

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 74 FaNC MERLOT 4

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

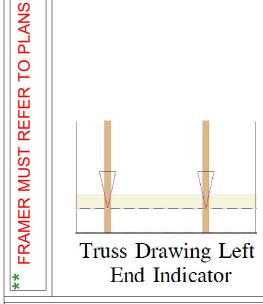
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

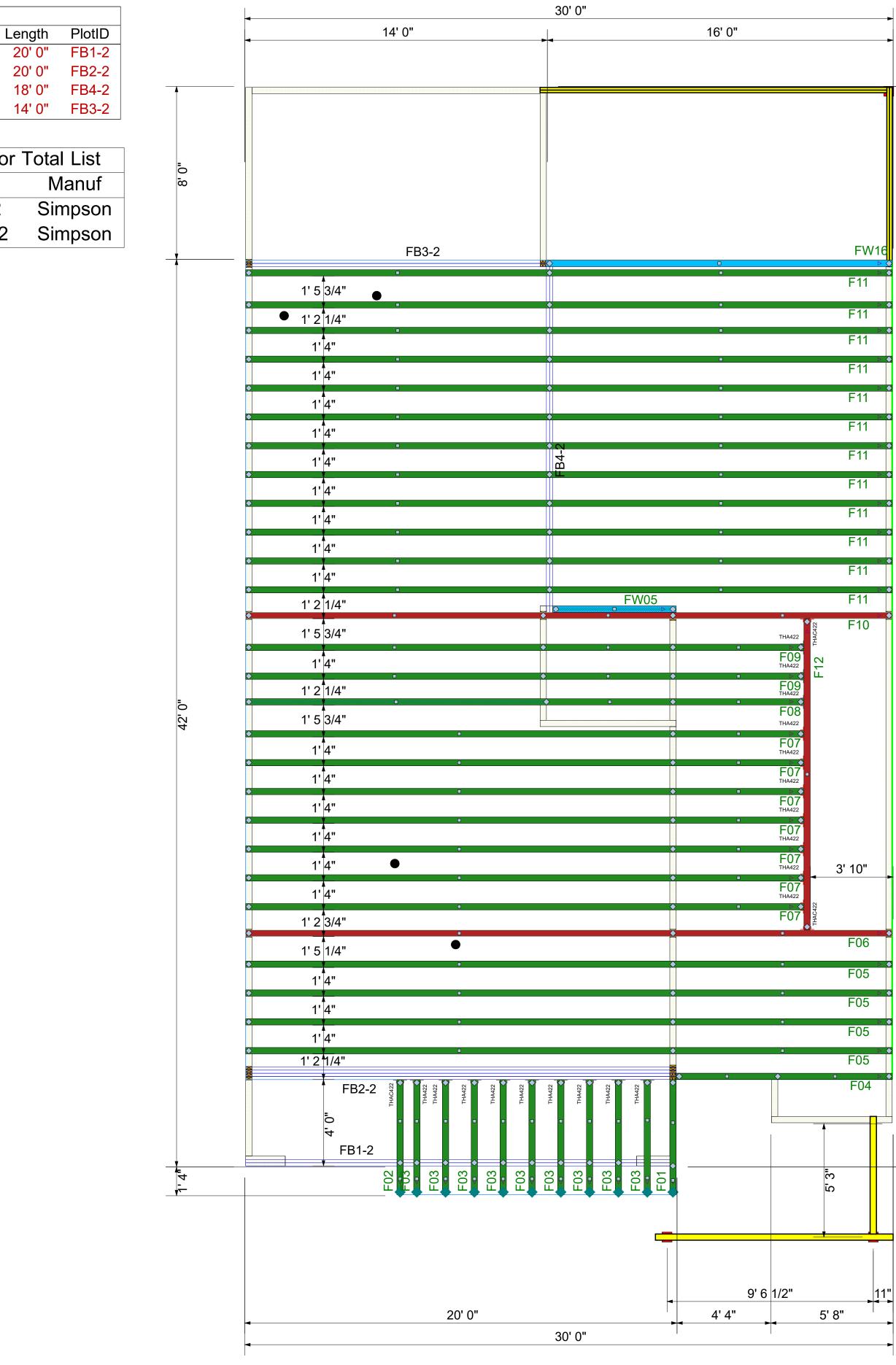
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

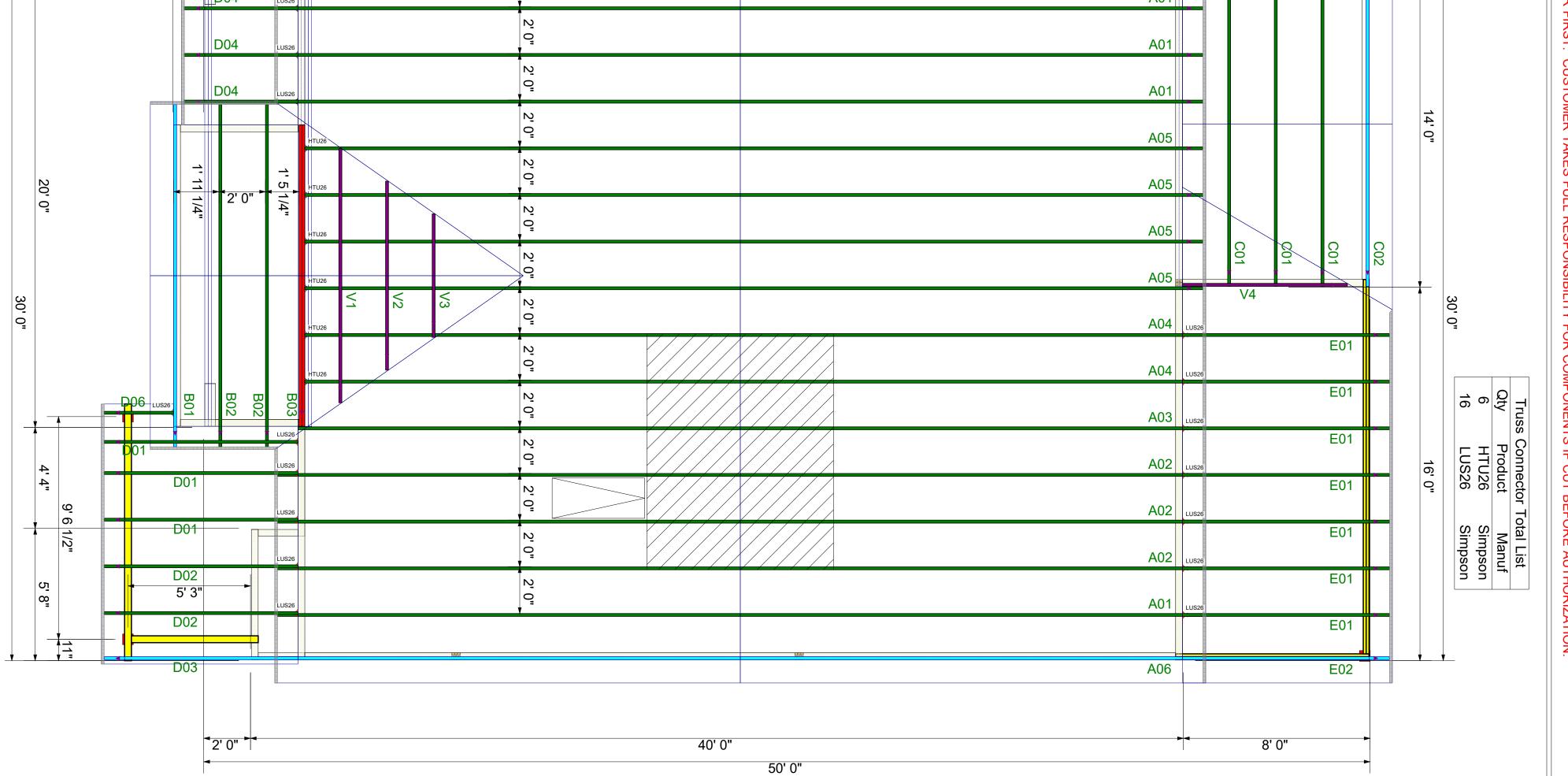

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____


			Products	
Fab Type	Net Qty	Plies	Product	L
FF	2	2	2.0 RigidLam DF LVL 1-3/4 x 11-7/8	
FF	4	4	2.0 RigidLam DF LVL 1-3/4 x 14	
FF	2	2	2.0 RigidLam DF LVL 1-3/4 x 14	
FF	2	2	2.0 RigidLam DF LVL 1-3/4 x 14	

Truss	Connecto
Qty	Product
20	THA422
3	THAC422


MUST

IER

	ALLED PRIOR TO SETTING ANY COMPONENTS.		F 00/00/ 00/00/ 00/00/ 00/00/	00 Name 00 Name 00 Name 00 Name
8. O		TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWIS	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
	50' 0"	** TRUSS		Sompany
14' 5" 40' 0"		ARE READ AS: FOOT-INCH-SIXTEENTH.		A Division of the Genter Lumber Company
		** DIMENSIONS ARE READ		V U U U U U U U U U
8' 11 1/2" 2' 0"		CTED TOGETHER PRIOR TO ADDING ANY LOADS.	DRB HOMES	74 FARM AT NEILLS CREEK MERLOT 4 COMPONENT PLACEMENT PLAN
		GIRDERS MUST BE FULLY CONNECT		NTS 2/26/2024 Designer: ND Project Number: 24020112 Sheet Number:

* FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
TRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
1' 4 [*]	42' 0"	
* PC	1' 11 1/4"	A06

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

** ALL BEARING POINT

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

00/00/00

Name

00/00/00

Name

Revisions

RE: 24020112 DRB - 74 FaNC **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 24020112 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	163274306	A01	1/29/2024	21	163274326	F02	1/29/2024
•							
2	163274307	A02	1/29/2024	22	163274327	F03	1/29/2024
3	163274308	A03	1/29/2024	23	163274328	F04	1/29/2024
4	163274309	A04	1/29/2024	24	163274329	F05	1/29/2024
5	163274310	A05	1/29/2024	25	163274330	F06	1/29/2024
6	163274311	A06	1/29/2024	26	163274331	F07	1/29/2024
7	163274312	B01	1/29/2024	27	163274332	F08	1/29/2024
8	163274313	B02	1/29/2024	28	163274333	F09	1/29/2024
9	163274314	B03	1/29/2024	29	163274334	F10	1/29/2024
10	163274315	C01	1/29/2024	30	163274335	F11	1/29/2024
11	163274316	C02	1/29/2024	31	163274336	F12	1/29/2024
12	163274317	D01	1/29/2024	32	163274337	FW05	1/29/2024
13	163274318	D02	1/29/2024	33	163274338	FW16	1/29/2024
14	163274319	D03	1/29/2024	34	163274339	V1	1/29/2024
15	163274320	D04	1/29/2024	35	163274340	V2	1/29/2024
16	163274321	D05	1/29/2024	36	163274341	V3	1/29/2024
17	163274322	D06	1/29/2024	37	163274342	V4	1/29/2024
18	163274323	E01	1/29/2024				
19	163274324	E02	1/29/2024				
20	163274325	F01	1/29/2024				

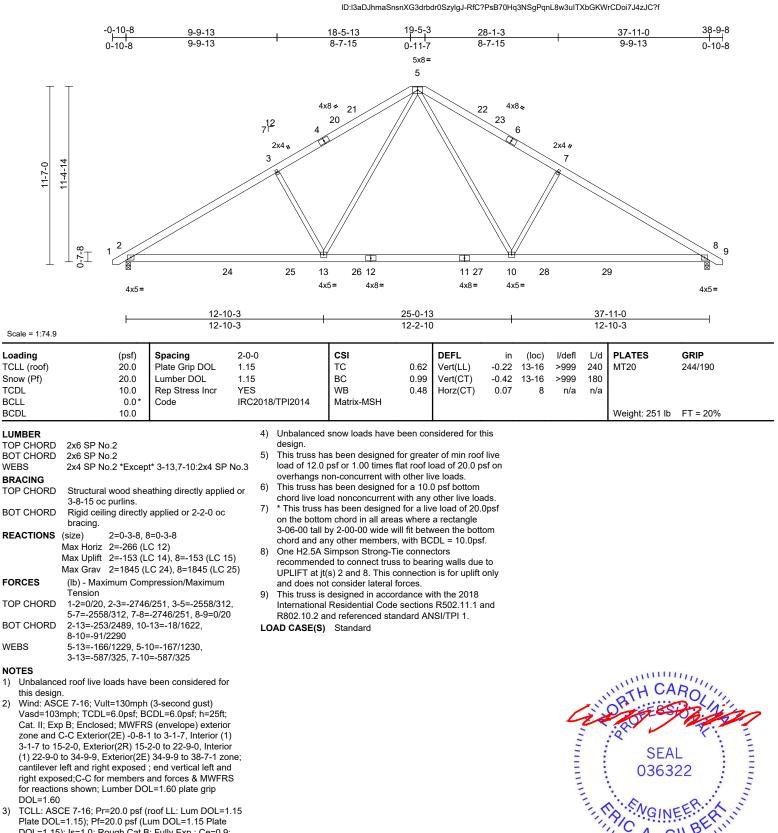
The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024


North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A01	Common	4	1	Job Reference (optional)	163274306

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Fri Jan 26.10:37:55

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 3-1-7, Interior (1) 3-1-7 to 15-2-0, Exterior(2R) 15-2-0 to 22-9-0, Interior (1) 22-9-0 to 34-9-9, Exterior(2E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

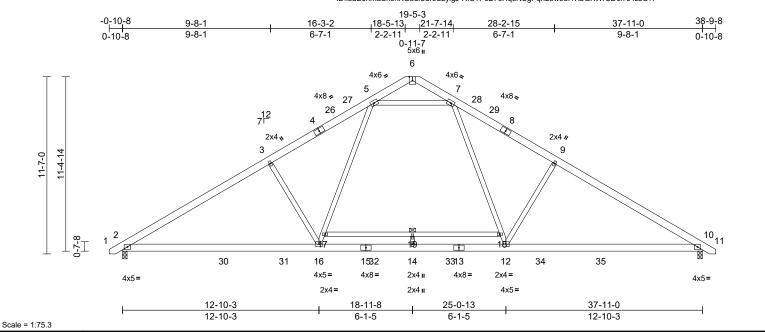
2)

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GILB

mumm


January 29,2024

036322

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A02	Common	3	1	Job Reference (optional)	163274307

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 26.10:37:58 ID:I3aDJhmaSnsnXG3drbdr0SzylgJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [6:0-0-1,Edge], [9:0-0-0,0-0-0]

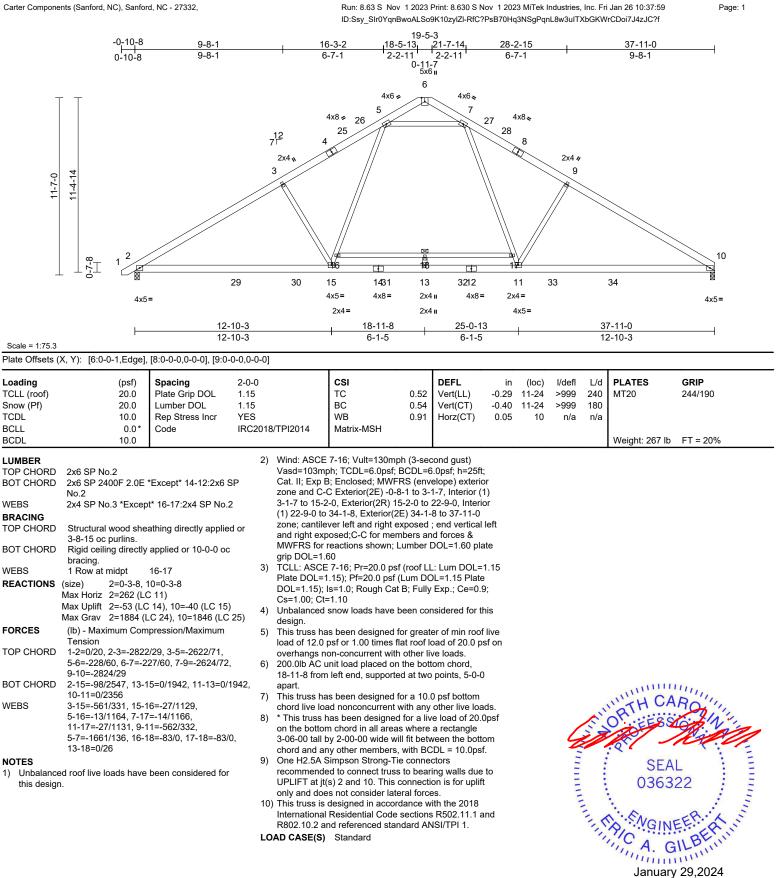
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.29	12-25	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.40	12-25	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 269 lb	FT = 20%
LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)												

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP 2400F 2.0E *Except* 15-13:2x6 SP No.2
WEBS	2x4 SP No.3 *Except* 17-18:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-9-1 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	1 Row at midpt 17-18
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=266 (LC 13)
	Max Uplift 2=-53 (LC 14), 10=-53 (LC 15)
	Max Grav 2=1884 (LC 24), 10=1884 (LC 25)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/20, 2-3=-2822/28, 3-5=-2622/70,
	5-6=-228/60, 6-7=-227/60, 7-9=-2622/70,
	9-10=-2822/28, 10-11=0/20
BOT CHORD	2-16=-93/2551, 14-16=0/1946,
	12-14=0/1946, 10-12=0/2352
WEBS	16-17=-27/1129, 5-17=-13/1164,
	7-18=-14/1164, 12-18=-27/1129,
	17-19=-83/0, 18-19=-83/0, 14-19=0/26,
	5-7=-1661/136, 3-16=-561/331,
	9-12=-561/331
NOTES	

1) Unbalanced roof live loads have been considered for this design.

Vult=130mp Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 3-1-7, Interior (1) 3-1-7 to 15-2-0, Exterior(2R) 15-2-0 to 22-9-0, Interior (1) 22-9-0 to 34-9-9, Exterior(2E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

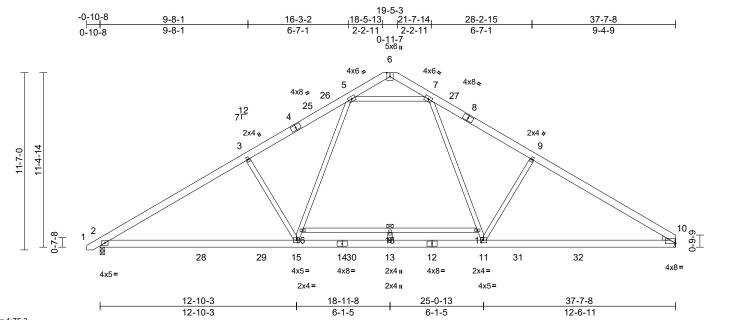
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) 200.0lb AC unit load placed on the bottom chord, 18-11-8 from left end, supported at two points, 5-0-0 apart.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A03	Common	1	1	Job Reference (optional)	163274308


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A04	Common	2	1	Job Reference (optional)	163274309

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:37:59 ID:Ssy SIr0YqnBwoALSo9K10zylZI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.3 Plate Offsets (X, Y): [6:0-0-1,Edge], [10:Edge,0-0-5]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.30	15-21	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.41	15-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.06	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 266 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2 *Except* 2-14:2x6 SP 2400F 2.0E
WEBS	2x4 SP No.3 *Except* 16-17:2x4 SP No.2
WEDGE	Right: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-9-11 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.
WEBS	1 Row at midpt 16-17
REACTIONS	(size) 2=0-3-8, 10= Mechanical
	Max Horiz 2=262 (LC 11)
	Max Uplift 2=-54 (LC 14), 10=-36 (LC 15)
	Max Grav 2=1870 (LC 24), 10=1834 (LC 25)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/20, 2-3=-2798/29, 3-5=-2598/71,
	5-6=-209/62, 6-7=-228/60, 7-9=-2546/75,
	9-10=-2769/33
BOT CHORD	2-15=-101/2525, 13-15=0/1907,
	11-13=0/1907, 10-11=-47/2277
WEBS	3-15=-569/331, 15-16=-27/1145,
	5-16=-13/1180, 7-17=-21/1086,
	11-17=-35/1051, 9-11=-521/333,
	5-7=-1643/137, 16-18=-79/0, 17-18=-79/0,
	13-18=0/29
NOTES	

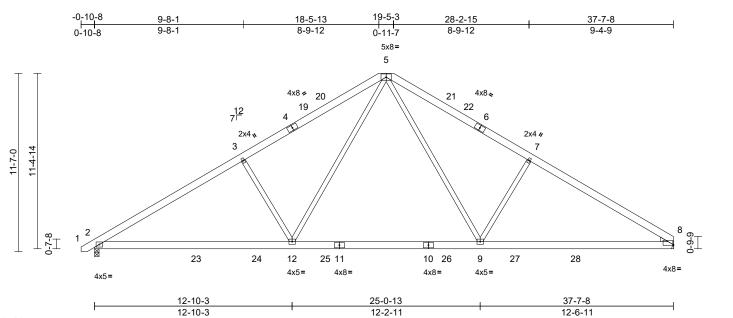
this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 3-1-7, Interior (1) 3-1-7 to 15-2-0, Exterior(2R) 15-2-0 to 22-9-0, Interior (1) 22-9-0 to 33-10-0, Exterior(2E) 33-10-0 to 37-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) 200.0lb AC unit load placed on the bottom chord, 18-11-8 from left end, supported at two points, 5-0-0 apart.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 10.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 1

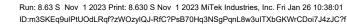

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A05	Common	4	1	Job Reference (optional)	163274310

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:00 ID:wHwVZvr8kEGpQ14gVz3e8czylS?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.9


riate Offsets (X,	Y): [8:Edge,0-0-9]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL BCDL LUMBER TOP CHORD 2 BOT CHORD 2 WEDGE F BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD 5 BOT CHORD 7 BOT 7	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x6 SP No.2 2x6 SP No.3 *Excep Right: 2x4 SP No.3 *Excep Right: 2x4 SP No.3 Structural wood she 3-7-11 oc purlins. Rigid ceiling directly bracing. size) 2=0-3-8, 8 fax Horiz 2=262 (L0 fax Uplift 2=-153 (L fax Grav 2=1831 (L (lb) - Maximum Com Tension 1-2=0/20, 2-3=-2727 5-7=-2479/305, 7-8= 2-12=-268/2469, 9-1 8-9=-122/223 3-12=-568/325, 5-12 5-9=-156/1147, 7-9=	B= Mechanical C 11) C 14), 8=-137 (LC 1) LC 24), 8=1792 (LC 2) upression/Maximum 7/251, 3-5=-2527/307 -2701/249 12=-27/1592, 2=-161/1225, 556/322 been considered for (3-second gust)	3) do.2 4) dor 5) 6) 7) 5) 25) 8) 7, 9) 7, 1(1 ¹	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate joint 8. 0) One H2.5A S recommende UPLIFT at j(to does not cor 1) This truss is International	snow loads have I so been designed f pon-concurrent with so been designed f ad nonconcurrent vith has been designed n chord in all area yo 2-00-00 wide wi yo other members, er(s) for truss to tru- hanical connection e capable of withst Simpson Strong-Ti ed to connect truss s) 2. This connect sider lateral forces designed in accord Residential Code nd referenced star	(Lum DC B; Fully been cor for great a troof la o ther liv or a 10.0 with any I for a liv s where II fit betw with BC uss conre- to (by oth anding 1 e conne- to bear ion is for s. dance w sections	DL=1.15 Plate Exp.; Ce=0. Isidered for t er of min roo and of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss 37 lb uplift a ctors ing walls due uplift only an the the 2018 R502.11.1 a	e 9; his f live sof on ads. Opsf com f. to t t to to t	(loc) 12-15 12-15 8	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB A. GILIN January 29,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A06	Common Supported Gable	2	1	Job Reference (optional)	163274311

Plate Offsets (X, Y): [9:0-5-0,0-4-8], [15:0-5-0,0-4-8]

- 1410 0110010 (X, T). [3.0-3-0,0-4-0]; [10:0-0-0;0-4-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.06 BC 0.04 WB 0.15 Matrix-MSH Max Grav 2=178 (LC 11), 2 24=138 (LC 25),	Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a -	l/defl n/a n/a n/a		PLATES MT20 Weight: 317 lb =-192/57, 11-35= =-192/85, 9-38=-	
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Exce Structural wood sh 6-0-0 oc purlins.	pt* 34-12:2x4 SP No.2 eathing directly applied y applied or 10-0-0 oc		28=167 (LC 25), 30=169 (LC 22), 33=240 (LC 22), 35=240 (LC 21), 38=169 (LC 21), 40=167 (LC 24),	, 27=167 (LC 25), , 29=162 (LC 25), , 31=232 (LC 22), , 34=216 (LC 15), , 37=232 (LC 21), , 39=162 (LC 24), , 41=167 (LC 24),	NOTES	6	4-43= 14-31 16-29 18-27		127/75, 126/74,
	1 Row at midpt (size) 2=37-11 26-37-1 28-37-1 30-37-1 33=37-1 33=37-1 35=37-1 38-37-1 40=37-1 40=37-1 42=37-1 44=37-1 48=37-1 Max Horiz 2=-269 (Max Uplift 2=-118 (24=-76 (26=-51 (30=-52 (33=-12 (37=-61 (39=-47 (41=-50 (41=-50 (43=-48 (43=-4	12-34, 11-35, 10-37, 13-33, 14-31 -0, 22=37-11-0, 1-0, 25=37-11-0, 1-0, 27=37-11-0, 1-0, 29=37-11-0, 1-0, 31=37-11-0, 1-0, 34=37-11-0, 1-0, 39=37-11-0, 1-0, 43=37-11-0, 1-0, 43=37-11-0, 1-0, 45=37-11-0, 1-0, 45=37-10),),),),),),),),),		on/Maximum -4=-232/209, '3, 6-7=-1711/168, :31, 64/276, 50/248, 7/104, 12, 19-20=-84/58, 5/90, 22-23=0/20 /162, /162, /163, /163, /163, /163, /162, /162, /162, /162, /162, /162, /162,	2) Wi 2) Wi Va Ca zoi 2-1 Ex 38 vei for	s design nd: ASC sd=103r t. II; Exp ne and C I1-8 to 1: terior(2N -7-1 zon rtical left ces & M DL=1.60	E 7-16 nph; T(B; Enc C-C Cor 4-11-8, I) 22-11 e; canti and rig WFRS plate g	Vult=130mph (3 CDL=6.0psf; BCE slosed; MWFRS in ner(3E) -0-8-1 to Corner(3R) 14-1 I-8 to 34-9-9, Co lever left and rigi the exposed; C-C for reactions sho rip DOL=1.60	DL=6.0psf; h=25ft; (envelope) exterior 2-11-8, Exterior(2N) 1-8 to 22-11-8, mer(3E) 34-9-9 to nt exposed ; end for members and wn: Lumber

Continued on page 2 WARNING - Verify of

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulcapes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSE2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

January 29,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	A06	Common Supported Gable	2	1	Job Reference (optional)	163274311

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11)on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 2, 25 lb uplift at joint 22, 24 lb uplift at joint 35, 61 lb uplift at joint 37, 51 lb uplift at joint 38, 47 lb uplift at joint 39, 51 lb uplift at joint 40, 50 lb uplift at joint 41, 51 lb uplift at joint 42, 48 lb uplift at joint 43, 97 lb uplift at joint 44, 12 lb uplift at joint 33, 64 lb uplift at joint 31, 52 lb uplift at joint 30, 47 lb uplift at joint 29, 51 lb uplift at joint 28, 50 lb uplift at joint 27, 51 lb uplift at joint 26, 50 lb uplift at joint 25, 76 lb uplift at joint 24, 118 lb uplift at joint 2 and 25 lb uplift at joint 22.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Eti Jan 26.10:38:01 ID:m3SKEq9uIPtUOdLRqf?zWOzyIQJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	B01	Common Supported Gable	1	1	Job Reference (optional)	163274312

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:02 ID:DUaG37pZrOU3DCUYzj7pLszyl0x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

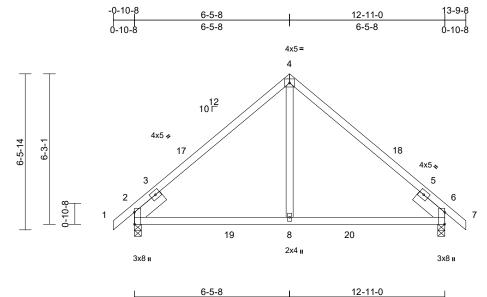
Page: 1

Scale = 1:42.3

Plate Offsets (X, Y): [6:0-2-8,Edge], [12:0-5-0,0-1-8], [19:0-5-0,0-1-8]

				-									
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MR		()						
BCDL	10.0											Weight: 81 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=12-11 16=12-11 18=12-11 Max Horiz 19=-161 (Max Uplift 12=-36 (L 14=-84 (L 18=-115 (Max Grav 12=138 (L 14=261 (L 16=193 (L	applied or 6-0-0 oc -0, 13=12-11-0, -0, 15=12-11-0, -0, 17=12-11-0, -0, 19=12-11-0 LC 12) C 11), 13=-111 (LC C 15), 17=-82 (LC 1 LC 14), 19=-53 (LC	2) d or 3) 15), 4) 10) 25), 22), 5) 22), 5)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(2-1-8 to 3-5-(9-5-8 to 10-9) cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design.	snow loads have b	h (3-sec BCDL=6 RS (env)-8 to 2- 8 to 9-5 9-8 to 1 d; end v s and foi OL=1.60 in the p d (norm no DL=1.60 in the p d (norm to DL=1.60 in the p) d (norm to DL=1.60	cond gust) 0.0psf; h=25ft; lelope) exterior(1-8, Exterior(21 3-9-8 zone; retrical left an rcces & MWFR 0) plate grip lane of the trual to the face ils as applical s per ANSI/TF .: Lum DOL=: 0L=1.15 Plate Exp.; Ce=0.5 sidered for th	or 2N) N) d RS ss ble, p1 1. 1.15 c);	bea 19, upli join 14) This Inte R80	aring plat 36 lb up ff at join t 13. s truss is ernationa 02.10.2 a CASE(S	te capa lift at jo t 18, 8 s desig al Resid and ref) Sta	al connection (by able of withstand oint 12, 82 lb upl 4 lb uplift at joint ned in accordand dential Code sec erenced standar ndard	y others) of truss to ing 53 lb uplift at joint ift at joint 17, 115 lb 14 and 111 lb uplift at ce with the 2018 tions R502.11.1 and
FORCES	(lb) - Maximum Com		⁽³⁾ 6)		s been designed for psf or 1.00 times fl						a start	"TH CA	Roitin
TOP CHORD	Tension 2-19=-124/62, 1-2=0 3-4=-68/74, 4-5=-84 6-7=-70/146, 7-8=-8	/186, 5-6=-70/146, 4/186, 8-9=-55/71,	8) 9)	All plates are Gable require Truss to be f	on-concurrent with 2x4 MT20 unless es continuous botto ully sheathed from	otherwi om chor one fac	se indicated. d bearing. e or securely				~ -		Re-
BOT CHORD	9-10=-88//9, 10-11= 18-19=-77/157, 17-1 16-17=-77/157, 15-1 14-15=-77/157, 13-1 12-13=-77/157	16=-77/157,	10) 11)	Gable studs This truss ha chord live loa	est lateral moveme spaced at 2-0-0 oc s been designed f ad nonconcurrent v	or a 10. vith any	0 psf bottom other live loa	ds.				SEA 0363	L 22
WEBS		162/0, 4-17=-219/16 I=-219/161,	2, 12)	on the bottor 3-06-00 tall b	has been designed in chord in all areas by 2-00-00 wide wil by other members.	s where Il fit betv	a rectangle					R KNGIN	EERER
NOTES					, ealer membere.							A. C	112B.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

January 29,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	B02	Common	2	1	Job Reference (optional)	163274313

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:02 ID:LoSSV0ajn2Y_u1Orj9HpxMzyl?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

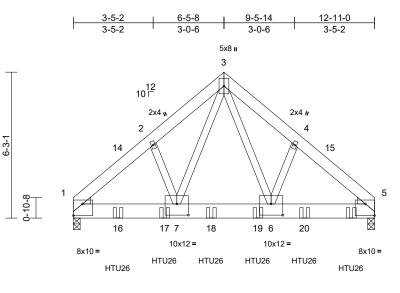
Scale = 1:47.9				6-5-8			6-5-8			1				
Plate Offsets (X, Y): [2	Plate Offsets (X, Y): [2:0-5-15,Edge], [6:0-5-15,Edge]													
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.80 0.52	DEFL Vert(LL) Vert(CT)	in -0.08 -0.11	(loc) 8-15 8-15	l/defl >999 >999		PLATES MT20	GRIP 244/190	

TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.80	Vert(LL)	-0.08	8-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.11	8-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.04	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								==
BCDL	10.0											Weight: 64 lb	FT = 20%
LUMBER			4	Unbalanced	snow loads have	been cor	nsidered for	this					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2		5) This truss ha	as been designed	l for great	er of min roc	of live					
WEBS	2x4 SP No.3				psf or 1.00 times			osf on					
SLIDER	Left 2x6 SP No.2 1	I-6-0, Right 2x6 SP		0	on-concurrent wi								
	1-6-0		6		as been designed								
BRACING			_		ad nonconcurren								
TOP CHORD	Structural wood shea	athing directly applie	ed or 7		has been designe			.0pst					
	4-2-2 oc purlins.				m chord in all are by 2-00-00 wide v			tom					
BOT CHORD	5 5 7	applied or 10-0-0 or	C		ny other member								
	bracing.		8		Simpson Strong-			b 1.					
REACTIONS	()		U,		ed to connect trus			e to					
	Max Horiz 2=143 (LC	,			(s) 2 and 6. This								
	Max Uplift 2=-52 (LC	,, , ,		and does no	t consider lateral	forces.							
	Max Grav 2=691 (LC		9) This truss is	designed in acco	ordance w	ith the 2018						
FORCES	(lb) - Maximum Com	pression/Maximum		Internationa	Residential Cod	e sections	s R502.11.1	and					
	Tension			R802.10.2 a	nd referenced sta	andard AN	NSI/TPI 1.						
TOP CHORD	,	215, 4-6=-638/215,	L	OAD CASE(S)	Standard								
	6-7=0/34	100/400											
BOT CHORD WEBS	2-8=-208/438, 6-8=- ⁻ 4-8=0/366	138/438											
	4-8-0/300											minin	11111
NOTES												WAH CA	Rollin
,	ed roof live loads have	been considered for	r								AN N	R	21
this desig		(2 second suct)									1.	OR HERS	CONV.
	CE 7-16; Vult=130mph									4	20	VIRI ,	1 st

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 10-9-8, Exterior(2E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Variation WILLING THE SEAL 036322 GI 111111111 January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	B03	Common Girder	1	2	Job Reference (optional)	163274314

Scale = 1:49.4

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:03 ID:PVRPMaN6EKsdpAQXa1TIcHzyl_v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-4	8-5-12	12-11-0
4-5-4	4-0-9	4-5-4

Plate Offsets (X, Y): [1:Edge,0-5-15], [5:Edge,0-5-15], [6:0-6-0,0-5-12], [7:0-6-0,0-5-12]

	(X, T): [1:Edg0,0 0 10], [0:2490,0 0 10], [0:	0 0 0,0 0	12], [1.0 0 0,0	0 12]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.27 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 213 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	 2x8 SP 2400F 2.0E 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 	C 10) C 12), 5=-471 (LC 13	4) d or 5) 6)	this design. Wind: ASCE Vasd=103my Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E 3; Enclosed; MWFF ver left and right e) vosed; Lumber DOI 57-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1.5); Pf=20.0 psf (1 s=1.0; Rough Cat =1.10 snow loads have b us been designed fo ad nonconcurrent w	h (3-sed 3CDL=6 RS (env kposed L=1.60 (roof LI Lum DC B; Fully been cor	cond gust) .0psf; h=25ft elope) exteria plate grip .: Lum DOL= L=1.15 Plate Exp.; Ce=0.1 asidered for t D psf bottom	; left 1.15 e 9; his			8=-1485	ads (lb) 5 (B), 16=-1587 (l 19=-1485 (B), 20	
FORCES	 (lb) - Maximum Com Tension 1-2=-6171/404, 2-3= 3-4=-6039/525, 4-5= 	6077/454,	8)	* This truss h on the bottor 3-06-00 tall b	nas been designed n chord in all areas by 2-00-00 wide wil	for a liv where	e load of 20. a rectangle	Opsf					
BOT CHORD WEBS	0 1-7=-316/4743, 6-7= 5-6=-321/4658		9) 003,	One H2.5A S recommende UPLIFT at jt(ny other members. Simpson Strong-Tie ed to connect truss (s) 1 and 5. This co t consider lateral fo	to bear nnectio	ing walls due					UNITH CA	BO
(0.131"x3 Top chord staggered Bottom cl staggered Web con 2) All loads except if CASE(S) provided	as to be connected toge ") nails as follows: ds connected as follows: d at 0-9-0 oc. hords connected as foll d at 0-6-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply conr to distribute only loads herwise indicated.	s: 2x6 - 2 rows ows: 2x8 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been	11)	 This truss is International R802.10.2 ai Use Simpsoi 11-10dx1 1/2 spaced at 2- end to 11-11 bottom chorc Fill all nail ho. AD CASE(S) Dead + Smo Increase=1 Uniform Loc 	designed in accord Residential Code s nd referenced stan n strong-Tie HTU2 2 Truss, Single Ply 0-0 oc max. starting 0 to connect truss 1. oles where hanger i Standard wy (balanced): Lun .15	lance w sections dard AN 6 (20-1(Girder) g at 1-1 (es) to l is in cor nber Inc	R502.11.1 a ISI/TPI 1. Od Girder, or equivalent 1-0 from the back face of ntact with lum	left ber.				SEA 0363	22 EP

January 29,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	C01	Common	3	1	Job Reference (optional)	163274315

TCDL

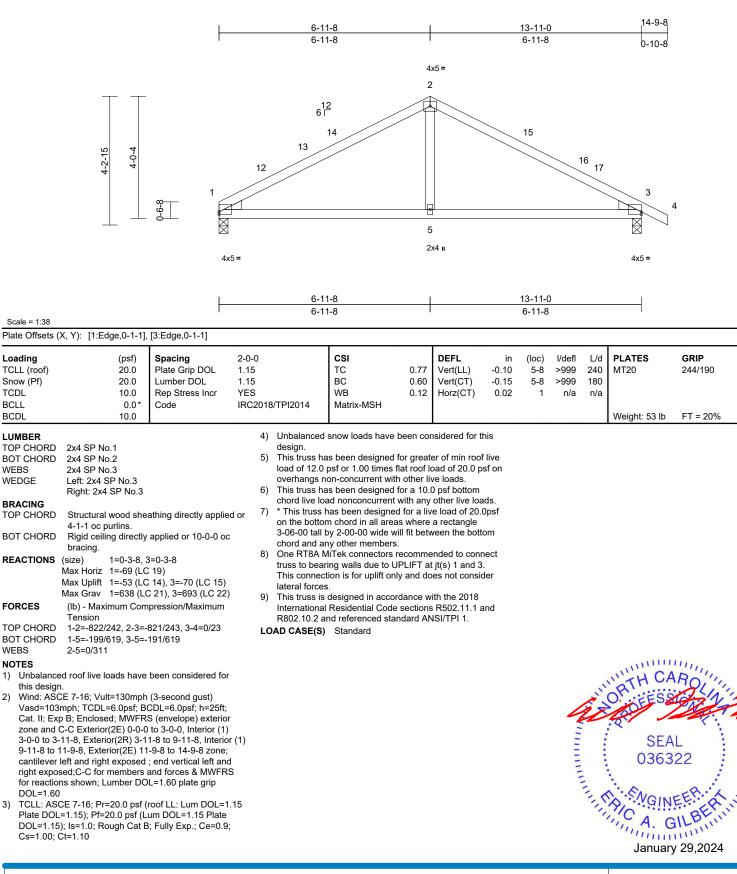
BCLL

BCDL

WEBS

WEBS

NOTES


2)

3)

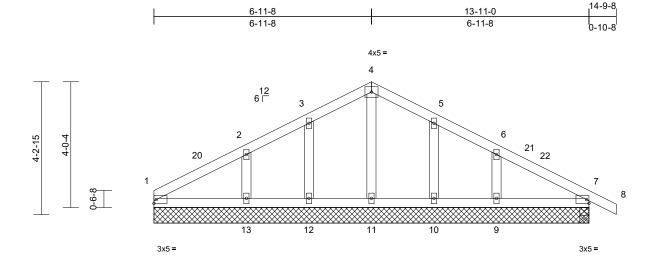
Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 26.10:38:03 ID:IkWvDyB894PVWLXPFI0EMszrXCP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


MULTINITY

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	C02	Common Supported Gable	1	1	Job Reference (optional)	163274316

Run: 8.63 E Feb 9 2023 Print: 8.630 E Feb 9 2023 MiTek Industries, Inc. Mon Jan 29 18:44:13 ID:7ttAU0FvkwAfEG_YbZ7ec7zrXCJ-qPrKstrmRhJnO_eZ0xEBm6fjdYQSTGvfUnPjKWzqb1o

_

Page: 1

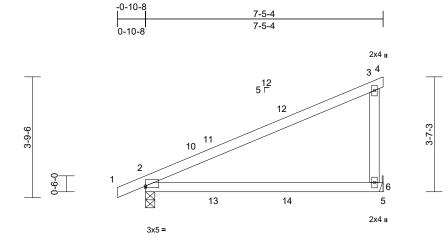
13-11-0

Scale = 1:36.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI:	12014	CSI TC BC WB Matrix-MSH	0.11 0.07 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 13-16 13-16 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
(lb) - FORCES NOTES	6-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 13-11-0. Max Horiz 1=-67 (LC Max Uplift All uplift 1 1, 7, 9, 10 Max Grav All reactic (s) 1, 7, 1 9=292 (LC (lb) - Max. Comp./M. (lb) or less except w	00 (lb) or less at joinf), 12, 13, 14, 17 ins 250 (lb) or less at 0, 11, 12, 14, 17 exce 2 c2), 13=306 (LC 21 ax. Ten All forces 2 hen shown.	Plai DO Cs= 5) Unt dor des 6) This load ove 7) All 8) Gat 9) This cho (s) 9) This cho 10) * Th on t spint 3-00) cho	the DOL=1 DL=1.15); I =1.00; Ct= balanced sign. is truss haid of 12.0 p erhangs no plates are ble studs sis is truss haid ord live load his truss haid the bottom 6-00 tall bord and an	7-16; Pr=20.0 ps .15); Pf=20.0 psf s=1.0; Rough Ca .1.10 snow loads have s been designed on-concurrent with 2x4 MT20 unless spaced at 2-0-0 o s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members	(Lum DC t B; Fully been cor for great flat roof k h other lin s otherwi c. for a 10.0 with any d for a liv is where rill fit betw	IL=1.15 Plate Exp.; Ce=0.5 asidered for the or of min roof or of 20.0 prove loads. se indicated. D psf bottom other live load e load of 20.0 a rectangle); his live sf on ds. Dpsf					
 Unbalance this design 	ed roof live loads have 1.	been considered for	12) This	is truss is o	designed in accor	dance w	ith the 2018						

 Wind: ASCE 7-16; Vult=130mph (3-second gust)
 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 2-11-8, Exterior(2N) 2-11-8 to 3-11-8, Corner(3R) 3-11-8 to 9-11-8, Exterior (2N) 9-11-8 to 11-9-8, Corner(3E) 11-9-8 to 14-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITOK Affiliate

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D01	Monopitch	3	1	Job Reference (optional)	163274317

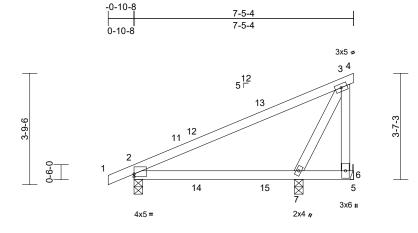
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:04 ID:P3Zh9PwT6xb1p1Wx6SbYPyzyknI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

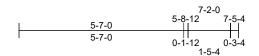
Page: 1

Scale = 1:36.1

Plate Offsets (X, Y): [2:Edge,0-0-10]

	(··, ·)· [=·=·g-,• • · ·	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.94 0.74 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.35 -0.32 0.03	(loc) 6-9 6-9 2	l/defl >247 >271 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
Vasd=103 Cat. II; Ex zone and 2-1-8 to 4 cantilever right expo members Lumber D 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 3) Unbalanci design. 4) This truss load of 12	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=131 (LC Max Uplift 2=-90 (LC Max Grav 2=412 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-163/ 3-6=-318/164 2-6=-130/216, 5-6=(CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p; B; Enclosed; MWFR C-C Exterior(2E) -0-10 -5-4, Exterior(2E) -0-10 -5-4, Exterior(2E) -0-10 sed; porch left and righ and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat	cept end verticals. applied or 10-0-0 or 6= Mechanical C 13) C 10), 6=-91 (LC 11) C 21), 6=425 (LC 21) pression/Maximum 180, 3-4=-10/0, 0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio CDL=6.0psf; h=25ft; S (envelope) exterio CDL=6.0psf; h=25ft; S (envelope) exterio Patrix 100 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio Patrix 100 CDL=6.0psf; h=25ft; S (envelope) exterio Patrix 100 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio (3-second gust) (3-second gust) (3-seco	6) ed or 7) c 8) 9)) 10) , 10) LO , 10) (1) d ; 1.15 ; ; inis live	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 6. One H2.5A S recommende UPLIFT at jtt does not cor) This truss is International	as been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr thanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 2. This connect isider lateral force designed in accor Residential Code nd referenced star Standard	with any d for a liv is where ill fit betv uss conr n (by oth tanding § ie conne s to bear tion is for s. dance w sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 11 lb uplift at j ctors ing walls due uplift only au ith the 2018 s R502.11.1 a	0psf ∞m to joint ≆ to nd				SEA 0363	EER A LUI


January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D02	Monopitch	2	1	Job Reference (optional)	163274318

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:04 ID:W_FFX8hjEi8l6tl7jYybgbzuVhh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39

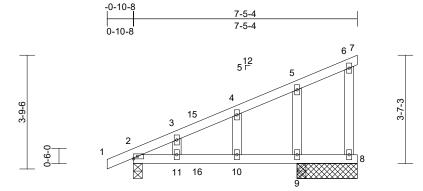
Plate Offsets (X, Y): [2:Edge,0-1-2]

	(X, T): [2:Edge,0-1-2]					-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.84 0.86 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.12 0.02	(loc) 7-10 7-10 2	l/defl >678 >559 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-9 oc purlins, ex Rigid ceiling directly bracing. 	cept end verticals. [,] applied or 10-0-0 or C 13) C 10), 6=-198 (LC 1 C 21) C 21), 6=652 (LC 21	c 7) 3-8 8) 4), 9)	load of 12.0 overhangs n This truss ha chord live lo. * This truss I on the botto 3-06-00 tall I chord and al Refer to gird Provide mec bearing plate joint 6. One H2.5A S recommend	as been designed psf or 1.00 times i on-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to the capable of withs Simpson Strong-T ed to connect trus	flat roof I h other li for a 10. with any d for a liv as where vill fit betv as russ coni n (by oth tanding ' "ie conne s to bear	oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss 198 lb uplift a ctors ing walls due	esfon ads. Opsf tom to to t					
FORCES	 (lb) - Maximum Com Tension 1-2=0/20, 2-3=-439/ 3-6=-735/531 		10	and does no) This truss is International	(s) 2 and 7. This c t consider lateral 1 designed in accounce Residential Code nd referenced sta	forces. rdance w e sections	ith the 2018 8 R502.11.1 a	,					
BOT CHORD WEBS		41/60, 5-6=0/0	LC	DAD CASE(S)		nuaru Ar	NSI/TET 1.					mmm	uun.
Vasd=10 Cat. II; Ez zone and 2-1-8 to 4 cantilever right expo forces & I DOL=1.6 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00;	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR 1 C-C Exterior(2E) -0-10 4-5-4, Exterior(2E) 4-5-4 r left and right exposed osed; porch left exposed MWFRS for reactions s 30 plate grip DOL=1.60 SCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E ; Ct=1.10 ced snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterior)-8 to 2-1-8, Interior 1 4 to 7-5-4 zone; ; end vertical left an d;C-C for members a hown; Lumber (roof LL: Lum DOL= .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	r (1) d and 1.15);									SEA 0363	L 22 EERRA

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

minimum)

January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D03	Monopitch Structural Gable	1	1	Job Reference (optional)	163274319

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:05 ID:IjIeQDoM7THUhFxslwciXUzuVhY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.34 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.07 0.01	(loc) 10-11 10-11 2	l/defl >999 >876 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=131 (LC Max Uplift 2=-56 (LC 8=-152 (LC Max Grav 2=266 (LC	ept end verticals. applied or 10-0-0 oc =2-0-0, 8=2-0-0, 9=(: 13) 10), 7=-25 (LC 11), C 21), 9=-127 (LC 10	4) d or 5)))-3-8 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa	57-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed ps for 1.00 times on-concurrent wi e 2x4 MT20 unles spaced at 2-0-0 is been designed ad nonconcurren has been designed an chord in all are by 2-00-00 wide to y other member	f (Lum DC at B; Fully been cor I for great flat roof li th other lin ss otherwi oc. I for a 10. t with any ad for a liv as where will fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for t er of min roof oad of 20.0 p ve loads. se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle	e 9; his f live sf on ads. 0psf					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum	10)) Provide mec	hanical connection capable of with	on (by oth							
TOP CHORD	1-2=0/20, 2-3=-96/10 4-5=-74/106, 5-6=-71 6-8=-143/84	-,,	1'	7. 1) N/A		g -		,					
BOT CHORD	2-11=-71/102, 10-11= 8-9=-41/60	=-41/60, 9-10=-41/6),									TH CA	1111
Vasd=103	5-9=-388/284, 4-10=- CE 7-16; Vult=130mph (mph; TCDL=6.0psf; BC	(3-second gust) CDL=6.0psf; h=25ft;		Ínternational	designed in acco Residential Cod nd referenced sta Standard	e sections	s R502.11.1 a	and			A.	ORTH CA	ROUN

- Viaid: TODL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

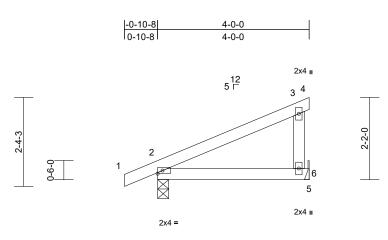
A. GILP.... January 29,2024

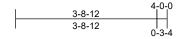
SEAL

036322

WWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

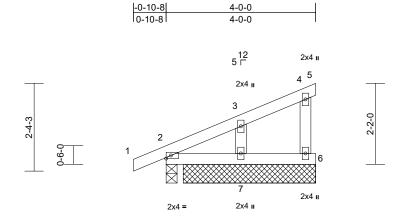

CHILDRAN W

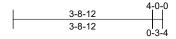
Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D04	Monopitch	3	1	Job Reference (optional)	163274320

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:05 ID:j1fu1gEqRRKZOnLu?r26Kxzyklb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.4


											-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.02	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								==
BCDL	10.0										Weight: 16 lb	FT = 20%
LUMBER				uss has been designe			0psf					
TOP CHORD	2x4 SP No.2			ottom chord in all are								
BOT CHORD	2x4 SP No.2			tall by 2-00-00 wide wide any other members		veen the bott	om					
WEBS	2x4 SP No.3			girder(s) for truss to		nections						
BRACING TOP CHORD	Structural wood she	athing directly applic	O Dura dala	mechanical connection			to					
TOP CHORD	4-0-0 oc purlins, ex		bearing	plate capable of with	standing 3	33 lb uplift at j	joint					
BOT CHORD	Rigid ceiling directly		6.									
	bracing.		 9) One H2 	5A Simpson Strong-								
REACTIONS	(size) 2=0-3-8,	6= Mechanical		ended to connect trus at jt(s) 2. This conne								
	Max Horiz 2=75 (LC		does no	t consider lateral force		i upint only al	ilu					
	Max Uplift 2=-33 (LC		10) This true	is designed in acco		ith the 2018						
	Max Grav 2=298 (L0	,, (onal Residential Code			and					
FORCES	(lb) - Maximum Com	pression/Maximum		.2 and referenced sta	andard Al	NSI/TPI 1.						
TOP CHORD	Tension 1-2=0/31, 2-3=-103/	89 3-1-10/0	LOAD CAS	E(S) Standard								
	3-6=-173/78	00, 0-410/0,										
BOT CHORD	2-6=-53/90, 5-6=0/0											
NOTES												
1) Wind: ASC	E 7-16; Vult=130mph	(3-second gust)										
	mph; TCDL=6.0psf; B											
	B; Enclosed; MWFR										mini	1111
	C-C Exterior(2E) zone end vertical left and ri		ight								N'LH CA	Rall
	and forces & MWFRS									N	A	
	DL=1.60 plate grip DC		,							×.	O'.FES	VOL VIII
	CE 7-16; Pr=20.0 psf (.15							UB	1P	1 Sille
	=1.15); Pf=20.0 psf (L										a -	
); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	;						-		SEA	1 1 2
Cs=1.00; C									=			
 Unbalance design. 	d snow loads have be	een considered for th	115						Ξ		0363	22 : 3
	has been designed fo	r greater of min roof	live						-			1 3
	0 psf or 1.00 times fla									-	·	airs
	non-concurrent with									15	S. VGIN	EFRAN
	has been designed fo									1,	10	BEN
chord live l	load nonconcurrent w	ith any other live load	as.							1	A. C	allennin
												11111.
											Januar	v 29.2024


January 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D05	Monopitch Supported Gable	1	1	Job Reference (optional)	163274321

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:05 ID:3?Sn4OIzGzysUYErnOeH1_zykIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.8

2)

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.08 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
	Max Horiz 2=72 (LC Max Uplift 2=-20 (LC 6=-24 (LC Max Grav 2=186 (LC	cept end verticals. applied or 10-0-0 oc 5=3-6-8, 6=3-6-8, 7= 13) 10), 5=-22 (LC 21), 14), 7=-41 (LC 14) 2 21), 5=8 (LC 14), 6 =220 (LC 21) pression/Maximum 78, 3-4=-40/48,	4) dor 5) 6) 3-6-8 7) 8) =124 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs n Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec	7-16; Pr=20.0 psi .15); Pf=20.0 psf s=1.0; Rough Cat 1.10 snow loads have l s been designed f por-concurrent with spaced at 2-0-0 or s been designed f d nonconcurrent v has been designed n chord in all area y 2-00-00 wide wi yo other members. hanical connection capable of withst	(Lum DC B; Fully been cor or greate lat roof lo other liv c. or a 10.0 with any l for a liv s where ll fit betw n (by oth	IL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 pse re loads. Dipsf bottom other live loar e load of 20.0 a rectangle veen the botto ers) of truss to); live sf on ds. opsf om o					
Vasd=103 Cat. II; Exp	2-7=-36/66, 6-7=-22, 3-7=-174/172 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bd p B; Enclosed; MWFR: C-C Corner(3E) -0-10-	/39 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior	LOA	International	designed in accor Residential Code nd referenced star Standard	sections	R502.11.1 a	nd		4	in the	OPTH CA	ROLIN

- 2-0-0 to 4-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of th 818 Soundside Road Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GILB The Great January 29,2024

SEAL

036322

annun ann

VIIIIIII WWWWW

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	D06	Monopitch	1	1	Job Reference (optional)	163274322

-0-10-8

0-10-8

2

8

 \bigotimes

2x4 =

1-10-0 1-10-0

1-6-11

0-9-0

2-1-4

2-1-4

_12 5 ∟

2x4 II 3 4 ø

> 0 /6

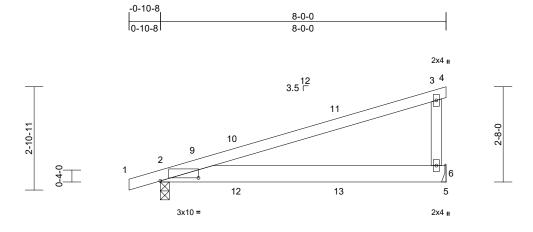
5 2x4 🛚

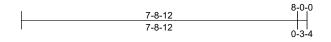
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:06 ID:YdgHstCpd5?R4f9OGYsdA9ygknX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing1-1*Plate Grip DOL1.18Lumber DOL1.18Rep Stress IncrYESCodeIRC	5 5	CSI TC 0.07 BC 0.03 WB 0.00 Matrix-MP 0.00	3 Vert(CT) 0.	00 6-9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
BOT CHORD 2-1-4 oc purlins, exc Rigid ceiling directly bracing. Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, 6 Max Horiz 2=43 (LC Max Grav 2=181 (LC FORCES (lb) - Maximum Comparison	applied or 10-0-0 oc 5= Mechanical 13) C 10), 6=-16 (LC 14) C 21), 6=106 (LC 21) ppression/Maximum 4, 3-4=-9/0, 3-6=-81/29 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and right ght exposed;C-C for for reactions shown; JL=1.60 roof LL: Lum DOL=1.15 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this r greater of min roof live t roof load of 20.0 psf on other live loads. r a 10.0 psf bottom	 on the bottom 3-06-00 tall b chord and an 7) Refer to girde 8) Provide mech bearing plate 6. 9) One H2.5A S recommende UPLIFT at jt(does not com 10) This truss is International 	has been designed for a In chord in all areas when by 2-00-00 wide will fit be by other members. er(s) for truss to truss co- hanical connection (by o e capable of withstanding Simpson Strong-Tie comr ed to connect truss to be s) 2. This connection is f isider lateral forces. designed in accordance Residential Code section and referenced standard / Standard	e a rectangle tween the bottom nnections. thers) of truss to 16 lb uplift at joint ectors aring walls due to or uplift only and with the 2018 ns R502.11.1 and				SEA 0363	


A. GIL A. GIL January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Campage to the properting and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	E01	Monopitch	7	1	Job Reference (optional)	163274323

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:06 ID:0LL4_9Hu4QmON5JjKnKpS7zrWr2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

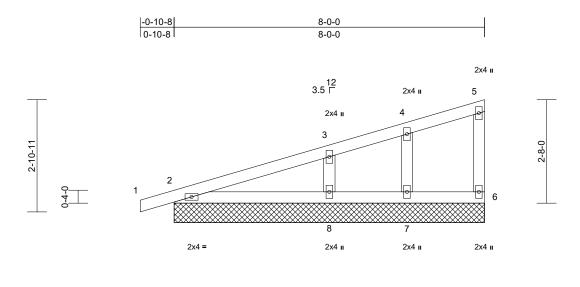
Page: 1

Scale = 1:32.3

Plate Offsets (X, Y): [2:1-0-13,0-1-0]

	(.,,.), [
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		This truss ha	CSI TC BC WB Matrix-MP			in 0.20 -0.19 0.00	(loc) 6-8 6-8 6	I/defl >462 >493 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or 6= Mechanical 11) C 10), 6=-120 (LC 1 C 21), 6=431 (LC 21	ed or 7) i c 8) i 9) (0) i	chord live loa * This truss h on the botton 3-06-00 tall b chord and arn Refer to girdt Provide mecl bearing plate joint 6. One H2.5A S recommende UPLIFT at jt(does not con	ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr hanical connection capable of withst Simpson Strong-Ti ed to connect truss s) 2. This connect sider lateral force	with any d for a liv s where ill fit betv uss com n (by oth canding te conne s to bear tion is fo s.	other live load e load of 20. a rectangle veen the bott nections. ers) of truss 20 lb uplift a ctors ing walls due r uplift only a	0psf com to t t					
TOP CHORD BOT CHORD NOTES	Tension 1-2=0/17, 2-3=-226/ 3-6=-263/174	328, 3-4=-7/0,	Í	International	designed in accor Residential Code nd referenced star Standard	sections	s R502.11.1 a	and					
 Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 5 cantilever right expo members Lumber D TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalancc design. This truss load of 12 	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 -0-0, Exterior(2E) 5-0-0 left and right exposed used; porch left and righ and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L ct=1.10 ed snow loads have be has been designed fo .0 psf or 1.00 times fla s non-concurrent with o	CDL=6.0psf; h=25ft; S (envelope) exterio I-8 to 2-1-8, Interior () to 8-0-0 zone; ; end vertical left an the exposed;C-C for for reactions shown PL=1.60 roof LL: Lum DOL=7 mm DOL=1.15 Plate B; Fully Exp.; Ce=0.9 even considered for th r greater of min roof t roof load of 20.0 ps	r (1) d ; I.15 ; ; iis								I IIIII	SEA 0363	EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

January 29,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	163274324

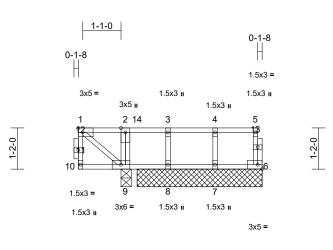
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:06 ID:ndLZ6RFOtdyFXd6GmjaKowzrX9k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

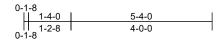
Page: 1

8-0-0

					0-0-	v						
Scale = 1:29.7		I										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 SCLL 0.0* SCDL 10.0	Spacing1-1Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5 5	· 기2014	CSI TC BC WB Matrix-MP	0.19 0.18 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=8-0-0, 6 8=8-0-0, 9 Max Horiz 2=93 (LC Max Uplift 2=-43 (LC (LC 10), 8 10) Max Grav 2=208 (LC	r applied or 10-0-0 oc 6=8-0-0, 7=8-0-0, 9=8-0-0 13), 9=93 (LC 13) C 10), 6=-7 (LC 14), 7=-23 3=-59 (LC 14), 9=-43 (LC C 21), 6=90 (LC 21), C 21), 8=402 (LC 21), C 21,	on se or 3) TC Pli DC Cs 4) Ur de 5) Th loa ov 6) Gi 6) Gi 7) Gi 8) Th ch 9) * 1 on 3-i ch 10) Pr be 2, joi 11) Th R8	nly. For stud ee Standard r consult qua CLL: ASCE late DOL=1. OL=1.15); Is s=1.00; Ct= nbalanced s esign. his truss has ad of 12.0 p verhangs no able require able studs s his truss has nord live loa This truss has nord live loa This truss has nord live loa This truss has nord and an rovide mech earing plate , 7 lb uplift a int 8 and 43 his truss is o ternational l	snow loads have I s been designed f part of 1.00 times fi part of 1.00 times fi part of 1.00 times fi source of the second state spaced at 2-0-0 o s been designed fi d nonconcurrent to as been designed n chord in all area y 2-00-00 wide wi y other members. nanical connection capable of withst t joint 6, 23 lb upl I buplift at joint 2 designed in accore. Residential Code to referenced star	Ind (normand (normand (normand) normand) f (roof LL (Lum DC B; Fully been con for greate at roof lc to other live or a 10.0 with any l for a live s where and ing 4 ift at join dance wi sections	al to the face Is as applical sper ANSI/TF : Lum DOL=: L=1.15 Plate Exp.; Ce=0.9 sidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle reen the bottot ers) of truss t 3 lb uplift at ji 7, 59 lb uplift th the 2018 R502.11.1 a), ble, 21.1.5 1.1.5 		Martin 111		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

GI minimum January 29,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F01	Floor	1	1	Job Reference (optional)	163274325

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:07 ID:t19rr6aW27LPM5q9VNmj7_zuVgY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.7

-													
Loading	(psf)	Spacing	1-4-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL TCDL	40.0	Plate Grip DOL Lumber DOL	1.00 1.00		TC BC	0.69	Vert(LL) Vert(CT)	0.01	8-9	>999	360 240	MT20	244/190
BCLL	10.0 0.0	Rep Stress Incr	1.00 NO		WB	0.66 0.13	Horz(CT)	0.01 0.00	8-9 6	>999 n/a	240 n/a		
BCDL	5.0	Code		8/TPI2014	Matrix-MSH	0.15		0.00	0	n/a	n/a	Weight: 28 lb	FT = 20%F. 11%E
	0.0	oode	11(0201	0/11/12/014	Matrix-Morr							Weight. 20 lb	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP 2400F 2.0E(2x4 SP 2400F 2.0E(2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 5-4-0 oc purlins, ex	flat) athing directly applie	7] 8] ed or 9]	International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer	designed in acco Residential Code nd referenced sta 1 2x6 strongbacks and fastened to e nails. Strongbac ends or restraine on ot erect truss	e sections ndard AN , on edge ach truss cks to be ed by othe	R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to wer means.						
BOT CHORD	Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 9	applied or 6-0-0 oc	L: 1)	Plate Increa	or Live (balanced ase=1.00): Lumbe	r Increase=1.	00,					
	Max Uplift 6=-25 (LC Max Grav 6=23 (LC				0=-7, 1-5=-67 ed Loads (lb)								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-10=-166/0, 5-6=-2 3-4=-1/1, 4-5=-1/1	3/16, 1-2=-1/1, 2-3=	-1/1,										
BOT CHORD WEBS	9-10=0/0, 8-9=-1/1, 2-9=-485/0, 1-9=-1/2 4-7=-177/0												
NOTES													
 Unbalance this design All plates a Truss to be braced aga 	d floor live loads have are 1.5x3 MT20 unless e fully sheathed from o ainst lateral movemen Is spaced at 1-4-0 oc.	s otherwise indicated one face or securely	1.							4	- AL	ORTH CA	ROUNT

4) Gable studs spaced at 1-4-0 oc.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.

6) N/A

SEAL 036322 January 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F02	Floor	1	1	Job Reference (optional)	163274326

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Eti Jan 26.10:38:07

Carter Components (Sanford, NC), Sanford, NC - 27332,

ID:?L11H?LfzoPJ2wjSFpvjjUzuVfY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-5-8 1-1-0 1-1-8 0-1-8 1 - 8 - 0Н 3x5 = 3x5 = 3x5 = 3x5 II 3x5 II 2 3 Δ Î ľ 1-2-0 1-2-0 10 ğ 8 1.5x3 =1.5x3 **I** 3x6 = 3x6 = 1.5x3 u 1.5x3 II

Scale = 1:34.2

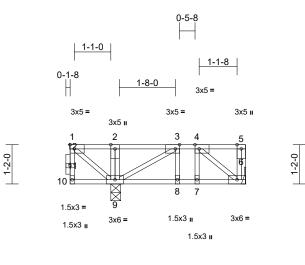
Plate Offsets (X, Y): [3:0-1-8,Edge], [4:0-1-8,Edge] PLATES Loading Spacing 1-4-0 CSI DEFL in l/defl L/d GRIP (psf) (loc) TCLL 40.0 Plate Grip DOL 1.00 TC 0.26 Vert(LL) 0.01 8-9 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.14 Vert(CT) 0.01 8-9 >999 240 BCLL 0.0 Rep Stress Incr NO WB Horz(CT) 0.00 6 0.13 n/a n/a BCDL 5.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 33 lb FT = 20%F, 11%E LUMBER 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 TOP CHORD 2x4 SP No.2(flat) Uniform Loads (lb/ft) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat) Vert: 6-10=-7, 1-5=-67 WEBS 2x4 SP No.3(flat) Concentrated Loads (lb) OTHERS BRACING Vert: 1=-300 TOP CHORD Structural wood sheathing directly applied or 5-4-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 9-10. REACTIONS (size) 6= Mechanical, 9=0-3-8 Max Uplift 6=-80 (LC 3) Max Grav 6=105 (LC 4), 9=648 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-10=0/4, 5-6=-53/0, 1-2=0/415, 2-3=0/415, 3-4=-80/149, 4-5=0/0 BOT CHORD 9-10=0/0 8-9=-149/80 7-8=-149/80 6-7=-149/80 2-9=-116/0, 1-9=-537/0, 4-7=-79/24, WEBS MINITH CALL 3-9=-398/0, 3-8=-10/87, 4-6=-102/190 NOTES ORTH 1) Unbalanced floor live loads have been considered for this design. Refer to girder(s) for truss to truss connections. 2) Winning 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 111111111 SEAL This truss is designed in accordance with the 2018 4) 036322 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. G

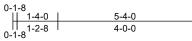
LOAD CASE(S) Standard

January 29,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F03	Floor	9	1	Job Reference (optional)	163274327

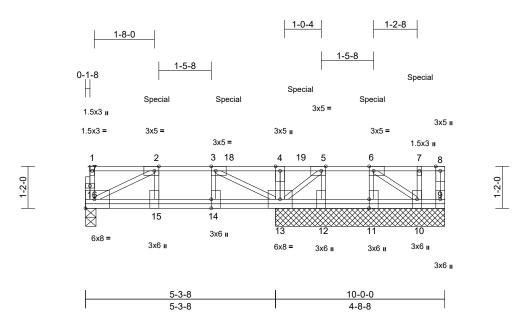
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:08 ID:IyU6JCeiKAQvwcY4fsLLiYzuVfA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Plate Offsets (X,	Y): [3:0-1-8,Edge],	[4:0-1-8,Edge]											
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 NO		CSI TC BC WB	0.26 0.14 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.01 0.00	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018	/TPI2014	Matrix-MSH				-			Weight: 33 lb	FT = 20%F, 11%E
BOT CHORD 2 WEBS 2 OTHERS 2 BRACING TOP CHORD 3	5-4-0 oc purlins, ex	athing directly applie cept end verticals. applied or 6-0-0 oc	1) d or	Plate Increa Uniform Lo Vert: 6-1	ads (lb/ft) 0=-7, 1-5=-67 ed Loads (lb)	: Lumbe	Increase=1.	00,					
REACTIONS (s M M FORCES (bracing, Except: 10-0-0 oc bracing: 9 ize) 6= Mecha ax Uplift 6=-80 (LC ax Grav 6=105 (LC (b) - Maximum Com	-10. anical, 9=0-3-8 2 3) C 4), 9=648 (LC 1)											
TOP CHORD		, 1-2=0/415, 2-3=0/4	15,										
BOT CHORD	3-4=-80/149, 4-5=0/ 9-10=0/0, 8-9=-149/ 5-7=-149/80												
WEBS	1-9=-537/0, 4-7=-79 3-8=-10/87, 4-6=-10												
 NOTES 1) Unbalanced this design. 2) Refer to gird. 3) Provide mec bearing plate 6. 4) This truss is International R802.10.2 ar 5) Recommend 10-00-00 cc (0.131" X 3") at their outer 	floor live loads have er(s) for truss to trus hanical connection capable of withstar designed in accorda Residential Code so dreferenced stand 2x6 strongbacks, o and fastened to eac nails. Strongbacks ends or restrained to not erect truss ba	e been considered for ss connections. (by others) of truss to hding 80 lb uplift at jo ance with the 2018 ections R502.11.1 ar ard ANSI/TPI 1. n edge, spaced at th truss with 3-10d to be attached to wa by other means.	o vint nd								The second secon	SEA 0363	22

January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F04	Floor	1	1	Job Reference (optional)	163274328

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:08 ID:IVXzSq21Jci5?q9ce?yK4jzuVee-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

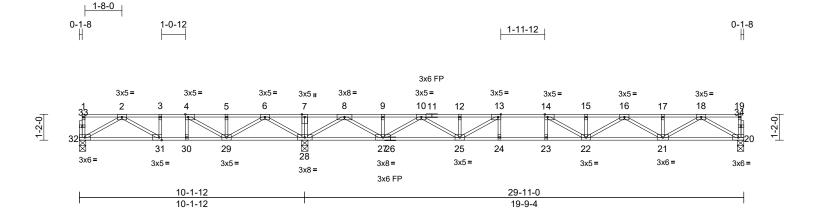
Scale = 1:32.1

					1								
Loading	(psf)	Spacing	1-4-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.93	Vert(LL)	-0.01	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.24	Vert(CT)	-0.02	14-15	>999	240		
BCLL	0.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.00	13	n/a	n/a		
BCDL	5.0	Code	IRC20	18/TPI2014	Matrix-MSH							Weight: 67 lb	FT = 20%F, 11%E
LUMBER			5) N/A									
TOP CHORD	2x4 SP No.2(flat)												
BOT CHORD	2x4 SP No.2(flat)												
WEBS	2x4 SP No.3(flat)				designed in second		ith the 2010						
OTHERS	2x4 SP No.3(flat)		Ċ		designed in accor Residential Code			nd					
BRACING					nd referenced star								
TOP CHORD	Structural wood she		ed or 7		2x6 strongbacks,								
BOT CHORD	2-2-0 oc purlins, ex Rigid ceiling directly				and fastened to e								
DOT CHORD	bracing.	applied of 0-0-0 00) nails. Strongbac			alls					
REACTIONS	0	10=4-8-8, 11=4-8-8,	-		ends or restraine								
	· · · ·	13=4-8-8, 16=0-3-8	8	, ,	Do not erect truss I								
	Max Uplift 10=-80 (L				r other connection			10					
		LC 8), 16=-146 (LC	8)		ficient to support of 205 lb up at 2-0-0								
	Max Grav 9=8 (LC 1	<i>n n n</i>			4-0-0, and 412 lb								
		_C 3), 12=121 (LC 1			chord. The desig								
		(LC 3), 16=597 (LC 3	3)		device(s) is the res								
FORCES	(lb) - Maximum Com	pression/Maximum	1		CASE(S) section			face					
TOP CHORD	Tension 1-16=-54/0, 8-9=-7/0		1061	of the truss a	are noted as front	(F) or ba	ck (B).						
	3-4=-40/159, 4-5=-4		^{201,} L	OAD CASE(S)									
	6-7=0/0, 7-8=0/0	0/100, 0-02//0,	1		or Live (balanced)): Lumbe	r Increase=1.	00,					
BOT CHORD	15-16=-261/987, 14-	-15=-261/987,		Plate Incre								munn	11111
	13-14=-261/987, 12-	-13=-8/27, 11-12=-8/	27,	Uniform Lo	()						6	"TH CA	Rolly
	10-11=-8/27, 9-10=0)/0			6=-7, 1-8=-67						N	R	A LINI
WEBS	4-13=-448/105, 3-13				ed Loads (lb) ·168 (F), 6=-140 (F	-) 7- 14	2 (E) 10- 16	0			1.	O FESS	Dir Vin
	2-16=-1125/298, 2-1	,	,	(F), 19=-), 714	3 (F), 1010	0		4		the 1	Call
	5-12=-127/0, 6-11=-		19,	(1), 13-	140 (1)							.2	S :
	5-13=-195/45, 6-10=	-33/9										SEA	L : F
NOTES										Ξ			• -
	ed floor live loads have	been considered to	r							-		0363	22
this desigr 2) N/A	1.									-			1 E
	e fully sheathed from c	one face or securely									1		all S
,	e lang enteathou norm e											· · · · ·	

sheathed from o 3) braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

A. GILB A. GILDIN January 29,2024

C

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F05	Floor	4	1	Job Reference (optional)	163274329

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries, Inc. Fri Jan 26.10:38:09 ID:C9TTGtXBLPCeGk2FMKfAZfzuVcj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

TOP CHORD

BOT CHORD

WEBS

OTHERS

BRACING TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WFBS

REACTIONS (size)

2x4 SP No.2(flat)

2x4 SP No.3(flat)

2x4 SP No.3(flat)

No.1(flat)

bracing

Max Uplift

Max Grav

Tension

20-21=0/972

2x4 SP No.2(flat) *Except* 26-20:2x4 SP

32=-85 (LC 4)

32=284 (LC 3)

1-32=-45/0, 19-20=-47/0, 1-2=-3/0, 2-3=-542/482, 3-4=-542/482, 4-5=-329/940, 5-6=-329/940, 6-7=0/1946, 7-8=0/1946, 8-9=-562/69, 9-10=-562/69, 10-12=-1958/0,

12-13=-1958/0, 13-14=-2482/0, 14-15=-2508/0, 15-16=-2508/0,

29-30=-482/542 28-29=-1310/0 27-28=-669/0. 25-27=0/1367. 24-25=0/2482.

13-25=-783/0, 14-22=-253/290,

13-24=-5/164, 14-23=-142/27

(Ib) - Maximum Compression/Maximum

16-17=-1692/0, 17-18=-1692/0, 18-19=-3/0 31-32=-179/395, 30-31=-482/542,

23-24=0/2482, 22-23=0/2482, 21-22=0/2190,

7-28=-135/0. 6-28=-976/0. 2-32=-454/207. 6-29=0/721, 2-31=-354/172, 5-29=-114/38,

3-31=-72/126, 4-29=-689/0, 4-30=0/129 8-28=-1478/0, 18-20=-1122/0, 8-27=0/1226, 18-21=0/841, 9-27=-116/0, 17-21=-114/0, 10-27=-961/0, 16-21=-581/0, 10-25=0/711, 16-22=0/371, 12-25=-118/65, 15-22=-186/0,

20=622 (LC 4), 28=1401 (LC 1),

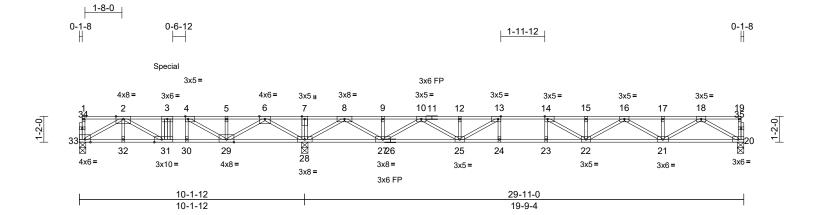
Plate Offsets (X, Y	Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [31:0-1-8,Edge]												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	тс	0.67	Vert(LL)	-0.26	22-23	>896	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.79	Vert(CT)	-0.36	22-23	>657	240			
BCLL	0.0	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.03	20	n/a	n/a			
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 151 lb	FT = 20%F, 11%E	
LUMBER			NOTES										

- 1) Unbalanced floor live loads have been considered for
- this design.
- All plates are 1.5x3 MT20 unless otherwise indicated. 2)
- 3) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 32. This connection is for uplift only and does not consider lateral forces.
- Structural wood sheathing directly applied or 4) This truss is designed in accordance with the 2018 6-0-0 oc purlins, except end verticals. International Residential Code sections R502.11.1 and Rigid ceiling directly applied or 6-0-0 oc R802.10.2 and referenced standard ANSI/TPI 1. 5) Recommend 2x6 strongbacks, on edge, spaced at 20=0-3-8, 28=0-3-8, 32=0-3-8
 - 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. 6)

LOAD CASE(S) Standard

TH CAN ORTH Van and and the ITTELLINE INTELLINE SEAL 036322 GI 111111111

January 29,2024


818 Soundside Road

Edenton, NC 27932

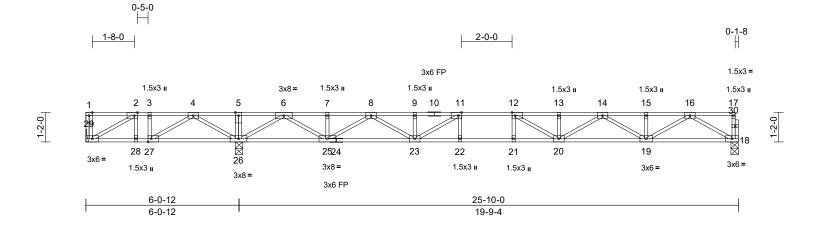
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F06	Floor Girder	1	1	Job Reference (optional)	163274330

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:09 ID:sMt_mg7MVfj2TtZQXLWuNHzuVag-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets ((X, Y): [4:0-1-8,Edge]	, [13:0-1-8,Edge], [14	:0-1-8,Ec	lge], [31:0-4-0,I	Edge]								
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 NO		CSI TC BC WB	0.84 0.91 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 22-23 22-23 20	l/defl >888 >655 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	v applied or 6-0-0 oc , 28=0-3-8, 33=0-3-8 (LC 18) LC 18), 28=1779 (LC	VNo.1 d or 1	I OTES) Unbalanced this design.	Matrix-MSH 7-28=-138/0, 8-28 8-27=0/1261, 18-2 17-21=-115/0, 10- 10-25=0/743, 16-2 15-22=-193/0, 13- 14-22=-156/33, 6- 5-29=-201/97, 4-2 4-30=-224/362, 6- 2-33=-1527/1464, 3-31=-672/824, 2- floor live loads ha e 1.5x3 MT20 unle	21=0/848 27=-999 22=0/377 25=-834 13-24=-1 29=-272 9=-1614 28=-167 2-31=-1 32=-55/ ⁻ we been	, 9-27=-116// /0, 16-21=-58 , 12-25=-121 /0, 0/178, /1381, /830, 7/271, 420/953, 16 considered fr	0, 38/0, 1/72, or		Vert: 3=	840 (I	, v	FT = 20%F, 11%
FORCES TOP CHORD	2-3=-2171/2523, 3-4 4-5=-1230/2134, 5-6 6-7=0/2298, 7-8=0/2 9-10=-620/256, 10-7 12-13=-2003/0, 13-7 14-15=-2531/0, 15-7	47/0, 1-2=-3/0, 4=-2212/2575, 5=-1230/2134, 2298, 8-9=-620/256, 12=-2003/0, 14=-2517/0,	3 4 5	 bearing plate joint 33. This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3" at their oute 	chanical connectio e capable of withs designed in accord I Residential Code and referenced sta d 2x6 strongbacks and fastened to e) nails. Strongbac	tanding 6 rdance w sections ndard AN , on edge ach truss ks to be d by othe	ith the 2018 R502.11.1 a SI/TPI 1. spaced at with 3-10d attached to ver means.	t and				TH CA	ROLLA
BOT CHORD	32-33=-1276/1334, 30-31=-2575/2212, 28-29=-1906/271, 2 25-27=0/1418, 24-2	31-32=-1276/1334, 29-30=-2575/2212,	б 7 517, 79 8	 Hanger(s) o provided suf lb down and design/selec responsibilit In the LOAD of the truss : OAD CASE(S) Dead + Flic Plate Incre Uniform Lo Vert: 20- 	OCASE(S) section are noted as front Standard por Live (balanced) ase=1.00	device(s concentra 1-4 on to ection de , loads a (F) or ba	i) shall be ated load(s) & op chord. Th vice(s) is the pplied to the ck (B).	e face		0.1111111	22	111111	22 EER-KIIII


January 29,2024

TRENCO A MiTek Affiliate

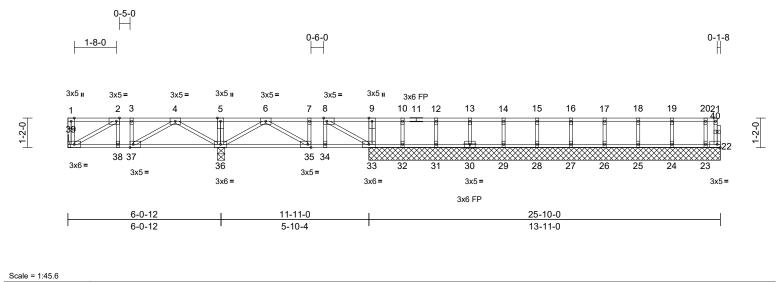
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty Ply DRB - 74 FaNC		DRB - 74 FaNC			
24020112	F07	Floor	7	1	Job Reference (optional)	163274331

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:10 ID:gdYG21IU6xT4QVRiP6_OISzuVcR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.6

Plate Offsets (X, Y): [2:0-1-8,Edge],	[11:0-1-8 Edge] [12	0-1-8 Ed	ne] [27·0-1-8 F	dael							
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			go], [21:0 1 0,2								
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES		CSI TC BC WB	0.69 0.79 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.35 0.03	l/defl >914 >667 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH						Weight: 132 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 18=0-3-8, Mechanic Max Uplift 29=-291 (Max Grav 18=612 (I	applied or 6-0-0 oc 26=0-3-8, 29= al LC 4) _C 7), 26=1405 (LC 1	2) 3) 4) d or 5) 6)	this design. All plates are Refer to gird Provide mec bearing plate joint 29. This truss is International R802.10.2 a Recommend 10-00-00 cc (0.131" X 3") at their outer	floor live loads ha a 3x5 MT20 unless er(s) for truss to tr hanical connection a capable of withst designed in accor Residential Code nd referenced stan 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine bo not erect truss l	s otherwiruss conr n (by oth tanding 2 rdance w sections ndard AN , on edge ach truss ks to be d by othe	se indicated. nections. ers) of truss 291 lb uplift a sthe 2018 s R502.11.1 a s Si/TPI 1. e, spaced at s with 3-10d attached to v er means.	to tt and				
FORCES	29=109 (L (Ib) - Maximum Com	,	-		otandara							
TOP CHORD	12-13=-2441/0, 13-1	7/631, 4-5=0/2007, 94/0, 7-8=-394/0, 1822/0, 11-12=-2384 14=-2441/0,										111111
BOT CHORD	28-29=-631/77, 27-2 26-27=-1314/0, 25-2	26=-722/0, 23-25=0/1 2=0/2384, 20-21=0/2	216,						4	E.	ORTHOR	N. A.
WEBS NOTES	5-26=-148/0, 4-26=- 4-27=0/857, 2-28=-1 6-26=-1491/0, 16-18 16-19=0/821, 7-25=- 8-25=-966/0, 14-19=	985/0, 2-29=-89/724, 185/0, 3-27=-273/0, 3=-1101/0, 6-25=0/12 -116/0, 15-19=-114/0 -561/0, 8-23=0/715, -117/64, 13-20=-185/ 0=-254/275,	40, ,						U , 11111111	A A A A A A A A A A A A A A A A A A A	111111	22 EP



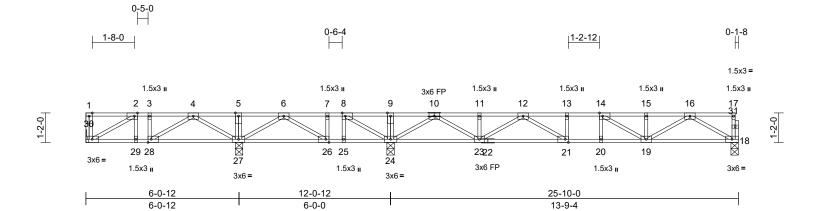
January 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F08	Floor	1	1	Job Reference (optional)	163274332

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:11 ID:oOMcLI6I29Fq06jTAPWQVnzuVbz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-1-8,Edge], [8:0-1-8,Edge], [35:0-1-8,Edge], [37:0-1-8,Edge] Loading Spacing 1-4-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) TCLL 40.0 Plate Grip DOL 1.00 TC 0.48 Vert(LL) -0.01 35-36 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.10 Vert(CT) -0.01 35-36 >999 240 BCLL 0.0 Rep Stress Incr NO WB Horz(CT) 0.00 0.16 33 n/a n/a BCDL 50 Code IRC2018/TPI2014 Matrix-MSH Weight: 123 lb FT = 20%F, 11%E LUMBER BOT CHORD 38-39=0/235, 37-38=0/235, 36-37=-65/156, 35-36=-53/133, 34-35=0/204, 33-34=0/204, TOP CHORD 2x4 SP No.2(flat) 32-33=-2/0, 31-32=-2/0, 29-31=-2/0, BOT CHORD 2x4 SP No.2(flat) 28-29=-2/0, 27-28=-2/0, 26-27=-2/0, 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) 25-26=-2/0, 24-25=-2/0, 23-24=-2/0, OTHERS 22-23=-2/0 BRACING WEBS 5-36=-122/0, 9-33=-357/0, 4-36=-380/0, TOP CHORD Structural wood sheathing directly applied or 2-39=-270/0, 4-37=0/137, 2-38=-4/9, 6-0-0 oc purlins, except end verticals. 3-37=-52/0, 6-36=-370/0, 8-33=-237/0, BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 6-35=0/119, 7-35=-58/0, 8-34=0/25, bracing, Except: 10-32=-687/0, 12-31=-691/0, 13-30=-689/0, 10-0-0 oc bracing: 38-39,37-38,34-35,33-34. 14-29=-689/0, 15-28=-689/0, 16-27=-688/0, 22=13-11-0, 23=13-11-0, **REACTIONS** (size) 17-26=-691/0, 18-25=-683/0, 19-24=-713/0, 24=13-11-0, 25=13-11-0, 20-23=-569/0 26=13-11-0, 27=13-11-0, NOTES 28=13-11-0, 29=13-11-0, 30=13-11-0, 31=13-11-0, 1) Unbalanced floor live loads have been considered for this design. 32=13-11-0, 33=13-11-0, 36=0-3-8, All plates are 1.5x3 MT20 unless otherwise indicated. 2) 39= Mechanical Truss to be fully sheathed from one face or securely 3) Max Uplift 22=-39 (LC 1) braced against lateral movement (i.e. diagonal web). Max Grav 22=-10 (LC 3), 23=576 (LC 1), Gable studs spaced at 1-4-0 oc. 4) 24=722 (LC 4), 25=691 (LC 1), IN DTH CAL Refer to girder(s) for truss to truss connections. 5) 26=699 (LC 4), 27=697 (LC 1), 6) N/A 28=698 (LC 4), 29=698 (LC 1), ORTH 30=697 (LC 4), 31=700 (LC 1), 32=695 (LC 4), 33=478 (LC 4), 36=527 (LC 1), 39=187 (LC 3) This truss is designed in accordance with the 2018 7) FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Vermannon Tension VIIIIIIIIIII R802.10.2 and referenced standard ANSI/TPI 1. 1-39=-51/0, 21-22=0/39, 1-2=0/0, 2-3=-235/0, TOP CHORD 8) Recommend 2x6 strongbacks, on edge, spaced at SEAL 3-4=-235/0. 4-5=0/249. 5-6=0/249. 10-00-00 oc and fastened to each truss with 3-10d 6-7=-204/0, 7-8=-204/0, 8-9=0/2, 9-10=0/2, 036322 (0.131" X 3") nails. Strongbacks to be attached to walls 10-12=0/2, 12-13=0/2, 13-14=0/2, 14-15=0/2, at their outer ends or restrained by other means. 15-16=0/2, 16-17=0/2, 17-18=0/2, 18-19=0/2, 9) CAUTION, Do not erect truss backwards. 19-20=0/2, 20-21=0/2 LOAD CASE(S) Standard Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00 GI 11111111 Uniform Loads (lb/ft) Vert: 22-39=-7, 1-9=-67, 9-21=-517 January 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

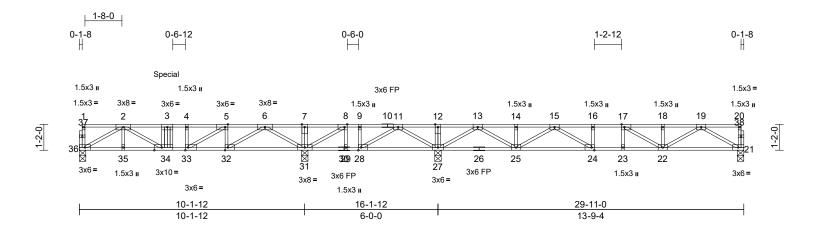
Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F09	Floor	2	1	Job Reference (optional)	163274333

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:11 ID:vufW4kHS_8u_46DzQeFTXWzuVbm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.6

				1							1	
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.47	Vert(LL)	-0.06	20-21	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.40		-0.08	21-23	>999	240		
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MSH	0.36	Horz(CT)	0.01	18	n/a	n/a	Weight: 135 lb	FT = 20%F, 11%E
BCDL	5.0	Code	IRC2010/1F12014	Maurix-MISH	-						Weight. 135 lb	FI - 20%F, 11%E
LUMBER				re 3x5 MT20 unles								
TOP CHORD	2x4 SP No.2(flat)			der(s) for truss to t								
BOT CHORD	2x4 SP No.2(flat)			s designed in acco								
WEBS	2x4 SP No.3(flat)			al Residential Code			and					
OTHERS	2x4 SP No.3(flat)			and referenced sta d 2x6 strongbacks								
BRACING			10 00 00 -	c and fastened to e								
TOP CHORD		athing directly applie		") nails. Strongbad			valls					
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly			er ends or restraine			, and					
	bracing.	applied of 0-0-0 oc	6) CAUTION,	Do not erect truss	backwar	ds.						
REACTIONS	0	, 24=0-3-8, 27=0-3-8,	30= LOAD CASE(S) Standard								
REAG HONO	(Size) Nechanic		, 00-									
	Max Grav 18=427 (I		11),									
		LC 3), 30=175 (LC 14										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-30=-56/0, 17-18=-											
	2-3=-211/10, 3-4=-2											
	5-6=0/325, 6-7=-45/		,									
	12-13=-1208/0, 13-1)2/921, 11-12=-602/0 141208/0),									
	,	14=-1208/0, 16=-1039/0, 16-17=-3	3/0									
BOT CHORD	29-30=-10/211, 28-2										munn	11111
	27-28=-107/112, 26										"'TH CA	Rollin
	25-26=-577/45, 24-2	25=-577/45, 23-24=-9	99/0,							x	R	· Alati
		1=0/1208, 19-20=0/1	208,							1.	O FESS	Of Vin
	18-19=0/638									22		12/
WEBS	5-27=-120/0, 9-24=-	, , ,									27	
	2-30=-242/12, 4-28=	=0/172, 2-29=-32/22, 89/171, 8-24=-611/0									SEA	L : =
	,	=-21/83, 8-25=0/100,	,						=			• -
	,	3=-735/0, 10-23=0/76	64						-		0363	22 <u>:</u> E
		=-117/0. 15-19=-139/							-	1	:	1 5
	12-23=-474/0, 14-19	9=-287/0, 12-21=0/32	28,							-	·	01.5
	13-21=-111/0, 14-20										NGINI	ENIAS
NOTES										11	710	The second
1) Unbalance	ed floor live loads have	e been considered for	r								IL A G	ILD
this desigr	n.										A. G	111111
												00.0004

January 29,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F10	Floor Girder	1	1	Job Reference (optional)	163274334

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:12 ID:?Do1KBJqQm38Ex3FGwGtLxzuVZ8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [5:0-1-8,Edge], [8:0-1-8,Edge], [17:0-1-8,Edge], [24:0-1-8,Edge], [28:0-1-8,Edge], [32:0-1-8,Edge], [33:0-1-8,Edge], [34:0-4-0,Edge]														
Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00		TC	0.82	Vert(LL)	-0.11		>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00		BC	0.64	Vert(CT)		34-35	>990	240			
BCLL	0.0	Rep Stress Incr	NO		WB	0.63	Horz(CT)	0.02	21	n/a	n/a			
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 159 lb	FT = 20%F, 11%E	
	2x4 SP No.2(flat) *E. 2400F 2.0E(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 6-0-0 oc 27=0-3-8, 31=0-3-8, C 26)	d or N 1)	OTES Unbalanced this design.	7-31=-146/0, 12-2 8-31=-483/188, 1 8-29=-62/63, 9-28 19-21=-726/0, 13- 14-25=-116/0, 18- 17-22=-267/15, 15 17-23=-53/36, 2-3 6-32=-38/1219, 5- 5-33=-197/1317, 4 6-31=-1512/19, 2- 2-34=-179/1167, \$ floor live loads ha	I-28=-14 =-129/29 25=0/75: 22=-142 5-24=0/3: 6=-1774 32=-688 I-33=-33 35=-17/1 3-34=-85 ve been	2/378,), 13-27=-995 5, 19-22=0/4 /0, 15-25=-45 52, 16-24=-1 /153, /56, 0/38, 17, 1/160 considered f	9/0, 60, 94/0, 18/0,		oncentra Vert: 3=				
		(LC 3), 36=896 (LC 2	.0),	 All plates are 3x5 MT20 unless otherwise indicated. One H2.5A Simpson Strong-Tie connectors 										
FORCES	(lb) - Maximum Com		,		ed to connect trus (s) 36. This conne		0							
TOP CHORD	7-8=0/842, 8-9=-120	2618/301, 1536/141, 6-7=0/84 0/802, 9-11=-120/802 3=0/1034, 13-14=-55 5=-1183/0, 8=-1025/0,	, 51	does not cor This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3")	sider lateral force designed in accoo Residential Code nd referenced sta 1 2x6 strongbacks and fastened to e) nails. Strongbac	s. dance w sections ndard AN , on edge ach truss ks to be	ith the 2018 R502.11.1 a ISI/TPI 1. s, spaced at s with 3-10d attached to v	and			All	NITH CA	ROUT	
BOT CHORD	35-36=-133/1549, 34 33-34=-301/2618, 32 31-32=-114/502, 29- 28-29=-802/120, 27-	4-35=-133/1549, 2-33=-141/1536, -31=-802/120, -28=-867/5, i=0/967, 23-24=0/118	83, 8)	 Hanger(s) or provided suf lb down and design/selec responsibility In the LOAD of the truss a OAD CASE(S) Dead + Flo Plate Increa Uniform Lo 	CASE(S) section are noted as front Standard or Live (balanced) ase=1.00	device(s concentra -4 on top ection de , loads a (F) or ba	i) shall be ated load(s) ' o chord. The vice(s) is the pplied to the ck (B).	face		4		SEA 0363	22 EERER IIII	

January 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F11	Floor	12	1	Job Reference (optional)	163274335

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:14 ID:XePDXjXBdonprSHghdaYxEzuVXZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

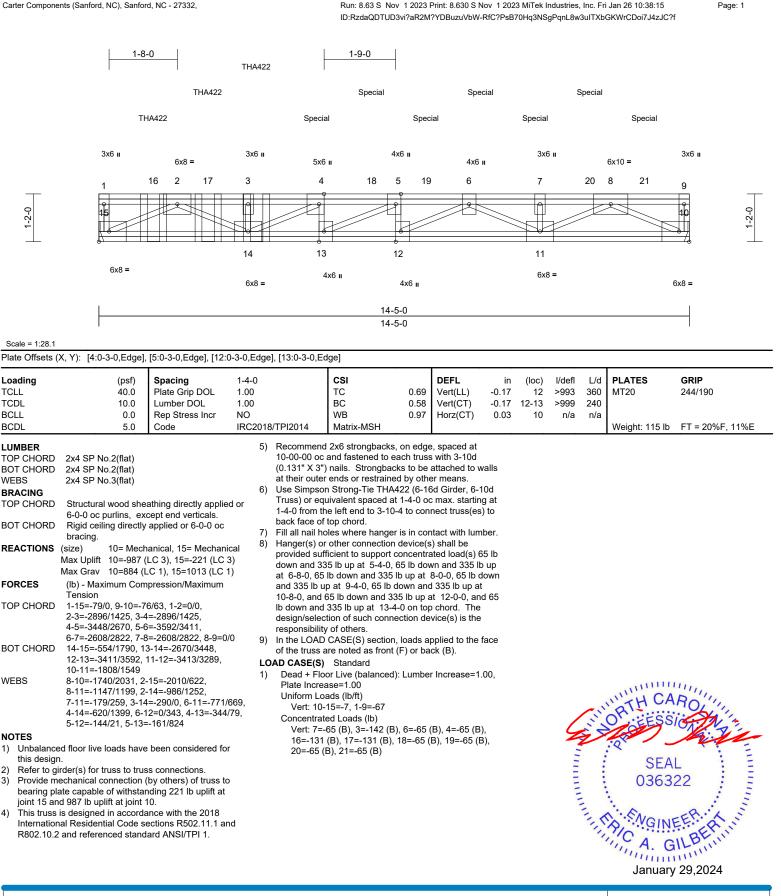
14-0-12

Page: 1

15-10-4

Scale = 1:51.9

Plate Offsets (2	X, Y): [16:0-1-8,Edge	e], [23:0-1-8,Edge], [2	9:0-1-8,E	dge], [30:0-1-8	,Edge]								
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES		CSI TC BC WB	0.60 0.68 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.19 0.03	(loc) 30-31 30-31 20	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 20=0-3-8 Max Grav 20=437 (l	/ applied or 6-0-0 oc , 26=0-3-8, 32=0-3-8 LC 4), 26=1311 (LC ⁻	1 2 3 d or 4 5	 this design. All plates are This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer 	Matrix-MSH floor live loads ha a 3x5 MT20 unless designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine o not erect truss b Standard	s otherwi dance w sections ndard AN , on edge ach truss ks to be d by othe	se indicated. ith the 2018 SR502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means.	and				vveignt: 150 lb	FT = 20%F, 11%E
FORCES	32=501 (i (lb) - Maximum Con Tension 1-32=-47/0, 19-20=-	npression/Maximum											
	5-6=-1623/0, 6-7=-1 8-10=-691/310, 10- 12-13=-604/444, 13 14-15=-1257/18, 15	,	1534,										
BOT CHORD	31-32=0/770, 30-31 27-29=-101/1223, 2 24-26=-730/0, 23-24 22-23=-18/1257, 21 20-21=0/655	4=-233/1026,	623,							4	111	ORTH CA	ROLIN
WEBS	11-26=-137/0, 10-26 10-27=0/947, 2-31= 3-31=-101/0, 7-27=- 7-29=0/647, 4-30=-2 6-29=-235/0, 12-26= 12-24=0/846, 18-21 17-21=-163/0, 14-24	-687/0, 4-31=-341/1, 210/134, 5-30=-60/42 =-1082/0, 18-20=-754 =0/486, 13-24=-122/0	2, 4/0, 0,									SEA 0363	
NOTES												111111	ILB


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

January 29,2024

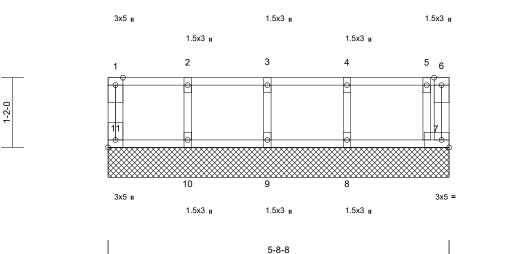
Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	F12	Floor Girder	1	1	Job Reference (optional)	163274336

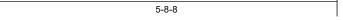
Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 26.10:38:15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	FW05	Floor Supported Gable	1	1	Job Reference (optional)	163274337


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:15 ID:M1Acg1bSekvkSR4yXL32kuzuVPk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 🛛

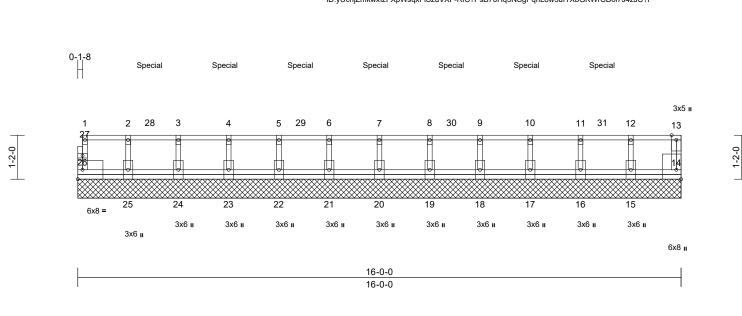
Page: 1

1-2-0

Scale = 1:19.3

Plate Offsets (X, Y): [11:Edge,0-1-8]

	() ()		_										
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00		CSI TC	0.26	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	NO IRC2018/	TPI2014	WB Matrix-MR	0.09	Horiz(TL)	0.00	7	n/a	n/a	Weight: 28 lb	FT = 20%F, 11%E
LUMBER		•	1)	Dead + Floo	or Live (balanced)	: Lumbei	r Increase=1.	00,					
TOP CHORD				Plate Increa	ase=1.00								
BOT CHORD				Uniform Loa	ads (Ib/ft) 1=-7, 1-6=-267 (F	- 200)							
WEBS OTHERS	2x4 SP No.3(flat) 2x4 SP No.3(flat)			Veit. 7-1	17, 1-0207 (F	200)							
BRACING	,												
TOP CHORD	Structural wood she		d or										
	5-8-8 oc purlins, ex												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc											
REACTIONS	0	3=5-8-8, 9=5-8-8,											
	10=5-8-8,												
	Max Grav 7=227 (LC	C 1), 8=393 (LC 1), 9)=336 (LC 1), 11=172											
	1)	-550 (EC 1), 11-172											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-11=-159/0, 6-7=0/	33 1-2=-41/0 2-3=-4	11/0										
	3-4=-41/0, 4-5=-41/0		F 170,										
BOT CHORD			41										
WEBS	2-10=-338/0, 3-9=-3 5-7=-262/0	54/0, 4-8=-377/0,											
NOTES	5-7202/0											minin	unin,
	uires continuous botto	m chord bearing.										TH CA	Rollin
	e fully sheathed from o										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OF TESS	12.3/1/2
	ainst lateral movemen ds spaced at 1-4-0 oc.	t (i.e. diagonal web).								6	X	. Of Loo	Xin
	is designed in accorda	ance with the 2018										:2	R: -
Ínternatior	nal Residential Code se	ections R502.11.1 ar	nd							-	:	SEA	L È È
	and referenced stand									Ξ	:		• -
	end 2x6 strongbacks, o oc and fastened to eac									=		0363	ZZ : E
(0.131" X	3") nails. Strongbacks	to be attached to wa	alls							-		1. Contract (1. Contract)	1 2
	ter ends or restrained									THE DESIGNATION OF THE DESIGNATI	10	N. ENO	FR. X S
	AD CASE(S) section, lo s are noted as front (F		ice								12	A CA C	E. ER
		, c. 2000 (D).										A G	ILBEIT


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	FW16	Floor Supported Gable	1	1	Job Reference (optional)	163274338

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:15 ID:yUcnjZmkwxlzFXpWsqxFISzuVXF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.6

Plate Offsets (X, Y): [14:Edge,0-1-8]

Plate Offsets	(X, Y): [14:	Edge,0-1-8]											
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MR	0.60 0.01 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2(flat) lo.3(flat) lo.3(flat) lo.3(flat) ll wood she purlins, ex ling directly 14=16-0-(20=16-0-(23=16-0-(23=16-0-(26=16-0-(14=-41 (L 16=-75 (L 20=-82 (L 24=-54 (L 24=-54 (L 24=-54 (L 24=-54 (L 26=-47 (L 16=326 (I 18=272 (L 18=272 (L 20=-344 (L))	C 3), 15=-56 (LC 8), C 8), 17=-82 (LC 8), C 8), 19=-75 (LC 8), C 8), 21=-55 (LC 8), C 8), 23=-82 (LC 8), C 8), 25=-77 (LC 8), C 3), 15=272 (LC 6), C 6), 17=344 (LC 6), C 6), 19=326 (LC 6), C 6), 21=272 (LC 6), C 6), 23=344 (LC 6), C 6), 25=327 (LC 6), C 6), C 6), 25=327 (LC 6), C 6), C 6), 25=327 (LC 6), C	ed or -0-0, -0-0, -0-0, -0-0, -0-0,	NOTES 1) Unbalanced this design. 2) All plates are 3) Gable requir 4) Truss to be f braced agair 5) Gable studs 6) N/A 7) This truss is International R802.10.2 a 8) Recommend 10-00-00 c (0.131" X 3") at their outer 9) CAUTION, E 10) Hanger(s) or provided suf 1b down and 1b up at 5-1"	2-25=-316/81, 3-22 5-22=-317/80, 6-21 8-19=-317/80, 9-18 11-16=-318/80, 12 floor live loads have a 1.5x3 MT20 unlet es continuous bott fully sheathed from 1st lateral moveme spaced at 1-4-0 oc designed in accord Residential Code nd referenced stan 1 2x6 strongbacks, and fastened to ea) nails. Strongback conto erect truss b other connection of ficient to support co 130 lb up at 1-11- 1.0, and 418 lb dow	I=-263/6 3=-263/6 -15=-26 /e been ss other om chor o one fac nt (i.e. d c. dance w sections dard AN on edge ach truss (s to be backward device(s oncentra 0, 418 II wn and 1	i0, 7-20=-335, 10, 10-17=-33, 11/60 considered fc wise indicated d bearing. e or securely iagonal web). ith the 2018 FS502,11,1 a ISI/TPI 1. e, spaced at swith 3-10d attached to w er means. Is.) shall be atted load(s) 4 o down and 1 30 lb up at	/87, 5/87, r I. alls 18 30		(B), 29=	-148 (E	3), 7=-148 (B), 10 3), 30=-148 (B), 0, 148 (B), 0, 148 (B), 148 (B	ROLIN
FORCES TOP CHORD BOT CHORD	Tension 1-26=-22 2-3=-7/19 6-7=-7/19 10-11=-7 25-26=-1 22-23=-1 19-20=-1	/50, 13-14= 9, 3-4=-7/19 9, 7-8=-7/19 /19, 11-12= 9/7, 24-25= 9/7, 21-22= 9/7, 18-19=	pression/Maximum 20/42, 1-2=-7/19, 3, 4-5=-7/19, 5-6=-7/ 4, 8-9=-7/19, 9-10=-7 7/19, 12-13=-7/19 19/7, 23-24=-19/7, 19/7, 17-18=-19/7, 19/7, 14-15=-19/7	7/19,	top chord. T device(s) is t 11) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Flo Plate Increa Uniform Lo	or Live (balanced): ase=1.00	n of suc f others. loads a F) or ba	h connection oplied to the f ck (B).	ace				111111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	V1	Valley	1	1	Job Reference (optional)	163274339

5-5-1

5-5-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:16 ID:GR86vAHIZ5TLvyZqpJEsHwzylSj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10<mark>-</mark>10-2 10-6-0 5-0-15 0-4-2 4x5 =

3

3x5 🛷

10-10-2

in

n/a

n/a

0.01

(loc)

_

4

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 42 lb

MT20

GRIP

244/190

FT = 20%

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.51 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	n/ n/ 0.0
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural w 10-0-0 oc p Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1 (I (lb) - Maxim Tension 1-2=-143/45 1-4=-262/19	2 3 vood shea urlins. g directly =10-10-2 =-74 (LC =-74 (LC LC 21) num Com 51, 2-3= 28, 3-4=-2	21), 3=-74 (LC 20), C 14) 20), 3=74 (LC 21), 4=9 pression/Maximum 143/451	6) 7) 8) 2 9) 904 1(Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalancet design. Gable requirt Gable studs This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 74 lb uplift) This truss is International	7-16; Pr=20.0 psf .15); Pf=20.0 psf s=1.0; Rough Cat .1.10 snow loads have b saced at 4-0-0 oc s been designed fu d nonconcurrent v las been designed n chord in all areas y 2-00-00 wide willy other members. hanical connection capable of withsta at joint 3 and 137 designed in accord Residential Code nd referenced stan	Lum DC B; Fully eeen cor om chor or a 10. vith any for a liv s where I fit betw (by oth anding 7 lb uplift dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t r4 lb uplift at jj at joint 4. tith the 2018 s R502.11.1 a	ds. Dysf om oint
WEBS NOTES	2-4=-711/31		heen considered for	L	DAD CASE(S)	Standard			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Scale = 1:36.9 naibeo I

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-10-6, Exterior(2E) 7-10-6 to 10-10-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	V2	Valley	1	1	Job Reference (optional)	163274340

4-0-4

4-0-4

12 10 ∟

3x5 🛷

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-0-12

0-0-4

3-4-7

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:16 ID:GR86vAHIZ5TLvyZqpJEsHwzylSj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-8-6

3-8-2

4x5 = 2 9 10 3 ю 4 2x4 II 3x5 💊 8-0-8

Scale = 1:30 5

Loading	(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.33	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	4	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-MP							Weight: 30 lb	FT = 20%
LUMBER		•			7-16; Pr=20.0 ps	sf (roof Ll	· Lum DOI =	1 15					
TOP CHORD	2x4 SP No.2				1.15); Pf=20.0 psf								
BOT CHORD	2x4 SP No.2				ls=1.0; Rough Ca								
OTHERS	2x4 SP No.3			Cs=1.00; Ct		, ,	1 /						
BRACING				5) Unbalanced	snow loads have	been cor	nsidered for t	his					
TOP CHORD	Structural wood sh	eathing directly applie	ed or	design.									
	8-0-8 oc purlins.	iouuning unoouy uppin	6) Gable requires continuous bottom chord bearing.										
BOT CHORD		ly applied or 6-0-0 oc		,	spaced at 4-0-0 of								
	bracing.	,			as been designed								
REACTIONS	(size) 1=8-0-8	, 3=8-0-8, 4=8-0-8			ad nonconcurrent								
	Max Horiz 1=-75 (L				nas been designe			Upst					
	· · · · · · · · · · · · · · · · · · ·	_C 21), 3=-35 (LC 20)			n chord in all area								
	4=-91 (L		,		oy 2-00-00 wide w		veen the bott	om					
		LC 20), 3=105 (LC 21),		ny other members hanical connectio		ora) of truco i	10					
	4=628 (LC 21)			capable of withs								
FORCES	(lb) - Maximum Co	mpression/Maximum			t at joint 3 and 91			John					
	Tension	·			designed in acco								
TOP CHORD	1-2=-111/282, 2-3=	-111/282			Residential Code			and					
BOT CHORD	1-4=-192/173, 3-4=	=-192/173			nd referenced sta								
WEBS	2-4=-460/234			LOAD CASE(S)									
NOTES													
	ed roof live loads hav	e been considered fo	r										1.1.1
this design	ı												1111

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-0-13, Exterior(2E) 5-0-13 to 8-0-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

CARO

Job	Truss	Truss Type	Qty	Ply	DRB - 74 FaNC	
24020112	V3	Valley	1	1	Job Reference (optional)	163274341

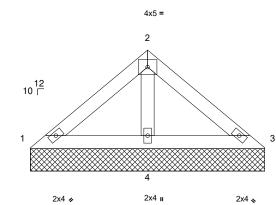
2-7-7

2-7-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 26 10:38:16 ID: GR86 vAHIZ5TLvyZqpJEsHwzyISj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-12


2-3-5

5-2-14

4x5 = 2

1-10-12 2-2-7 0-0-0

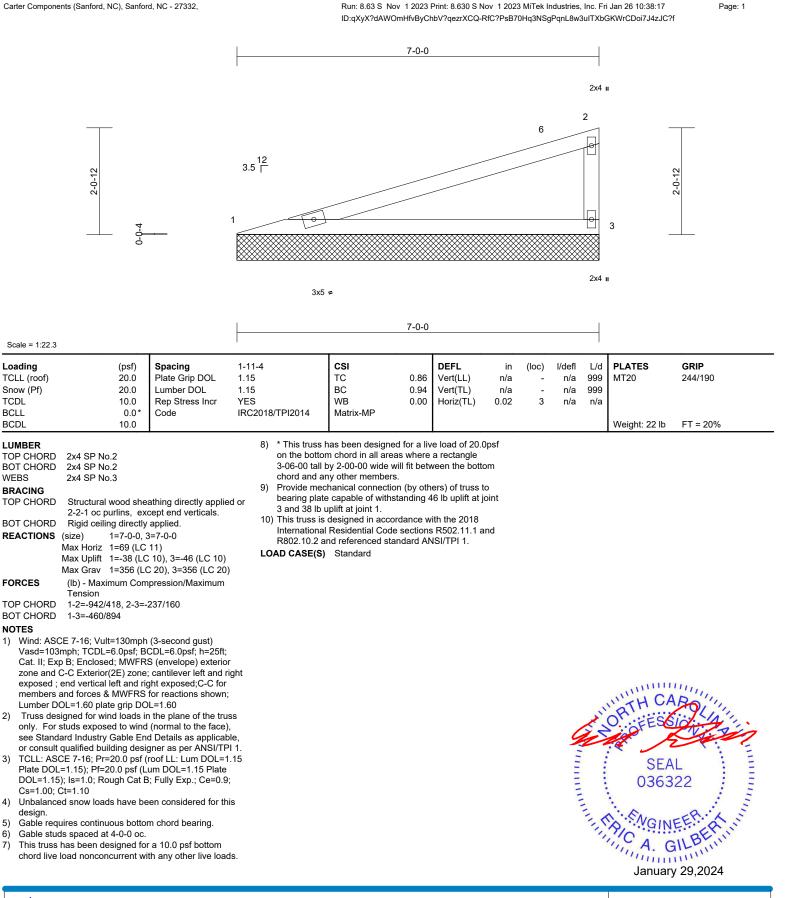
5-2-14

Scale = 1:25.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC C	0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-14 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-14, Max Horiz 1=-47 (LC Max Uplift 3=-6 (LC Max Grav 1=92 (LC (LC 21) (lb) - Maximum Com Tension 1-2=-84/121, 2-3=-8 1-4=-92/99, 3-4=-92 2-4=-210/114	applied or 6-0-0 oc 3=5-2-14, 4=5-2-14 22) 15), 4=-39 (LC 14) 20), 3=92 (LC 21), 4 pression/Maximum 4/121	design. 6) Gable requ 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing pla and 39 lb u 11) This truss is International	I snow loads have bee res continuous bottom spaced at 4-0-0 oc. as been designed for a bad nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members. chanical connection (b e capable of withstand blift at joint 4. designed in accordan I Residential Code sec and referenced standar Standard	chorce a 10.0 a any o r a live here a t betwo y othe ling 6 ace wit ctions	d bearing. psf bottom other live load: load of 20.0p a rectangle een the bottor rs) of truss to lb uplift at join th the 2018 R502.11.1 an	s. osf n t 3					
 this design Wind: ASG Vasd=103i Cat. II; Exp zone and C exposed ; members a Lumber DC Truss des only. For s see Standa or consult TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br b B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; cantilever left and ri ght exposed;C-C for for reactions shown; pL=1.60 n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	r ight ss , le, 1 1. .15						Martin Martin		SEA 0363	EER ALU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

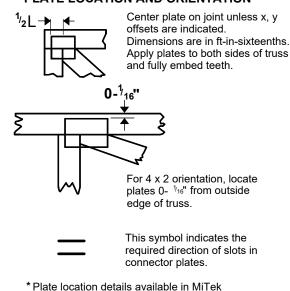
818 Soundside Road Edenton, NC 27932


A. GIL January 29,2024

Job	Truss	Truss Type	Qty	ty Ply DRB - 74 FaNC		
24020112	V4	Valley	1	1	Job Reference (optional)	163274342

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Eti Jan 26.10:38:17

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

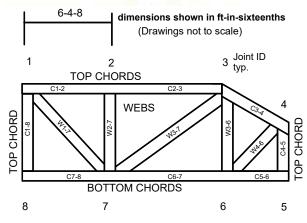
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.