

RE: J0723-3718 Lot 74 Liberty Meadows Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0723-3718 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 31 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	160141569	A1	8/15/2023	21	160141589	P1GE	8/15/2023
2	160141570	A1GE	8/15/2023	22	160141590	PB1	8/15/2023
3	160141571	A2	8/15/2023	23	160141591	PB1GE	8/15/2023
4	160141572	A2A	8/15/2023	24	160141592	PB2	8/15/2023
5	160141573	A2GE	8/15/2023	25	160141593	PB2GE	8/15/2023
6	160141574	B1	8/15/2023	26	160141594	VC1	8/15/2023
7	160141575	B1GE	8/15/2023	27	160141595	VC2	8/15/2023
8	160141576	C1	8/15/2023	28	160141596	VG1	8/15/2023
9	160141577	C1GE	8/15/2023	29	160141597	VG2	8/15/2023
10	160141578	D1	8/15/2023	30	160141598	VG3	8/15/2023
11	160141579	D1GE	8/15/2023	31	l60141599	VG4	8/15/2023
12	160141580	G1	8/15/2023				
13	l60141581	G1GE	8/15/2023				
14	160141582	G1GRD	8/15/2023				
15	160141583	H1GE	8/15/2023				
16	160141584	K1	8/15/2023				
17	160141585	K1GE	8/15/2023				
18	160141586	K2	8/15/2023				
19	160141587	K3	8/15/2023				
20	160141588	P1	8/15/2023				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Max Grav 2=1409(LC 19), 8=1409(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1925/353, 3-5=-1799/443, 5-7=-1799/443, 7-8=-1926/353

BOT CHORD 2-12=-140/1694, 10-12=0/1103, 8-10=-152/1525

WEBS 5-10=-163/931, 7-10=-503/295, 5-12=-163/931, 3-12=-503/295

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 31-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 2 and 80 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

August 15,2023

T RENCO A Mitek Affiliate

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

- TOP CHORD 2-3=-1911/352, 3-5=-1785/442, 5-7=-1771/456, 7-8=-1897/362
- BOT CHORD 2-11=-174/1674, 9-11=0/1083, 8-9=-173/1483
- WEBS 5-9=-162/904, 7-9=-478/294, 5-11=-163/932, 3-11=-503/295

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 29-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	<u>10-2-4</u> 10-2-4	<u> </u>	29-7-8 9-10-12	
LOADING (psf) SP/ TCLL 20.0 Plat TCDL 10.0 Lun BCLL 0.0 * Rep BCDL 10.0 Corr	ACING- 2-0-0 CSI. te Grip DOL 1.15 TC hber DOL 1.15 BC o Stress Incr YES WB de IRC2015/TPI2014 Matrix	DEFL. in (loc 0.24 Vert(LL) -0.11 9-11 0.44 Vert(CT) -0.16 9-11 0.35 Horz(CT) 0.03 2 S Wind(LL) 0.03 2-11	I/defi L/d PLATES >999 360 MT20 >999 240 3 3 n/a n/a >999 240 Weight: 223	GRIP 244/190 Ib FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2 *Except*

 12-13: 2x6 SP No.1

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-5-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (size) 2=0-3-8, 8=Mechanical Max Horz 2=252(LC 11) Max Uplift 2=-80(LC 12), 8=-61(LC 13) Max Grav 2=1391(LC 19), 8=1319(LC 20)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1892/352, 3-5=-1765/442, 5-7=-1752/456, 7-8=-1877/362

BOT CHORD 2-11=-174/1658, 9-11=0/1072, 8-9=-173/1467

WEBS 5-9=-162/893, 7-9=-478/294, 5-11=-163/920, 3-11=-503/295

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 29-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 11-9-0, Exterior(2) 11-9-0 to 16-1-13, Interior(1) 16-1-13 to 24-7-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	-0.00	14	n/r	120	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	14	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	14	n/a	n/a		
3CDL	10.0	Code IRC2015/TP	12014	Matri	x-S						Weight: 192 lb	FT = 20%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 23-6-0.

(lb) - Max Horz 2=-257(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 22, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-17, 8-17; Wall dead load (5.0psf) on member(s).3-15, 9-13
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 13-15

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 9) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

I	Job	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meadows	
							160141577
	J0723-3718	C1GE	GABLE	1	1		
						Job Reference (optional)	
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	430 s Jan	6 2022 MiTek Industries, Inc. Mon Aug 14 13:17:38 2023	Page 2

ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

14) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) 7 lagaet 10,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-4/3 fev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPI Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	-	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meadows	
							l60141582
J0723-3718	0	G1GRD	Common Girder	1	2		
					_	Job Reference (optional)	
Comtech, Inc, F	Fayettevi	lle, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Mon Aug 14 13:17:45 2023	3 Page 2
			ID:r?	yi3DAbxRı	?CsKd7D	DjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7	7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=-1155(B) 9=-1155(B) 10=-1155(B) 11=-1155(B) 12=-1155(B) 14=-1155(B) 16=-1155(B) 17=-1155(B) 18=-1155(B) 19=-1157(B) 10=-1155(B) 10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Uplift All uplift 100 b or less at joint(s) 2, 8, 13, 11 except 14=-101(LC 12), 10=-101(LC 13) Max Grav All reactions 250 b or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=101, 10=101.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 10, 15, 13 except (it=lb) 2=136, 16=219, 12=206.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 6, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		4-11-8		9-11-0	I			
Plate Offsets (X,Y)	[2:0-0-5,0-1-2], [4:0-0-5,0-1-2]	4-11-8		4-11-8				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.11 WB 0.05 Matrix-S	DEFL. in Vert(LL) 0.02 Vert(CT) -0.01 Horz(CT) -0.00	(loc) l/defl L/d 4-6 >999 240 6 >999 240 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 56 lb FT = 20%			
LUMBER- BRACING- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2								
REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=40(LC 16) Max Uplift 2=-258(LC 8), 4=-258(LC 9) Max Grav 2=455(LC 1), 4=455(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-633/757, 3-4=-633/757 BOT CHORD 2-6=-636/545, 4-6=-636/545 WEBS 3-6=-281/219								
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p 3) This truss has been	e loads have been considered for this d /ult=130mph Vasd=103mph; TCDL=6.0 C-C Exterior(2) zone; porch left and rig plate grip DOL=1.60 designed for a 10.0 psf bottom chord li e doginged for a live load of 20 0psf or	esign. lpsf; BCDL=6.0psf; h=15ft; Cat ht exposed;C-C for members the bottom abord in all account	t. II; Exp C; Enclosed; and forces & MWFRS y other live loads.	MWFRS (envelope) for reactions shown;				

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=258, 4=258.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

4x6 =

			9-11-0						
Plate Offsets (X,Y)	[2:0-0-5,0-1-2], [6:0-0-5,0-1-2]		3-11-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.11 WB 0.04 Matrix-S	DEFL. ir Vert(LL) 0.02 Vert(CT) -0.01 Horz(CT) -0.00	n (loc) l/defl L/d 2 8 >999 240 1 10 >999 240 0 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 58 lb FT = 20%				
LUMBER- BRACING- TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 9-9-4 oc bracing. OTHERS 2x4 SP No.2 Structural wood sheathing directly applied or 9-9-4 oc bracing.									
REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=40(LC 16) Max Uplift 2=-258(LC 8), 6=-258(LC 9) Max Grav 2=455(LC 1), 6=455(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-10= WEBS 4-9=-	Comp./Max. Ten All forces 250 (lb) of 632/746, 3-4=-580/754, 4-5=-580/754, 4 =-631/548, 9-10=-631/548, 8-9=-631/544 -266/168	less except when shown. 5-6=-632/746 3, 6-8=-631/548							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p 3) Truss designed for v	e loads have been considered for this de /ult=130mph Vasd=103mph; TCDL=6.0 C-C Exterior(2) zone; porch left and rig blate grip DOL=1.60 wind loads in the plane of the truss only.	esign. osf; BCDL=6.0psf; h=15ft; Ca nt exposed;C-C for members For studs exposed to wind	at. II; Exp C; Enclosed s and forces & MWFR (normal to the face), s	d; MWFRS (envelope) S for reactions shown; see Standard Industry					

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=258, 6=258.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.06 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
LUMBER	-			BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=5-8-8, 4=5-8-8, 6=5-8-8

Max Horz 2=-77(LC 10) Max Uplift 2=-27(LC 13), 4=-31(LC 13)

Max Grav 2=162(LC 1), 4=162(LC 1), 6=177(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Before use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

(lb) -Max Horz 1=-96(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 2, 6 except 10=-152(LC 12), 8=-150(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Bearing at joint(s) 7, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6 except (jt=lb) 10=152, 8=150.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Off	Plate Offsets (X,Y) [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]											
LOADIN	G (psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.08	DEFL. Vert(LL)	in 0.00	(loc) 5	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.04 0.01	Vert(CT) Horz(CT)	0.00 0.00	5 4	n/r n/a	120 n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 21 lb	FT = 20%
LUMBEF	2-					BRACING-						

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=4-8-9, 4=4-8-9, 6=4-8-9

Max Horz 2=-55(LC 10) Max Uplift 2=-23(LC 12), 4=-28(LC 13)

Max Grav 2=136(LC 1), 4=136(LC 1), 6=155(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Before use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=120, 2=177, 4=154.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

<u>14-3-8</u> 14-3-8

Plate Offsets (X,Y)	[4:0-2-0,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.07 BC 0.05 WB 0.03 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 7 n/a n/a Weight: 53 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SI	P No.1		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-3-8.

(lb) - Max Horz 1=-66(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 10, 9 except 11=-109(LC 12), 8=-111(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 9 except (jt=lb) 11=109, 8=111.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Horz 1=-16(LC 8) Max Uplift 1=-16(LC 12), 3=-19(LC 13)

Max Grav 1=103(LC 1), 3=103(LC 1), 4=199(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=109, 6=104.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

SEAL 036322 August 15,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. (size) 1=8-2-15, 3=8-2-15, 4=8-2-15 Max Horz 1=-58(LC 8) Max Uplift 1=-25(LC 12), 3=-31(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=266(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

2x4 1/

2x4 📎

	<u> </u>		4-2-15 4-2-15						
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*BCDL	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (le n/a n/a 0.00	loc) l/ - - 3	/defl n/a S n/a S n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=4-2-15, 3=4-2-15, 4=4-2-15 (size) Max Horz 1=26(LC 9) Max Uplift 1=-11(LC 12), 3=-14(LC 13) Max Grav 1=71(LC 1), 3=71(LC 1), 4=120(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

RE: J0723-3719 Lot 74 Liberty Meadows Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0723-3719 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	160141733	F01	8/15/2023
2	160141734	F02	8/15/2023
3	160141735	F03	8/15/2023
4	160141736	F04	8/15/2023
5	160141737	F04A	8/15/2023
6	160141738	F05	8/15/2023
7	160141739	F06	8/15/2023
8	160141740	F06A	8/15/2023
9	160141741	F07	8/15/2023
10	160141742	FKW1	8/15/2023
11	160141743	FKW3	8/15/2023
12	160141744	FKW6	8/15/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew

			<u>13-5-8</u> 13-5-8			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.42 BC 0.51 WB 0.31 Matrix-S	DEFL. in Vert(LL) -0.12 Vert(CT) -0.15 Horz(CT) 0.03	n (loc) l/defl L/d 12-13 >999 480 12-13 >999 360 ; 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,	
REACTIONS. (size	e) 14=0-3-8 9=0-3-8					

Max Grav 14=720(LC 1), 9=720(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1533/0, 3-4=-2255/0, 4-5=-2255/0, 5-6=-2255/0, 6-7=-1533/0

BOT CHORD 13-14=0/1028, 12-13=0/2002, 11-12=0/2255, 10-11=0/2002, 9-10=0/1028

WEBS 2-14=-1217/0, 2-13=0/658, 3-13=-610/0, 3-12=0/546, 4-12=-260/0, 7-9=-1217/0,

7-10=0/658, 6-10=-610/0, 6-11=0/546, 5-11=-260/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>12-10-8</u> 12-10-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [11:0-1-8,Edge], [12:0-1-4	3,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.38 BC 0.46 WB 0.31 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) 0.03	i (loc) l/defl L/d 12-13 >999 480 ; 12-13 >999 360 ; 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 14=Mechanical, 9=Mechanical Max Grav 14=694(LC 1), 9=694(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1351/0, 3-4=-2060/0, 4-5=-2060/0, 5-6=-2060/0, 6-7=-1351/0

BOT CHORD 13-14=0/851, 12-13=0/1815, 11-12=0/2060, 10-11=0/1815, 9-10=0/851

2-14=-1068/0, 2-13=0/650, 3-13=-605/0, 3-12=0/519, 7-9=-1068/0, 7-10=0/650,

6-10=-605/0, 6-11=0/519

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>13-2-0</u> 13-2-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.51 WB 0.32 Matrix-S	DEFL. ir Vert(LL) -0.12 Vert(CT) -0.15 Horz(CT) 0.03	i (loc) I/defl L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 14=0-3-8, 9=Mechanical Max Grav 14=704(LC 1), 9=710(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1491/0, 3-4=-2156/0, 4-5=-2156/0, 5-6=-2156/0, 6-7=-1389/0

BOT CHORD 13-14=0/1003, 12-13=0/1938, 11-12=0/2156, 10-11=0/1875, 9-10=0/872

WEBS 2-14=-1188/0, 2-13=0/635, 3-13=-582/0, 3-12=0/504, 7-9=-1094/0, 7-10=0/672,

6-10=-633/0, 6-11=0/562, 5-11=-265/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

L	8-2-4				20-8-8		
1		8-2-4	I		12-6-4		I
Plate Off	sets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge], [22:0-	1-8,Edge], [23:0-1-8,Edge]				
LOADIN TCLL TCDL BCLL BCDL	G (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.46 WB 0.34 Matrix-S	DEFL. in Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.02	(loc) l/defl L/d 16-17 >999 480 16-17 >999 360 15 n/a n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 o or 6-0-0 oc bracing.	c purlins,
REACTI	REACTIONS. (size) 24=0-5-8, 20=0-3-8, 15=0-5-8 Max Grav 24=403(LC 3), 20=1256(LC 1), 15=640(LC 7)						

```
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.
                2-3=-694/30, 3-4=-694/30, 4-5=-694/30, 5-6=0/704, 6-7=0/703, 7-8=-977/0,
TOP CHORD
                8-9=-1777/0, 9-10=-1777/0, 10-12=-1777/0, 12-13=-1233/0
                23-24=0/505, 22-23=-30/694, 20-22=-263/350, 19-20=-11/451, 18-19=0/1479,
BOT CHORD
                17-18=0/1777, 16-17=0/1635, 15-16=0/787
                2-24=-595/0, 5-20=-788/0, 5-22=0/589, 4-22=-297/0, 7-20=-1110/0, 7-19=0/717,
WEBS
                8-19=-700/0, 13-15=-985/0, 13-16=0/581, 12-16=-522/0, 12-17=-32/331, 8-18=0/554,
                9-18=-254/0
```

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	8-2-4		20-6-0								
1	8-2-4	I	12-3-12								
Plate Offsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge], [22:0-	1-8,Edge], [23:0-1-8,Edge]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.43 BC 0.46 WB 0.33	DEFL. ir Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.02	(loc) l/defl L/d 16-17 >999 480 16-17 >999 360 15 n/a n/a	PLATES MT20	GRIP 244/190					
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 101 lb	FT = 20%F, 11%E					
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 c or 6-0-0 oc bracing.	oc purlins,					
Max Grav 24=405(LC 3), 20=1235(LC 1), 15=631(LC 7)											
FORCES. (lb) - Max TOP CHORD 2-3=	ORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. OP CHORD 2-3=-703/9. 3-4=-703/9. 4-5=-703/9. 5-6=0/652. 6-7=0/651. 7-8=-980/0. 8-9=-1721/0.										

9-10=-1721/0, 10-12=-1721/0, 12-13=-1210/0 BOT CHORD 23-24=0/509, 22-23=-9/703, 20-22=-229/363, 19-20=-0/473, 18-19=0/1467, 17-18=0/1721, 16-17=0/1601, 15-16=0/776 WEBS 2-24=-599/0, 5-20=-785/0, 5-22=0/583, 4-22=-295/0, 7-20=-1086/0, 7-19=0/691,

8-19=-682/0, 13-15=-971/0, 13-16=0/566, 12-16=-508/0, 12-17=-27/324, 8-18=0/541, 9-18=-291/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) ENGINEERING BY A MITEK Affiliate

						18-1-8 18-1-8						
Plate Offsets (X,	Y) [1:Edge,0	<u>-1-8], [18:0-1-8,</u>	Edge], [19:0-1	-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SP Pla Lur Re Co	ACING- ate Grip DOL mber DOL p Stress Incr ode IRC2015/TP	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrix	0.38 0.48 0.53 (-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.33 0.06	(loc) 18-19 18-19 14	l/defl >881 >641 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 92 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
LUMBER- BRACING- TOP CHORD 2x4 SP 2400F 2.0E(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS.	(size) 22=M Max Grav 22=98	lechanical, 14=0 83(LC 1), 14=97)-3-8 77(LC 1)									
FORCES. (lb)	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2075/0, 3-4=-3469/0, 4-6=-3469/0, 6-7=-4167/0, 7-8=-4167/0, 8-9=-4167/0, 9-10=-3469/0, 10-11=-3469/0, 11-12=-2075/0 9-10=-3469/0, 10-11=-3469/0, 11-12=-2075/0											
BUT CHURD	DT CHORD 21-22=0/1229, 20-21=0/2888, 19-20=0/3892, 18-19=0/4167, 16-18=0/3892, 15-16=0/2889, 14-15=0/1228											

NOT	гес
NU	1 63

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

7-19=-319/0, 8-18=-319/0

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

2-22=-1541/0, 2-21=0/1102, 3-21=-1058/0, 3-20=0/742, 12-14=-1538/0, 12-15=0/1103, 11-15=-1059/0, 11-16=0/741, 9-16=-539/0, 9-18=-56/690, 6-20=-539/0, 6-19=-56/690,

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

- All plates are 2x6 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Load case(s) 1, 2, 3, 4, 5, 6 has/have been modified. Building designer must review loads to verify that they are correct for the
- intended use of this truss. 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means. 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 17-33=-10, 1-16=-200
- 2) Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 17-33=-10, 1-16=-200 3) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meadows	
			-			60141740
J0723-3719	F06A	Floor	1	1		
					Job Reference (optional)	
Comtech. Inc. Favettev	ille, NC - 28314.		8	.430 s Jan	6 2022 MiTek Industries, Inc. Mon Aug 14 13:19:12 2023 F	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Aug 14 13:19:12 2023 Page 2 ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 17-33=-10, 1-9=-200, 9-16=-120

4) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 17-33=-10, 1-8=-120, 8-16=-200 5) 3rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 17-33=-10, 1-9=-200, 9-16=-120

6) 4th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 17-33=-10, 1-8=-120, 8-16=-200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 5=0-3-8, 4=0-3-8

Max Grav 5=193(LC 1), 4=193(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	1						
Job	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meado	WS	1004 417 40
.10723-3719	FKW1	GABLE	1	1			160141742
00120-0110			'		Job Reference (optio	nal)	
Comtech, Inc, Fayette	wille, NC - 28314,	1		8.430 s Jar	6 2022 MiTek Industr	ries, Inc. Mon Aug 14 1	3:19:14 2023 Page 1
			ID:r?yi3DAb	xRr?CsKd7D	tDjMygInZ-RfC?PsB70	Hq3NSgPqnL8w3uITX	bGKWrCDoi7J4zJC?f
							0 ₁ 18
							Scale = 1:22.3
1 2	3	4 5	6 7		8	9 10	11
• •	•	<u> </u>	•	•	•	•	•
28 🔲							24
							÷
		H H		_		H H	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*****	***
22 21	20	19 18	17 10	D	15	14 13	12
3x4							3x4 =
1.1.0	2.8.0 4.0.0	540 000		0.4.0	10.0.0	12.0.0	10 5 0
1-4-0	<u></u>	1-4-0 1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-5-8
Plate Offsets (X,Y) [22	:Edge,0-1-8]						
						_	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP
ICLL 40.0	Plate Grip DOL 1.00		Vert(LL)	n/a -	n/a 999	M120	244/190
BCU 0.0	Lumber DOL 1.00 Rep Stress Incr VES	BC 0.01	Vert(CT)	n/a - 00 12	n/a 999 n/a n/a		
BCDI 5.0	Code IRC2015/TPI2014	Matrix-R		.00 12	11/a 11/a	Weight: 57 lb	FT = 20%F 11%F
2022 0.0						1101911.0710	. 1 = 20701, 1170E
LUMBER-			BRACING-				

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-5-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty Ply	Lot 74 Liberty Meadow	vs	
J0723-3719	FKW3	GABLE		1 1	Job Reference (option	al)	I60141743
Comtech, Inc, Faye	tteville, NC - 28314,		ID:r?	8.430 s Jar 9i3DAbxRr?CsKd7D	6 2022 MiTek Industri tDjMygInZ-RfC?PsB70	es, Inc. Mon Aug 14 1 Iq3NSgPqnL8w3uITXt	3:19:15 2023 Page 1 GKWrCDoi7J4zJC?f
0 ₁ 1 ₁ 8							0 ₁ 18
							Scale = 1:21.
1 2	3	4 5	6	7	8	9	10 11
		• • • •	• • • •	• • •	•	0	24
22 21	20	19 18	17	16	15	14	13 12
↓ <u>1-4-0</u> 1-4-0	<u>2-8-0</u> 4-0- 1-4-0 1-4-	0 <u>5-4-0</u> 0 1-4-0	6-8-0 1-4-0	8-0-0 1-4-0	9-4-0 10-8 1-4-0 1-4	-0 <u>12-0-0</u> 0 1-4-0	
LOADING (psf)	SPACING- 2-	0-0 CSI .	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	.00 TC 0.0 .00 BC 0.0 ES WB 0.0	06 Vert(LL 01 Vert(CT 03 Horz(C) n/a -) n/a - T) 0.00 12	n/a 999 n/a 999 n/a n/a	MT20	244/190
LUMBER- TOP CHORD 2x4 SP	No.1(flat)	I H IVIdUIX-R	BRACIN TOP CH	IG- IORD Structur	ral wood sheathing dir	ectly applied or 6-0-0	oc purlins,

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS OTHERS 2x4 SP No.3(flat) BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Vert: 16-28=-10, 1-6=-20, 6-12=-200, 12-15=-100

Continued on page 2

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

August 15,2023

Job	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meadows	
						l60141744
J0723-3719	FKW6	Floor	1	1		
					Job Reference (optional)	
Comtech, Inc. Favettev	rille, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Mon Aug 14 13:19:16 2023	Page 2

ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- LOAD CASE(S) Standard 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-120, 12-15=-20 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-20, 6-12=-200, 12-15=-100
- 7) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 9) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 10) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 11) 5th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 12) 6th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 13) 7th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 14) 8th chase Deat + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 15) 9th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 16) 10th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 17) 11th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100
- 18) 12th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100 19) 13th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 20) 14th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 21) 15th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 22) 16th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 23) 17th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 24) 18th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 25) 19th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 26) 20th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 27) 21st chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 28) 22nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 29) 23rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Liberty Meadows	
						160141744
J0723-3719	FKW6	Floor	1	1		
					Job Reference (optional)	
Comtech. Inc. Favettev	ville, NC - 28314.		8	.430 s Jan	6 2022 MiTek Industries, Inc. Mon Aug 14 13:19:16 2023	Page 3

ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

- 30) 24th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 31) 25th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 32) 26th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 33) 27th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 34) 28th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 35) 29th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100 36) 30th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100 37) 31st chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 38) 32nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 39) 33rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 40) 34th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 41) 35th chase Dead: Lumber Increase=1.00, 0-12=-200, 12-15=-100 Uniform Loads (off)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 42) 36th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			Client:	Precision Cu	stom Homes			Date:	3/10/20	24				Page 2 of 3
Tie	Design		Project:					Input by:	: Hampto	n Horrocks	dow			
			Address.					Project #	#: J0723-3	3719	dow			
BM4	Kerto-SI\	/ 1	750"	X 14 00	0" 2-	Plv - P	ASSE	- ח=	Level: Leve	el				
				~ 14.00	~ _									
	2													
	·	1												
													IVIVI	
	a contrate		-										MA	1'2"
A CONTRACTOR OF A CONTRACTOR O			and the second distance of the second distanc											
1 SPF 0-	-3-8		2 SPF 0	-3-8										
	Ę	5'												8 1/2"
/	5	5'		{										
Member In	formation						Reacti	ons UN	IPATTERI	NED Ib (Uplift)			
Туре:	Girder		Applica	ition: I	loor		Brg D	Direction	Live	e D	ead S	Snow	Wind	Cons
Plies:	2 dition: Dr.(Design	Method: /			1 V	ertical	650	C	755	0	0	C
Deflection LL:	480		Load S	g Code: I haring: I	BC/IRC 2015 No)	2 V	ertical	650)	755	0	0	(
Deflection TL:	240		Deck:	l I	Not Checked									
Importance:	Normal - II													
Temperature:	Temp <= 100)°F					Bearin	as						
							Bearir	ng Leng	th Dir.	Cap. R	eact D/L lb	Total	Ld. Case	Ld. Comb.
							1 - SP	F 3.500	" Vert	27%	755 / 650	1405	L	D+L
Analysis Po	culto						2 - SP	F 3.500	" Vert	27%	755 / 650	1405	L	D+L
Analysis Re	Actual	Location	Allowed	Capacity	Comb	Case	1							
Moment	1449 ft-lb	2'6"	26999 ft-lb	0.054 (5%) D+L	L								
Unbraced	1449 ft-lb	2'6"	20546 ft-lb	0.071 (7%) D+L	L								
Shear	996 lb	3'6 1/2"	10453 lb	0.095 (10%	%) D+L	L								
LL Defl inch	0.003 (L/17407)	2'6"	0.114 (L/48	0) 0.028 (3%) L	L								
TL Defl inch	0.007 (L/8054)	2'6"	0.227 (L/24	0) 0.030 (3%) D+L	L								
Design Not	tes]							
1 Provide su	pport to prevent late	ral movemen	it and rotation	on at the end t	oearings. Late	eral support]							
2 Girders are	e designed to be sup	ported on the	e bottom ed	ge only.										
3 Multiple plie 4 Top loads r	es must be fastened must be supported e	l together as qually by all i	per manufa plies	cturer's details	3.									
5 Top must b	e laterally braced at	end bearing	s.											
6 Bottom mu 7 Lateral sler	st be laterally brace nderness ratio base	d at end bear d on single pl	ngs. v width.											
ID	Load Type	<u> </u>	Location	Trib Width	Side	Dead 0.9	Liv	re 1 Sn	iow 1.15	Wind 1.6	Const. 1.2	5 Con	nments	
1	Uniform				Far Face	81 PLF	260 I	PLF	0 PLF	0 PLF	0 PL	F F02		
2	Uniform				Тор	210 PLF	01	PLF	0 PLF	0 PLF	0 PL	F wall		
	Self Weight					11 PLF								
									Manual	nan lofe				
Notes Calculated Structured	Designs is responsible only	chemics of the Handlin	^{als} g & Installat	ion	 For fl pondir 	lat roofs provide p ng	roper drainage	to prevent	Metsä Woo	rer into d				
structural adequacy design criteria and responsibility of the	of this component based of d loadings shown. It is customer and/or the contract	n the 1. LVL bea the 2. Refer	ams must not be to manufactur	cut or drilled er's product info	rmation				301 Merritt Norwalk, C	7 Building, 2 T 06851	nd Floor			
ensure the compor application, and to ver	rify the dimensions and loads.	ended fastenin approva	ig installation ig details, beam als	strength values, an	d code				(800) 622-5 www.metsa	i850 wood.com/u	IS .			
1. Dry service condit	ions, unless noted otherwise	 Damage Design Provide 	ed Beams must r assumes top edg ateral support	tot be used te is laterally restraine at bearing points to	ed avoid									
2. LVL not to be treat	ated with fire retardant or corr	rosive lateral o	displacement and	rotation	This	design is valid	until 6/28/2	026						

		C	lient:	Precision Cus	stom Homes		Da	ite:	3/10/202	24				Page 3 of 3
		Р	roject:				Inp	out by:	Hamptor	n Horrocks	;			
is	Design	A	ddress:				Job	b Name	: Lot 74 L	iberty Mea	dow			
							Pro	oject #:	J0723-3	719				
BM3	Kerto-S LV	L 1.7	750" >	(14.00	0" 2-	Ply - P	ASSED)	Level: Leve	I				
_						,								
	2													
		_ 1												
														1
													INN	
	and the second				al Marine								IAIAI	1'2"
A second	ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWN	JAN LE											(¥)	
1 SPF 0-	3-8			2 SPF 0-	3-0									,
,		01												
		6'												3 1/2"
1		6'			1									
Member In	formation						Reaction	s UNI	PATTERN	NED Ib (Uplift)			
Туре:	Girder		Applicat	ion: F	loor		Brg Dire	ction	Live	- C	ead	Snow	Wind	Const
Plies:	2		Design I	Method: A	SD		1 Vertio	cal	1900)	667	0	0	0
Moisture Cond	dition: Dry		Building	Code: IE	BC/IRC 2015	;	2 Vertio	cal	1874		658	0	0	0
Deflection LL:	480		Load Sh	aring: N	lo									
Deflection TL:	240		Deck:	N	lot Checked									
Importance:	Normal - II	-												
Temperature:	1emp <= 100°	F					Bearings							
							Bearing	l onath	Dir	Can R	aact D/L lb	Total	Id Case	I.d. Comb
								3 500"	i Dii. Vert	20%	667 / 1900	2567	Lu. Case	
							2 900	3.000"	Vert	49%	658 / 1874	2532	1	D+L
Analysis Re	sults						2-011	0.000	Voit	0170	00071074	2002	-	DIE
Analysis	Actual	Location A	llowed	Capacity	Comb.	Case]							
Moment	3312 ft-lb	3' 1/4" 2	6999 ft-lb	0.123 (12%) D+L	L								
Unbraced	3312 ft-lb	3' 1/4" 1	7594 ft-lb	0.188 (19%) D+L	L								
Shear	1745 lb	1'5 1/2" 1	0453 lb	0.167 (17%) D+L	L								
LL Defl inch	0.014 (L/4667)	3' 1/4" 0	.140 (L/480) 0.103 (10%) L	L								
TL Defl inch	0.019 (L/3454)	3' 1/4" 0	.279 (L/240) 0.069 (7%)	D+L	L								
Design Not	es													
1 Provide sup	oport to prevent latera	al movement	and rotatio	n at the end b	earings. Late	eral support	1							
2 Girders are	e required at the inter designed to be supp	nor bearings	by the build	ling code.										
3 Multiple plie	es must be fastened t	together as p	er manufac	turer's details										
4 Top loads n	nust be supported eq	ually by all pl	ies.											
5 lop must be	e laterally braced at e	end bearings. at end bearir	nas											
7 Lateral slen	iderness ratio based	on single ply	width.											
ID	Load Type	L	ocation	Trib Width	Side	Dead 0.9	Live 1	Sno	w 1.15	Wind 1.6	Const. 1.	25 Co	mments	
1	Uniform				Near Face	87 PLF	260 PLF		0 PLF	0 PLF	- 0 P	LF F02	2	
2	Uniform				Тор	123 PLF	369 PLF		0 PLF	0 PLF	0 P	LF FOG	6	
	Self Weight					11 PLF								
	0													
Notos		chamical			6 For f	at roofs provide p	roper drainage to r	nrevent	Manufactur	er Info				
Calculated Structured	Designs is responsible only of	the Handling	& Installatio	on	pondir	ng	порог чтаптауе (0 р	provolit	Metsä Wood	ł		1		
structural adequacy of this component based on the design criteria and loadings shown. It is the 2. Refer to manufacturer's product information									301 Merritt 7 Norwalk, CT	7 Building, 2 7 06851	nd Floor			
ensure the compon application, and to ver	ient suitability of the inten- ify the dimensions and loads	ded fastening	installation details, beam s	requirements, m strength values, and	utti-ply code				(800) 622-5	850 Wood.com/	s			
Lumber		 Damaged Design as 	Beams must no sumes top edge	t be used is laterally restrained	ł									
 Dry service conditi LVL not to be treat 	ted with fire retardant or corros	sive 5. Provide I lateral dis	ateral support a placement and re	t bearing points to	avoid This	design is valid	until 6/28/2026							

Version 23.40.705 Powered by iStruct™ Dataset: 23090101.2907