

RE: J0124-0187 Lot 1 Jenkins Street Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0124-0187 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

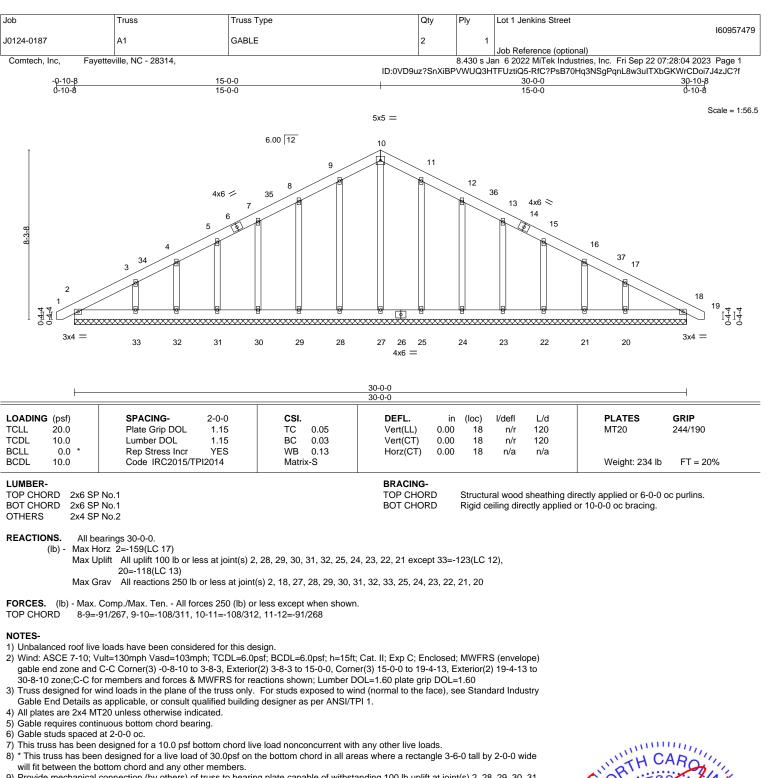
This package includes 5 individual, dated Truss Design Drawings and 0 Additional Drawings.

Seal#	Truss Name	Date
160957479	A1	9/22/2023
160957480	A2	9/22/2023
160957481	A3	9/22/2023
160957482	A4	9/22/2023
160957483	A6	9/22/2023
	I60957479 I60957480 I60957481 I60957482	160957479A1160957480A2160957481A3160957482A4

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

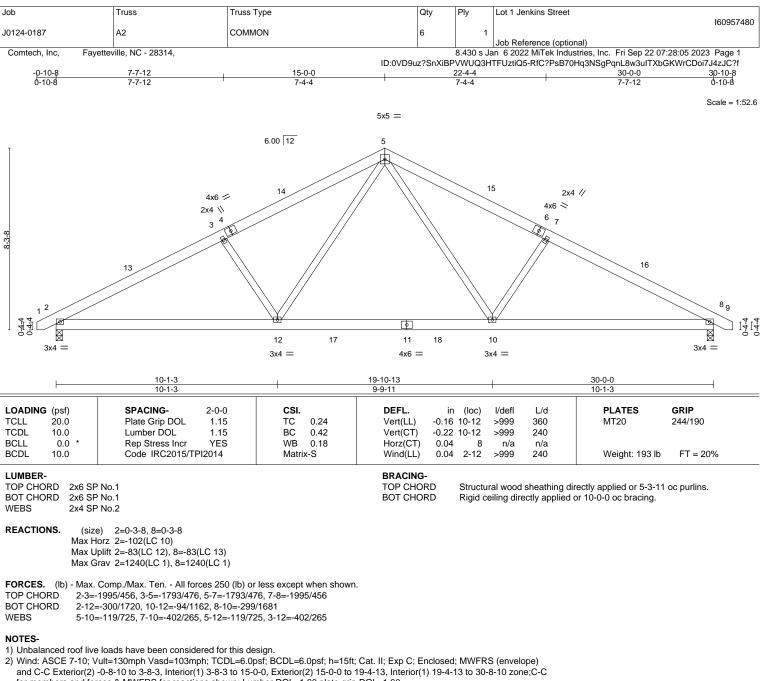
based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



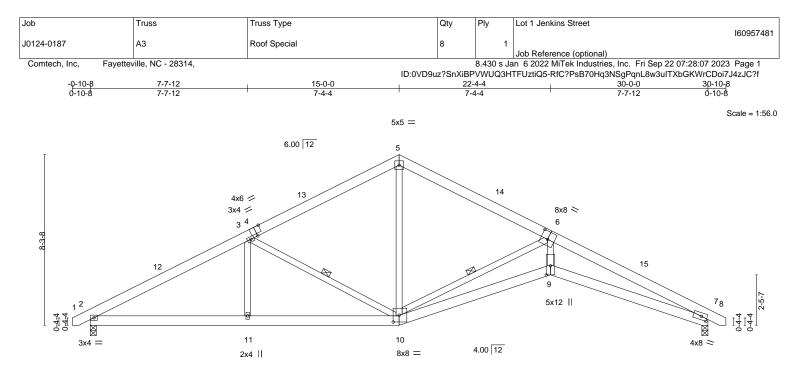
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 28, 29, 30, 31, 32, 25, 24, 23, 22, 21 except (jt=lb) 33=123, 20=118.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

	1	7-7-12	1	15-0	0-0	1	22-4-	4		1	30-0-0	1	
	Γ	7-7-12	1	7-4	-4	1	7-4-4	4		1	7-7-12		
Plate Off	sets (X,Y)	[4:0-3-0,Edge], [6:0-4-0,0	0-4-8], [7:0-3-6,	0-2-0], [9:0-5	5-5,0-2-8], [10	0:0-3-8,0-4-0]							
LOADIN	C (nof)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
	· · · ·							(100)			-		
TCLL	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.27	9	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.54	9-10	>665	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.32	7	n/a	n/a			

Wind(LL)

BRACING-

WEBS

TOP CHORD

BOT CHORD

0.18

9 >999

1 Row at midpt

240

Rigid ceiling directly applied or 9-4-14 oc bracing.

Structural wood sheathing directly applied or 3-1-1 oc purlins.

3-10, 6-10

LUMBER-

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

10.0

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=103(LC 11) Max Uplift 2=-83(LC 12), 7=-83(LC 13) Max Grav 2=1240(LC 1), 7=1240(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2036/433, 3-5=-1408/405, 5-6=-1371/402, 6-7=-4593/848 TOP CHORD

Code IRC2015/TPI2014

BOT CHORD 2-11=-279/1700, 10-11=-279/1700, 9-10=-690/4077, 7-9=-700/4144

WFBS

3-11=0/327, 3-10=-648/219, 5-10=-123/716, 6-10=-3095/641, 6-9=-338/2706

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

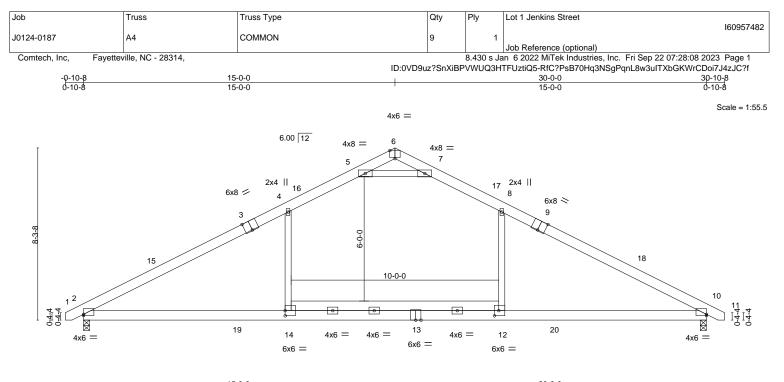
Matrix-S

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.



FT = 20%

Weight: 198 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

				30-0-0		
15-0-0		I		15-0-0		I
[2:0-0-0,0-0-11], [3:0-4-0,Edge], [6:0-3-0),Edge], [9:0-4-0,Edge], [1	<u>0:0-0-0,0-0-11], [12:0-2</u>	-8,0-3-0], [14:0-0-	0,0-3-0]		
SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d	PLATES	GRIP
Plate Grip DOL 1.15	TC 0.97	Vert(LL) -0.47	10-12 >753	360	MT20	244/190
Lumber DOL 1.15	BC 0.66	Vert(CT) -0.67	10-12 >533	240		
Rep Stress Incr YES	WB 0.84	Horz(CT) 0.06	10 n/a	n/a		
Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.26	2-14 >999	240	Weight: 197 lb	FT = 20%
P 2400F 2.0E *Except* 11: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD		0	· · · ·	
P No.1						
2x6 SP No.1						
F	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC 0.97 Lumber DOL 1.15 BC 0.66 Rep Stress Incr YES WB 0.84 Code IRC2015/TPI2014 Matrix-S 2400F 2.0E *Except* 11: 2x6 SP No.1 >No.2 *Except*	SPACING- 2-0-0 CSI. DEFL. ir Plate Grip DOL 1.15 TC 0.97 Vert(LL) -0.47 Lumber DOL 1.15 TC 0.97 Vert(LL) -0.47 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.67 Rep Stress Incr YES WB 0.84 Horz(CT) 0.06 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.26 P 2400F 2.0E *Except* TOP CHORD BOT CHORD BOT CHORD P No.1 No.1 P No.2 *Except* TOP CHORD BOT CHORD	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl Plate Grip DOL 1.15 TC 0.97 Vert(LL) -0.47 10-12 >753 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.67 10-12 >753 Rep Stress Incr YES WB 0.84 Horz(CT) 0.06 10 n/a Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.26 2-14 >999 2400F 2.0E *Except* TOP CHORD Structural wood BOT CHORD Structural wood No.1 No.2 *Except* Po.2 *Except* TOP CHORD Rigid ceiling dire	Plate Grip DOL 1.15 TC 0.97 Vert(LL) -0.47 10-12 >753 360 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.67 10-12 >533 240 Rep Stress Incr YES WB 0.84 Horz(CT) 0.06 10 n/a n/a Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.26 2-14 >999 240 P 2400F 2.0E *Except* TOP CHORD Structural wood sheathing di BOT CHORD Rigid ceiling directly applied P No.1 No.2 *Except* BOT CHORD Rigid ceiling directly applied	SPACING- 2-0-0 CSI. DEFL. in (loc) l/deft L/d PLATES Plate Grip DOL 1.15 TC 0.97 Vert(LL) -0.47 10-12 >753 360 MT20 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.67 10-12 >753 360 MT20 Rep Stress Incr YES WB 0.84 Horz(CT) 0.06 10 n/a n/a Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.26 2-14 >999 240 Weight: 197 lb P 2400F 2.0E *Except* TOP CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. P No.1 >No.2 *Except* No.2 *Except* Second BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Max Horz 2=-102(LC 10) Max Uplift 2=-83(LC 12), 10=-83(LC 13) Max Grav 2=1541(LC 2), 10=1541(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2470/382, 4-5=-1923/451, 5-6=-356/2009, 6-7=-356/2009, 7-8=-1923/451, 8-10=-2471/382

- BOT CHORD 2-14=-182/2021, 12-14=-185/2023, 10-12=-182/2021
- WEBS 4-14=0/850, 8-12=0/851, 5-7=-4267/875

NOTES-

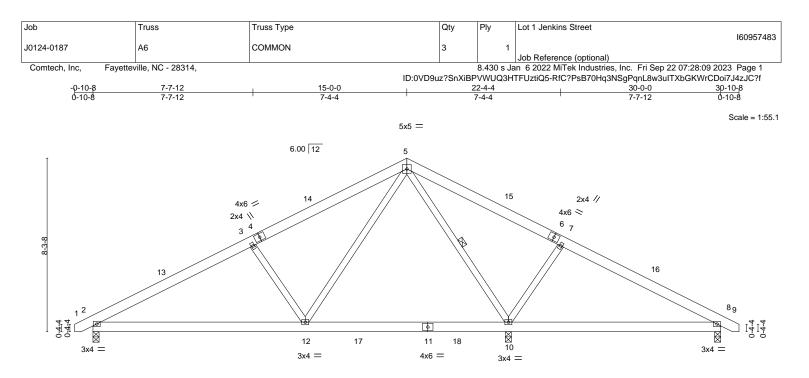
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

			<u>19-10-4</u> 9-8-8		30-0-0 10-1-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.27 BC 0.33 WB 0.33	DEFL. in (loc) Vert(LL) -0.14 10-12 Vert(CT) -0.15 10-12 Horz(CT) 0.01 8	l/defl L/d >999 360 >999 240 n/a n/a	PLATES GRIP MT20 244/190	
SCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 2-12		Weight: 193 lb FT = 20%	
_UMBER-			BRACING-			

TOP CHORD

BOT CHORD

WEBS

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. 8=0-3-8, 10=0-3-8, 2=0-3-8 (size) Max Horz 2=-102(LC 10) Max Uplift 8=-44(LC 13), 10=-58(LC 13), 2=-69(LC 12) Max Grav 8=376(LC 24), 10=1371(LC 2), 2=787(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-1048/262, 3-5=-829/280, 5-7=0/281 TOP CHORD

BOT CHORD 2-12=-131/915, 10-12=0/317

WEBS 3-12=-435/274, 5-12=-126/755, 5-10=-856/202, 7-10=-474/283

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-0-0, Exterior(2) 15-0-0 to 19-4-13, Interior(1) 19-4-13 to 30-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

5-10

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

LUMBER-

