

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 73 FaNC MALBEC 5

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

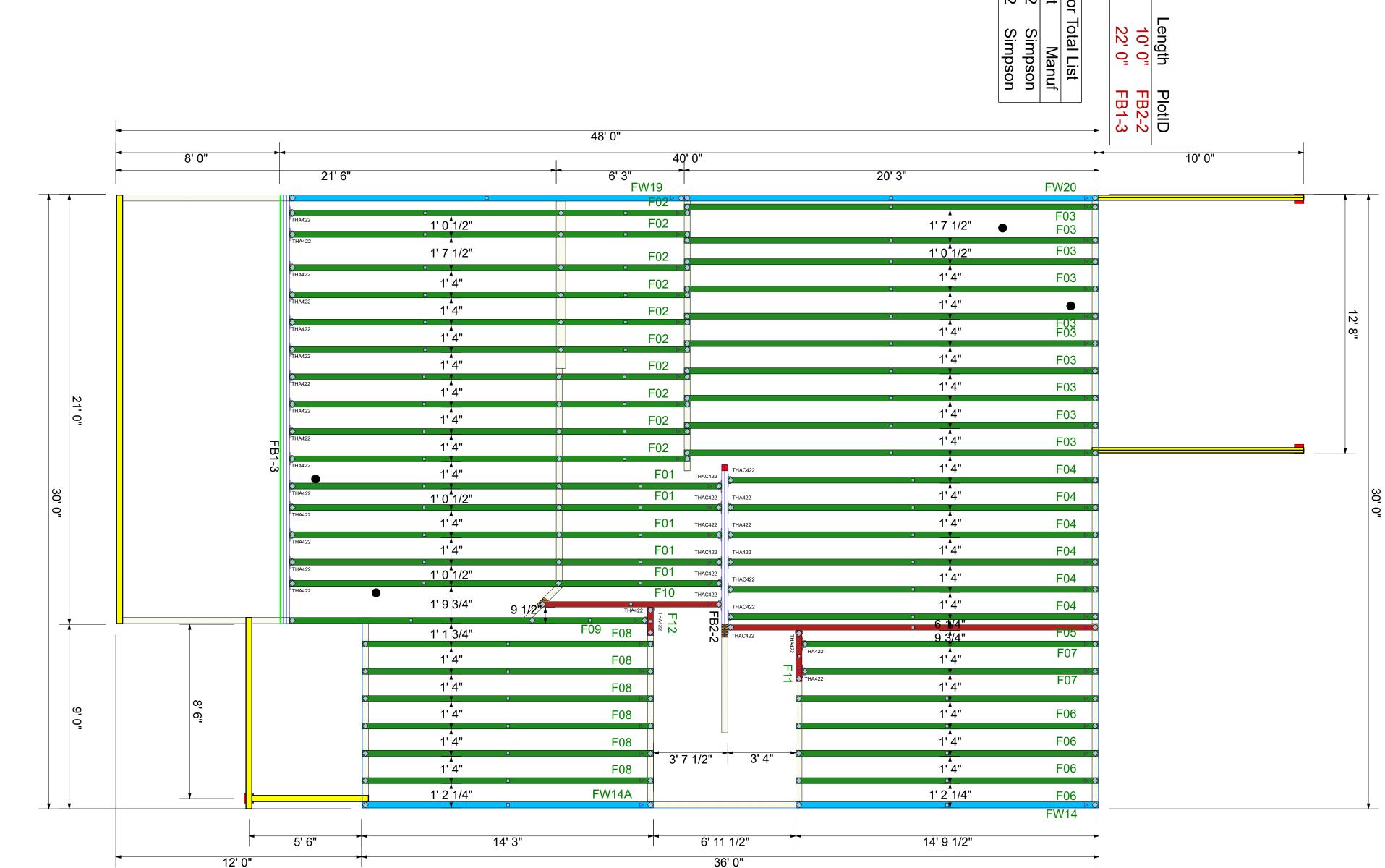
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

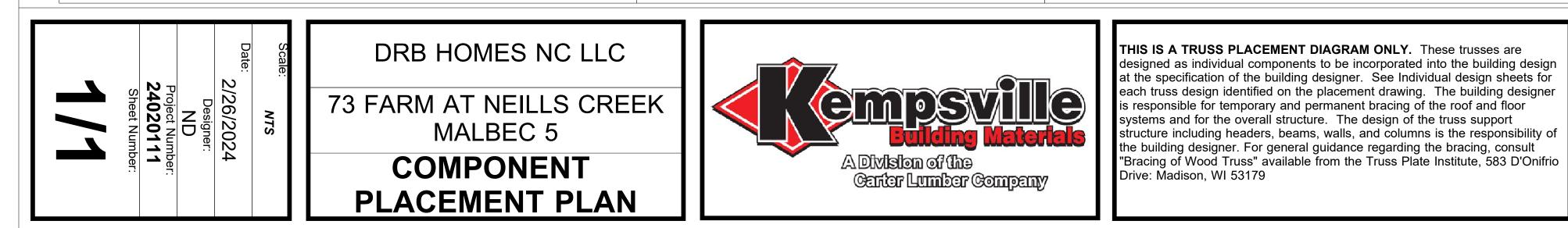
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

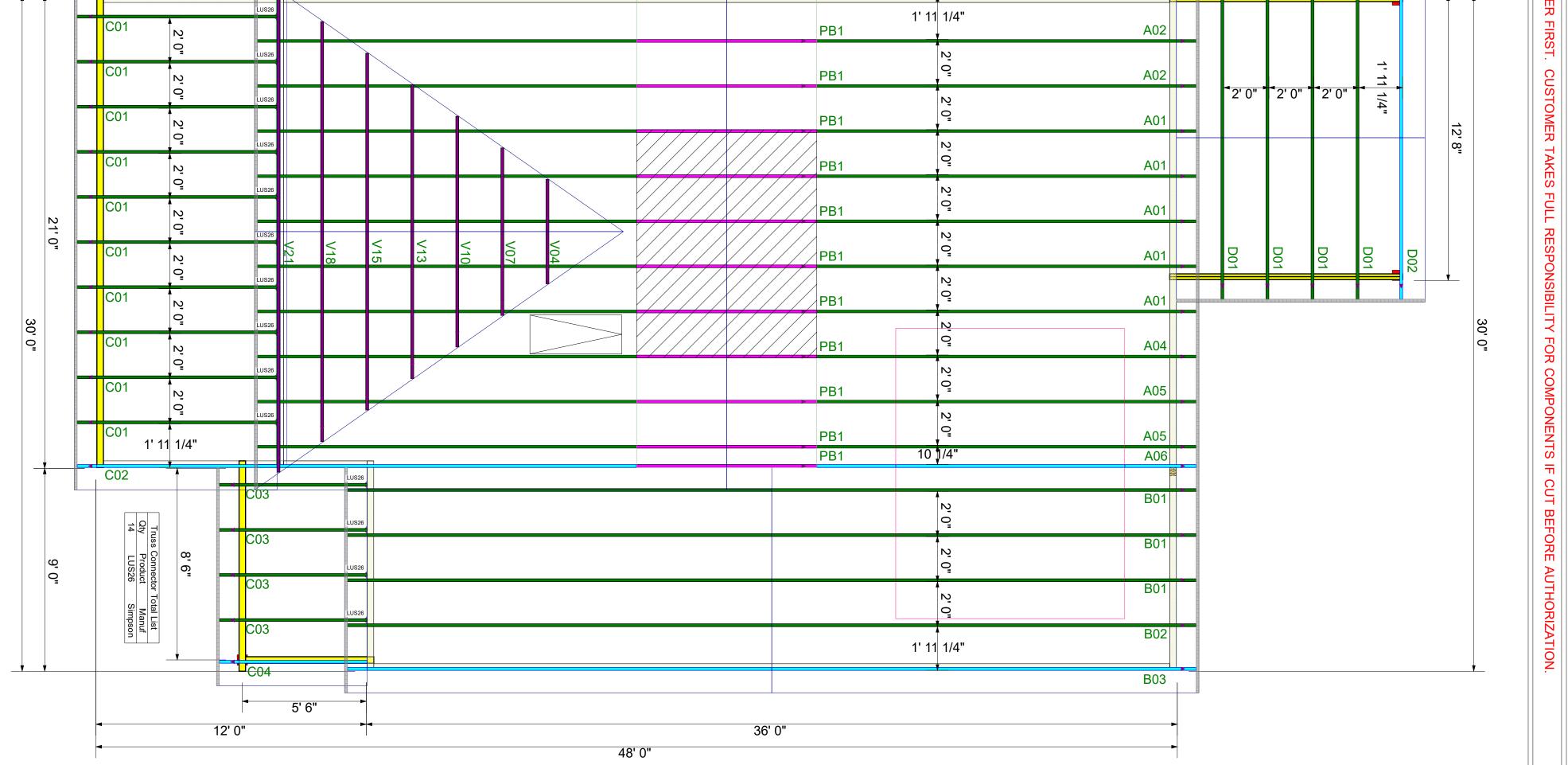
8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

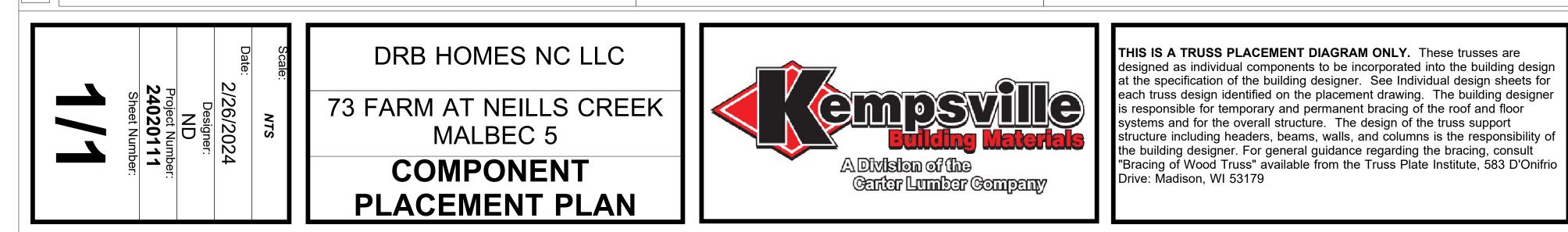

Apprved by: ____

Date: _____

 * FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
Truss Drawing Left End Indicator		
OF TRUSS INDICATES LEFT END OF		Fab
 OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS.		b Type Net Qty 2 2
		us N Plies
	Uty P 10 THX	Products 2.0 RigidLam DF LVL 1-3/4 x 14 2.0 RigidLam DF LVL 1-3/4 x 14
* PLUMB	AC422 AC422	Product -3/4 x 14 -3/4 x 18

** ALL BEARING POINTS




** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

* FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.			
Truss				
GULAR SYMBOL NEAR				
CATES LEFT				
END OF TR				
USS AS SHO				
USS DRAWI				
	48' 0"	-		
◄ 8'0"	40' 0"		10' 0"	 •
	PB1	A03		

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

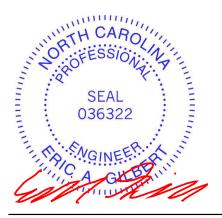
00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	Revisions
Name	Name	Name	Name	Name	sions

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.

** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

Trenco 818 Soundside Rd Edenton, NC 27932


Re: 24020111 DRB - 73 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63860625 thru I63860663

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 27,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A01	Piggyback Base	5	1	Job Reference (optional)	163860625

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Mon Feb 26 12:50:13 ID:Gdxxs?aHleSaFuA1U3?nxAzypHf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

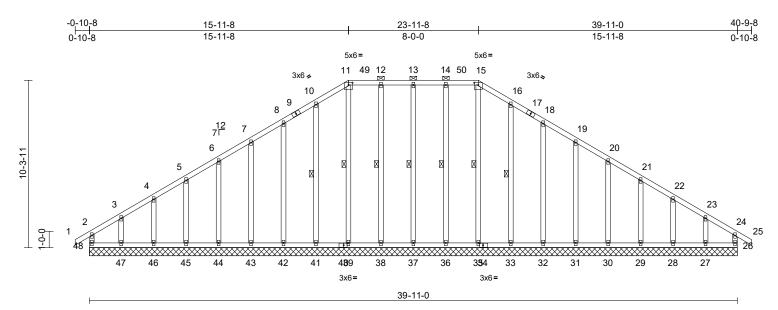
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A02	Piggyback Base	2	1	Job Reference (optional)	163860626

Run: 8.63 E Dec 13 2023 Print: 8.630 E Dec 13 2023 MITek Industries, Inc. Tue Feb 27 14:15:46 ID:RYhNtCKAhhGnhQvy756JSEzypGh-qwnc4GdOquiurfkjAfoTk1k0CgPpi7PoAQMgKdzgvqD

6 Page: 1


7- 2,0-0-2], [14:0-5-0,0-4-8], [' g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 incode the set of th	4x8 = 5 5 15 15 8x10: 5-8-0 -6-8 [15:0-4-12,0-4-8] CSI TC BC WB Matrix-M ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	27 28 27 28 28 29 32 32 32 32 32 32 32 32 32 32	0psf; h=25ft; lope) exterior	31-9-8 7-6-8 (loc) //def 14-15 >995 14-15 >995	240 N 180 n/a	39-1 8-1 LATES IT20 /eight: 295 lb	-8 GRIP 244/190
4x5 = 26 4 16 2x4 II 16 2x4 II 15 7- 2,0-0-2], [14:0-5-0,0-4-8], [7 g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 POL 1.	5 5 15 15 8x10 5-8-0 -6-8 [15:0-4-12,0-4-8] CSI TC BC WB Matrix-M ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	32 = 24-3-0 8-7-0 0.68 0.84 0.32 MSH 0.32 MSH 0.32 MSH 0.32 MSH 0.32 MSH 0.32 MSH	DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10	8 31-9-8 7-6-8 (loc) //def 14-15 >995 14-15 >995	4x5¢ 9 13 2x4 II 2x4 II 13 2x4 II 13 2x4 II 13 2x4 II	39-1 8-1 LATES IT20	4x3 10 11 5x10 II 5x10 II 6 GRIP 244/190
26 4 16 2x4 II 16 2x4 II 16 2x4 II 16 2x4 II 15 7- 2,0-0-2], [14:0-5-0,0-4-8], [7 g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 EVENTION STREAM IRC2018/TPI 2) Will Val Ca zor ht 2x4 SP No.3 3-1 (1) zor and	15 3×10 ² 15 3×10 ² 5-8-0 -6-8 [15:0-4-12,0-4-8] CSI TC BC WB Matrix-M ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	31-9-8 7-6-8 (loc) //def 14-15 >995 14-15 >995	4x5¢ 9 13 2x4 II 2x4 II 13 2x4 II 13 2x4 II 13 2x4 II	39-1 8-1 LATES IT20	4x3 10 11 5x10 II 5x10 II 6 GRIP 244/190
4 16 2x4 II 16 2x4 II 16 2x4 II 15 7- 2,0-0-2], [14:0-5-0,0-4-8], [1 g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 DOL 1.15 POOL 1.15	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	31-9-8 7-6-8 (loc) //def 14-15 >995 14-15 >995	4x5¢ 9 13 2x4 II 2x4 II 13 2x4 II V 180 N/a	39-1 8-1 LATES IT20	4x3 10 11 5x10 II 5x10 II 6 GRIP 244/190
2x4 II (,0-0-2], [14:0-5-0,0-4-8], [g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 IRC2018/TPI 2) Wiii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	2x4 II L/d P 240 M 180 n/a	39-1 8-1 LATES IT20	4x3 10 11 5x10 II 5x10 II 6 GRIP 244/190
2x4 II (,0-0-2], [14:0-5-0,0-4-8], [g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 IRC2018/TPI 2) Wiii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	2x4 II L/d P 240 M 180 n/a	39-1 8-1 LATES IT20	4x3 10 11 5x10 II 5x10 II 6 GRIP 244/190
2x4 II (,0-0-2], [14:0-5-0,0-4-8], [g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 IRC2018/TPI 2) Wiii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	2x4 II L/d P 240 M 180 n/a	39-1 8-1 LATES IT20	11 5x10 -8 GRIP 244/190
2x4 II (,0-0-2], [14:0-5-0,0-4-8], [g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 IRC2018/TPI 2) Wiii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco e6.0psf; BCDL=6.0 ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	2x4 II L/d P 240 M 180 n/a	39-1 8-1 LATES IT20	1-0 -8 GRIP 244/190
2x4 II (,0-0-2], [14:0-5-0,0-4-8], [g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 IRC2018/TPI 2) Wiii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	8x10: 5-8-0 (15:0-4-12,0-4-8] (15:0-4-8) (15	24-3-0 8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco ed; MWFRS (envel) r(2E) -0-10-8 to 3-1	8x10= DEFL in Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 Dond gust) Opsf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	2x4 II L/d P 240 M 180 n/a	39-1 8-1 LATES IT20	1-0 -8 GRIP 244/190
7- 2,0-0-2], [14:0-5-0,0-4-8], [' g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 incode the set of th	-6-8 [15:0-4-12,0-4-8] [15:0-4-12,0-4-8] TC BC WB Matrix-N Matrix-N ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco =6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 ond gust) 0psf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	240 N 180 n/a	8-1 LATES IT20	1-0 -8 GRIP 244/190
7- 2,0-0-2], [14:0-5-0,0-4-8], [' g 2-0-0 rip DOL 1.15 DOL 1.15 DOL 1.15 incode the set of th	-6-8 [15:0-4-12,0-4-8] [15:0-4-12,0-4-8] TC BC WB Matrix-N Matrix-N ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	8-7-0 0.68 0.84 0.32 MSH Ilt=130mph (3-seco =6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 ond gust) 0psf; h=25ft; lope) exterior	7-6-8 (loc) l/def 14-15 >999 14-15 >999	240 N 180 n/a	8-1 LATES IT20	-8 GRIP 244/190
g 2-0-0 rip DOL 1.15 DOL 1.15 ress Incr YES IRC2018/TPI 2) Win Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	CSI TC BC WB Matrix-M ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Extle) 29-7-4 to 36-9-10,	0.68 0.84 0.32 MSH Ilt=130mph (3-seco =6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 ond gust) 0psf; h=25ft; lope) exterior	14-15 >999 14-15 >999	240 N 180 n/a	IT20	244/190
rip DOL 1.15 DOL 1.15 ress Incr YES IRC2018/TPI 2) Wir Var Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	PI2014 TC BC WB Matrix-N Matrix-N ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	0.68 0.84 0.32 MSH Ilt=130mph (3-seco =6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	Vert(LL) -0.15 Vert(CT) -0.26 Horz(CT) 0.10 ond gust) 0psf; h=25ft; lope) exterior	14-15 >999 14-15 >999	240 N 180 n/a	IT20	244/190
DOL 1.15 ress Incr YES IRC2018/TPI 2) Wii Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	PI2014 BC WB Matrix-M ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	0.84 0.32 MSH IIt=130mph (3-seco =6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	Vert(CT) -0.26 Horz(CT) 0.10 ond gust) 0psf; h=25ft; lope) exterior	14-15 >999	180 n/a		
IRC2018/TPI 2) Win Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	PI2014 Matrix-M Ind: ASCE 7-16; Vul asd=103mph; TCDL: at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exter) 29-7-4 to 36-9-10,	MSH Ilt=130mph (3-seco .=6.0psf; BCDL=6.0 ed; MWFRS (envel r(2E) -0-10-8 to 3-1	ond gust) 0psf; h=25ft; lope) exterior			/eight: 295 lb	FT = 20%
Va: Ca zor ht 2x4 SP No.3 3-1 (1) zor ectly applied or and	asd=103mph; TCDL at. II; Exp B; Enclose one and C-C Exterior 1-6 to 10-3-12, Exte) 29-7-4 to 36-9-10,	.=6.0psf; BCDL=6.0 ed; MWFRS (envelo r(2E) -0-10-8 to 3-1	0psf; h=25ft; lope) exterior				
6-7. grig or 10-0-0 oc 3) TC Pla 4, 7-15 CS: 1649/0-3-8 4) Un =-172 (LC 15) 5) Thi l=1885 (LC 49) 10a All forces 250 ove n. 6) Proc 5, 7) Thi 5, ch 2451, 3- 7,7-14=-30/786, 9) On trus isidered for Thi late 10) Thi late 8	ad right exposed;C-C WFRS for reactions ip DOL=1.60 CLL: ASCE 7-16; Pr= ate DOL=1.15); Pf= OL=1.15); Is=1.0; Rc s=1.00; Ct=1.10 hbalanced snow load sign. his truss has been de ad of 12.0 psf or 1.00 verhangs non-concul rovide adequate drain his truss has been de ord live load noncor This truss has been de nord live load noncor This truss has been de nord live load noncor the bottom chord ir 06-00 tall by 2-00-00 nord and any other m ne RT4 MiTek conne uss to bearing walls his connection is for teral forces. his truss is designed ternational Resident 802.10.2 and referer	Exterior (2E) 36-9- nd right exposed ; e C for members and shown; Lumber DC =20.0 psf (roof LL: 20.0 psf (Lum DOL ough Cat B; Fully E ds have been cons lesigned for greater 00 times flat roof loa irrent with other live inage to prevent wa lesigned for a 10.0 j ncurrent with other live a live inage to prevent with any of designed for a 10.0 j ncurrent with any of designed for a live n all areas where a 0 wide will fit betwee members, with BCD ectors recommended due to UPLIFT at jt uplift only and does d in accordance with tial Code sections F nced standard ANS sentation does not	p 29-7-4, Interior 10 to 40-9-8 end vertical left I forces & OL=1.60 plate Lum DOL=1.15 L=1.15 Plate Exp.; Ce=0.9; sidered for this r of min roof live ad of 20.0 psf on e loads. ater ponding. psf bottom other live loads. load of 20.0psf. rectangle een the bottom DL = 10.0psf. led to connect t(s) 2 and 11. ss not consider h the 2018 R502.11.1 and SI/TPI 1.	4		SEA 0363	ROLUL L 22 -ER. K
410 = 1 / 155 2	i, 7-15 Di 649/0-3-8 4) Ui -172 (LC 15) 5) Ti =1885 (LC 49) lo ox All forces 250 ox ox 5, 7) Ti 5, 7) Ti 5, 7) Ti 5, 7) Ti 6, 7) Ti 7, 8) * *451, or 9) 7-14=-30/786, ct sidered for Ti 10) Ti RX RX	 Plate DOL=1.15); Plate DOL=10, Plate DOL=10, Plate DOL=10, Plate DOL=10, Plate DOL=10, Plate DOL=1.15); Plate DOL=1.15); Plate DOL=1.15); Plate DOL=1.15); Plate DOL=1.15); Plate DOL=10, Plate	 Plate DOL=1.15); Pl=20.0 psr (Lum DOI DOL Psr (Lum DOL Psr (Lum DOI DOL Psr (Lum DOL Psr (Lu	 Plate DOL=1.15); P=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4U ubalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. 9) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider 	 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=21.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=21.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15); Pl=20.0 psf (Pl=20.0 psf (Pl=1.15); Pl=20.0 psf (Pl=1.1	 Plate DOL=1.15); P=20.0 psr (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. 9) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. sidered for 	 Plate DOL=1.15); Pl=20.0 psr (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. -172 (LC 15) 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0 psf on other bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. 9) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size

Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
	24020111	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163860627

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:15 ID:hZGCK5eUZhY5oQuxeYaQVjzypGH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71

Plate Offsets (X, Y):	[11:0-3-0,0-1-12],	[15:0-3-0,0-1-12],	[34:0-2-8,0-1-8],	[40:0-2-8,0-1-8]

Plate Olisets (.	X, Y): [11:	0-3-0,0-1-1	2], [15:0-3-0,0-1-12], [3	54:0-2-8,0-1-8 <u>]</u> , [40:0	-2-8,0-	1-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CS TC BC WE Ma		0.18 0.09 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 26	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 310 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	6-0-0 oc 2-0-0 oc	o.2 o.3 o.3 I wood she purlins, ex purlins (6-0	athing directly applied cept end verticals, and -0 max.): 11-15.	or	Max G	30=186 32=214 35=162 37=212 39=172 42=214 44=186	(LC 39) (LC 43) (LC 43) (LC 51) (LC 51) (LC 38) (LC 53) (LC 41) (LC 41)	27=193 (LC 29=163 (LC 31=219 (LC 33=227 (LC 36=225 (LC 41=227 (LC 41=227 (LC 43=219 (LC 43=219 (LC 45=165 (LC 47=217 (LC	25), 43), 43), 38), 38), 41), 41), 28),	WEBS		11-39 8-42= 5-45= 14-36 16-33 19-31 21-29		188/72, 80/72, 6-44=-147/72, 20/66, 3-47=-148/114, 123/9, 175/74, 147/72,
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc			48=204	(LC 49)	· · · ·	,,	NOTES		d roof li	ve loads have be	en considered for
WEBS	1 Row at	·	13-37, 12-38, 11-39, 10-41, 14-36, 15-35, 16-33	FORCES TOP CHORD	Tensi	Maximum Co on -164/90, 1-2⊧	•			this 2) Wi	s design. nd: ASCI	E 7-16;	Vult=130mph (3	
	Max Horiz	28=39-11 30=39-11 32=39-11 35=39-11 37=39-11 42=39-11 44=39-11 48=39-11 48=39-11 48=-249 (26=-58 (L 28=-34 (L 30=-48 (L 30=-48 (L 30=-27 (L 36=-27 (L 38=-25 (L 42=-51 (L 42=-51 (L	LC 12) C 11), 27=-112 (LC 15 C 15), 29=-52 (LC 15). C 15), 31=-48 (LC 15). C 15), 33=-48 (LC 15). C 11), 37=-26 (LC 10). C 11), 41=-48 (LC 14). C 14), 43=-49 (LC 14). C 14), 45=-53 (LC 14). C 14), 47=-128 (LC 14).		6-7=- 10-11 12-13 14-15 16-18 19-20 21-22 23-24 47-48 45-46 43-44 41-42 38-39 36-37 33-35 31-32 29-30	137/134, 4-5- 103/176, 7-8- =-163/298, 1 =-143/273, 1 =-143/273, 1 =-143/273, 1 =-143/273, 1 =-143/273, 1 =-71/92, 22-2 =-115/107, 2 =-104/115, 4 =-104/115, 3 =-104/115, 3 =-104/115, 2 =-104/115, 2	=-110/20 1-12=-1 3-14=-1 5-16=-1 8-19=-1 -21=-60 23=-80/k 4-25=0/ 6-47=-1 4-45=-1 2-43=-1 9-41=-1 7-38=-1 5-36=-1 2-33=-1 0-31=-1 8-29=-1	7, 8-10=-136 43/273, 43/273, 63/298, 10/207, (119, 00, 30, 24-26=-1 04/115, 04/115, 04/115, 04/115, 04/115, 04/115, 04/115, 04/115, 04/115, 04/115,	6/254,	zor 3-1 (2N zor and MV grij	ne and C -6 to 11- N) 27-11- ne; cantil	-C Cor 11-8, 0 8 to 36 ever le posed reaction .60	ner(3É) -0-10-8 f Corner(3R) 11-11 I-9-10, Corner(3E ft and right expo: C-C for member ons shown; Lumi	envelope) exterior to 3-1-6, Exterior(2N) -8 to 27-11-8, Exterior E) 36-9-10 to 40-9-8 sed ; end vertical left s and forces & ber DOL=1.60 plate

February 27,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oblage with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSE2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163860627

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint 48, 58 lb uplift at joint 26, 26 lb uplift at joint 37, 25 lb uplift at joint 38, 48 lb uplift at joint 41, 51 lb uplift at joint 42, 49 lb uplift at joint 43, 48 lb uplift at joint 44, 53 lb uplift at joint 45, 31 lb uplift at joint 46, 128 lb uplift at joint 47, 27 lb uplift at joint 36, 48 lb uplift at joint 33, 51 lb uplift at joint 32, 48 lb uplift at joint 31, 48 lb uplift at joint 30, 52 lb uplift at joint 29, 34 lb uplift at joint 28 and 112 lb uplift at joint 27.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:15 ID:hZGCK5eUZhY5oQuxeYaQVjzypGH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A04	Piggyback Base	1	1	Job Reference (optional)	163860628

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:16 ID:RYhNtCKAhhGnhQvy756JSEzypGh-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

				ID:RYhNtCKAhhGr	hQvy756JSEzypGh-R	C?PsB70Hq3NSgPqnL8w3uITX	bGKWrCDoi7J4zJC?f	
	2-1-12 -0-10-8 	<u>9-2-13</u> 7-1-1	12-7-14	15-11-8 3-3-10	<u>23-11-8</u> 8-0-0	<u>31-9-8</u> 7-10-0	39-11-0 8-1-8	40-9-8
	2-1-12			5x8 ≠	6	x8=		
				6 34	35	7		
10-4-3 1-3-8 10-3-11 1-3-8 9-0-3	5x8= 3 2	32 x5 = 31 22 + 20 4x5=	3x5 = 5 3 4 18 5x8=	9 24 17 38		4x8s 8 36 5 14 x4= 5x8=	4x5 x 9 37 13 2x4 II	4x5 x 10 11 12
	4x	5=	3x5 i	2x4=		4x5=	2	5x10 I
	0.0.0	5x10=	10 5 9				20.44.0	
	<u>2-3-8</u> 2-3-8	7-4-8 5-1-0	12-5-8 1 5-1-0	<u>5-9-12 19-11-8</u> 3-4-4 4-1-12	4-1-12	<u>28-3-8</u> <u>31-9-8</u> 4-2-4 <u>3-6-0</u>	<u> </u>	———————————————————————————————————————
Scale = 1:74.4	X X)· [3·0-0-12 0-1-1	2], [6:0-6-4,0-2-8], [11:0	0-5-2 0-0-21 [17:0-3-	8 0-2-01 [19:0-2-6 0-3	8-0] [21:0-4-8 Edge]			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	DEFL 0.87 Vert(LL) 0.80 Vert(CT) 0.77 Horz(CT)	in (loc) l/defl L/ -0.40 13-15 >999 24 -0.55 13-15 >867 18 0.21 11 n/a n/	0 MT20 244/1	190
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 *Excep 19-18:2x4 SP No.3, 2.0E, 14-11:2x6 SP 10-2 2x4 SP No.3 *Excep 21-2:2x4 SP No.2 Right 2x4 SP No.2 Righ	No.2 t* 23-2:2x6 SP No.2, - 1-6-0 athing directly applied, , and 2-0-0 oc purlins applied or 6-0-0 oc 6-17, 9-15 23=0-3-8 LC 12) C 15), 23=-38 (LC 14) (LC 39), 23=1889 (LC 3 pression/Maximum 7/173, 3-4=-3279/24, 1839/106, 7-9=-2330/5 2=0/26, 2-23=-1895/57 2=2-129/72, -129-728/176, 7=0/1834, 5=0/2354, 9=0/1848, 24=-454/369, 5=0/612, 7-25=0/619,	 this design 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C 3-1-6 to 10 (1) 29-7-4 I zone; canti and right e MWFRS for grip DOL=' 3) TCLL: ASC Plate DOL: DOL=1.15; Cs=1.00; C 4) Unbalance design. 3) This truss I load of 12. overhangs 6) 200.01b AC 19-11-8 fro apart. 7) Provide ad 8) This truss I chord live I 9) * This truss I chord and and 10) One H2.5A recommen UPLIFT at 	E 7-16; Vult=130mph nph; TCDL=6.0psf; B(B; Enclosed; MWFR C-C Exterior(2E) -0-10 o 36-9-10, Exterior(2R) 10 o 36-9-10, Exterior(2R lever left and right exp xposed;C-C for memb r reactions shown; Lu 1.60 E 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L ; Is=1.0; Rough Cat B	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 3-1-6, Interior 1 -3-12 to 29-7-4, Interior -3-12 to 29-7-4,	r International Re R802.10.2 and 12) Graphical purlir or the orientatic bottom chord. 1) LOAD CASE(S) S rior left te 1.15 ; iis live of on to	SEAL 036322	502.11.1 and TTPI 1. lepict the size p and/or
		378, 2-21=-226/2859,					February 27,2	2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

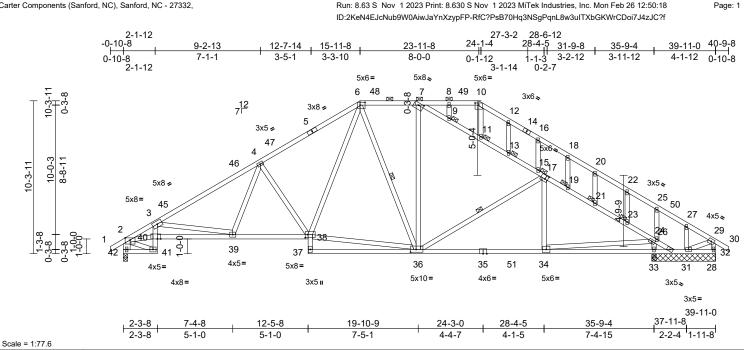
Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A05	Piggyback Base	2	1	Job Reference (optional)	163860629

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:17 ID:RYhNtCKAbbGpbQvv756 ISEzvpGb-RfC2PeR70Ha3NSaPapI 8w3uITXbGKWtCDoi7 1/2 IC2f

				ID:RYhN	ItCKAhhGnhQvy7	56JSEzypGh-R	RfC?PsB70Hq3	NSgPqnL8w3	uITXbGł	KWrCDoi7J4zJC?	'f	
	2-1-12 -0-10-8	9-2-13	12-7-14	15-11-8	23-11	-8	1	31-9-8	1	39-	11-0	40-9-8
	0-10-8 2-1-12	7-1-1	3-5-1	3-3-10	8-0-0)	Į –	7-10-0	I	8-	1-8	0-10-8
	2-1-12			5x8			6x8=					
- -				6	28	29 ⊠ ⊠	7					
		12 71		3x6 =				4x8 ≈				
			3x5 ≉	5			\parallel	8				
			27	× //				3	0	F		
7		00	4						4x	5 ≈ 9		
10-3-11 9-0-3		26	1						\searrow	,		
10-4-3 10-3 9-0-	5x8				/*	\mathbf{X}		/				
	5x8=	5									31	4.5
	3							\square			\sim	4x5≈
<u> </u>	2 1 2 18			<u><u></u></u>							\sim	10
-1-3- -3-8- -3-33- -333- -333- -333-		19 <u>-</u> 17	15									
_ · _ ·	×	4x5=	5x8=				14		1:	3		
	2x4 I			5x6 II		8	3x12=			×4 u		5x10 u
	4x5=											0,10 1
		5x8=										
	2-3-8 2-3-8	7-4-8 5-1-0	<u>12-5-8</u> 5-1-0	+	<u>24-3-0</u> 11-9-8		-	31-9-8 7-6-8			11-0 1-8	———————————————————————————————————————
Scale = 1:74	2-3-0	5-1-0	5-1-0		11-9-0			7-0-0		0-	1-0	
ate Offsets ((X, Y): [6:0-4-0,0-1-11],	[11:0-5-2,0-0-6], [14:0-	-3-4,0-4-8], [16:	0-2-2,0-2-12], [1	8:0-2-8,Edge]							
pading	(psf)	Spacing 2-	-0-0	CSI		DEFL	in (le	oc) l/defl	L/d	PLATES	GRIP	
CLL (roof)			.15	TC	0.81	Vert(LL)	-0.18 14-	,	240	MT20	244/19) 0
וסw (Pf)			.15 ES	BC WB	0.97	Vert(CT)	-0.42 14-		180			
CDL CLL			ES RC2018/TPI201		0.67 SH	Horz(CT)	0.22	11 n/a	n/a			
CDL	10.0									Weight: 296 lb	5 FT = 2	:0%
UMBER			2) Wind:	ASCE 7-16; Vult	=130mph (3-sed	cond aust)						
OP CHORD	2x6 SP No.2 *Except*			103mph; TCDL=								
OT CHORD	2x4 SP No.2 *Except* No.3, 15-14,14-11:2x6			Exp B; Enclosed nd C-C Exterior(2								
/EBS	2x4 SP No.3 *Except*	14-16,14-6,18-2:2x4	3-1-6 t	o 10-3-12, Exteri	or(2R) 10-3-12	to 29-7-4, Int	erior					
LIDER	SP No.2, 20-2:2x6 SP Right 2x4 SP No.3 1			7-4 to 36-9-10, E cantilever left and								
	Nght 224 01 No.0 1	-0-0	and rig	ht exposed;C-C	for members ar	d forces &						
OP CHORD	Structural wood sheat	0 7 11		S for reactions s DL=1.60	hown; Lumber	DOL=1.60 pla	ate					
	2-2-0 oc purlins, exce 2-0-0 oc purlins (4-0-3			ASCE 7-16; Pr=2	20.0 psf (roof Ll	.: Lum DOL=	1.15					
OT CHORD	Rigid ceiling directly a			00L=1.15); Pf=20 I.15); Is=1.0; Rou								
EBS	bracing. 1 Row at midpt 6·	-14, 9-14)0; Ct=1.10	igh Cat B, Fully	Exp., Ce-0.	9,					
EACTIONS				anced snow loads	s have been co	nsidered for t	his					
	Max Horiz 20=-253 (LC		design 5) This tru	Jss has been des	signed for great	er of min roof	flive					
	Max Uplift 11=-137 (LC Max Grav 11=1768 (L	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		12.0 psf or 1.00			sf on					
ORCES	(lb) - Maximum Compi		000000	ngs non-concurr e adequate drain			q.					
	Tension	00 0 4- 0070/004	This true	uss has been des	signed for a 10.	0 psf bottom	-					
OP CHORD	1-2=0/33, 2-3=-3553/3 4-6=-2559/281, 6-7=-1			ive load noncond truss has been de	,					WH C	A	
	7-9=-2166/245, 9-11=		δ, on the	bottom chord in a	all areas where	a rectangle			1	"aTH U	HO/	11 m
OT CHORD	2-20=-1793/159 19-20=-191/221, 18-19	9=-119/78,		0 tall by 2-00-00 and any other me		veen the bott	om		Nº S	OFES	Sidi >	Ni
	3-18=-52/285, 17-18=	-559/3412,	9) One H	2.5A Simpson St	rong-Tie conne			4		EP-	1ª	
	16-17=-202/2474, 15- 13-15=-64/2199, 11-1			mended to conne		•					× ×	1 3
EBS	14-16=-71/1529, 6-16	=-124/936,		T at jt(s) 20 and ´ nd does not cons			int.	Ξ	:	SEA		1.1
	6-14=-281/195, 7-14=		10) This tru	uss is designed in	n accordance w	ith the 2018	d	Ξ		0363	322	- (A - E
	9-13=0/209, 2-18=-39 3-17=-986/364, 4-16=-			itional Residentia			DIID		1 B			1 5
DTES	* -		11) Graphi	cal purlin represe	entation does n	ot depict the	size		1.1	. ENG	FER.	123
	ed roof live loads have b	een considered for		orientation of the chord.	purlin along the	e top and/or			11	A GIN	IF.F.C	R.S.
this desigr	1.			SE(S) Standard					1	Eebrua	GILBL	111
										in min	mm	
										Echruci	au 07 00	124

February 27,2024

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	A06	Piggyback Base Structural Gable	1	1	Job Reference (optional)	163860630

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:18

Carter Components (Sanford, NC), Sanford, NC - 27332,

Plate Offsets (X, Y): [6:0-4-0,0-2-4],	[7:0-4-5,0-1-15], [10:0	0-3-0,0-1-12], [17:0-2-	4,0-3-0], [36:0-4-8,0	0-2-4], [3	8:0-2-2,0-2-8]	, [40:0-2	-12,Edg	ge]				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.95 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.35 0.18	(loc) 34-36 34-36 32	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 310	GRIP 244/19 Ib FT = 2	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	SP No.2 2x4 SP No.2 *Excep No.3 2x4 SP No.3 *Excep No.2, 42-2:2x6 SP N 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex	lo.2 athing directly applied cept end verticals, and -5 max.): 6-10, 7-44.	or	$\begin{array}{c} 1\mbox{-}2\mbo$	7=-1443 0=-456/2 12-16=-5 2-25=-60 7-29=-59 7-9=-120 11-13=-1 15-19=- 21-23=- 24-26=- 29-32=-6 40-41=-1	/206, 207, 87/190, 35/57, 2/30, 3/32, 29-30=0 8/138, 201/134, 1537/170, 1597/135, 24/376, 30/12 19/95,	/31,	Vas Cat zor 3-1 Ext 36- left exp rea DO 3) Tru only see	sd=103n t. II; Exp he and C -6 to 10- erior(2E 9-10, Ex and righ posed;C- ctions sh iL=1.60 uss desig y. For si Standa	nph; T(B; Enc -C Ext -3-12, I) 35-9- cterior(: nt expo -C for r nown; I gned fo tuds ex rd Indu	; Vult=130mpf CDL=6.0psf; B closed; MWFR erior(2E) -0-1(Exterior(2R) 11 4 to 39-11-0, I 2E) 36-9-10 to issed ; end vert nembers and 1 Lumber DOL= pr wind loads i xposed to wind ustry Gable En	CDL=6.0ps S (envelop)-8 to 3-1-6 0-3-12 to 23 nterior (1) 2 40-9-8 zor cal left and orces & MV 1.60 plate g n the plane I (normal to d Details as	f; h=25ft; e) exterior , Interior (1) 3-11-8, 23-11-8 to ee; cantilever right VFRS for grip of the truss the face), s applicable,
BOT CHORD WEBS JOINTS	Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 11, 21, 9, 13, 15, 19, 23	6-36, 17-36	WEBS	3-40=-55/344, 39- 38-39=-187/2230, 34-36=0/1781, 33- 28-31=-30/461, 31 3-39=-1082/332, 3 6-38=-146/1111, 6	37-38=0 -34=0/36 1-32=-3/3 36-38=-6 5-36=-38)/124, 36-37=0 ;7, 28-33=-60/ 38 2/1403, 2/133,	367,	4) TC Pla DO Cs= 5) Unl	LL: ASC te DOL= L=1.15); =1.00; C balanceo	E 7-16 1.15); ; ls=1.(t=1.10	d building desi 5; Pr=20.0 psf (Pf=20.0 psf (L 0; Rough Cat B 1 loads have be	(roof LL: Lu um DOL=1 3; Fully Exp	m DOL=1.15 .15 Plate .; Ce=0.9;
	33=0-3-9, Max Horiz 42=287 (I Max Uplift 28=-34 (L 32=-3 (LC 42=-162 (Max Grav 28=190 (I	C 15), 31=-159 (LC 2 2 11), 33=-250 (LC 15) LC 14) LC 53), 31=173 (LC 53 LC 22), 33=1842 (LC 2 (LC 5)), 3), ^{25),} NOTES	10-11=-35/87, 20- 12-13=-60/29, 15- 18-19=-117/73, 22 25-26=-332/153, 2 2-40=-356/2723, 2 7-36=-16/601, 17- 24-33=-1501/345, 29-31=-32/463, 4- d roof live loads hav	16=-216 2-23=-10 27-31=-1 2-41=-17 36=-521 24-34=- 38=-827	/140, 1/65, 68/43, 8/412, /135, 17-34=0 45/1457, /239, 4-39=0/4	/251, 443		sign.	The second second	036	ARO SIL	A A A A A A A A A A A A A A A A A A A

Continued on page 2

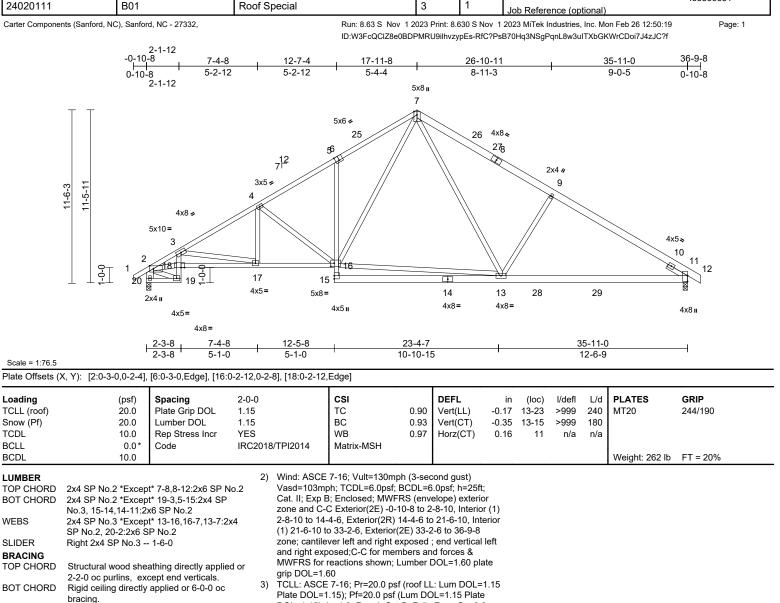
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTesk connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minum February 27,2024

Job	Truss Truss Type		Qty	Ply	DRB - 73 FaNC	
24020111	A06	Piggyback Base Structural Gable	1	1	Job Reference (optional)	163860630

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 42, 31, 32, 28, and 33. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon Feb 26 12:50:18 ID:2KeN4EJcNub9W0AiwJaYnXzypFP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	B01	Roof Special	3	1	Job Reference (optional)	163860631

NOTES

WEBS

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

SLIDER

BRACING

REACTIONS

FORCES

TOP CHORD

BOT CHORD

(size)

Tension

2-20=-1656/170

11-13=-119/1902

11=0-3-8, 20=0-3-8

(lb) - Maximum Compression/Maximum

1-2=0/33, 2-3=-3412/411, 3-4=-2782/262,

4-5=-2196/240, 5-7=-2218/370,

19-20=-221/262, 18-19=-114/87,

3-18=-61/357, 17-18=-556/3459,

16-17=-269/2532, 15-16=0/190,

13-16=-40/1141, 7-16=-256/1222,

7-13=-155/956, 9-13=-561/321,

2-18=-422/2762, 2-19=-158/409,

4-16=-703/170, 4-17=0/396, 3-17=-942/291

5-16=-430/202, 13-15=0/253,

Max Uplift 11=-146 (LC 15), 20=-149 (LC 14)

Max Grav 11=1680 (LC 25), 20=1659 (LC 24)

7-9=-2109/286, 9-11=-2319/234, 11-12=0/26,

Max Horiz 20=-279 (LC 12)

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

LOAD CASE(S) Standard

GILB 111111111 February 27,2024

SEAL

036322

AND DURING

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

recommended to connect truss to bearing walls due to

UPLIFT at jt(s) 20 and 11. This connection is for uplift

International Residential Code sections R502.11.1 and

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

chord and any other members, with BCDL = 10.0psf.

overhangs non-concurrent with other live loads.

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle

One H2.5A Simpson Strong-Tie connectors

only and does not consider lateral forces

Cs=1.00; Ct=1.10

desian.

4)

5)

6)

7)

8)

9)

818 Soundside Road Edenton, NC 27932

NUMBER OF

ORTH

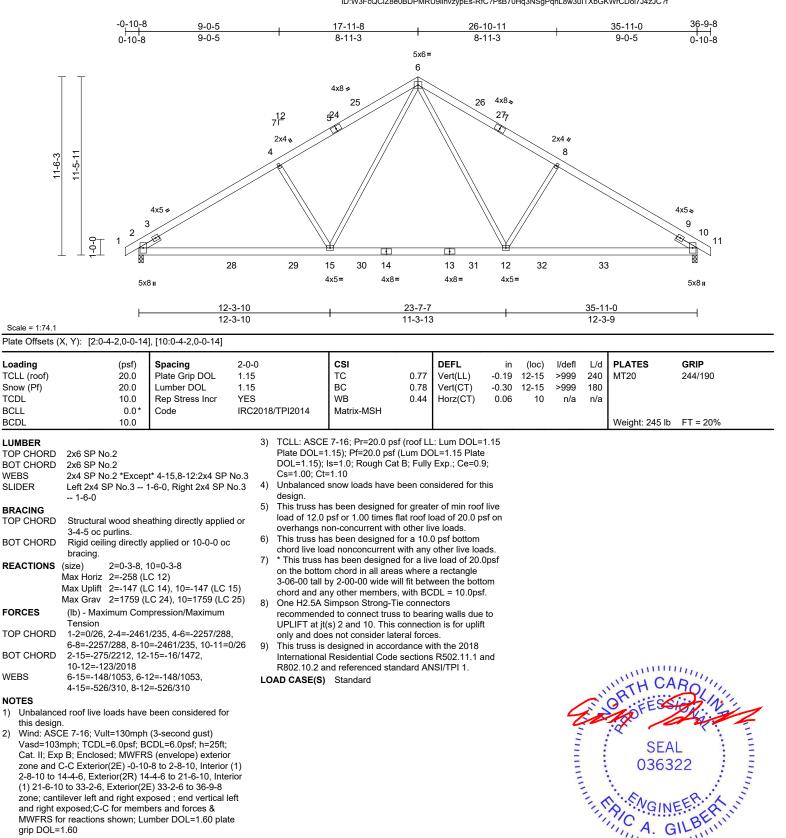
Contraction of the

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	B02	Common	1	1	Job Reference (optional)	163860632

TCDL

BCLL

BCDL


1)

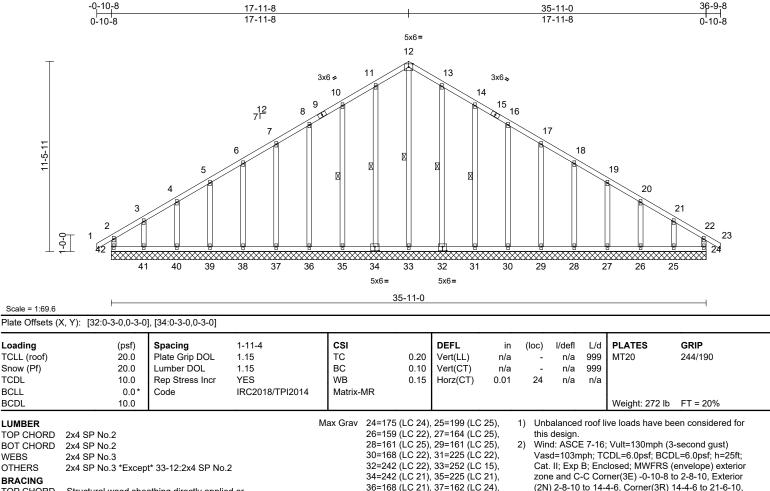
2)

arip DOL=1.60

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon Feb 26 12:50:19 ID:W3FcQCIZ8e0BDPMRU9ilhvzypEs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

111111111 February 27,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	B03	Common Supported Gable	1	1	Job Reference (optional)	163860633

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 26 12:50:20 ID:EFOp5R3VnxPMyYwdZKh5HczypER-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

36=168 (LC 21), 37=162 (LC 24), Structural wood sheathing directly applied or 38=160 (LC 24), 39=165 (LC 28), Exterior(2N) 21-6-10 to 33-2-6. Corner(3E) 33-2-6 to 6-0-0 oc purlins, except end verticals. 40=159 (LC 21), 41=223 (LC 24), 36-9-8 zone; cantilever left and right exposed ; end Rigid ceiling directly applied or 6-0-0 oc 42=216 (LC 25) vertical left and right exposed;C-C for members and bracing. FORCES (Ib) - Maximum Compression/Maximum forces & MWFRS for reactions shown; Lumber 12-33, 11-34, 10-35, 1 Row at midpt DOL=1.60 plate grip DOL=1.60 Tension 13-32, 14-31 Truss designed for wind loads in the plane of the truss TOP CHORD 2-42=-173/98, 1-2=0/30, 2-3=-200/187, 24=35-11-0 25=35-11-0 **REACTIONS** (size) only. For studs exposed to wind (normal to the face), 3-4=-152/145, 4-5=-145/145, 5-6=-130/149 26=35-11-0, 27=35-11-0. see Standard Industry Gable End Details as applicable, 6-7=-117/176, 7-8=-104/204, 8-10=-130/238, 28=35-11-0 29=35-11-0 or consult qualified building designer as per ANSI/TPI 1. 10-11=-157/286, 11-12=-181/325, 30=35-11-0, 31=35-11-0, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 12-13=-181/325, 13-14=-157/286, 32=35-11-0, 33=35-11-0. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 14-16=-130/238, 16-17=-104/194, 34=35-11-0, 35=35-11-0, DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 17-18=-78/148, 18-19=-74/119, 36=35-11-0, 37=35-11-0, 19-20=-88/92, 20-21=-98/91 38=35-11-0, 39=35-11-0, 5) 21-22=-139/124, 22-23=0/30, 22-24=-141/57 40=35-11-0, 41=35-11-0, design. BOT CHORD 41-42=-116/133, 40-41=-116/133, 42=35-11-0 39-40=-116/133, 38-39=-116/133, Max Horiz 42=-275 (LC 12) 37-38=-116/133, 36-37=-116/133, Max Uplift 24=-68 (LC 11), 25=-123 (LC 15), 35-36=-116/133, 33-35=-116/133, 26=-32 (LC 15), 27=-53 (LC 15), 31-33=-117/134, 30-31=-117/134, 28=-48 (LC 15), 29=-49 (LC 15), 29-30=-117/134, 28-29=-117/134, 30=-47 (LC 15), 31=-55 (LC 15),

27-28=-117/134, 26-27=-117/134

25-26=-117/134, 24-25=-117/134

10-35=-186/78, 8-36=-130/71, 7-37=-123/72,

6-38=-122/71, 5-39=-124/74, 4-40=-120/65,

12-33=-264/91, 11-34=-204/62,

3-41=-151/120, 13-32=-204/61, 14-31=-186/78, 16-30=-130/71, 17-29=-123/72, 18-28=-122/72, 19-27=-123/74, 20-26=-120/64,

21-25=-138/111

Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this MILLING ORTH 0

Continued on page 2

32=-37 (LC 15), 34=-39 (LC 14),

35=-55 (LC 14), 36=-48 (LC 14),

37=-49 (LC 14), 38=-47 (LC 14),

39=-54 (LC 14), 40=-28 (LC 14),

41=-140 (LC 14), 42=-120 (LC 10)

TOP CHORD

BOT CHORD

WEBS

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WEBS

NOTES

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	B03	Common Supported Gable	1	1	Job Reference (optional)	163860633

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon Feb 26 12:50:20

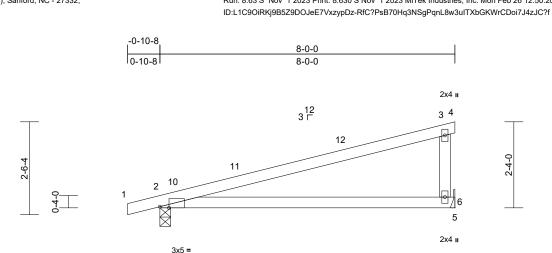
ID:EFOp5R3VnxPMyYwdZKh5HczypER-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

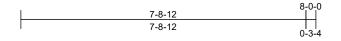
Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 42, 68 lb uplift at joint 24, 39 lb uplift at joint 34, 55 lb uplift at joint 35, 48 lb uplift at joint 36, 49 lb uplift at joint 37, 47 lb uplift at joint 38, 54 lb uplift at joint 39, 28 lb uplift at joint 40, 140 lb uplift at joint 41, 37 lb uplift at joint 32, 55 lb uplift at joint 31, 47 lb uplift at joint 30, 49 lb uplift at joint 29, 48 lb uplift at joint 28, 53 lb uplift at joint 27, 32 lb uplift at joint 26 and 123 lb uplift at joint 25.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	C01	Monopitch	10	1	Job Reference (optional)	163860634

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:20

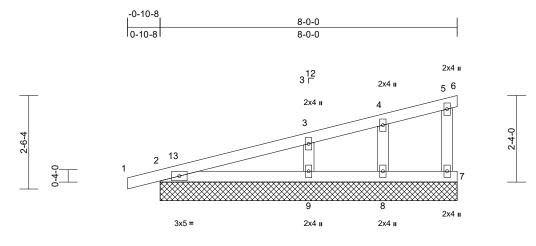
Page: 1

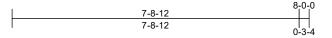
Scale = 1:31.2

Plate Offsets (X, Y): [2:0-2-15,Edge]

	2]										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.97 0.94 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.45 0.01	(loc) 6-9 6-9 2	l/defl >364 >205 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
BOT CHORD except end verticals REACTIONS (size) 2=0-3-8, Max Horiz 2=81 (LC Max Uplift 2=-78 (LC Max Grav 2=450 (L	 / applied. 6= Mechanical (13) C 10), 6=-55 (LC 14) C 21), 6=432 (LC 21) npression/Maximum /74, 3-4=-6/0, 0/0 n (3-second gust) (CDL=6.0psf; h=25ft; (S (envelope) exterior 0-8 to 2-1-8, Interior (1) 0 to 8-0-0 zone; 1; end vertical left and and forces & MWFRS DL=1.60 plate grip (roof LL: Lum DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this or greater of min roof liv at roof load of 20.0 psf of 	chord live loa 6) * This truss I on the bottor 3-06-00 tall I chord and ar 7) Refer to gird 8) Provide mec bearing plate 6. 9) One H2.5A S recommende UPLIFT at jut does not cor 10) This truss is International R802.10.2 a LOAD CASE(S) 15	is been designed fo ad nonconcurrent w has been designed fo in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss i (s) 2. This connection isider lateral forces. designed in accord: Residential Code s and referenced stand Standard	ith any for a liv where fit betv ss conr (by oth nding 5 conne to bear on is for ance w ections	other live loa e load of 20.0 a rectangle veen the botti ections. ers) of truss i 5 lb uplift at j ctors ng walls due uplift only ar th the 2018 R502.11.1 a	0psf om to joint to nd		4	20	SEA 0363	EER-RUIN

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


minimum February 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	C02	Monopitch Supported Gable	2	1	Job Reference (optional)	163860635

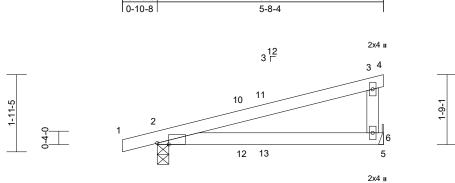
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:21 ID:B?8iMB74HgN0uw3L96IUJyzypD4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31

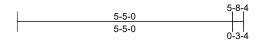
Scale - 1.51													i	
Loading	(ps		Spacing	1-11-4		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20		Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20		Lumber DOL	1.15 YES		BC WB	0.19	Vert(CT)	n/a	- 2	n/a	999		
TCDL BCLL	10		Rep Stress Incr Code		10/10/14		0.06	Horz(CT)	0.00	Z	n/a	n/a		
BCDL	10		Jode	IRCZU	18/TPI2014	Matrix-MP							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2			:	only. For see Stand	igned for wind load studs exposed to w ard Industry Gable	vind (norm End Deta	al to the face ils as applica	e), Ible,					
WEBS OTHERS	2x4 SP No.3 2x4 SP No.3					qualified building d CE 7-16; Pr=20.0 p								
BRACING	274 OF N0.5				Plate DOL	=1.15); Pf=20.0 ps	sf (Lum DC	L=1.15 Plate	e					
TOP CHORD			ning directly applie pt end verticals.	d or	DOL=1.15 Cs=1.00; (); ls=1.0; Rough Ca Ct=1.10	at B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD			oplied or 10-0-0 oc	;	design.	d snow loads have								
REACTIONS		0-0, 7=8 0-0, 10=	8-0-0, 8=8-0-0, =8-0-0		load of 12.	has been designed 0 psf or 1.00 times	s flat roof l	oad of 20.0 p						
			3), 10=78 (LC 13)			non-concurrent wi uires continuous bo								
			0), 7=-14 (LC 14),			is spaced at 2-0-0		u bearing.						
			0), 9=-56 (LC 14),			has been designed) psf bottom						
		46 (LC				load nonconcurren			ads.					
	8=12		21), 7=108 (LC 21) 21), 9=400 (LC 21) 21)		on the bott	s has been designe com chord in all are	eas where	a rectangle						
FORCES		•	ession/Maximum		chord and	Il by 2-00-00 wide any other member echanical connection	rs.							
TOP CHORD	1-2=0/12, 2-3=- 4-5=-33/43, 5-6				bearing pla	ate capable of with	standing 4	6 lb uplift at j	joint					UT
BOT CHORD	2-9=-24/88, 8-9					lift at joint 7, 56 lb i nd 46 lb uplift at joi		nt 9, 20 lb up	blift				White CA	Dalle
WEBS	3-9=-279/214, 4					is designed in acco		ith the 2018				1	"aTH OF	10/11/
NOTES	· · · ,					al Residential Cod			and		/	- 5	Original States	12 1ino
	CE 7-16; Vult=130)mnh (3	second dust)			and referenced sta					L	20		North
			DL=6.0psf; h=25ft;		OAD CASE							-	:0	K: 2
			(envelope) exterior		(-,					-		054	a 1 E
	zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N)											8	SEA	NL : E
	-0-0, Corner(3E) 5										=		0363	22 : =
			end vertical left and								-			- 3 2
			d forces & MWFRS	S								-		1 3
TOT reactio DOL=1.60	ns shown; Lumbe	I DOL=	- 1.00 plate grip									21	C. ENG.	-ERIX S
DOL-1.00	,											1	SEA 0363	EF CR N
												1	A. C	II BEIN
													1. 7. 6	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

A. GILB A. GIL February 27,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	C03	Monopitch	4	1	Job Reference (optional)	163860636


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:21 ID:Ut7CyCdodGXBJDiD3D_6TbzypCR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

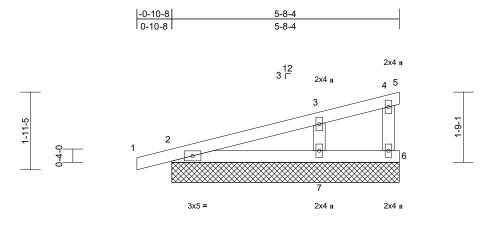
-0-10-8

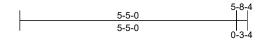
5-8-4

Scale = 1:29

Plate Offsets (X, Y): [2:0-3-7,Edge]

	.): [<u></u> e e :, <u>_</u> uge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-MP	0.55 0.51 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 0.12 0.00	(loc) 6-9 6-9 2	l/defl >441 >552 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
BOT CHORD 22 WEBS 25 BRACING TOP CHORD S BOT CHORD S BOT CHORD S FORCES (lit TOP CHORD 1- GOT CHORD 1- 3 BOT CHORD 1- 3 BOT CHORD 2- NOTES 103 NOTES 103 NOT	-8-4 oc purlins, ex tigid ceiling directly racing. ze) 2=0-3-8, (ix Horiz 2=59 (LC ix Uplift 2=-113 (L ix Grav 2=364 (LC b) - Maximum Com- ension -2=0/18, 2-3=-180/ -6=-217/183 -6=-243/162, 5-6=C 7-16; Vult=130mph h; TCDL=6.0psf; B; Enclosed; MWFR E Exterior(2E) 2-8-2- and right exposed ; porch left and righ forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (100 plate second 100 plate second 100 plate second 110 plat	applied or 10-0-0 od 5= Mechanical 13) C 10), 6=-85 (LC 10 C 21), 6=308 (LC 21 pression/Maximum 242, 3-4=-6/0, 1/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (4 to 5-8-4 zone; ; end vertical left and the exposed; C-C for for reactions shown DL=1.60 roof LL: Lum DOL=1 B; Fully Exp.; Ce=0.9 seen considered for the r greater of min roof t roof load of 20.0 ps	r (1) (1) (1) (1) (1) (1) (1) (1)	hord live loa This truss h in the bottom of6-00 tall b hord and an efer to girde rovide mech earing plate Ine H2.5A S acommende PLIFT at jt(s oes not cons his truss is c international	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. or(s) for truss to tru- nanical connection capable of withsta- impson Strong-Tie d to connect truss s) 2. This connect isider lateral forces designed in accord Residential Codes d referenced stan Standard	vith any for a liv where I fit betv uss conre (by oth anding 8 conne to bear on is for lance w sections	other live loa e load of 20.0 a rectangle veen the botto ections. ers) of truss t 5 lb uplift at j ctors ng walls due uplift only ar ith the 2018 R502.11.1 a	Dpsf co oint to nd				SEA 0363	EEP P


February 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	C04	Monopitch Supported Gable	1	1	Job Reference (optional)	163860637

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:21 ID:Bpk_3dk3HLomWmT8eJAStizypCH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.8

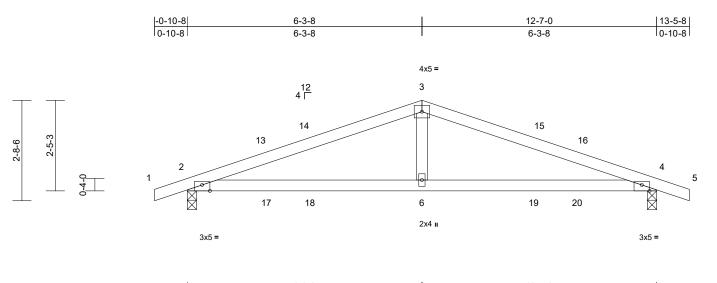
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-MP	0.21 0.36 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-8-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-8-4, i 7=5-8-4, i Max Horiz 2=57 (LC Max Uplift 2=-49 (LC 8=-49 (LC Max Grav 2=245 (LC	cept end verticals. applied or 10-0-0 or 5=5-8-4, 6=5-8-4, 8=5-8-4 11), 8=57 (LC 11) 0 (0), 7=-28 (LC 14), 0 (0)	Plate DOL= Cs=1 4) Unba desig ed or 5) This t load o c 6) Gable 7) Gable 8) This t chord 9) * This on the 3-06- 6(LC 10) Provi	russ has been designe of 12.0 psf or 1.00 time angs non-concurrent v requires continuous b studs spaced at 2-0- russ has been designe live load nonconcurre truss has been designe bottom chord in all ar 00 tall by 2-00-00 wide and any other membe de mechanical connect	sf (Lum DC Cat B; Fully ve been col- ed for great s flat roof I vith other li bottom choo o oc. ed for a 10. nt with any need for a live reas where will fit betw ers. tion (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 prove loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t	e - - - - - - - - - - - - - - - - - - -					
FORCES	(lb) - Maximum Com Tension		2, 28 11) This t	ng plate capable of with Ib uplift at joint 7 and 4 russ is designed in acc	l9 lb uplift a	it joint 2.	ont					
TOP CHORD	4-6=0/75		4/13, Ínterr	ational Residential Co 10.2 and referenced s	de sections	R502.11.1 a	nd					. And a
BOT CHORD WEBS	2-7=-31/85, 6-7=-17 3-7=-308/240	/31		SE(S) Standard							11111 CA	Della
NOTES	5. 000/E10									J.	RITO	
Vasd=103 Cat. II; Ex zone and 2-1-8 to 5 end vertic forces & N DOL=1.60 2) Truss des only. For see Stanc	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B yp B; Enclosed; MWFR C-C Corner(3E) -0-10 -8-4 zone; cantilever le al left and right exposed WWFRS for reactions s 0 plate grip DOL=1.60 signed for wind loads ii studs exposed to wind ard Industry Gable En t qualified building desi	CDL=6.0psf, h=25ft; S (envelope) exterior 8 to 2-1-8, Exterior(2, fft and right exposed dd;C-C for members hown; Lumber n the plane of the tru ((normal to the face) d Details as applicat	r 2N) ; and iss), ole,						Comme	the second se	SEA 0363	EER A

- zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GILB


A. GIL February 27,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	D01	Common	4	1	Job Reference (optional)	163860638

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:21 ID:SpxzPLIogXAaai5EKE92CMSzhHzi-RfC?Ps870Hg3NSgPggl 8w3ulTXhGKWrCDoi7 1/z UC?f

ID:SpxzPUpqXAaai5FKE92CMSzhHzi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-3-8	12-7-0	
	6-3-8	6-3-8	
Scale = 1:30.9			
Plate Offsets (X, Y): [2:0-2-8,Edge], [4:0-2-8,Edge]			

Loading	(psf)	Spacing	2-0-0		CSI	0.70	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.73	()	0.13	6-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.16	6-12	>963	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.11	Horz(CT)	-0.02	4	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-MSH							Weight: 44 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-9-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0,4 Max Horiz 2=38 (LC Max Uplift 2=-202 (LC Max Grav 2=649 (LC	applied or 5-0-10 oc =0-3-0 14) C 10), 4=-202 (LC 1	ed or (design. This truss h. load of 12.0 overhangs r This truss h. chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A recommend 	snow loads have as been designed psf or 1.00 times ion-concurrent wi as been designed an conconcurren has been designe m chord in all are by 2-00-00 wide by 2-00-000 wide by 2-000 wide by 2-0000 wide by 2-0000 wide by 2-0	I for great flat roof lo th other lin I for a 10.1 t with any ed for a liv as where will fit betv s. Tie conne	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due	flive sfon ads. 0psf com e to					
ORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-968/1 4-5=0/17		5,	and does no) This truss is Internationa	ot consider lateral designed in acco I Residential Cod and referenced sta	forces. ordance w e sections	ith the 2018 R502.11.1 a	-					
BOT CHORD WEBS	2-6=-1146/864, 4-6= 3-6=-496/291	-1146/864	I	_OAD CASE(S)									
NOTES 1) Unbalance	ed roof live loads have	been considered for											um.

this design.
Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-3-8, Exterior(2R) 3-3-8 to 9-3-8, Interior (1)

- 9-3-8 to 10-5-8, Exterior(2E) 10-5-8 to 13-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16: PT=200 psf (roof LL) um DOL=1.10
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	D02	Common Structural Gable	1	1	Job Reference (optional)	163860639

6-3-8

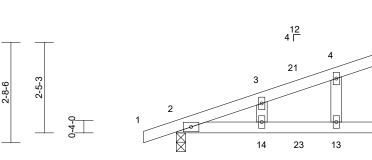
6-3-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

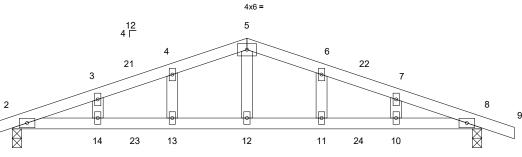
Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Mon Feb 26 12:50:21 ID:OwXIGMdQ3ZhiPobRsWGhFHzhHzx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-0

6-3-8



13-5-8


0-10-8

3x5 =

-0-10-8

0-10-8

3x5 =

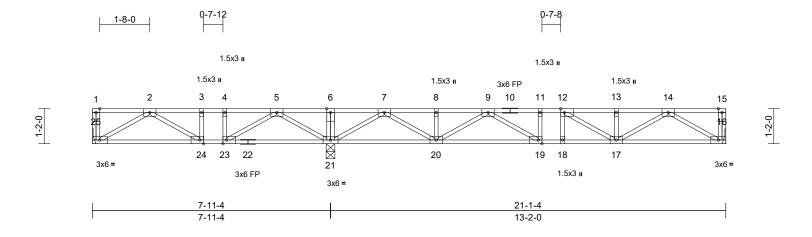
6-3-8 12-7-0 6-3-8 6-3-8 Scale = 1:30.9 Loading Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.46 Vert(LL) 0.13 10-11 >999 240 MT20 244/190 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.67 Vert(CT) -0.17 180 10-11 >871 TCDL 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) -0.02 8 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH BCDL 10.0 Weight: 49 lb FT = 20%

LUMBER		
TOP CHORD	2x4 SP No	p.2
BOT CHORD	2x4 SP No	p.2
WEBS	2x4 SP No	p.3
OTHERS	2x4 SP No	p.3
BRACING		
TOP CHORD	Structural 5-2-10 oc	wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 4-9-7 oc
REACTIONS	(size)	2=0-3-0, 8=0-3-0
	Max Horiz	2=37 (LC 18)
	Max Uplift	2=-196 (LC 10), 8=-196 (LC 11)
	Max Grav	2=629 (LC 21), 8=629 (LC 22)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/16,	2-3=-942/1277, 3-4=-917/1277,
	4-5=-903/	1298, 5-6=-903/1298,
	6-7=-917/	1277, 7-8=-942/1277, 8-9=0/16
BOT CHORD		88/860, 13-14=-1138/860,
		38/860, 11-12=-1138/860,
		20/060 0 10- 1120/060
		38/860, 8-10=-1138/860
WEBS	5-12=-521	/309, 4-13=-109/46, 3-14=-53/34,)/47, 7-10=-53/34

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-3-8, Interior (1) 2-3-8 to 3-3-8, Exterior(2R) 3-3-8 to 9-3-8, Interior (1) 9-3-8 to 10-3-8, Exterior(2E) 10-3-8 to 13-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to
- UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces. 12) This truss is designed in accordance with the 2018
- International Residential Code sections R502 11 1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F01	Floor	5	1	Job Reference (optional)	163860640

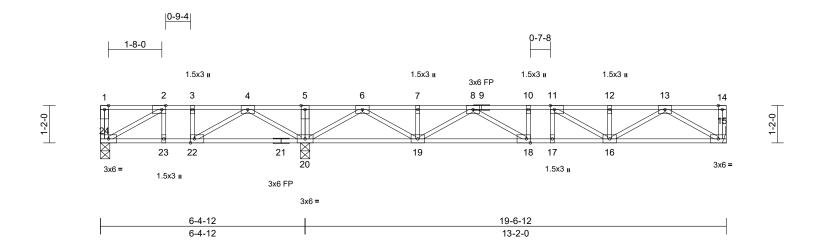
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:22 ID:OCrecDxPXX19myk2T7iUyAznBd4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.4

Plate Offsets ((X, Y): [12:0-1-8,Edge], [19:0-1-8,Edge], [2	3:0-1-8,E	dge], [24:0-1-8	Edge]								
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00		CSI TC	0.37	DEFL Vert(LL)	in -0.05	(loc) 19	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL	40.0	Lumber DOL	1.00		BC	0.37	Vert(LL)	-0.05 -0.07	19-20	>999	480 360	IVI I 20	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.07	19-20	∽9999 n/a	n/a		
BCDL	5.0	Code		8/TPI2014	Matrix-MSH	0.00	11012(01)	0.01	10	n/a	n/a	Weight [.] 110 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 6-0-0 oc nanical, 21=0-3-8, 25 al C 4) _C 4), 21=963 (LC 1)	4) 5) d or 6) = 7)	Provide mec bearing plate 25. This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer	hanical connection e capable of withst designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restraine to not erect truss to	anding 3 dance w sections ndard AN on edge ach truss ks to be d by othe	ith the 2018 R502.11.1 a ISI/TPI 1. spaced at with 3-10d attached to ver means.	joint and				Weignt: 110 lb	<u>FI = 20%F, 11%E</u>
ORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-25=-46/0, 15-16=- 2-3=-359/251, 3-4=- 5-6=0/893, 6-7=0/89 8-9=-606/0, 9-11=-1 12-13=-979/0, 13-14	359/251, 4-5=-359/2 3, 7-8=-606/0, 120/0, 11-12=-1120/	,										
BOT CHORD		24=-251/359, -21=-157/22,	20,									TH CA	Routin
this desigr	6-21=-138/0, 5-21=- 5-23=0/473, 2-24=-1 4-23=-188/0, 7-21=- 7-20=0/702, 14-17= 13-17=-132/0, 9-20= 9-19=0/288, 11-19= ed floor live loads have	195/59, 3-24=-29/80, 940/0, 14-16=-705/0 0/432, 8-20=-115/0, =-436/0, 12-17=-229/ -83/0, 12-18=-56/36 e been considered fo	, 40,							Marin Marine		SEA 0363	22

2) All plates are 3x5 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

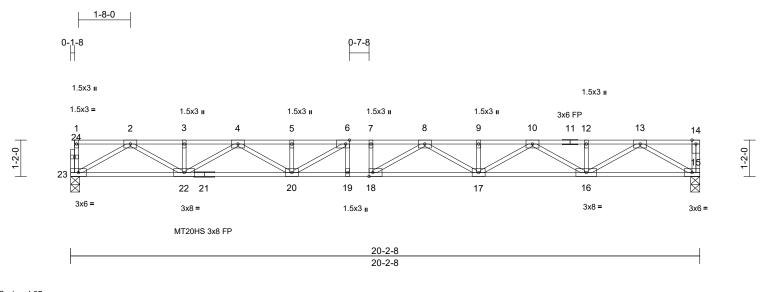
Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F02	Floor	10	1	Job Reference (optional)	163860641

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:22 ID:o22Co2BypgZJA0FueK3AmNznBcm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36

Plate Offsets ((X, Y): [2:0-1-8,Edge],	, [11:0-1-8,Edge], [18	3:0-1-8,Ed	ge], [22:0-1-8,E	dge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.32 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.07 0.01	(loc) 18 18-19 15	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc nanical, 20=0-3-8, .C 4) _C 7), 20=922 (LC 1)	6) 7)	recommende UPLIFT at jtt does not cor This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer	Simpson Strong-T ed to connect trus: (s) 24. This conne isider lateral force designed in accor Residential Code and referenced sta 2x6 strongbacks and fastened to e nails. Strongbac ends or restraine o not erect truss i Standard	s to bear ction is for chance we sections ndard AN , on edge ach truss iks to be ed by othe	ing walls due or uplift only s R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to v er means.	and					
FORCES	(lb) - Maximum Com	,											
TOP CHORD	,	203/193, 4-5=0/865, 3/0, 7-8=-643/0, 1=-1142/0, 11-12=-99											
BOT CHORD	23-24=-193/203, 22-	-23=-193/203, 20=-124/65, 18-19=0	,									UNITH CA	ROUL
this design 2) All plates	5-20=-135/0, 4-20=- 4-22=0/399, 2-23=-6 6-20=-936/0, 13-15= 13-16=0/439, 7-19=- 8-19=-432/0, 11-16= 10-18=-81/0, 11-17= ed floor live loads have	591/0, 2-24=-233/22 59/3, 3-22=-141/0, 713/0, 6-19=-0/696, -114/0, 12-16=-132/0 240/32, 8-18=0/282 54/38 been considered fo otherwise indicated.	1,), 2,							Contraction of the second seco	A STATE OF THE STA	SEA 0363	22 EERRALIU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

A. GI A. GILLIN February 27,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F03	Floor	10	1	Job Reference (optional)	163860642

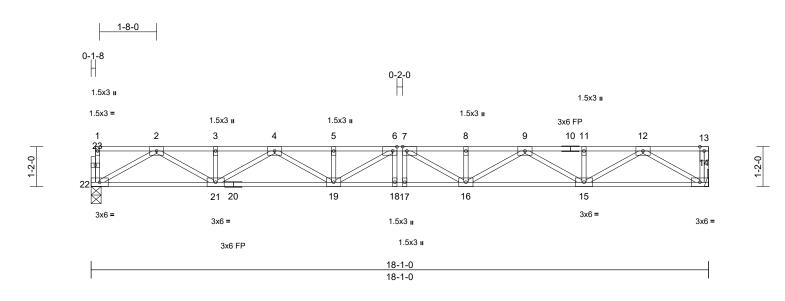
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:22 ID:5fVGrGT?92av2i5V2MVpkRznBcO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:37
---------	------

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

Plate Offsets (X, Y): [6:0-1-8,Edge],	, [18:0-1-8,Edge]			-						-	
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00	CSI TC	0.37	DEFL Vert(LL)	in -0.34	(loc) 17-18	l/defl >705	L/d 480	PLATES MT20HS	GRIP 187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.73	Vert(CT)	-0.47	17-18	>509	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.07	15	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	-						Weight: 104 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat)	xcept* 21-15:2x4 SP	0.131" X at their ou	end 2x6 strongbacks oc and fastened to e 3") nails. Strongbac uter ends or restraine J. Do not erect truss	each truss cks to be ed by othe	with 3-10d attached to w er means.	valls					
OTHERS	2x4 SP No.3(flat)		LOAD CASE	(S) Standard								
BRACING	. ,			. ,								
TOP CHORD	Structural wood she		ed or									
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.		5									
REACTIONS	(size) 15=0-3-8, Max Grav 15=732 (L)									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-23=-48/0, 14-15= 2-3=-2049/0, 3-4=-2 5-6=-3187/0, 6-7=-3 8-9=-3193/0, 9-10= 12-13=-2047/0, 13-1	049/0, 4-5=-3187/0, 474/0, 7-8=-3474/0, 3193/0, 10-12=-2047	7/0,									
BOT CHORD	22-23=0/1154, 20-22 18-19=0/3474, 17-18 15-16=0/1155										mmm	11111
WEBS	13-15=-1336/0, 2-23 2-22=0/1045, 12-16= 10-16=-786/0, 4-22= 4-20=0/548, 9-17=-1 8-17=-309/0, 6-20=- 6-19=-58/106, 7-18=	=-107/0, 3-22=-111/(780/0, 10-17=0/552 106/0, 5-20=-135/9, 508/42, 8-18=-210/2	D, 2,						6	D	OR FESS	the second
NOTES									=		SEA	• -
1) Unbalance	ed floor live loads have	e been considered fo	r								0363	22 <u>:</u> E


- Unbalanced floor live loads have been considered for 1) this design.
- All plates are MT20 plates unless otherwise indicated. 2)
- 3) All plates are 3x5 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F04	Floor	6	1	Job Reference (optional)	163860643

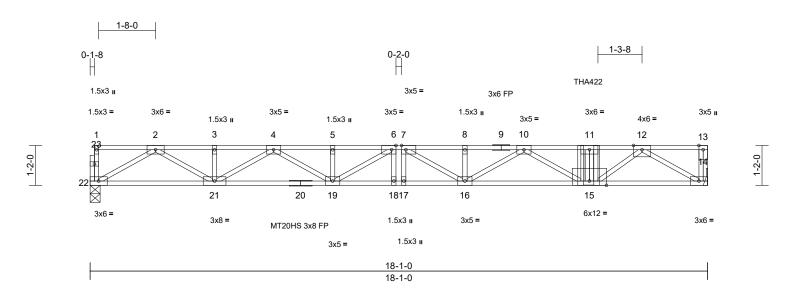
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:23 ID:9Yvx_OfPdfTnL0kOR0GKrcznBc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.24 0.77 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.32 0.06	(loc) 18 18 14	l/defl >930 >676 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	-						Weight: 95 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she		10-00-00 (0.131" X at their ou 6) CAUTION LOAD CASE(nd 2x6 strongbacks oc and fastened to 6 3") nails. Strongbac ter ends or restraind , Do not erect truss S) Standard	each truss cks to be ed by othe	with 3-10d attached to w er means.	valls					
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing.		;									
REACTIONS	(size) 14= Mech Max Grav 14=654 (I	anical, 22=0-3-8 _C 1), 22=650 (LC 1))									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-22=-48/0, 13-14=- 2-3=-1787/0, 3-4=-1 5-6=-2674/0, 6-7=-2 8-9=-2674/0, 9-11=- 12-13=0/0	787/0, 4-5=-2674/0, 798/0, 7-8=-2674/0,	7/0,									
BOT CHORD	21-22=0/1020, 19-2 17-18=0/2798, 16-1 14-15=0/1022											
WEBS	12-14=-1182/0, 2-22	130/0, 5-19=-130/0,							4	A. M.	ORTH CA	ROLIN
NOTES									-		CEA	, <u> </u>
 this design 2) All plates a 3) Refer to gi 4) This truss Internation 	ed floor live loads have n. are 3x5 MT20 unless o irder(s) for truss to trus is designed in accorda nal Residential Code s 2 and referenced stand	otherwise indicated. as connections. ance with the 2018 ections R502.11.1 ar							U , 1111111111	A MARINE A		EER AL

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GI A. GIL February 27,2024

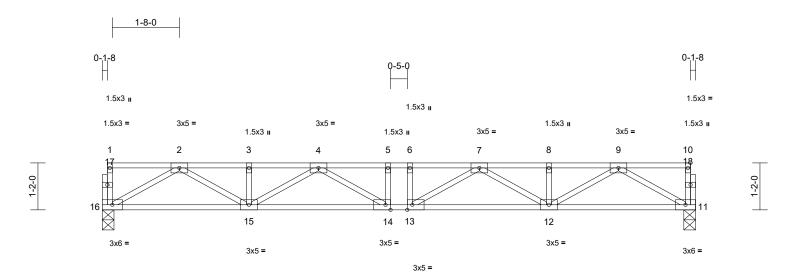
ſ	Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
	24020111	F05	Floor Girder	1	1	Job Reference (optional)	163860644

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:23 ID:I1_Yzn4sX6gPLI1q80rDynznBZ1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge]

	(;;;; ;): [e:e : e;=age]	,, [
Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.44	Vert(LL)	-0.29	16-17	>745	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00		BC	0.88	Vert(CT)	-0.40	16-17	>540	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	NO		WB	0.73	Horz(CT)	0.07	14	n/a	n/a		
BCDL	5.0	Code	IRC20	18/TPI2014	Matrix-MSH							Weight: 99 lb	FT = 20%F, 11%E
LUMBER			4	5) Recommend	I 2x6 strongbacks,	, on edge	e, spaced at						
TOP CHORD	2x4 SP No.2(flat)				and fastened to ea								
BOT CHORD	2x4 SP No.2(flat) *E No.1(flat)	Except* 20-14:2x4 SF	D) nails. Strongbac ends or restraine			valls					
WEBS	2x4 SP No.3(flat)			6) CAUTION, Do not erect truss backwards.									
OTHERS	2x4 SP No.3(flat)			7) Use Simpson Strong-Tie THA422 (Single Chord Girder)									
BRACING				or equivalent at 14-7-4 from the left end to connect truss									
TOP CHORD		eathing directly applie	ed or		face of top chord. bles where hanger	io in cor	toot with lum	bor					
	6-0-0 oc purlins, ex				CASE(S) section,								
BOT CHORD		y applied or 10-0-0 or	с ^т		are noted as front			lace					
	bracing.			OAD CASE(S)			ok (B).						
REACTIONS	()	hanical, 22=0-3-8			or Live (balanced)	. Lumbe	r Increase=1	00					
	Max Grav 14=1047		1)	Plate Increa	```			,					
FORCES	(lb) - Maximum Con Tension	npression/Maximum		Uniform Lo	()								
TOP CHORD		-51/0, 1-2=-3/0,			22=-7, 1-13=-67								
	2-3=-2092/0, 3-4=-2	2092/0, 4-5=-3273/0,			ed Loads (lb)								
	5-6=-3273/0, 6-7=-3	3570/0, 7-8=-3613/0,		Vert: 11=	=-484 (F)								
	8-10=-3613/0, 10-1	,											
	11-12=-2964/0, 12-												
BOT CHORD		21=0/2780, 18-19=0/3											
	17-18=0/3570, 16-1 14-15=0/1694	7=0/3570, 15-16=0/3	3417,									minin	11111
WEBS		2=-1356/0, 2-21=0/1	070									IN'TH CA	ROUL
WEBC		=-111/0, 10-15=-516										R	- Ultr
		=0/229, 4-19=0/575,								/	5.	2 the	Dr. sm
	8-16=-129/0, 5-19=	-121/0, 7-16=-99/323	3,								2A	.04	
		-28/144, 7-17=-135/3	37,								÷	.2	K : E
	12-15=0/1533									1		SEA	1 1 1
NOTES										=	:	SEA	• -
,	ed floor live loads have	e been considered fo	r							=		SEA 0363	22 : =
this design										-	1 8		
	are MT20 plates unles		d.								-	·	A 1. 5
	irder(s) for truss to tru is designed in accord										2.0	NOIN	FERIAS
	nal Residential Code s		nd								1	No. GIN	ET IN
	2 and referenced stand										1	AG	ILBUIN
												A. C	111111


1. A. C. February 27,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicability for the Studyter Building Component Advance interpretention and the prevention and the form the Studyter Building Component Advance interpretention applicability for the study of the study of the pretention and the pretention applicability for the study of the studyter Building Component Advance Interpretention applicability for the study of the s and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F06	Floor	4	1	Job Reference (optional)	163860645

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:23 ID:aO6VBDuywp_xl5GEcDd0fqznBbr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-9-0 14-9-0

Scale = 1:28.6	
Plate Offsets (X, Y).	[13:0-1-8 Edge] [14:0-1-8 Edge]

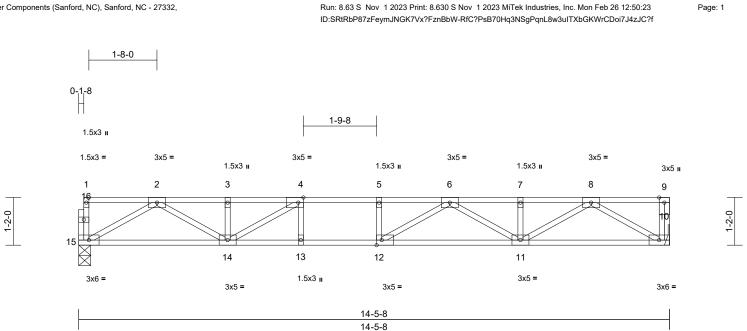
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.17	Vert(LL)	-0.11	13-14	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.50	Vert(CT)	-0.14	14	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.03	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 77 lb	FT = 20%F, 11%E

LUMBER

LOWIDER	
TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
Ber energy	bracing.
REACTIONS	5
REACTIONS	(size) 11=0-3-8, 16=0-3-8
	Max Grav 11=527 (LC 1), 16=527 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-16=-47/0, 10-11=-47/0, 1-2=-3/0,
	2-3=-1375/0, 3-4=-1375/0, 4-5=-1852/0,
	5-6=-1852/0, 6-7=-1852/0, 7-8=-1375/0,
	8-9=-1375/0, 9-10=-3/0
BOT CHORD	15-16=0/811, 14-15=0/1715, 13-14=0/1852,
	12-13=0/1715, 11-12=0/811
WEBS	9-11=-935/0, 2-16=-935/0, 9-12=0/659,
	2-15=0/659, 8-12=-109/0, 3-15=-109/0,
	7-12=-396/0, 4-15=-396/0, 7-13=-44/284,
	4-14=-44/284, 5-14=-91/0, 6-13=-91/0
NOTES	

- Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F07	Floor	2	1	Job Reference (optional)	163860646

Scale = 1:28.2

Plate Offsets (X, Y): [4:0-1-8,Edge], [12:0-1-8,Edge]

	(, .). [,[:=:=:=:;=::3:]										
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.46	Vert(LL)	-0.14	11-12	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.69	Vert(CT)	-0.19	11-12	>889	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.30	Horz(CT)	0.03	10	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 73 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10= Mect Max Grav 10=521 (I (lb) - Maximum Con Tension 1-15=-47/0, 9-10=-4 	eathing directly applie cept end verticals. r applied or 10-0-0 or nanical, 15=0-3-8 LC 1), 15=517 (LC 1 npression/Maximum	ed or c	Maula-iniSh		L					weight. 73 lb	PT - 2070P, 1170E
BOT CHORD	8-9=0/0 14-15=0/792, 13-14 11-12=0/1660, 10-1	1=0/797										
WEBS	,	102/0, 3-14=-125/42 567/0, 6-12=-71/281	,								TH CA	RO
NOTES										A.L.	R	11'1
 Unbalance this desig All plates Refer to g This truss Internation R802.10.1 Recomment 10-00-00 (0.131" X at their ou CAUTION 	eed floor live loads have gn. are 3x5 MT20 unless of girder(s) for truss to trus is designed in accord- onal Residential Code s 2 and referenced stand end 2x6 strongbacks, of oc and fastened to ead (3") nails. Strongbacks uter ends or restrained V, Do not erect truss ba (S) Standard	otherwise indicated. ss connections. ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to w by other means.	nd						W. TITTING	A CONTRACT OF A	SEA 0363	EER AU


February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

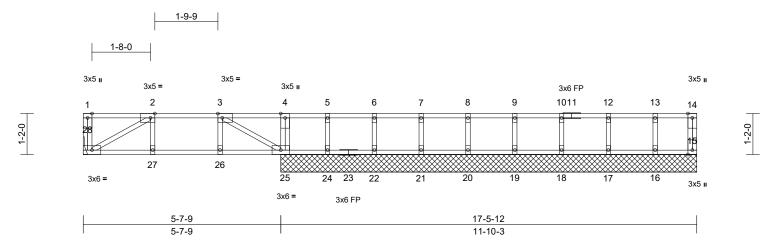
Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F08	Floor	6	1	Job Reference (optional)	163860647

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:24

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:27.8

Plate Offsets (X, Y): [4:0-1-8,Edge], [12:0-1-8,Edge]


	(x, i): [iio i 0,Eugo],	[12.0 1 0,Edg0]		-							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.63 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%F, 11%E
-						L				····g···· <u>-</u> ··	
LUMBER TOP CHORD	2x4 SP No.2(flat)										
BOT CHORD											
WEBS	2x4 SP No.3(flat)										
OTHERS BRACING	2x4 SP No.3(flat)										
TOP CHORD	Structural wood she	athing directly applie	ed or								
	6-0-0 oc purlins, ex	cept end verticals.									
BOT CHORD		applied or 10-0-0 o	с								
REACTIONS	bracing. (size) 10=0-3-8,	15=0-3-8									
REACTION	Max Grav 10=508 (I)								
FORCES	(lb) - Maximum Com	pression/Maximum									
	Tension										
TOP CHORD	1-15=-48/0, 9-10=-4 2-3=-1298/0, 3-4=-1										
	5-6=-1677/0, 6-7=-1	, ,									
	8-9=-3/0										
BOT CHORD	14-15=0/776, 13-14 11-12=0/1615, 10-1		677,								
WEBS	8-10=-899/0, 2-15=-										
	2-14=0/609, 7-11=-1	,	·								11
	6-11=-354/0, 4-14=- 4-13=-21/89, 5-12=-	,	9,							TH CA	Pall
NOTES	4-1321/09, 3-12	90/0							1	ATT	in Little
	ed floor live loads have	e been considered fo	or						55	U. FESS	This way
this desig								4		· · ·	2. A.
	are 1.5x3 MT20 unless is designed in accorda		d.					-	1		
- /	nal Residential Code s		ind					=		SEA	• -
	2 and referenced stand							=		0363	22 : =
	end 2x6 strongbacks, o oc and fastened to eac							-	1 0		1 - E -
	3") nails. Strongbacks		alls						-	·	airs
at their ou	iter ends or restrained								15	A VGIN	EF
LOAD CASE(S) Standard								11	CAC	II BEIN
										11, A. G	11-111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F09	Floor	1	1	Job Reference (optional)	163860648

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Mon Feb 26 12:50:24 ID:WbpXJLXCR5gQcEpQCr4RI?znBb0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

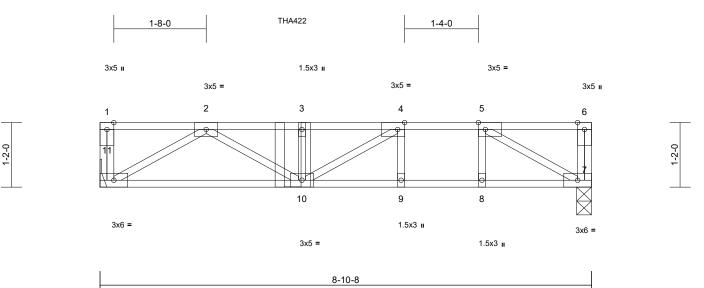
Scale = 1:32	2.8
--------------	-----

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

Plate Offsets ()	X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MSH	0.13 0.14 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 27-28 27-28 15	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD	2x4 SP No.2(flat)		,	this design.	floor live loads hav								
BOT CHORD WEBS OTHERS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		3)	Truss to be for braced again	 1.5x3 MT20 unles ully sheathed from st lateral movemer 	one fac nt (i.e. c	e or securely						
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, exe	athing directly applie cept end verticals.	dor 5) 6)	Refer to girde This truss is	spaced at 1-4-0 oc er(s) for truss to tru designed in accord	ss conr ance w	ith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc -3, 16=11-10-3,		R802.10.2 ar	Residential Code s nd referenced stand 2x6 strongbacks,	dard AN	ISI/TPI 1.	ind					
REACTIONS	17=11-10 19=11-10 21=11-10	-3, 18=11-10-3, -3, 20=11-10-3, -3, 22=11-10-3, -3, 25=11-10-3, 28=	8)	(0.131" X 3") at their outer	and fastened to ea nails. Strongback ends or restrained o not erect truss b Standard	s to be by othe	attached to w er means.	alls					
	3), 20=98 22=105 (L	C 3), 16=97 (LC 4), 1 3=98 (LC 4), 19=98 (L (LC 4), 21=99 (LC 3 _C 4), 24=111 (LC 3) _C 1), 28=203 (LC 1)	_C), ,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										mmm	11111
TOP CHORD	1-28=-54/0, 14-15=- 2-3=-259/0, 3-4=0/0, 6-7=0/0, 7-8=0/0, 8- 10-12=0/0, 12-13=0/	, 4-5=0/0, 5-6=0/0, 9=0/0, 9-10=0/0,									I.I.	ORTH CA	ROUN
BOT CHORD	24-25=0/0, 22-24=0/	=0/259, 25-26=0/259 /0, 21-22=0/0, 20-21= /0, 17-18=0/0, 16-17=	=0/0,							N		SEA	L
WEBS	4-25=-118/0, 3-25=- 2-27=-4/26, 3-26=-5. 6-22=-94/0, 7-21=-8 9-19=-89/0, 10-18=- 13-16=-88/0	/33, 5-24=-97/0, 9/0, 8-20=-89/0,											EERER
NOTES												A. C	ILBENN

February 27,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F10	Floor Girder	1	1	Job Reference (optional)	163860649

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:24 ID:PR9IQzPMUDkCEIKGQzMKDBznBZu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

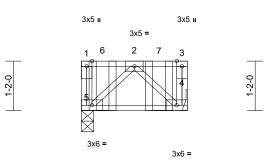
Scale = 1:20.8

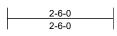
Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 NO		CSI TC BC WB	0.52 0.69 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.10 0.01	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TP	12014	Matrix-MSH							Weight: 47 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-3, Max Grav 7=354 (L0 (lb) - Maximum Com Tension 1-11=-51/0, 6-7=-36 3-4=-886/0, 4-5=-63 10-11=0/550, 9-10= 7-8=0/633 	cept end verticals. applied or 10-0-0 or 11= Mechanical C 1), 11=378 (LC 3) pression/Maximum /27, 1-2=0/0, 2-3=-8 3/0, 5-6=0/0 0/633, 8-9=0/633,	P U c	late Increa Iniform Loa Vert: 7-1	ads (lb/ft) 1=-7, 1-6=-67 ed Loads (lb)	: Lumbe	r Increase=1	.00,					
WEBS	5-7=-726/0, 2-11=-6 3-10=-299/0, 4-10=0												
	5-8=0/144	, ,											
NOTES													
,	ced floor live loads have	e been considered fo	or									MILLIN	11111
2) Refer to 0	gn. girder(s) for truss to trus	es connections									0	"TH CA	Rolly
3) This truss Internation R802.10.	s is designed in accorda onal Residential Code s .2 and referenced stand	ance with the 2018 ections R502.11.1 a ard ANSI/TPI 1.	nd							4	i	ORIFESE	De ta 1
10-00-00 (0.131" X	nend 2x6 strongbacks, o) oc and fastened to eac (3") nails. Strongbacks outer ends or restrained	to be attached to w	alls								0	SEA 0363	• -
 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent at 3-5-12 from the left end to connect truss (es) to front face of top chord. 6) Fill all nail holes where hanger is in contact with lumber. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 													
6) Fill all nai	il holes where hanger is										15	A NGIN	EF
	DAD CASE(S) section, lo lss are noted as front (F		ace								11	AG	ILBEIT
	E(S) Standard	, ci buok (b).										(IIIIIII	27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F11	Floor Girder	1	1	Job Reference (optional)	163860650


Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Mon Feb 26 12:50:24 ID:PAeKr9CiU_bcihX_xuZL1bznBa9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

THA422

THA422

Scale = 1:27.2												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.65	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.13	Vert(CT)	0.00	4-5	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.11	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 17 lb	FT = 20%F, 11%E
LUMBER												

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat)

WEBS	2x4 SP N	o.3(flat)
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	2-6-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-3-8
	Max Grav	4=529 (LC 1), 5=603 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

TOROLO	Tension
TOP CHORD	1-5=-276/0, 3-4=-201/0, 1-2=0/0, 2-3=0/0
BOT CHORD	4-5=0/346
WEBS	2-5=-471/0, 2-4=-471/0

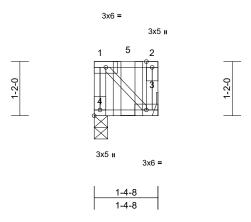
NOTES

1) Refer to girder(s) for truss to truss connections.

- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent spaced at 1-4-0 oc max. starting at 0-6-0 from the left end to 1-10-0 to connect truss(es) to back face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 4-5=-7, 1-3=-67
 - Concentrated Loads (lb)
 - Vert: 6=-486 (B), 7=-481 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

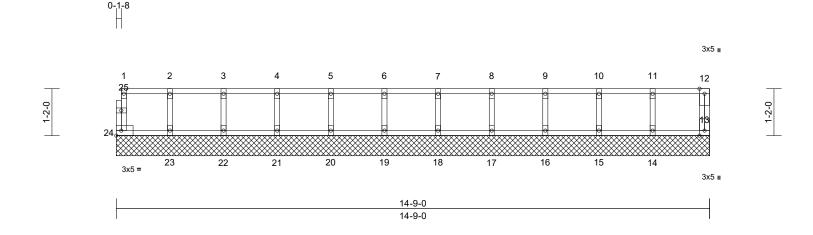
Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	F12	Floor Girder	1	1	Job Reference (optional)	163860651

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:25 ID:bloU9wKcuN_3WNs64iFwzwznBa_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

THA422

Scale = 1:24.8

Plate Offsets	(X, Y):	[4:Edge,0-1-8]
---------------	---------	----------------

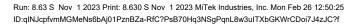

	, f). [4.⊏uge,0-1-6]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 3-4 3	l/defl n/a >999 n/a	L/d 999 360 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS NOTES 1) Refer to gir 2) This truss i Internation R802.10.2 3) Recommer 10-00-00 oo (0.131" X 3 at their outt 4) Use Simps or equivale (es) to from 5) Fill all nail f 6) In the LOAI	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 1-4-8 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha Max Grav 3=130 (Lt (lb) - Maximum Com Tension 1-4=-114/0, 2-3=-12 3-4=0/0 1-3=0/0 der(s) for truss to trus s designed in accorda al Residential Code s and referenced stand d 2x6 strongbacks; oc c and fastened to eaa ") nails. Strongbacks; er ends or restrained on Strong-Tie THA42 nt at 0-8-12 from the t face of top chord. noles where hanger is D CASE(S) section, I, are noted as front (F	eathing directly applie ccept end verticals. <i>i</i> applied or 10-0-0 or anical, 4=0-3-8 C 1), 4=118 (LC 1) apression/Maximum 26/0, 1-2=0/0 ss connections. ance with the 2018 ections R502.11.1 a tard ANSI/TPI 1. on edge, spaced at the truss with 3-10d s to be attached to w by other means. 22 (Single Chord Gird left end to connect the s in contact with lumi oads applied to the f	ed or c ind ralls der) russ ber.	Matrix-MP							ORTH CA	ROCUL
1) Dead + Fl Plate Incre Uniform L Vert: 3- Concentra	or Live (balanced): I ease=1.00 oads (lb/ft) 4=-7, 1-2=-67 ated Loads (lb) 166 (F)	Lumber Increase=1.	00,							and the second s	111111	EER. KINN

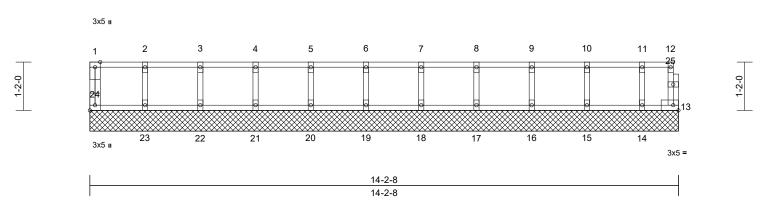
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	FW14	Floor Supported Gable	1	1	Job Reference (optional)	163860652
Carter Components (Sanford, NC	c), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Mon Feb 26 12:50:25	Page: 1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:25 ID:PjhB_nc1URtonv7Xw1AJPmznBZd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.6


Scale - 1.20.0												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.00	Vert(TL)	n/a	-	n/a	999	101120	244/100
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	13	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR	0.02	(TE)	0.00	10	n/a	n/a	Weight: 63 lb	FT = 20%F, 11%E
	0.0	0000		maanx mit	-			-	-		Wolght. 00 lb	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 13=14-9- 16=14-9- 22=14-9- Max Grav 13=45 (L (LC 1), 11 1), 18=98 20=98 (L	/ applied or 10-0-0 oc 0, 14=14-9-0, 15=14- 0, 17=14-9-0, 18=14- 0, 20=14-9-0, 21=14- 0, 23=14-9-0, 24=14-	Internation R802.10.2 6) Recomment 10-00-00 o (0.131" X 3 at their out 7) CAUTION, LOAD CASE(S 9-0,	s designed in acco al Residential Cod and referenced st nd 2x6 strongback c and fastened to ") nails. Strongba er ends or restrain Do not erect truss 5) Standard	le sections andard AN s, on edge each truss acks to be acks to be	R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to wer means.						
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-24=-34/0, 12-13= 3-4=-7/0, 4-5=-7/0,	-41/0, 1-2=-7/0, 2-3=- 5-6=-7/0, 6-7=-7/0, 9-10=-7/0, 10-11=-7/0	,									Della
BOT CHORD	19-20=0/7, 18-19=0 15-16=0/7, 14-15=0	,								TIT	ORTHO	D. N.
WEBS	2-23=-86/0, 3-22=-8 5-20=-89/0, 6-19=-8 8-17=-89/0, 9-16=-8 11-14=-90/0	39/0, 7-18=-89/0,							Well HILL MARKS		SEA	
NOTES									=		0363	22 : 3
/ !	are 1.5x3 MT20 unles								-	. 8		1 3
, ,	uires continuous botto	0								1	N.En.	Rich
	e fully sheathed from ainst lateral movemer									15	A GIN	EFRAN
0	ds spaced at 1-4-0 oc.									11	111111	ILBE
											February	v 27 2024

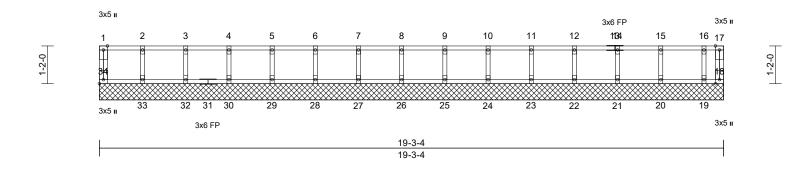

February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	FW14A	Floor Supported Gable	1	1	Job Reference (optional)	163860653
Carter Components (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Mon Feb 26 12:50:25	Page: 1

Scale = 1:27.8

Plate Offsets (X, Y): [24:Edge.0-1-8]


Plate Offsets ((X, Y): [24:Edge,0-1-8]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.05 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 13=14-2-6 19=14-2-6 22=14-2-6 Max Grav 13=20 (LC 15=102 (LC 17=98 (LC (LC 1), 20	applied or 10-0-0 oc 3, 14=14-2-8, 15=14-3 3, 17=14-2-8, 18=14-3 3, 20=14-2-8, 21=14-3 5, 20=14-2-8, 21=14-3 C 1), 14=77 (LC 1), C 1), 16=97 (LC 1), C 1), 18=98 (LC 1), 12=98 (LC 1), 21=98 (LC 1) (LC 1), 23=98 (LC 1)	5) This truss is International R802.10.2 a 6) Recommend 10-00-00 cc (0.131" X 3") at their outer 7) CAUTION, E LOAD CASE(S) 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8,	spaced at 1-4-0 oc designed in accord Residential Code s nd referenced stand 1 2x6 strongbacks, o and fastened to ea nails. Strongback ends or restrained to not erect truss ba Standard	dance w sections dard AN on edge och truss s to be I by othe	R502.11.1 a NSI/TPI 1. e, spaced at s with 3-10d attached to w er means.						
FORCES	(lb) - Maximum Com Tension	,										
TOP CHORD	1-24=-36/0, 12-13=- 3-4=-4/0, 4-5=-4/0, 5	16/0, 1-2=-4/0, 2-3=-4 5-6=-4/0, 6-7=-4/0, 9-10=-4/0, 10-11=-4/0	,							and a	OR FES	ROLIN
BOT CHORD	23-24=0/4, 22-23=0/	/4, 21-22=0/4, 20-21= /4, 17-18=0/4, 16-17= /4_13-14=0/4							4			As 1
WEBS	2-23=-88/0, 3-22=-8 5-20=-89/0, 6-19=-8 8-17=-89/0, 9-16=-8 11-14=-72/0	9/0, 4-21=-89/0, 9/0, 7-18=-89/0,							1111W		SEA 0363	• •
 2) Gable req 3) Truss to b 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement	m chord bearing. one face or securely							Q.1111111	in the second	AIC A. C	EER. KINN

11111 February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	FW19	Floor Supported Gable	1	1	Job Reference (optional)	163860654

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:25 ID:Et2SFqho3HexVqagHIHjf1znBZX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.6

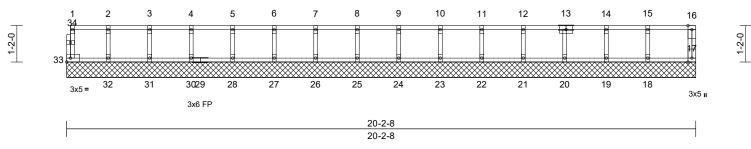
Plate Offsets (X, Y): [34:Edge,0-1-8]

	∧, f). [34.⊑uge,0-1-6]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI20		CSI TC BC WB Matrix-MR	0.05 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%F, 11%E
BCDL	5.0	Code	11/02/010/11/12/0	14	IVIAUIX-IVIIN							weight. 62 ib	FT - 2076F, TT76E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	21=19-3-4 24=19-3-4 27=19-3-4	cept end verticals. applied or 10-0-0 oc 4, 19=19-3-4, 20=19- 4, 22=19-3-4, 23=19- 4, 25=19-3-4, 26=19- 4, 28=19-3-4, 29=19-	2) Gable 3) Truss brace 4) Gable 4) Gable 5) This t Intern 7802 6) Recon 3-4, (0.13; 3-4, at the 3-4, LOAD CA	e requires to be full d against e studs sp russ is de ational R 10.2 and mmend 2 -00 oc ar 1" X 3") n ir outer e	1.5x3 MT20 unless s continuous botto ly sheathed from - t lateral movemen baced at 1.4-0 oc. esigned in accord tesidential Code s dreferenced stanc tx6 strongbacks, c d fastened to ear hals. Strongbacks nds or restrained Standard	om chor one fac it (i.e. d ance w sections dard AN on edge ch truss s to be	d bearing. e or securely liagonal web). ith the 2018 s R502.11.1 ar ISI/TPI 1. a, spaced at s with 3-10d attached to wa	nd					
	30=19-3-4 34=19-3-4	4, 32=19-3-4, 33=19-	-3-4,										
	Max Grav 18=11 (LC 20=102 (L 22=98 (LC (LC 1), 25 1), 27=98 29=98 (LC		LC), 2=98									TH CA	11117
FORCES	(lb) - Maximum Com Tension	pression/Maximum										TH CA	ROUL
TOP CHORD	1-34=-36/0, 17-18=- 3-4=-4/0, 4-5=-4/0, 5	5-6=-4/0, 6-7=-4/0,)-10=-4/0, 10-11=-4/0 4/0, 14-15=-4/0,	,							Contraction of the second	in	OFESO	
BOT CHORD	33-34=0/4, 32-33=0/ 28-29=0/4, 27-28=0/ 24-25=0/4, 23-24=0/ 20-21=0/4, 19-20=0/	/4, 30-32=0/4, 29-30: /4, 26-27=0/4, 25-26: /4, 22-23=0/4, 21-22: /4, 18-19=0/4	=0/4,							CONTRACTOR OF CONTRACTOR		0363	• •
WEBS	2-33=-89/0, 3-32=-8 5-29=-89/0, 6-28=-8 8-26=-89/0, 9-25=-8 11-23=-89/0, 12-22= 15-20=-92/0, 16-19=	9/0, 7-27=-89/0, 9/0, 10-24=-89/0, 89/0, 14-21=-88/0,									in the	in min	27,2024

T RENCO A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
240201	11	FW20	Floor Supported Gable	1	1	Job Reference (optional)	163860655


0-1-8

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Mon Feb 26 12:50:25 ID:Q_DcYbphTf0NJXwoQ6zIbMznBZM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 II

3x6 FP 3x5 =

Scale = 1:37

Scale = 1:37													
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES		CSI TC BC WB	0.06 0.01 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code		8/TPI2014	Matrix-MR	0.02		0.00		1.74		Weight: 84 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 17=20-2-{ 23=20-2-{ 33=20-2-{ 33=20-2-{ 33=20-2-{ 33=20-2-{ 17=51 (LC 21=100 (L 23=98 (LC (LC 1), 28=98 31=99 (LC (LC 1))	athing directly applied cept end verticals. applied or 10-0 oc 3, 18=20-2-8, 19=20-2 3, 21=20-2-8, 22=20-2 3, 24=20-2-8, 28=20-2 3, 31=20-2-8, 32=20-2 3, 31=20-2-8, 32=20-2, 32	NC 1) 2) 3) 4) or 5) 6) 2-8, -8, -8, -8, -8, -8, -8, -8,	All plates are Gable require Truss to be ft braced again Gable studs a This truss is International R802.10.2 ar Recommend 10-00-00 oc a (0.131" X 3") at their outer	1.5x3 MT20 unle es continuous bott JIJy sheathed from st lateral moveme spaced at 1.4-0 or designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrainee o not erect truss b	com chor n one fac ent (i.e. d c. dance w sections ndard AN on edge ach truss ks to be d by othe	d bearing. e or securely liagonal web) ith the 2018 s R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means.	nd					
FORCES	3-4=-7/0, 4-5=-7/0, 5	46/0, 1-2=-7/0, 2-3=-7 5-6=-7/0, 6-7=-7/0, 9-10=-7/0, 10-11=-7/0,	,								ALL .	ORTH CA	ROUNT
BOT CHORD	32-33=0/7, 31-32=0/ 27-28=0/7, 26-27=0/	/7, 30-31=0/7, 28-30= /7, 25-26=0/7, 24-25= /7, 21-22=0/7, 20-21= 0/10, 17-18=0/10	0/7,							THUN.		0363	• -
WEBS	2-32=-87/0, 3-31=-9 5-28=-89/0, 6-27=-8 8-25=-89/0, 9-24=-8 11-22=-88/0, 12-21= 14-19=-85/0, 15-18=	0/0, 4-30=-89/0, 9/0, 7-26=-89/0, 9/0, 10-23=-89/0, 91/0, 13-20=-89/0,										SEA 0363 C A. G February	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.stcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	PB1	Piggyback	12	1	Job Reference (optional)	163860656

3-1-13

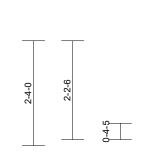
3-1-13

-0-9-12

0-9-12

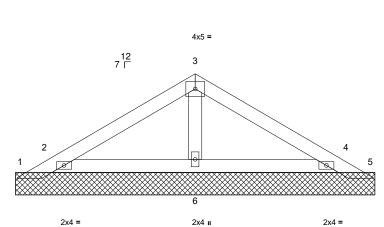
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:26 ID:kA8RvPcE13INZ6IZX7XyQIzypGJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-3-11

3-1-13

7-1-7


0-9-12

right exposed;C-C for members and forces & MWFRS

for reactions shown; Lumber DOL=1.60 plate grip

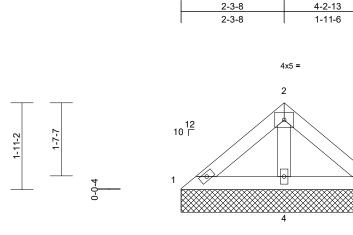
DOL=1.60

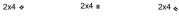
6-3-11

Scale = 1:25.6

00010 1.20.0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.08 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-0-0, 2 5=8-0-0, 6 10=8-0-0 Max Horiz 1=-49 (LC Max Uplift 1=-151 (L 4=-84 (LC 7=-88 (LC Max Grav 1=58 (LC 6=192 (LC 10=422 (L	C 21), 2=-88 (LC 14) 5 15), 5=-149 (LC 22) 5 14), 10=-84 (LC 15) 14), 2=435 (LC 21), 5 22), 5=42 (LC 15), C 21), 7=435 (LC 21) LC 22)	 only. For sti see Standar, or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss h chord live loa chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 	ned for wind loads uds exposed to wind d Industry Gable Er ialified building des 7-16; Pr=20.0 psf .15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b es continuous bott spaced at 2-0-0 oc is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection e capable of withsta 49 lb uplift at joint 5	d (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor om chor c. or a 10. vith any for a liv s where Il fit betw a (by oth anding 1	al to the face ils as applical s per ANS//TF .: Lum DOL=" DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t), ble, Pl 1. 1.15 ; ; ; ; ds.)psf ; ; ;					
this design 2) Wind: AS0 Vasd=103 Cat. II; Ex zone and 3-3-11 to cantilever	4-5=-36/105 2-6=-54/39, 4-6=-55 3-6=-102/32 ed roof live loads have	07/64, 3-4=-107/64, /39 been considered for (3-second gust) CDL=6.0psf, h=25ft; S (envelope) exterior 1 to 3-3-11, Exterior 5 to 7-8-5 zone; ; end vertical left and	recommende UPLIFT at jt and does no 12) This truss is International R802.10.2 a 13) See Standar Detail for Co consult quali LOAD CASE(S)	Simpson Strong-Tie d to connect truss (s) 2 and 4. This co t consider lateral fo designed in accorc Residential Code : nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	to bear onnectio orces. dance w sections dard AN ock Trus russ as a	ing walls due n is for uplift o ith the 2018 s R502.11.1 a ISI/TPI 1. s Connection	only		A stringer		SEA 0363	22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	V04	Valley	1	1	Job Reference (optional)	163860657


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:26 ID:T08TBA0MRyJtzjwko1z90OzhGyt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-6-15

3

Page: 1

4-6-15

Scale = 1:25.6

00010 1.20.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018	B/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 16 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-6-15 oc purlins. Rigid ceiling directly bracing.	3=4-6-15, 4=4-6-15,	9)	 Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 									
	Max Horiz 1=41 (LC			01	e capable of with	nstanding 6	68 lb uplift at j	joint					

 Max Uplift
 1=-68 (LC 21), 4=-29 (LC 15) Max Grav

 FORCES
 (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-51/219, 2-3=-108/247

 BOT CHORD
 1-4=-164/100, 3-4=-174/109

 WEBS
 2-4=-352/118

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

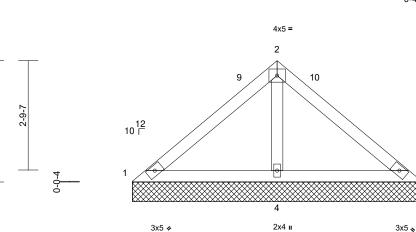
- bearing plate capable of withstanding 68 lb uplift at joint 1 and 29 lb uplift at joint 4.11) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	V07	Valley	1	1	Job Reference (optional)	163860658

3-8-4

3-8-4

Carter Components (Sanford, NC), Sanford, NC - 27332,


3-1-2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:26 ID:2RSKZ8_T81xJ6FC97uQSOmzhGyw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

7-0-7

3

7-4-9

Scale = 1:29.4

30ale - 1.29.4														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.28 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.3 Structural wood she 7-4-9 oc purlins. Rigid ceiling directly bracing. (size) 1=7-4-9, 3 Max Horiz 1=-68 (LC Max Uplift 1=-20 (LC 4=-76 (LC Max Grav 1=105 (LC 4=549 (LC (lb) - Maximum Com Tension 1-2=-92/238, 2-3=-9	applied or 6-0-0 oc 3=7-4-9, 4=7-4-9 (10) (21), 3=-20 (LC 20), (14) (20), 3=105 (LC 21) (14) (21) (14) (22), 3=105 (LC 21) (14) (22)	6) 7) 8) 9)), 10 11	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mec bearing plate 1, 20 lb upliff) This truss is International	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by 2-00-00 wide w by cher members hanical connection e capable of withst t at joint 3 and 76 designed in accor Residential Code nd referenced stat	(Lum DC t B; Fully been cor tom chor c. for a 10. with any d for a liv s where ill fit betw n (by oth canding 2 bb uplift a dance w sections	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 20 lb uplift at j t joint 4. it hith the 2018 s R502.11.1 a	e 9; his 0psf om to ioint						
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for											Della	

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-14, Exterior(2E) 4-4-14 to 7-4-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.

SEAL 036322 February 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	V10	Valley	1	1	Job Reference (optional)	163860659

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:26

ID:AgDpjnxz4pQtdeuOu3LWDwzhGz_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-1-1 9-10-0 5-1-1 4-8-15 4x5 = 2 10 11 3-11-7 4-3-2 12 10 ∟ 19 1 3 --4 2x4 u 3x5 🛷 3x5 💊 10-2-2

Scale = 1:35.7	
----------------	--

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.47 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	10-0-0 oc purlins. Rigid ceiling directl bracing. (size) 1=10-2-2 Max Horiz 1=-95 (L Max Uplift 1=-73 (L 4=-118 (C Max Grav 1=71 (LC (LC 20)	C 21), 3=-62 (LC 20), LC 14) 2 20), 3=92 (LC 21), 4 npression/Maximum -125/410	5) d or 6) 7) 8) 9) =837 10	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar D) Provide mec bearing plate 1, 62 lb uplift) This truss is International	snow loads have b es continuous bott spaced at 4-0-0 oc is been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil y other members. hanical connection capable of withstat cat joint 3 and 118 designed in accord Residential Code and referenced stan	Lum DC B; Fully eeen cor om chor or a 10.0 vith any for a liv s where I fit betv (by oth anding 7 Ib uplift dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t r3 lb uplift at jj at joint 4. tith the 2018 s R502.11.1 a); ds.)psf om oint					
NOTES 1) Unbalance this design		e been considered for		(-)								minin	1111

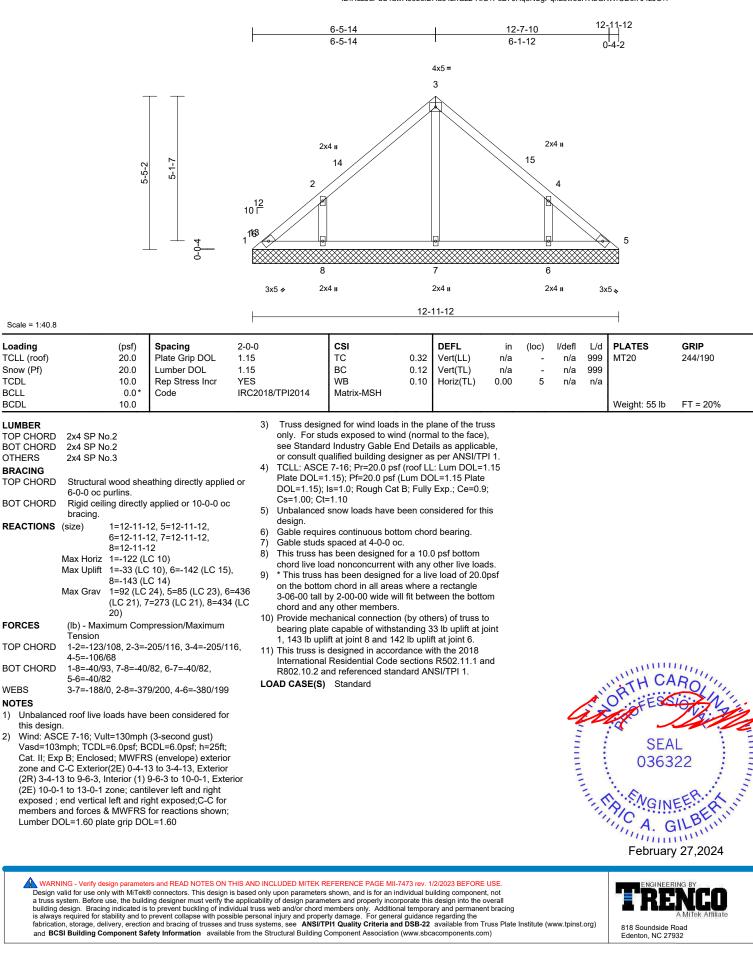
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior (2R) 3-4-13 to 7-2-7, Exterior(2E) 7-2-7 to 10-2-7 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	V13	Valley	1	1	Job Reference (optional)	163860660

TCDL

BCLL


BCDL

WEBS

2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 26 12:50:27 ID:HuzJuPuS1awR80bcfDHa34zhGz2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 73 FaNC	
24020111	V15	Valley	1	1	Job Reference (optional)	163860661

Loading

TCDL

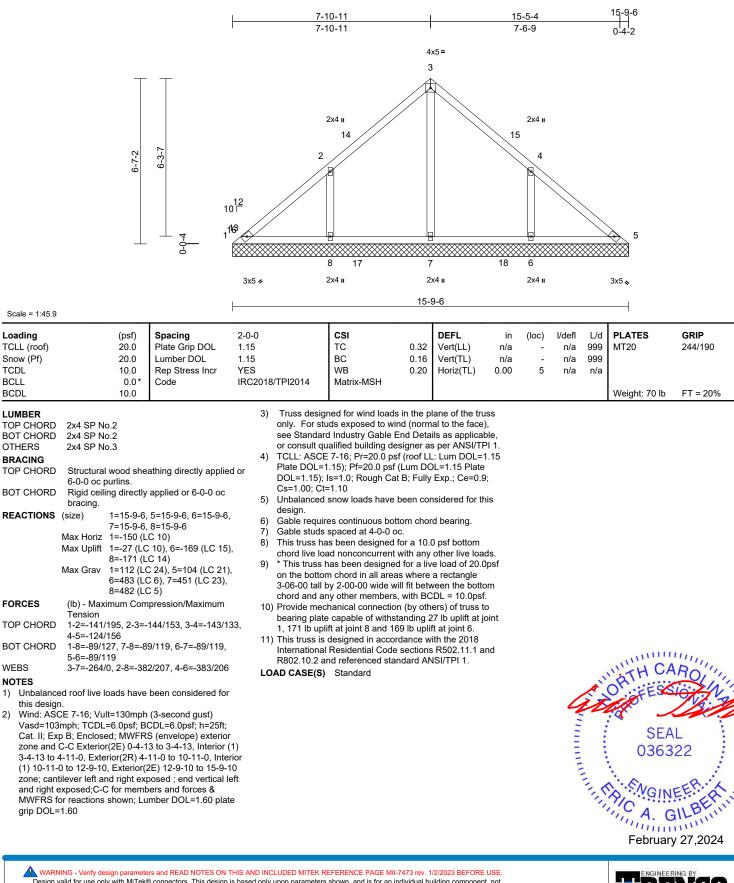
BCLL

BCDL

OTHERS

FORCES

WEBS

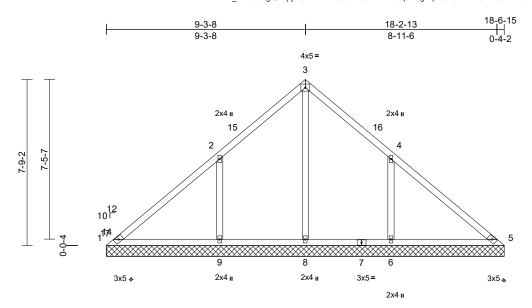

NOTES

1)

2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 26 12:50:27 ID:P7ko21ryzLQ?gPHrQNCevEzhGz6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DRB - 73 FaNC		
24020111	V18	Valley	1	1	Job Reference (optional)	163860662	

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:27 ID:_Y2fP0o3gQ2RpyYGkFfxHbzhGz9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-6-15

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.42	()	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.25	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.42	Horiz(TL)	0.01	5	n/a	n/a		
BCLL BCDL		0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 84 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No	o.2	•	3)	only. For stu see Standard	ned for wind load ds exposed to w I Industry Gable	ind (norm End Deta	al to the face)), ble,				-	
OTHERS	2x4 SP No	5.3		4)		alified building de 7-16; Pr=20.0 p								
BRACING	<u>.</u>			,		.15); Pf=20.0 ps								
TOP CHORD	Structural 6-0-0 oc p		athing directly applie	d or		s=1.0; Rough Ca								
BOT CHORD	Rigid ceili bracing.		applied or 6-0-0 oc	5)	Cs=1.00; Ct=			•						
REACTIONS	(size)		5, 5=18-6-15, 6=18-6 5, 9=18-6-15	6)	Gable require	es continuous bo		d bearing.						
	Max Horiz			7)		spaced at 4-0-0								
Max Uplift 1=-28 (LC 12), 6=-206 (LC 15), 9=-208 (LC 14)), 8)	chord live loa	s been designed Id nonconcurrent	with any	other live loa							
	Max Grav		25), 5=102 (LC 21),	9)		as been designe)psf					
6=592 (LC 24), 8=565 (9=594 (LC 23)		C 24), 8=565 (LC 23)		3-06-00 tall b	n chord in all are y 2-00-00 wide v y other members	vill fit betw	een the botto							
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum	10) Provide mecl	nanical connection	on (by oth	ers) of truss to	0					
TOP CHORD		,	52/252, 3-4=-51/233	·	1, 208 lb upli	capable of withs ft at joint 9 and 2	06 lb uplit	t at joint 6.	om					
BOT CHORD		167, 8-9=-	184/167, 6-8=-184/1	67,	International	designed in acco Residential Code	e sections	R502.11.1 a	nd				TH CA	1111
WEBS			1/242, 4-6=-422/241		CAD CASE(S)	nd referenced sta	nuard AN	ISI/TPT1.					W'LH CA	ROUL
NOTES					JAD CASE(S)	Sidilualu								

- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 6-3-12, Exterior(2R) 6-3-12 to 12-3-12, Interior (1) 12-3-12 to 15-7-4, Exterior(2E) 15-7-4 to 18-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

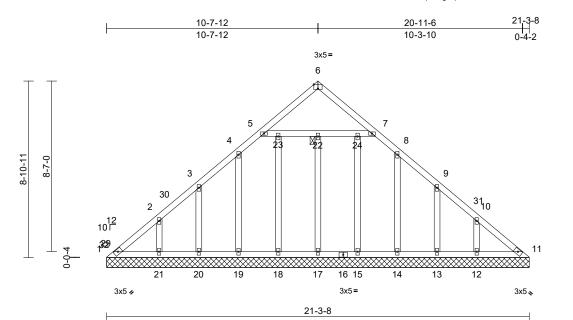
A. GILIN February 27,2024

818 Soundside Road Edenton, NC 27932

GI

SEAL

036322


anninnan a

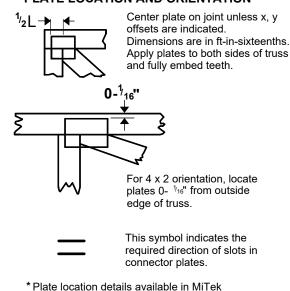
1000000000000

Job	Truss	Truss Type	Qty Ply		DRB - 73 FaNC		
24020111	V21	Valley	1	1	Job Reference (optional)	163860663	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 26 12:50:27 ID:ST4c3Yc1RW1iuUKCouMBdDzhGzP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58


Plate Offsets	(X	Y)·	[6:0-2-8,Edge]
	(<i>n</i> ,	1).	10.0-2-0,Luger

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15	CSI TC	0.22	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22		n/a	-	n/a	999	101120	244/150	
TCDL	10.0	Rep Stress Incr	YES	WB	0.38	Horiz(TL)	0.01	11	n/a	n/a	1		
BCLL	0.0*	Code	IRC2018/TPI20		0.00	1.10112(1.2)	0.01				1		
BCDL	10.0	Code									Weight: 136	b FT = 20%	
	6-0-0 oc purlins. Rigid ceiling directl bracing. 1 Brace at Jt(s): 22 (size) 1=21-3-{ 13=21-3 13=21-3 17=21-3 20=21-3 Max Horiz 1=-197 (Max Uplift 1=-39 (L 13=-75 (17=-51 (12=259 14=258 17=55 (L 19=257 (19=257 (19=	8, 11=21-3-8, 12=21-3 -8, 14=21-3-8, 15=21- -8, 18=21-3-8, 19=21- -8, 21=21-3-8 LC 10) C 10), 12=-75 (LC 15 LC 15), 14=-38 (LC 1 LC 21), 18=-4 (LC 11 LC 14), 20=-69 (LC 1 LC 24), 11=203 (LC 2 (LC 21), 13=124 (LC 3 (LC 21), 15=182 (LC 3 (LC 20), 20=117 (LC 3)	NOTES 1) Unbal this de 2) Wind: -8, Vasd= 3-8, Cat. II 3-8, Zone a 3-4, 13-7-7 , cantile 5), right e 6, for rea 4), DOL= 4), DOL= 4), See S 10, roor 4), see S 21), or con 21), Plate	AŠCE 7-16; Vult=130 103mph; TCDL=6.0ps ; Exp B; Enclosed; MV and C-C Corner(3E) 0- to 7-8-1, Corner(3R) to 18-3-13, Corner(3R) ver left and right expo xposed;C-C for memb ctions shown; Lumber	7-24=-93/ 4-19=-214 15-24=-14 -13=-100/ have been mph (3-see f; BCDL=€ VFRS (env 4-13 to 3 7-8-1 to 12 E) 18-3-13 18-3-13 18-3-13 18-3-13 End Deta designer a psf (roof L) sf (Lum DC	151, 17-22=-4, 175, 3-20=-94, 4/13, 104, considered fo cond gust) 3.0psf; h=25ft; relope) exterior 4-13, Exterior(3-7-7, Exterior 3-7-7, Exterior 0-13-13 zo vertical left an rces & MWFR 0 plate grip blane of the tru hal to the face ils as applicat s per ANSI/TF L: Lum DOL=- DL=1.15 Plate	/105, /105, /(2N) (2N) (2N) (2N) (2N) (2N) (2N) (2N)	on t 3-06 cho 11) Pro bea 1, 3 at jo 38 I uplit 12) This Inte	he botto 5-00 tall rd and a vide me ring plat 1 lb upli b uplift a ft at join s truss is rnationa 2.10.2 a	om chc by 2-(ny oth chanic te capp ff at jo 69 lb u at joint t 12. s desig and re) Sta	ord in all areas 00-00 wide will her members. cal connection (able of withstar int 17, 4 lb uplif uplift at joint 20, 14, 75 lb uplift gned in accorda dential Code so ferenced stand	or a live load of 20.0psf where a rectangle fit between the bottom by others) of truss to iding 39 Ib uplift at joint 18, 52 Ib uplift 83 Ib uplift at joint 21, at joint 13, and 75 Ib ince with the 2018 actions R502.11.1 and ard ANSI/TPI 1.	t
FORCES		(LC 20) npression/Maximum	Cs=1.	00; Ct=1.10 anced snow loads hav		•			Z	Z		Mill	-
TOP CHORD	4-5=-306/157, 5-6=	:-279/91, 3-4=-254/14 :-238/64, 6-7=-238/64 :-248/119, 9-10=-279/	2, desigr 2, 6) All pla , , 7) Gable		ess otherw ottom cho	ise indicated. rd bearing.			THE W		SE 036	• -	
BOT CHORD	1-21=63/234, 20-2 19-20=-41/185, 18- 17-18=-41/185, 15- 14-15=-41/185, 13- 12-13=-41/185, 11-	19=-41/185, 17=-41/185, 14=-41/185,	9) This tr	studs spaced at 2-0-0 uss has been designe live load nonconcurre	d for a 10.		ds.			in the second se	SE 036 NGI	NEEP.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

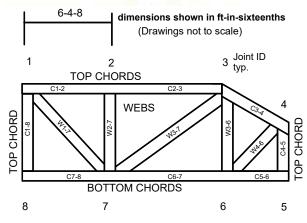
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.