									WH CA	ROUL
E) This trues	is designed in second	20									al	

- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K04	Floor Supported Gable	1	1	Job Reference (optional)	165417048

1-2-0

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:Yfd8CG770K?0jGvk?ZB98szKKLR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-0
5-2-0

Scale = 1:17.1

Loading TCLL TCDL BCLL BCDL	(p 40 10 6	sf)).0).0).0).0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(ft 2x4 SP No.2(ft 2x4 SP No.3(ft 2x4 SP No.3(ft	at) at) at) at)											
TOP CHORD BOT CHORD	Structural wood 5-2-0 oc purlins Rigid ceiling di bracing.	d shea s, exc rectly a	thing directly applie ept end verticals. applied or 10-0-0 or	ed or c									
REACTIONS	(size) 6=5- 10=5 Max Grav 6=54 (I C	2-0, 7: 5-2-0 4 (LC 1 1) 9=2	=5-2-0, 8=5-2-0, 9=), 7=131 (LC 1), 8= 43 (I C 1), 10=62 (-5-2-0, =151 (1 C 1)									
FORCES	(lb) - Maximum Tension 1-10=-56/0, 5-6 3-4=-9/0, 4-5=-	Comp 6=-47/0	oression/Maximum 0, 1-2=-9/0, 2-3=-9/	0,									
BOT CHORD WEBS	9-10=0/9, 8-9= 2-9=-130/0, 3-8	0/9, 7- 3=-137	8=0/9, 6-7=0/9 7/0, 4-7=-121/0										
NOTES													
 Gable requ Truss to be braced aga Gable stud All bearing This truss in Internation R802.10.2 Recomment 10-00-00 on (0.131" X 3 at their out 	uires continuous a fully sheathed f ainst lateral move ls spaced at 1-4- is are assumed to is designed in ac al Residential CC and referenced i and referenced i and 2x6 strongbac to and fastened t 3") nails. Strongt er ends or restra S) Standard	bottom rom or ement 0 oc. o be S cordar ode se standa cks, on o each oacks ined b	n chord bearing. ne face or securely (i.e. diagonal web). P No.2 . nce with the 2015 ctions R502.11.1 at and ANSI/TPI 1. ne dge, spaced at thruss with 3-10d to be attached to wild y other means.	nd alls								SEA 0235	ROLL 94

Page: 1

1-2-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K05	Floor Supported Gable	1	1	Job Reference (optional)	165417049

Page: 1

Scale = 1:51.9

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 27	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%F, 1	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 27=29-11: 33=29-11: 35=29-11: 35=29-11: 42=29-11: 42=29-11: 48=29-11: 48=29-11: 50=29-11: 50=29-11: Max Grav 27=8 (LC 29=153 (LC	athing directly applie sept end verticals. applied or 10-0-0 oc -0, 28=29-11-0, -0, 30=29-11-0, -0, 34=29-11-0, -0, 38=29-11-0, -0, 43=29-11-0, -0, 43=29-11-0, -0, 45=29-11-0, -0, 47=29-11-0, -0, 51=29-11-0, 1), 28=104 (LC 1), C 1), 30=145 (LC 1)	d or BOT CHORD WEBS NOTES) All plates a	1-51=-48/0, 26-27= 3-4=-6/0, 4-5=-6/0, 7-8=-6/0, 8-10=-6/(12-13=-6/0, 13-14= 15-17=-6/0, 13-14= 15-20=-6/0, 20-21= 22-23=-6/0, 20-21= 22-23=-6/0, 20-21= 22-23=-6/0, 20-21= 22-23=-6/0, 20-21= 22-23=-6/0, 49-50= 46-47=0/6, 49-50= 46-47=0/6, 49-50= 46-47=0/6, 49-50= 42-43=-0/6, 41-42= 37-38=0/6, 36-37= 33-34=0/6, 32-33= 29-30=0/6, 28-29= 2-50=-133/0, 3-49= 5-47=-133/0, 10-43 12-41=-133/0, 10-43 15-37=-133/0, 17-3 19-34=-133/0, 20-3 22-31=-134/0, 23-3 25-28=-102/0 are 1.5x3 MT20 unlet	=0/0, 1-2 5-6=-6/ 0, 10-11: =-6/0, 14 =-6/0, 14 =-13/0, 0 =-133/0, 0 =-133/3 =-132/3 =-1	=-6/0, 2-3=-6 0, 6-7=-6/0, 6/0, 11-12= -15=-6/0, -22=-6/0, -22=-6/0, -25=-6/0, 49=0/6, 47-48 45=0/6, 43-44 11=0/6, 38-38 36=0/6, 34-35 22=0/6, 30-31 28=0/6 4-48=-133/0, 14-38=-13 0, 14-38=-13 0, 21-32=-13 0, 21-32=-13 0, 24-29=-13	5/0, 5-6/0, 5=0/6, 1=0/6, 5=0/6, 5=0/6, 1=0/6, 3/0, 3/0, 3/0, 3/0, 9/0, 1.						
FORCES	23-130 (L 31=147 (L 33=147 (L 35=147 (L 37=147 (L 39=147 (L 42=147 (L 46=147 (L 46=147 (L 50=148 (L (Ib) - Maximum Com Tension	C 1), 32=147 (LC 1) C 1), 34=147 (LC 1) C 1), 36=147 (LC 1) C 1), 38=147 (LC 1) C 1), 41=147 (LC 1) C 1), 43=147 (LC 1) C 1), 45=147 (LC 1) C 1), 45=147 (LC 1) C 1), 47=146 (LC 1) C 1), 51=52 (LC 1) pression/Maximum	 2) Gable required 3) Truss to be braced aging 4) Gable studies 5) All bearing 6) This truss Internation 7) Recomme 10-00-00 c (0.131" X 3 at their out LOAD CASE(5) 	uires continuous bott a fully sheathed from ainst lateral moveme is spaced at 1-4-0 oc s are assumed to be is designed in accord and referenced stan nd 2x6 strongbacks, oc and fastened to ec s") nails. Strongback er ends or restrained S Standard	om chor one fac nt (i.e. d SP No. dance w sections idard AN on edge ach truss is to be d by othe	d bearing. e or securely iagonal web) 2 . ith the 2015 R502.11.1 a ISI/TPI 1. e, spaced at with 3-10d attached to w er means.	nd ralls		1 Comments		SEA 0235	ROJUL BA	and an an an an

May 8,2024

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:rG4DEUQBMi0ccykLPcco6wzKKL3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K06	Floor Supported Gable	1	1	Job Reference (optional)	165417050

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:CEu6IBTKBEfuijdJC9Czp_zKKL_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-R	0.08 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Grav	o.2(flat) o.2(flat) o.3(flat) o.3(flat) I wood sheat purlins, exc ing directly 12=13-0-8 15=13-0-8 15=13-0-8 12=46 (LC 14=151 (L 16=147 (L 20=147 (L 20=0 (LC	athing directly applie sept end verticals. applied or 10-0-0 oc 3, 13=13-0-8, 14=13 3, 16=13-0-8, 17=13 3, 19=13-0-8, 20=13 3, 22=13-0-8 2 1), 13=125 (LC 1), C 1), 15=145 (LC 1), C 1), 15=147 (LC 1) C 1), 21=146 (LC 1)	6) 7) ed or LO c -0-8, -0-8, -0-8,),),),),	This truss is of International R802.10.2 ar Recommend 10-00-00 oc a (0.131" X 3") at their outer DAD CASE(S)	designed in accord Residential Code s ad referenced stand 2x6 strongbacks, o and fastened to ea nails. Strongback ends or restrained Standard	lance w sections dard AN on edge ch truss s to be by othe	ith the 2015 R502.11.1 ai ISI/TPI 1. a, spaced at with 3-10d attached to wa er means.	alls						
FORCES	(lb) - Max	timum Com	pression/Maximum												
	1-22=-55, 3-4=-8/0, 7-8=-8/0, 21-22=0/	/0, 11-12=-4 4-5=-8/0, 5 8-9=-8/0, 9	40/0, 1-2=-8/0, 2-3= -6=-8/0, 6-7=-8/0, -10=-8/0, 10-11=-8/ 8 19-20-0/8 18-19	-8/0, 0									TH CA	Ro	
WEBS	17-18=0/3 13-14=0/3 2-21=-13 5-18=-13	8, 20-21=0/ 8, 16-17=0/ 8, 12-13=0/ 2/0, 3-20=- 3/0, 6-17=-	8, 15-16=0/8, 14-15 8 134/0, 4-19=-133/0, 133/0, 7-16=-134/0	=0/8,									CALLER -	Mille	
NOTES 1) All plates a 2) Gable req 3) Truss to b braced ag 4) Gable stuc 5) All bearing	5-18=-13 8-15=-13 are 1.5x3 M uires contin e fully shea ainst lateral ds spaced a gs are assur	3/0, 6-17=- 2/0, 9-14=- IT20 unless uous bottor thed from o in movement at 1-4-0 oc. med to be S	133/0, 7-16=-134/0, 137/0, 10-13=-116/0 otherwise indicated in chord bearing. Ine face or securely (i.e. diagonal web). SP No.2.) I.							1111111111	ALL		94 94 94 94 94 94 94 94 94 94 94 94 94 9	

- 3) d from on
- braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc.
- All bearings are assumed to be SP No.2 . 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	2K07	Floor Supported Gable	1	1	Job Reference (optional)	165417051

1-2-0

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:5?7c7ZWqET9KBKw4R?Hv_qzKKKw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x3 ш

Scale = 1:21.1

Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural w	2(flat) 2(flat) 3(flat) 3(flat) 2(flat)	thing directly applie	d or									
BOT CHORD	6-0-0 oc pu Rigid ceiling bracing.	rlins, exc directly a	ept end verticals. applied or 10-0-0 oc										
REACTIONS	(size) 7 1 Max Grav 7 (I	=6-0-8, 8 0=6-0-8, =26 (LC 1 _C 1), 10=	=6-0-8, 9=6-0-8, 11=6-0-8, 12=6-0-8 1), 8=107 (LC 1), 9= =145 (LC 1), 11=14{ (I C 1)	:153 3 (LC									
FORCES	(lb) - Maxim Tension 1-12=-55/0,	6-7=-18/0	0, 1-2=-7/0, 2-3=-7/0	р,									
BOT CHORD WEBS	3-4=-7/0, 4- 11-12=0/7, 7-8=0/7 2-11=-133/0	5=-7/0, 5· 10-11=0/7), 3-10=-1	-6=-7/0 7, 9-10=0/7, 8-9=0/7 32/0, 4-9=-139/0,	,									
NOTES 1) All plates a 2) Gable requ 3) Truss to be braced aga 4) Gable stud 5) All bearing 6) This truss Internation R802.10.2 7) Recomme	5-8=-103/0 are 1.5x3 MT2 e fully sheathd ainst lateral m ds spaced at 1 spare assume is designed in aal Residentia and referenc nd 2x6 strong	20 unless us bottom ed from of ovement -4-0 oc. ed to be S accordar I Code se ed standa backs, or	otherwise indicated in chord bearing. ne face or securely (i.e. diagonal web). P No.2. nce with the 2015 ctions R502.11.1 ar ard ANSI/TPI 1. in edge, spaced at	nd						C. THURSDAY	and a second	SEA	ROLINA 194

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	A01	Common Supported Gable	1	1	Job Reference (optional)	165417052

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:15 ID:VrRr6wNSzYj26W6ByYyn3AzKLyP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.2

Plate Offsets (X, Y): [5:0-2-8,0-3-0]

	(, , L ,													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.08 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 175 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sf Rigid ceiling direct (size) 1=29-1 20=29- 25=29- 25=29- 27=29- 29=29- 31=29- 35=29- Max Uplift 16=-3 (I 23=-3 (I 27=-214) Max Uplift 16=-3 (I 23=-3 (I 27=-111) 29=-8 (I 31=-15) Max Grav 1=113 (18=227 20=166 22=160 25=139 27=163 31=243 35=171 (lb) - Maximum Co Tension	The athing directly applied ly applied. -0, 16=29-11-0, 1-0, 21=29-11-0, 1-0, 23=29-11-0, 1-0, 26=29-11-0, 1-0, 28=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=29-11-0, 1-0, 32=-109 (LC C 12), 18=-7 (LC 12), C 12), 28=-8 (LC 12), LC 12), 30=-7 (LC 12), (LC 12), 35=-3 (LC 12), LC 12), 31=-171 (LC 1), (LC 22), 21=159 (LC 2); (LC 1), 28=156 (LC 2); (LC 1), 28=158 (LC 2); (LC 1), 32=113 (LC 1); (LC 21), 32=113 (LC 1); (LC 1); mpression/Maximum	TC d. BC we 10) NC 10) 10) 10) 10) 10) 10) 10) 10)	DP CHORD DT CHORD DT CHORD EBS Unbalancec this design. Wind: ASCI Vasd=91mp B=45ft; L=3 MWFRS (di 2-11-8, Ext to 17-11-8, cantilever le right expose for reaction: DOL=1.60 Truss desig only. For si see Standa or consult q All plates ar Gable requi Gable studs	1-2=-88/83, 2-3=-5 4-6=-74/125, 6-7= 8-9=-76/199, 9-10 11-13=-44/91, 13 15-16=-73/40, 16- 1-31=-25/104, 30- 29-30=-25/105, 26 25-26=-25/105, 26 22-23=-25/105, 26 22-23=-25/105, 16 8-25=-99/0, 7-26= 5-28=-119/58, 4-2 2-31=-165/115, 9- 10-22=-120/67, 11 13-20=-123/61, 14 15-18=-157/87 d roof live loads have E 7-10; Vult=115mp oh; TCDL=6.0psf; E 0ft; eave=2ft; Cat. rectional) and C-C arior (2) 2-11-8 to 1 Exterior (2) 17-11-8 ft and right expose ed;C-C for member s shown; Lumber D gned for wind loads tuds exposed to win rd lndustry Gable E ualified building de re 2x4 MT20 unless res continuous bott s spaced at 2-0-0	01/64, 3 -64/165, -63/167 1444/5 17=0/25 3125/1 -29=-25/- -22=-25/- -22=-25/- -22=-25/- -22=-25/- -22=-25/- -125/98, 9=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-120/6 23=-126/ -21=-111 -19=-104 re been c ch (3-seed CDL=6.0 II; Exp B Godon-1 d; end vs s otherwi ind Deta signer as cotherwi iom chor c.	4=-80/61, 7-8=-76/198, , 10-11=-50/1 2, 14-15=-55/ 04, 104, 105, 105, 105, 105, 105, 105, 6-27=-123/69 1, 3-30=-106/ 99, 3/55, 2000 (2000) 2000 (2000)	28, 20, 55, 55, 11-8 d S S ss , le, 11.	7) Thi cha 8) * T on 3-C cha 9) All 10) Pro be: 16, at j joir 10) Pro be: joir up joir 11) Thi 111 Thi 111 Thi 111 Thi cha the LOAD	s truss h ord live k his truss the botto 6-00 tall ord and a bearings wide me aring plai 3 lb upli oint 28, 4 uplift at join tt 12, 8 lt iff at join tt 16. s truss is ernationa 02.10.2 a s truss du ord and 1 bottom CASE(S	as bee as bee m cho by 2-0 iny oth are as chaniccie cappei fit at joi a lb uplift 1 19, 7 s desig ul Resic and ref esign n (2" gyf chord.) Star	an designed for a neconcurrent with teen designed for rd in all areas who 0-00 wide will fit er members. sourded to be SP al connection (by ble of withstandi nt 26, 11 lb upliff if at joint 29, 7 ll 3 lb uplift at joint 12, 8 lb u lb uplift at joint at joint 21, 8 lb u lb uplift at joint at joint 20, 7 ll second at joint 20, 7 ll at joint 29, 7 ll at j	10.0 psf botto any other live a live load of 1 iere a rectang between the b No.2. others) of tru ng 3 lb uplift at journer at joint 27, 8 ou uplift at joint 20 8 and 3 lb uplift at joint 27, 8 and 3 lb uplift at joint 20 8 and 3 lb uplift at	orm loads. 20.0psf le pottom ss to it joint lb uplift 30, 15 ift at 1, 9 lb ift at 15 .1 and 6" he top potty to

May 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	A02	Common	16	1	Job Reference (optional)	165417053

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16 ID:ddFBPAkHvmVoj7PyirVpGUzKLxx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEBS

 Unbalanced roof live loads have been considered for this design.

2-11=-471/127

4-9=0/773, 6-9=-468/127, 4-11=0/778,

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 14-11-8, Exterior (2) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 30-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearings are assumed to be: , Joint 7 SP No.2 .
- 7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	A03	Common	5	1	Job Reference (optional)	165417054

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16

Page: 1

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)

left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

1)

2)

- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)

17-11-8, Interior (1) 17-11-8 to 30-10-0 zone; cantilever

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Manananan "" SEAL 23594 mann May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	A04	Common	1	1	Job Reference (optional)	165417055

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16 ID:ppX2_Bhql1SbhGy8qxPLz9zKLwi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		Δ.		-	
		vı	-	-	-
_	~ .		-	_	

BCDL

LUMBER	
TOP CHORD	2x4 SP DSS
BOT CHORD	2x4 SP DSS *Except* 14-11:2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-0-9 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
REACTIONS	(size) 1= Mechanical, 7=0-3-8
	Max Horiz 1=-115 (LC 10)
	Max Grav 1=1369 (LC 1), 7=1429 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-2518/0, 2-4=-2295/0, 4-6=-2291/0,
	6-7=-2514/0, 7-8=0/26
BOT CHORD	1-15=0/2271, 13-15=0/1583, 9-13=0/1583,
	7-9=0/2183, 12-14=-140/0, 11-12=-140/0
WEBS	4-11=0/1006, 9-11=0/850, 6-9=-492/141,
	14-15=0/855, 4-14=0/1010, 2-15=-495/142,
	12-13=-123/0
NOTES	

10.0

Code

- NOTES 1) Unbalanced roof live loads have been considered for
- this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 14-11-8. Exterior (2) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 30-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Wind(LL)

0.07

15-18

>999

240

Weight: 149 lb

FT = 20%

Bearings are assumed to be: , Joint 7 SP DSS . 6)

Matrix-MS

- 7) Refer to girder(s) for truss to truss connections.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

IRC2015/TPI2014

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	A06	Common Supported Gable	1	1	Job Reference (optional)	165417056

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16

ID:PWNLw_sc?LDbNQ0qftfdY6zKLwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 0-11-0 30-10₋0 14-11-8 29-11-0 14-11-8 0-11-0 14-11-8 4x5= 10 Ŧ _12 6Г 9 11 42 43 8 12 3x4 💋 3x4 👟 13 7 6 14 7-10-3 5 15 IT 8-3-3 5 4 16 3 17 41 44 18 2 0-4-7 ⊢ 33 32 31 30 29 28 27 26 25 24 23 22 21 20 3x4= 3x4= 3x4= 29-11-0

Scale = 1:56.6

Loading TCLL (roof) (psf) Spacing 200 20-0 1.00 CSI DEFL (wr(L)) in r/a in r/a (psf) PLATES GRIP 244/190 TCDL (roof) 0.00 Rep Stress Incr YES 0.00 No No <th></th>															
LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 1.2=0/25, 2.3=-88/83, 3.4=-89/65, 4-5=-79(25, 5.7=-73/88, 7-8=-67/125, 8-9=-64/164, 9-11011=-76(20, 11-12=-64/167, 12-13=-50/128, 13-15=-44/91, 15-16=-44/33, 16-17=-55/19, 11-12=-64/167, 12-13=-50/128, 13-15=-44/91, 15-16=-44/33, 16-17=-55/19, 17-18=-74/40, 18-19=0/25 7) This truss has been designed for a live load of 22 on the bottom chord live load on concourtent with any other live load on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bo chord and any other members. BRACING TOP CHORD Structural wood sheathing directly applied. BTO CHORD 2-32=25/105, 30-31=-25/105, 22-32=11-0, 18=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 22=29-11-0, 23=-29-11-0, 33=29-11-0, 32=29-11-0, 33=29-11-0, 32=29-11-0, 33=-29-11-0, 32=29-11-0, 33=29-11-0, 32=29-11-0, 33=29-11-0, 32=29-11-0, 33=-29-11-0, 32=29-11-0, 33=-29-11-0, 32=29-11-0, 33=-29-11-0, 32=29-11-0, 33=-29-11-0, 32=29-11-0, 33=-29-11-0, 23=-29-110, 33=-29-11-0, 23=-29-110, 33=-157/87, 11-25=-128/99, 33=-157/87, 11-25=-128/99, 33=-157/87, 11-25=-128/99, 33=-157/87, 11-25=-128/99, 31=8 (LC 12), 23=-3 (LC 12), 33=-3 (LC 12), 34=-3 (LC 12),	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.06 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 176 lb	GRIP 244/190 • FT = 20%	
 222=166 (LC 22), 23=159 (LC 22), 24=160 (LC 1), 25=166 (LC 22), 27=139 (LC 1), 28=166 (LC 21), 29=160 (LC 1), 30=159 (LC 21), 31=166 (LC 21), 32=137 (LC 1), 33=227 (LC 21), 34=171 (LC 1), 38=171 (LC 1) FORCES (lb) - Maximum Tension 	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh Rigid ceiling directl (size) 2=29-11 22=29-1 24=29-1 24=29-1 24=29-1 31=29-1 33=29-1 33=29-1 33=29-1 33=29-1 33=29-1 33=29-1 Max Uplift 2=-3 (LC (LC 12), 12), 23= 25=-3 (L 33=-7 (L))))))))))))))))))))))))))))))))))))	eathing directly applied y applied. -0, 18=29-11-0, 1-0, 21=29-11-0, 1-0, 23=29-11-0, 1-0, 25=29-11-0, 1-0, 30=29-11-0, 1-0, 32=29-11-0, 1-0, 34=29-11-0, 1-0, 34=29-11-0, 1-0, 34=29-11-0, 1-0, 12, 18=-3 (LC 12), 22=-8 (C 11), 34=110 (LC 11), 12), 18=-3 (LC 12), 22=-8 (C 12), 28=-3 (LC 12), LC 12), 30=-8 (LC 12), C 12), 32=-9 (LC 12), LC 12), 32=-9 (LC 12), C 12), 32=-9 (LC 12), C 12), 32=-9 (LC 12), C 12), 18=171 (LC 1), (LC 22), 21=137 (LC 1), (LC 2), 23=159 (LC 22) (LC 1), 28=166 (LC 21) (LC 1), 30=159 (LC 21), (LC 21), 32=137 (LC 1), (LC 21), 34=171 (LC 1), (LC 21), 34=171 (LC 1), (LC 21), 34=171 (LC 1), (LC 1), 30=159 (LC 21), (LC 1), 30=15	. BO . BO . BO . De7 (LC . 12), NO . 1) . 2) . 3) . 3) . 4) . 5)	DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD DT CHORD Unbalanced this design. Wind: ASCI Vasd=91m B=45ft; L=3 MWFRS (di 2-1-0, Exter 17-11-8, Ex left and righ exposed;C- reactions sh DOL=1.60 Truss desig only. For si see Standa or consult q All plates an Gable requi	1-2=0/25, 2-3=-88, 4-5=-78/62, 5-7=-7 8-9=-64/164, 9-10: 11-12=-64/167, 12 13-15=-44/91, 15- 17-18=-74/40, 18- 2-33=-25/105, 32- 31-32=-25/105, 28 27-28=-25/105, 28 27-28=-25/105, 21 20-21=-25/105, 18 10-27=-100/0, 9-21 7-30=-119/58, 5-3 3-33=-157/87, 11- 12-24=-120/67, 13 15-22=-123/61, 16 17-20=-157/87 d roof live loads have E 7-10; Vult=115mg bit; eave=2ft; Cat. I rectional) and C-C rior (2) 2-1-0 to 14- terior (2) 17-11-8 to the exposed is environ hown; Lumber DOL gned for wind loads tuds exposed to wirr rd Industry Gable E gualified building de re 2x4 MT20 unless ires continuous bott	 (83, 3-4) (74) (75) (76) (7	89/65, 8=-67/125, 7, 10-11=-76/2 1/28, 3, 16-17=-55 05, 1/105,	200, 5/19, 5/67, 5/55, or 1-8 to ever r uss), ble, PI 1.	 7) Thi cha 8) * T on 3-C cha 9) All 10) Pro 3 li li joir upl 25, at j upl 12) Thi Inta R8 12) Thi stra cha the 	s truss h ord live la his truss the botto 66-00 tall ord and a bearings wide me aring plato ouplift at join 11 lb up oint 22, 9 lift at join 12, 9 lift at join 11 lb up oint 22, 9 lift at join 12, 9 lift at join s truss is ernationa 02.10, 2 s truss d bottom CASE(S	as beed and no has be by 2-CC joint 1 o uplift t 32, 7 lift at 2 and red b up lift t 2 and red s design and red t 2 and red t 2 and red t 2 and s design (2" gy (chord.) Sta	en designed for nconcurrent witt een designed fo ord in all areas w 00-00 wide will fi ner members. ssumed to be Si al connection (b able of withstanc (B, 3 lb uplift at joint 30, 8 lb lb uplift at joint 30, 8 lb lb uplift at joint 41, 7 d 3 lb uplift at joint gned in accordar dential Code sea ferenced standa requires that a r neathing be appl psum sheetrock andard	a 10.0 psf botto any other live r a live load of here a rectang t between the t P No.2. y others) of tru ting 3 lb uplift a joint 28, 11 lb u uplift at joint 31 33, 3 lb uplift at joint 23, 8 lb uplift at joint 31 33, 3 lb uplift at joint 23, 8 lb uplift at joint 11 rd ANSI/TPI 1. ninimum of 7/1 lied directly to 1 be applied directly AL 594	om loads. 20.0psf le bottom iss to at joint 2, plift at joint 1b uplift 20, 3 lb 15 .1 and 6" the top ectly to

May 8,2024

Page: 1

19

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	B01	Common Supported Gable	1	1	Job Reference (optional)	165417057

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16 ID:o6FnJ3eBKo2il8yTtEMU4IzKLzM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.00 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.06 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 2=26-3-0, 17=26-3-(20=26-3-(24=26-3-(24=26-3-(24=26-3-(27=7=26-3-(27=7=26-3-(27=7=26-3-((LC 12), 1) 12), 19=-(23=-5 (LC 25=-8 (LC 25=-16 (LC 25=-162 (L 25=162 (L))))))))))))))))))))))))))))))))))))	athing directly applied applied. 14=26-3-0, 16=26-3- 0, 18=26-3-0, 12=26-3 0, 22=26-3-0, 23=26-3 0, 28=26-3-0, 22=26-3 0, 28=26-3-0, 32=26-3 10), 28=-90 (LC 12), 16 17=-9 (LC 12), 18=-8 (10 (LC 12), 20=-5 (LC 12), 24=-10 (LC 12), 12), 26=-9 (LC 12), 12), 26=-9 (LC 12), 12), 28=-7 (LC 12), 12), 28=-7 (LC 12), 12), 28=-7 (LC 12), 12), 22=133 (LC 1), 12, 22), 17=127 (LC 1), 12, 22), 17=153 (LC 1), 12, 22), 22=133 (LC 1), 12, 21), 24=153 (LC 1), 12, 21), 28=171 (LC 1), 12, 21), 28=171 (LC 1), 12, 21), 28=171 (LC 1), 14, 21, 28=171 (LC 1), 15, 21), 28=171 (LC 1), 15, 21), 28=171 (LC 1), 16, 21), 28=171 (LC 1), 17, 21, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	A. NO 3-0, 2) 3-0, 3-0, 3-0, 3-0, 3-0 5=-7 [LC 12), 3)), 4)), 5)), 6)), 7)), 8)	Tres Unbalanced I this design. Wind: ASCE Vasd=91mph B=45ft; L=26 MWFRS (dire 2-1-0, Exterio 16-1-8, Exter and right exp C for membe shown; Lumb Truss design only. For stu see Standarco or consult qu All plates are Gable require Gable studs s This truss ha chord live loa * This truss ha	-22=34/0, 7-23=1 ;-25=-123/98, 10-19 ;-25=-120/59, 4-26 ;-20=-123/98, 10-19 ;-2-17=-101/53, 13- roof live loads have 7-10; Vult=115mph ;: TCDL=6.0psf; BC ft; eave=2ft; Cat. II; ectional) and C-CC for (2) 2-1-0 to 13-1- ior (2) 16-1-8 to 27 osed ; end vertical rs and forces & MV er DOL=1.60 plate her dor wind loads i ds exposed to wind l Industry Gable En alified building desi 2x4 MT20 unless of spaced at 2-0-0 oc. s been designed fo d nonconcurrent w as been designed fo a chord in all areas	23/96, 2 =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ =-101/5/ ==-10	3, 3-27=-16/ 3, 3-27=-16/ 64, 11-18=-1)/87 considered for ond gust) psf; h=25ft; Enclosed; 3) -0-11-0 to er (3) 13-1-8 ne; cantilever I right expose or reactions DL=1.60 ane of the trr. al to the face Is as applical per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0.	4, //87, 20/59, or i to r left bd; c- uss), ble, PI 1. dds. Opsf	Internet R8(12) This struction the LOAD (rrationa 02.10.2 a s truss d ctural w rd and 1 bottom (CASE(S)	I Resi I Resi ind ref esign 1 ood sh /2" gyf /2" gyf /	inde in accordance lential Code secti requires that a min eathing be applie bosum sheetrock b indard	Book for the 200 ons R502.11. ANSI/TPI 1. Nimum of 7/10 d directly to the e applied directly to the e applied directly to the supplied directly to	1 and 6" he top actly to
TOP CHORD	(iii) - Maximum Com Tension 1-2=0/24, 2-3=-78/6 4-5=-68/64, 5-6=-63 7-8=-68/171, 8-9=-6 10-11=-45/103, 11-1 13-14=-58/35, 14-15 2-27=-19/90, 26-27= 24-25=-19/90, 23-24	7, 3-4=-79/50, /101, 6-7=-56/138, 8/173, 9-10=-55/140, /2=-43/66, 12-13=-51/ j=0/24 =-19/90, 25-26=-19/90 #=-19/90, 22-23=-19/9	9) 10) /34,),	3-06-00 tall b chord and an All bearings a Provide mech bearing plate 7 lb uplift at joint 24, 8 lb uplift at joint 24, 8 lb	y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsta oint 14, 5 lb uplift at uplift at joint 25, 9 ll 27, 5 lb uplift at joint	fit betw SP No. (by oth nding 7 t joint 2 b uplift t 20, 1(veen the botto 2 . Ib uplift at jo 3, 10 lb uplift at joint 26, 7) lb uplift at jo	om to int 2, at Ib pint		THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERTY		SEA 02359		and an
	20-22=-19/90, 19-20 17-18=-19/90, 16-17	0=-19/90, 18-19=-19/9 7=-19/90, 14-16=-19/9	90, 90	19, 8 lb uplift joint 16, 7 lb	at joint 18, 9 lb upl uplift at joint 2 and	ift at joi 7 lb upl	nt 17, 7 lb up ift at joint 14.	lift at			11	Ma R. Ma	VILLEN	• T"

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENLU

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	B02	Common	2	1	Job Reference (optional)	165417058

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16 ID:ofJeRh2WKFKuNNY?sNzSSTzKLyq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.8

Plate Offsets (X, Y): [2:Edge,0-0-8], [6:Edge,0-0-8]

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15	CSI TC BC	0.48 0.76	DEFL Vert(LL) Vert(CT)	in -0.23 -0.37	(loc) 8-10 8-10	l/defl >999 >863	L/d 360 240	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2015/TPI2014	WB Matrix-AS	0.26	Horz(CT) Wind(LL)	0.05 0.05	6 8-16	n/a >999	n/a 240	Weight: 120 lb	FT = 20%	
			6) Provide me	chanical connect	ction (by oth	ers) of truss	to						

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=-93 (LC 10)
	Max Uplift	2=-1 (LC 12), 6=-1 (LC 12)
	Max Grav	2=1105 (LC 1), 6=1105 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/25,	2-3=-1845/74, 3-4=-1646/95,
	4-51646	3/95 5-6-1845/74 6-7-0/25

BOT CHORD 2-10=0/1610, 8-10=0/1050, 6-8=0/1610 WEBS 4-8=0/654, 5-8=-407/112, 4-10=0/654, 3-10=-407/112

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 13-1-8, Exterior (2) 13-1-8 to 16-1-8, Interior (1) 16-1-8 to 27-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be SP No.2 .

- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	B03	Common Girder	1	4	Job Reference (optional)	165417059

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:16 ID:bAbMNMPrP9uDGLyToqzAsbzKLvn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.01

8 >999 240

Page: 1

	υ	IVI	в	E	к		
-	~	-	-			-	-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 *Except* 7-5:2x6 SP DSS WEBS 2x4 SP No.3 *Except* 8-3:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 1=0-3-8, 5=0-3-8 (size) Max Horiz 1=-84 (LC 6) Max Grav 1=8315 (LC 1), 5=9653 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-16034/0, 2-3=-10631/0, 3-4=-10630/0, 4-5=-16418/0 BOT CHORD 1-9=0/14175, 8-9=0/14175, 6-8=0/14563, 5-6=0/14563 WEBS 2-9=0/4250, 2-8=-5312/0, 3-8=0/9070, 4-8=-5745/0, 4-6=0/4654 NOTES 1) 4-ply truss to be connected together with 10d

10.0

Code

(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 00

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. All loads are considered equally applied to all plies,

- 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

Matrix-MS

- 5) chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 1 SP No.1 , Joint 5 7) SP DSS
- This truss is designed in accordance with the 2015 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Hanger(s) or other connection device(s) shall be 9) provided sufficient to support concentrated load(s) 1176 Ib down at 2-0-0, 1176 Ib down at 4-0-0, 1176 Ib down at 6-0-0, 1176 lb down at 8-0-0, 1176 lb down at 10-0-0, 1176 lb down at 12-0-0, 1269 lb down at 14-0-0, 1269 lb down at 16-0-0, 1269 lb down at 18-0-0, 1269 lb down at 20-0-0, 1269 lb down at 21-9-0, and 1348 lb down at 24-0-0, and 1184 lb down at 26-3-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-3=-58, 3-5=-58, 1-5=-19
 - Concentrated Loads (lb)
 - Vert: 5=-1184 (B), 7=-1269 (B), 14=-1176 (B), 15=-1176 (B), 16=-1176 (B), 17=-1176 (B), 18=-1176 (B), 19=-1176 (B), 20=-1269 (B), 21=-1269 (B), 22=-1269 (B), 23=-1269 (B), 24=-1348 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	C01	Monopitch Supported Gable	2	1	Job Reference (optional)	165417060

-0-11-0

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:7W4qIfoXdI2XkP_pDG3wiYzKLvG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚

Page: 1

2x4 =

3-5-8

3-5-8

3-5-8

Scale = 1:22.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL		10.0	Code	IRC2015/	TPI2014	Matrix-MP							Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wc 3-5-8 oc purl Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplit 2=	bod shea ins, exc directly :3-5-8, 4 :35 (LC :-16 (LC	athing directly applied ept end verticals. applied or 10-0-0 oc =3-5-8, 5=3-5-8 12), 5=35 (LC 12) 12), 5=-16 (LC 12)	7) 8) 9) 1 or LO /	All bearings a Provide mech bearing plate 2 and 16 lb u This truss is a International R802.10.2 an AD CASE(S)	are assumed to be nanical connection capable of withsta plift at joint 2. designed in accord Residential Code s nd referenced stan Standard	SP No. (by oth anding 1 dance wi sections dard AN	2 . ers) of truss tr 6 lb uplift at jo ith the 2015 R502.11.1 a ISI/TPI 1.	o oint nd					
FORCES	Max Grav 2= (Lu (lb) - Maximu	:195 (LC C 1) Im Com	; 1), 4=128 (LC 1), 5=	=195										
	Tension													
TOP CHORD BOT CHORD	1-2=0/17, 2-3 2-4=-35/46	3=-47/21	1, 3-4=-81/77											
NOTES														
 Wind: ASt Vasd=91r B=45ft; L= MWFRS (2-1-0, Ext and right of MWFRS (2-1-0, Ext and right of Set and a consult (3-1) Gable req d 3-0 Gable stu 5-0 This truss on the bot 3-06-00 ta chord and chord and cho	CE 7-10; Vult=1 mph; TCDL=6.0 =24ft; eave=2ft; (directional) and terior (2) 2-1-0 t exposed ;C-C fo for reactions she =1.60 studs exposed dard Industry Ga t qualified buildii uires continuou dis spaced at 2- s has been desig load nonconcue ss has been desig toom chord in al all by 2-00-00 w	15mph psf; BCI Cat. II; I d C-C Cc o 3-3-12 or memb own; Lur loads in to wind able Enc ng desig is botton of 0-0 oc. gned for rrent wit signed for I areas v ide will f nbers.	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; ormer (3) -0-11-0 to 2 zone; cantilever left bers and forces & mber DOL=1.60 plate the plane of the trus (normal to the face), d Details as applicabl iner as per ANSI/TPI n chord bearing. a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle it between the bottor	e, 1. s. sf							Within		SEA 0235	RO PA 94 94 MILLER MINING

May 8,2024

SINEEDING 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	C02	Monopitch	13	1	Job Reference (optional)	165417061

3-5-8

-0-11-0

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:BPUVRn_x5vxP1jdicvqRpjzKLv1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/7	TPI2014	CSI TC BC WB Matrix-MP	0.13 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.01	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-5-8 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	7) 	Provide mech bearing plate 2. This truss is c International R802.10.2 an D CASE(S)	nanical connection capable of withsta designed in accord Residential Code a d referenced stan Standard	anding 1 dance wi sections idard AN	ers) of truss t 6 lb uplift at j th the 2015 R502.11.1 a ISI/TPI 1.	o oint nd					
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=35 (LC Max Uplift 2=-16 (LC Max Grav 2=195 (LC	4=0-1-8 12) C 12) C 1), 4=125 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/17, 2-3=-47/2 2-4=-23/46	1, 3-4=-81/46											
NOTES													
 Wind: ASC Vasd=91m B=45ft; L=: MWFRS (c 2-1-0, Inter and right e MWFRS fc orip DOI = 	E 7-10; Vult=115mph ph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E: rior (1) 2-1-0 to 3-3-12 xposed ;C-C for meml or reactions shown; Lu 1.60	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-11-0 to 2 zone; cantilever left bers and forces & imber DOL=1.60 pla	te									TH CA	ROLIN
2) This truss	has been designed for	r a 10.0 psf bottom									33	FESS	DX Day
chord live l 3) * This truss on the bott 3-06-00 tal	load nonconcurrent wi s has been designed f om chord in all areas Il by 2-00-00 wide will any other members	ith any other live load or a live load of 20.0 where a rectangle fit between the botto	ds. psf m							THUN T		SEA	L
 Bearings a 	ire assumed to be: Joi	int 2 SP No.2 , Joint	4							Ξ	1	0235	94 <u>;</u> E
5) Bearing at using ANS	joint(s) 4 considers pa I/TPI 1 angle to grain	arallel to grain value formula. Building										N. SNGIN	ERIA
designer sl 6) Provide me bearing pla	hould verify capacity c echanical connection (ate at joint(s) 4.	of bearing surface. (by others) of truss to	D								11	WY R. I	MILLENN

May 8,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	D01	Monopitch Structural Gable	1	1	Job Reference (optional)	165417062

-0-11-0

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:nMsDyNMOoRr?FUVfwwuiZFzKLuY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-0-0

4-10-8 0-1-8 4-10-8

Scale = 1:28.5

Plate Offsets (X, Y): [2:Edge,0-0-4]

			-										
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-11-4 1.00 1.15		CSI TC BC	0.25	DEFL Vert(LL) Vert(CT)	in -0.03 -0.06	(loc) 6-9 6-9	l/defl >999 >973	L/d 360 240	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-AS	0.01	Wind(LL)	0.00	2 6-9	n/a >999	n/a 240	Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly a (size) 2=0-3-0, 5 Max Horiz 2=45 (LC 1 Max Uplit 2=-49 (LC Max Grav 2=246 (LC	athing directly applied applied. =0-1-8 12) 12), 5=-38 (LC 12) : 1), 5=183 (LC 1)	5) 6) , 7) 8) 9)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3. Bearing at jo using ANSI/7 designer sho Provide mec bearing plate Provide mec bearing plate 2 and 38 b u	has been designed in chord in all areas by 2-00-00 wide wi y other members. assumed to be: Ju int(s) 5 considers p FPI 1 angle to grain buld verify capacity hanical connection a tipint(s) 5. hanical connection a capable of withsta polifit at ioint 5.	I for a liv s where II fit betw oint 2 SF parallel t n formula of bearin n (by oth anding 4	e load of 20.0 a rectangle veen the botto P No.2 , Joint o grain value a. Building ng surface. ers) of truss t 9 lb uplift at j	Dpsf om 5 5 to to oint					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum	10)	This truss is	designed in accord	dance w	ith the 2015	and					
TOP CHORD	1-2=0/17, 2-3=-83/48 4-5=-104/78	3, 3-4=-31/30,	11)	R802.10.2 a	nd referenced stan	Idard AN	ISI/TPI 1.	unu					
BOT CHORD WEBS NOTES 1) Wind: ASC	2-6=-68/65, 5-6=0/0 3-6=-48/22 CE 7-10; Vult=115mph	(3-second gust)	LO	structural wo chord and 1/ the bottom c AD CASE(S)	ood sheathing be a 2" gypsum sheetro hord. Standard	pplied d ock be a	rectly to the toplied directly	top y to					
Vasd=91m B-45ft: L-	nph; TCDL=6.0psf; BCE 24ft: eave=4ft: Cat_II: F	DL=6.0psf; h=25ft; Exp B: Enclosed:											11111

MWFRS (directional) and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 4-10-4 zone; cantilever left and right exposed ; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

minim May 8,2024

Vanannan

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SEAL

023594

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	D02	Monopitch	9	1	Job Reference (optional)	165417063

5-0-0

-0-11-0

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:4_JI_afR8ptb7AKGKzJKXJzKLuA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.7

Plate Offsets (X, Y): [2:Edge,0-0-4]

Loading	(psf)	Spacing	2-0-0		CSI	0.21	DEFL	in 0.02	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Lumber DOL	1.00			0.31	Vert(LL)	-0.02	4-7	>999	240	WI120	244/190
BCU	10.0	Rep Stress Incr	VES		WB	0.25	Horz(CT)	-0.05	4-7	>999 n/a	240 n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-AS	0.00	Wind(LL)	0.00	4-7	>999	240	Weight: 19 lb	FT = 20%
			7)	Drouide mee		/h., ath			-	-		0	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 2=0-3-0, 4 Max Horiz 2=47 (LC Max Uplift 2=-50 (LC Max Grav 2=254 (LC)	athing directly applied applied. l=0-1-8 12) 12), 4=-39 (LC 12) 2 1), 4=189 (LC 1)	7) 8) ^{I,} 9) LO	Provide mec bearing plate 2 and 39 lb u This truss is International R802.10.2 an This truss de structural wo chord and 1/ the bottom cl	anical connection capable of withsta plift at joint 4. designed in accord Residential Code a d referenced stan sign requires that a d sheathing be ap 2" gypsum sheetro hord. Standard	anding 5 dance wi sections dard AN a minim pplied di cck be ap	ers) of truss i 0 lb uplift at j th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the i oplied directly	io int and top y to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/17, 2-3=-81/50	0, 3-4=-127/85											
BOT CHORD	2-4=-70/68												
NOTES													
 Wind: ASC Vasd=91m B=45ft; L= MWFRS (i 2-1-0, Inte and right e members : Lumber Du This truss chord live * This trus 	CE 7-10; Vult=115mph pp; TCDL=6.0psf; BCC :24ft; eave=4ft; Cat. II; directional) and C-C Ex- rior (1) 2-1-0 to 4-10-4 exposed ; porch left and and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent wi s has been designed for	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; kterior (2) -0-11-0 to zone; cantilever left d right exposed;C-C fi for reactions shown; L=1.60 • a 10.0 psf bottom th any other live loads or a live load of 20.0p	or s. sf									TH CA	ROLIN

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Bearings are assumed to be: Joint 2 SP No.2 , Joint 4 4) SP No.3.

5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	J01	Jack-Open	2	1	Job Reference (optional)	165417064

-0-11-15

2

Ø

2x4 =

2-1-6

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

0-11-15

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:fjHucw1OQFPRTss58W?XkTzKM?Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

4

in

0.00

0.00

0.00

0.00

(loc)

4-7

4-7

4-7

3

I-4-2

l/defl

>999

>999

>999

n/a n/a

L/d

360

240

240

PLATES

Weight: 8 lb

MT20

GRIP

244/190

FT = 20%

2-1-6

2-1-6

12 5.54 Г

1-11-4 CSI Plate Grip DOL 1.00 тс 0.07 BC Lumber DOL 1 15 0.03 Rep Stress Incr YES WB 0.00 IRC2015/TPI2014 Matrix-MP 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Scale = 1:22.3

Loading

TCDI

BCLL

BCDL

LUMBER

BRACING TOP CHORD

BOT CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

2x4 SP No.2

bracing.

2-1-6 oc purlins.

TCLL (roof)

REACTIONS	(size)	2=0-3-10, 3= Mechanical, 4=						
		Mechanical						
	Max Horiz	2=36 (LC 12)						
	Max Uplift	2=-21 (LC 12), 3=-7 (LC 12)						
	Max Grav	2=151 (LC 1), 3=44 (LC 1), 4=34						
		(LC 3)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
TOP CHORD	1-2=0/24,	2-3=-56/15						
BOT CHORD	2-4=-10/2	5						
NOTES								
1) Wind: AS	CE 7-10; Vu	It=115mph (3-second gust)						
Vasd=91n	nph; TCDL=	6.0psf; BCDL=6.0psf; h=25ft;						
B=45ft; L=	=24ft; eave=	4ft; Cat. II; Exp B; Enclosed;						
MWFRS (directional)	and C-C Corner (3) zone;						
cantilever left and right exposed - end vertical left and								
right expo	sed:C-C for	members and forces & MWFRS						
for reactio	ns shown: L	umber DOL=1.60 plate grip						
	· · · · · · · · · · · · · · · · · · ·							

1-9-1

DOI = 1.60This truss has been designed for a 10.0 psf bottom 2)

(psf)

20.0

10.0

0.0*

10.0

Spacing

Code

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 10-0-0 oc

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 . 4)
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 21 lb uplift at joint 2.

VIIIIII WWWWWWWWW 3594 minim

May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	J02	Jack-Open	6	1	Job Reference (optional)	165417065

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:YUWORI4vTTvtxTAsNM3TuJzKM?M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 =

1	2-0-0	

Scale =	1:22.4
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	0.00	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	4-7	>999	240		
BCLL	0.0^	Rep Stress Incr			0.00	Horz(CT)	0.00	3	n/a	n/a	Waisht Olh	FT 200/
BCDL	10.0	Code	IRC2015/1PI2014	Matrix-MP		VVINd(LL)	0.00	4-7	>999	240	vveight: 8 lb	F1 = 20%
LUMBER			7) This truss is	designed in accord	dance w	ith the 2015						
TOP CHORE	2x4 SP No.2		International	Residential Code	sections	R502.11.1 a	nd					
BOT CHORE	2x4 SP No.2		R802.10.2 a	nd referenced stan	idard AN	ISI/TPI 1.						
BRACING			LOAD CASE(S)	Standard								
TOP CHORE	O Structural wood she	athing directly applie	d or									
	2-0-0 oc purlins.	copplied or 10.0.0 or										
BUICHURL	bracing	applied of 10-0-0 00										
REACTIONS	(size) 2=0-3-8	3= Mechanical 4=										
	Mechanic	al										
	Max Horiz 2=38 (LC	12)										
	Max Uplift 2=-19 (LC	C 12), 3=-8 (LC 12)										
	Max Grav 2=147 (LC	C 1), 3=44 (LC 1), 4=	34									
	(LC 3)											
FORCES	(Ib) - Maximum Con	pression/Maximum										
TOP CHORE) 1-2=0/25, 2-3=-33/1	6										
BOT CHORE	2-4=-7/18	•										
NOTES												
1) Wind: AS	SCE 7-10; Vult=115mph	(3-second gust)										
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;										
B=45ft; L	=24ft; eave=4ft; Cat. II;	Exp B; Enclosed;										
MWFRS	(directional) and C-C E	xterior (2) zone;										1111.
right exp	osed:C-C for members	; end vertical left and	l S								"'L'H CA	Pall
for reacti	ons shown. I umber DC	1 = 1.60 plate arip	5							1	al	0111
DOL=1.6	60	2 Hoo plate grip								5.	C FESS	Vorie Main
2) This trus	s has been designed fo	r a 10.0 psf bottom								: 5		There .
chord live	e load nonconcurrent wi	ith any other live load	ls.								19	K 1 3
3) * This tru	iss has been designed f	or a live load of 20.0	psf						=	:	SEA	1 1 =
	tom chord in all areas	fit botwoon the botto	m						Ξ		OLA	5. E E
chord an	d any other members										0235	94 <u>:</u> E
 Bearings 	are assumed to be: . Jo	oint 2 SP No.2 .							-			1 3
5) Refer to	girder(s) for truss to tru	ss connections.								2	. A.	al S
6) Provide r	mechanical connection	(by others) of truss to)							21	NGINI	EFILAS
bearing p	plate capable of withstar	nding 19 lb uplift at jo	int							11	Mr -	an LE an
2 and 8 l	d uplift at joint 3.										11, R. I	MILLIN
											· · · · · · · · · ·	mu.

May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	V01	Valley	2	1	Job Reference (optional)	165417066

0-7-14

0-0-4

0-11-10

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:YI2q06IZTi3SU5z7tQtS4uzKM?5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-9

1-3-13

1-10-12

1-10-12

Page: 1

3-9-8

0-6-15

3-9-8

Scale = 1:21.9 Plate Offsets (X, Y): [2:0-2-0.Edge]

	(A, T). [2.0-2-0,Euge]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUMBER			 All bearing This truck i 	s are assumed to t	De SP INO.	.2 . ith the 2015						
TOP CHORD	2x4 SP No.2		9) This truss i	s designed in acco	o contione		and					
BOT CHURD	2X4 SP N0.2		R802 10 2	and referenced sta	andard AN	JSI/TPI 1	anu					
BRACING				Ctondord		0/1111.						
TOP CHORD	Structural wood she	eathing directly applie	ed or LUAD CASE(3) Stanuaru								
	3-9-8 oc purlins.	combined on 10,0,0 or	_									
BOICHORD		applied of 10-0-0 of	5									
REACTIONS	(SIZE) 1=3-9-8,	3=3-9-8										
		(1)										
		C 1), 3=132 (LC 1)										
FURCES	(ID) - Maximum Con	ipression/maximum										
TOP CHORD		260/70										
BOT CHORD	1-3=-52/226											
NOTES												
1) Unbalanc	ed roof live loads have	been considered for	r									
this desig	in											
 Wind: AS 	CE 7-10: Vult=115mph	(3-second aust)										
Vasd=91	mph: TCDL=6.0psf: BC	DL=6.0psf: h=25ft:										
B=45ft; L:	=24ft; eave=4ft; Cat. II;	Exp B; Enclosed;										
MWFRS	(directional) and C-C E	xterior (2) zone;										1111
cantilever	r left and right exposed	; end vertical left an	d								What CA	Dalle
right expo	osed;C-C for members	and forces & MWFR	S								ath	10/ 1/2
for reaction	ons shown; Lumber DC	0L=1.60 plate grip								5	CV .: SS	ar KI'
DOL=1.6	0									SR	aut)	Maria .
 Truss de 	signed for wind loads in	n the plane of the tru	ISS							-		K
only. For	studs exposed to wind	(normal to the face)), 						-			1 1 1
see Stand	t auglified building desi	approx por ANSI/TE								:	SEA	L : =
 Gable rec 	ruires continuous botto	m chord bearing	11.								0235	Q1 =
 Gable rec Gable stu 	ids spaced at 4-0-0 oc	in chora bearing.							-		0233	57 i E
 6) This truss 	s has been designed fo	r a 10.0 psf bottom							-		1	1 E
chord live	e load nonconcurrent wi	ith any other live load	ds.							1	N. E.	Rial
7) * This true	ss has been designed f	for a live load of 20.0	psf							24	GIN	EFERCE
on the bo	ttom chord in all areas	where a rectangle								11	NV-	an Levis
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	m								11, R.	Minin
chord and	d any other members.										in nun	IIIII.
											Ma	ay 8,2024
												, , -
WAR WAR	NING - Verify design parameter	ers and READ NOTES ON	THIS AND INCLUDED MITEK	REFERENCE PAGE MI	I-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINEER	RING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	V02	Valley	2	1	Job Reference (optional)	165417067

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:B3mMXDR5eOZlwxuRay4GZQzKM_v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-9-8

Scale = 1:24.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.17 0.18 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=7-9-8, 3 Max Horiz 1=23 (LC Max Grav 1=81 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-89/244, 2-3=-8: 1-4=-193/83, 3-4=-19 2-4=-355/98	athing directly applied applied. 3=7-9-8, 4=7-9-8 11) 21), 3=81 (LC 22), 4 pression/Maximum 9/244 93/83	7) 3. 9) 10 =512 LC	* This truss on the botto 3-06-00 tall chord and a All bearings This truss is Internationa R802.10.2 a 1) This truss dr structural wo chord and 1. the bottom c DAD CASE(S)	has been designi m chord in all are by 2-00-00 wide in y other member are assumed to I designed in accc I Residential Cod In referenced st asign requires tha bod sheathing be (2" gypsum shee shord. Standard	ed for a liv as where will fit betw rs. be SP No. ordance w le sections andard AN at a minim applied di trock be a	e load of 20.0 a rectangle veen the botto 2. K502.11.1 a (SI/TPI 1. um of 7/16" rectly to the t oplied directly	Dpsf om Ind top y to						
NOTES														

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 3-11-4, Exterior (2) 3-11-4 to 6-7-11, Interior (1) 6-7-11 to 7-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

and a state of the Mannan and States SEAL 23594 11111111111

May 8,2024

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	V03	Valley	2	1	Job Reference (optional)	165417068

5-10-12

5-10-12

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:0D8dnGWsEEKvesLbwCBgphzKM_p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-9-8 11-2-9 5-3-13 0-6-15

11-9-8

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 40 lb	FT = 20%
													-	
LUMBER				6)	This truss ha	s been designed f	tor a 10.0) psf bottom	-1 -					
TOP CHORD	2x4 SP No	.2			chord live loa		with any	other live load	as.					
BOICHORD	2x4 SP No	0.2		()	on the botton	as been designed	s whore	e ioau oi 20.0	psi					
OTHERS	2x4 SP No	.3			3-06-00 tall h	2.00-00 wide wi	ill fit hotu	a rectangle	m					
BRACING	o				chord and an	v other members								
TOP CHORD	Structural	wood shea	athing directly applie	ed. 8)	All bearings a	are assumed to be	e SP No.	2.						
BOICHORD	Rigia cellir	ng directly	applied.	9)	This truss is	designed in accord	dance w	ith the 2015						
REACTIONS	(size)	1=11-9-8,	5=11-9-8, 6=11-9-8,	, -,	International	Residential Code	sections	R502.11.1 a	nd					
	Max Hariz	7=11-9-8	10)		R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.						
		1=-30 (LC	10) 1) 5-120 (I C 1) 6	10) This truss de	sign requires that	a minim	um of 7/16"						
	Max Grav	1=129 (LC (I C 1) 7-	342 (LC 1))=34Z	structural wo	od sheathing be a	pplied d	rectly to the t	ор					
FORCES	(lb) Mavi	(LO I), I =	prossion/Maximum		chord and 1/2	2" gypsum sheetro	ock be a	oplied directly	/ to					
FORCES	(ID) - Maxii		pression/maximum		the bottom cl	hord.								
TOP CHORD	1-2=-200/5	58 2-3=-54	5/35 3-4=-55/35	LC	DAD CASE(S)	Standard								
	4-5=-200/5	58 58	<i>b/00, 0 1– 00/00,</i>											
BOT CHORD	1-7=-33/17	73, 6-7=-3	3/53, 5-6=-33/173											
WEBS	2-7=-241/8	33, 4-6=-24	41/85											
NOTES														
1) Unbalance	ed roof live lo	ads have	been considered for											
this desig	n.													
2) Wind: AS	CE 7-10; Vult	t=115mph	(3-second gust)											llin.
Vasd=91n	nph; TCDL=6	6.0psf; BC	DL=6.0psf; h=25ft;										What CA	Dalle
B=45ft; L=	=24ft; eave=4	ft; Cat. II;	Exp B; Enclosed;									N	"ath on	TO 11
MWFRS (directional) a	ind C-C E	kterior (2) 0-0-8 to 3-	-0-8,								5	05-1588	ide Alt
Interior (1) 3-0-8 to 5-1	1-4, Exter	ior (2) 5-11-4 to 8-11	1-4,								No.	ab II	This is
Interior (1)) 8-11-4 to 1 ⁻	1-10-0 zon	e; cantilever left and									1	:0	and the second s
fight expo	sea ; ena vel		nd right exposed;C-C											
		to arin DO		wri,								:	SEA	L : =
Lumber D	OL=1.60 pia	te grip DO	L=1.00								=		0235	ο <i>ι</i> Ξ
3) Truss des	signed for wi	nd loads in	the plane of the true	ss							=		0235	57 I E
only. For	studs expose	ed to wind	(normal to the face)											1 S - S -
see Stand	lard Industry	Gable End	d Details as applicab	ole,								1	N. E.	Rias
or consult	qualified bui	lding desig	gner as per ANSI/TP	PI 1.								21	GIN	25 1 N S
4) Gable req	uires continu	ous bottor	n chord bearing.									11	NV -	an Levis
5) Gable stu	ds spaced at	4-0-0 oc.											11. R. I	MILLIN

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

C. Minnin

May 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	V04	Valley	1	1	Job Reference (optional)	165417069

TCDI

BCLL

BCDL

1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:17 ID:0mBUwuwBDgc4j4x7wLoeBszKM_H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		Value Build Homes - Carter	
Q2400926-27	V05	Valley	1	1	Job Reference (optional)	l65417070

4) Gable requires continuous bottom chord bearing.

May 8,2024

Job	Truss	Truss Type	Qty	Ply	Value Build Homes - Carter	
Q2400926-27	V06	Valley	1	1	Job Reference (optional)	165417071

9-10-12

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:18 ID:GmmJNnEV6ftOr4w7RpGkFLzKLzt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

19-2-9

19-9-8

Scale = 1:38.9 Plate Offsets (X, Y): [4:0-2-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.19 0.14 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=19-9-8, 9=19-9-8, Max Horiz 1=61 (LC Max Uplift 8=-14 (LC Max Grav 1=133 (LC (LC 22), S (LC 17), 1 (lb) - Maximum Com Tension	athing directly applie applied. 7=19-9-8, 8=19-9-8 11=19-9-8, 12=19-9 11) 212), 12=-15 (LC 12 C 1), 7=102 (LC 1), 8 =340 (LC 18), 11=3- 12=365 (LC 21) appression/Maximum	3) d. 5) 6) 7) -8 8) =361 42 9) 10	Truss desig only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar All bearings)) Provide mec bearing plate 12 and 14 lb	ned for wind loads ids exposed to wind d Industry Gable E lalified building de 2X4 MT20 unless es continuous bott spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members, are assumed to be hanical connection e capable of withst unlift at joint 8	in the p and (norm and Deta signer as otherwit tom chor c. for a 10.0 with any d for a liv s where all fit betw , with BC e SP No. n (by oth anding 1	lane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss tr 5 lb uplift at jo	ss ble, bl 1. ds. psf om obint					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Tension12 and 14 lb uplift at joint 8.1 -2=-209/54, 2-3=-79/38, 3-4=-70/41, 4-5=-70/41, 5-6=-79/37, 6-7=-184/4812 and 14 lb uplift at joint 8.1 -12=-31/192, 11-12=-31/79, 9-11=-31/79, 8-9=-31/79, 7-8=-31/16411) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.2-12=-255/78, 3-11=-221/77, 6-8=-253/84, 5-9=-222/7711) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.												RO

- this desian
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 9-11-4, Exterior (2) 9-11-4 to 12-11-4, Interior (1) 12-11-4 to 19-3-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

OAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty		Value Build Homes - Carter	
Q2400926-27	V07	Valley	1	1	Job Reference (optional)	l65417072

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Tue May 07 13:10:18 ID:RtwThYNOW2GqfmGEbdzJBfzKLzi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45

Plate Offsets (X, Y): [10:0-2-8,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.18 0.18 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR REACTION	D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she D Rigid ceiling directly S (size) 1=23-9-8 9=23-9-8 12=23-9- Max Horiz 1=75 (LC Max Uplift 8=-14 (LC 11=-18 (L 8=353 (L 10=450 (12=353 ((lb) - Maximum Con Tension D 1-2=-164/127, 2-3=: 4-5=-22/100, 5-6=-1	eathing directly applied (* applied. , 7=23-9-8, 8=23-9-8, , 10=23-9-8, 11=23-9 (* 11) 2 12), 9=-20 (LC 12), C 12), 9=-20 (LC 12), C 12), 7=-111 (LC 22) C 1), 9=352 (LC 18), LC 17), 11=361 (LC 12), LC 17), 11=361 (LC 12), LC 17), 11=361 (LC 12), 10, 9=352 (LC 18), LC 17), 11=361 (LC 12), 10, 9=352 (LC 18), LC 17), 11=361 (LC 12), 10, 9=352 (LC 18), LC 17), 11=361 (LC 12), 10, 9=352 (LC 18), 10, 9=352 (LC 18), 10, 9=352 (LC 18), 10, 9=352 (LC 18), 10, 9=352 (LC 18), 11, 9=352 (LC 18), 12, 9=352 (LC 18), 13, 9=352 (LC 18), 14, 9=352 (LC	3) ed. 5) 6) 7) 9-8, 8) 2) 9) 1, 10 17), 11	Truss design only. For stu see Standard or consult qu All plates are Gable require Gable studs : This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and ar All bearings late 12, 18 lb upli uplift at joint) This truss is International R802.10.2 ar) This truss de	need for wind loads i ds exposed to wind d Industry Gable Er alified building des 2x4 MT20 unless es continuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed m n chord in all areas y 2-00-00 wide will y 2-00-00 wide will g 2-00-00 wide will g 2-00-00 wide will y 2-00-00 wide will g 2-00-00 wide will y 2-00-00 wide will g 2-00-00 wide will y 2-00-00 wi	in the pi d (norm and Deta igner as otherwi orm chor or a 10.0 vith any for a 10.0 vit	ane of the tru al to the face is as applical per ANSI/TF se indicated. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 4 lb uplift at ji joint 8 and 20 th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16"	iss), ole, PI 1. ds. opsf om o oint) Ib nd						
BOT CHOR WEBS	D 1-12=-53/149, 11-12 8-9=-57/52, 7-8=-57 2-12=-245/75, 3-11: 5-9=-252/91, 4-10-	2=-53/52, 9-11=-57/5 7/137 =-252/91, 6-8=-245/7 -264/0	2, 5,	structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.								TH CA	ROI	
NOTES 1) Unbala this des 2) Wind: A Vasd=9 P. 454	nced roof live loads have ign. SCE 7-10; Vult=115mpt 1mph; TCDL=6.0psf; BC	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp. B: Enclosed								THUN T	X	SEA	W.L.	ALCONTRA
B=45ft; MWFR Interior 14-11-4 left and expose reactior DOL=1	L=241; eave=417; Cat. II; § (directional) and C-C E (1) 3-0-8 to 11-11-4, Ext , Interior (1) 14-11-4 to 2 right exposed ; end vert d;C-C for members and f s shown; Lumber DOL= 60	Exp B; Enclosed; ixterior (2) 0-0-8 to 3- erior (2) 11-11-4 to 32-10-0 zone; cantilev ical left and right forces & MWFRS for 1.60 plate grip	·0-8, ver							THE.	annun in		ER. FA	unna.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

