

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 191 FaNC CALLAWAY 6

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

	<u>,</u> 1'	4"	2
	1'	4"	2
[1'	4"	2
	1'	4"	2
[1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
ſ	1'	4"	2
t	1'	4"	2
	1' 7	1/2"	2
	1' 0	1/2"	2
	1' 7	1/2"	2
	1'0	1/2"	Z
	1'	4"	2
	1'	4"	2
	1'	4"	=
	1' 0	1/2"	
•	1' 7	1/2"	2
	1'	4"	2
	1	1"	2
	1'	7"	2
•	8 11 11		2
, 	- 1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	1'	4"	2
	- 1'	4"	2
	- 1'	4"	2
	- 1'	4"	2
	1'	4"	Z
	- 1'	4"	Z
	1'	4"	Z
	• 1'	4"	2
	1'	4"	2
	FB1-2		
6			u
25	19' 11" ' 8"	,	
_•			<u>ام</u>

		Pro
PlotID	Length	Product
FB1-2	20' 0"	2.0 RigidLam DF LVL
Truss Co	nnector T	otal List
Manuf	Produc	t Qty
Simpson	THA42	2 4

	Revisions 00/00/00 Name 00/00/00 Name 00/00/00 Name 00/00/00 Name 00/00/00 Name 00/00/00 Name
S TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
ENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	A British and the second and the sec
ED TOGETHER PRIOR TO ADDING ANY LOADS.	191 FARM AT NEILLS CREEK CALLAWAY 6 COMPONENT PLACEMENT PLAN
** GIRDERS MUST BE FULLY CONNECT	Scale: NTS Date: 2/14/2024 Designer: ND Project Number: 24020061 Sheet Number: 1/1

S MUST BE INSTALLE	ED PRIOR TO S	SETTING ANY COM	PONENTS.
ducts			
	Plies	Net Qty	Fab Type
1-3/4 x 20	2	2	FF

* FRAMER MUST REFER TO PLANS WHILE	SETTING COMPONENTS. ** DAMAGEI	O COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PL	ANT.	Ge
Truss				neral
Drawing Le				Notes:
				NG OR DRIL
				LING OF CO
				OMPONENT
				S SHOULD N
				NOT BE DOI
				VE WITHOU
				T CONTACT
				ING COMP
		56' 0"	>	ONENT
*	<u> </u>	44' 0"		SUP

				DUZ
		PB3	1' 11	1/4"B01
59		PB3		오 이 B01
_		PB3	1' 9	3/4" A05
		PB2	2' 2	1/4" A04
		PB1		A03
		PB1		A03
		PB1		A03
25' 8'		PB1		A03
-		PB1		оч Паралана
19		PB1		A01 Q A01
د_ د_ =		PB1		A01
		PB1		۲ ۹ ۸01
		PB1		2 0 0 A01
		PB1		2 0 9 A01
		PB1	14AX	
¥¥		PB2		A06
		 56' 0"		

Revisions

Name

LIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24020061 DRB - 191 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63640960 thru I63640986

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 15,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A01	Piggyback Base	6	1	Job Reference (optional)	163640960

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:25:51 ID:miiy?x3ceexko4Sz_svR15znaLp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97.7

Plate Offsets (X, Y): [2:Edge,0-1-10], [12:Edge,0-3-2], [19:0-5-0,0-4-8]

					-									-
Loading TCLL (roof) Snow (Pf) TCDL BCU	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.66 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.69 0.15	(loc) 19-21 17-18 12	l/defl >999 >970 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	obde	11(0201)	0/11 12014	Matrix-Mort							Weight: 447 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Except 19-6,7-19,19-8,15-8, Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood sheat 2-5-8 oc purlins, exc 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8 1	t* 21-6,23-24:2x4 SP N athing directly applied ept -0 max.): 6-8. applied or 10-0-0 oc 7-19, 11-15, 3-21 2=0-3-8	N(1) 2) lo.2 d or 3)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 4-8-10 to 12- Interior (1) 42 56-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior(2E) -0-10 11-6, Exterior(2R) 2-11-10 to 51-2-6, E cantilever left and r nd right exposed;C- FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf (L	been of CDL=6 S (envi-8 to 4 I2-11-6 xterior ight ex C for n hown; roof LL um DC	considered for ond gust) .0psf; h=25ft; elope) exterion .8-10, Interior to 42-11-10, (2E) 51-2-6 to posed ; end nembers and Lumber .: Lum DOL=1 bl=1.15 Plate	r (1) .15	12) This Inte R8C 13) Gra or th bott LOAD C	s truss is rnationa i2.10.2 a phical p phe orient om chor CASE(S)	desig I Resid and ref urlin ref ation o d. Star	ned in accordanc Jential Code sect erenced standard presentation doe of the purlin along ndard	ee with the 2018 ions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or	
	Max Horiz 2=173 (LC Max Uplift 2=-170 (LC Max Grav 2=2603 (L	C 14) C 14), 12=-119 (LC 1 C 45), 12=2624 (LC	15) 4) 45)	DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	y; is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ct=1.10 ad snow loads have been considered for this									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	This truss ha	s been designed fo ost or 1 00 times fla	r greate t roof le	er of min roof ad of 20.0 ps	live f on						
TOP CHORD	1-2=0/23, 2-3=-4562 5-6=-4297/461, 6-7= 7-8=-3457/307, 8-9= 9-11=-4290/192, 11- 12-13=0/23	/318, 3-5=-4237/334 -3457/307, -4350/320, 12=-4599/235,	, 6) 7) 8)	overhangs no 200.0lb AC u from left end Provide adec All plates are	on-concurrent with on nit load placed on t supported at two p juate drainage to pr 2x4 MT20 unless of	other liv he bott oints, to revent v	ve loads. om chord, 35- 5-0-0 apart. vater ponding	-1-0			and a	OR EESS	ROUT	
BOT CHORD	2-22=-317/3972, 21- 18-21=-24/3109, 17- 15-17=0/3100, 14-15 12-14=-126/4005	22=-317/3972, 18=0/3100, 5=-106/4005,	9) 10	This truss ha chord live loa) * This truss h on the botton	s been designed fo ad nonconcurrent wi as been designed fo n chord in all areas	r a 10.0 ith any for a liv where) psf bottom other live load e load of 20.0 a rectangle	ds. psf		N. The	e s	SEA	L	
WEBS	6-19=0/781, 7-19=-7 8-23=-87/745, 9-15= 8-24=-96/1488, 15-2 11-15=-307/252, 11- 3-22=-58/118, 3-21= 5-21=-744/245, 6-21 23-25=-8/32, 25-26= 18-25=0/17, 17-26=0	15/205, 19-23=-100/ -742/245, 4=-112/1484, 14=-112/69, -366/191, =255/1430, -8/32, 24-26=-8/32,)/29	747, 11	3-06-00 tall b chord and an) One H2.5A S recommende UPLIFT at jt(only and doe	y 2-00-00 wide will y other members, v impson Strong-Tie d to connect truss t s) 2 and 12. This cc s not consider later	fit betw vith BC connecto obearionnectionnection	veen the botto DL = 10.0psf. ctors ng walls due to on is for uplift rs.	to		11103.0	in the second se	0363	EER.K	

February 15,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A03	Piggyback Base	4	1	Job Reference (optional)	163640961

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:25:58 ID:NRXfXQrtmiUG_8GboTymkBznaD3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.22 0.23 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.43 -0.78 0.48	(loc) 17 17 13	l/defl >999 >865 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 530 II	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep 19-6,7-19,24-19,25 No.2, 18-8,17-9,24-2 Left: 2x4 SP No.3 Right: 2x4 SP No.3	t* 11,25-16,20-6:2x4 SI 25:2x6 SP No.2	W	/EBS 6 1 8 1 2 1 1 1 3	5-19=-105/352, 7- 11-16=-2138/225 3-24=-169/1813, 12-15=-61/54, 17- 24-25=-435/5662 19-24=-169/2693 16-25=-290/3365 3-23=-28/98, 3-22	-19=-1724 , 18-24=0 12-16=-1 -25=0/64, , 7-24=-1 , 11-25=-2 , 9-24=-24 2=-234/98	4/207, /92, 51/79, 9-25=-185/2 50/2422, 224/3218, 407/264, 5, 5-22=0/333	389,	9) One reco UPI only 10) This Inte R80 11) Gra	e H2.5A ommeno LIFT at j / and do s truss is rnationa 02.10.2 a phical p	Simps led to o t(s) 13 es not desig l Resio and ref urlin re	on Strong-Tie c connect truss to and 2. This cor consider latera ned in accordau dential Code se ferenced standa opresentation do	ionnectors bearing walls due to inection is for uplift I forces. nce with the 2018 ctions R502.11.1 and ard ANSI/TPI 1. bes not depict the size
BRACING	5			5	5-20=-676/150, 6	-20=-57/6	87		or t	he orien	tation o	of the purlin alo	ng the top and/or
TOP CHORD	Structural wood sheat	athing directly applie	dor N 1	OTES Unbalanced (roof live loads ha	ve been o	considered fo	or	LOAD (CASE(S	u.) Sta	ndard	
BOT CHORD WEBS	2-0-0 oc purlins, 6-1 Rigid ceiling directly bracing. 1 Row at midpt	-3 max.): 6-8. applied or 10-0-0 oc 6-19, 7-19, 11-16, 9-	-24,	 billiation of this design. Wind: ASCE Vasd=103mp Cat. II; Exp B 	7-16; Vult=130m bh; TCDL=6.0psf; 3; Enclosed; MWI	ph (3-sec BCDL=6 FRS (env	cond gust) .0psf; h=25ft elope) exterio	; or		- (-	,		
JOINTS	1 Brace at Jt(s): 24,	5-20		zone and C-0 4-8-10 to 12-	a G-C Exterior(2E) -0-10-8 to 4-8-10, Interior (1) o 12-11-6, Exterior(2R) 12-11-6 to 42-11-10,								
REACTIONS	25 (size) 2=0-3-8, 1 Max Horiz 2=115 (LC Max Uplift 2=-172 (L Max Grav 2=1665 (J	13=0-3-8 C 14) C 14), 13=-181 (LC 1 C 45), 13=1623 (I C	15) 45)	Interior (1) 42-11-10 to 51-2-6, Exterior(2E) 51-2-6 to 56-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 blate grip DOL=1.60									unn.
FORCES	(lb) - Maximum Com	pression/Maximum	3) TCLL: ASCE Plate DOI =1	7-16; Pr=20.0 ps	sf (roof LL	.: Lum DOL=	1.15				"TH C.	ARO
TOP CHORD	Tension 1-2=0/16, 2-3=-2944 5-6=-2294/363, 6-7= 7-8=-4037/496, 8-9= 9-11=-6337/683, 11- 12-13=-2848/346 13	/329, 3-5=-2708/354 2096/373, 4470/536, -12=-2706/371, 3-14=0/16	l, 4] 5]	DOL=1.15); I Cs=1.00; Ct= Unbalanced design.) This truss ha	Is=1.0; Rough Ca =1.10 snow loads have	been cor	Exp.; Ce=0.9); his live		4	1 and	OH ES	AL
BOT CHORD	15-17=-236/2487, 11 2-23=-312/2572, 22- 20-22=-227/2394, 18	3-15=-236/2487, 23=-312/2572, 3-20=-125/1976	6 7 8	 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. with BCDI = 10 0psf 									SILBER III

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A04	Piggyback Base	1	1	Job Reference (optional)	163640962

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:00 ID:NRXfXQrtmiUG_8GboTymkBznaD3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:97.7

Plate Offsets (X, Y): [2:Edge,0-1-10], [12:Edge,0-1-10], [17:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.65 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.66 0.15	(loc) 17-19 17-19 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 428 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep 7-17,17-8,17-6,19-6, Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood sher 2-6-5 oc purlins, exc	t* 15-8:2x4 SP No.2 athing directly applie ept	2) d or 3)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(4-8-10 to 12- Interior (1) 42 56-9-8 zone; vertical left a forces & MW DOL=1.60 WD DCL=1.62 SCE	7-16; Vult=130mpf bh; TCDL=6.0psf; E 8; Enclosed; MWFR C Exterior(2E) -0-11 11-6, Exterior(2R) 2-11-10 to 51-2-6, E cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.60 7-16: Pr=20.0 pcf	n (3-sec 8CDL=6 8S (env 0-8 to 4 12-11-6 Exterior right ex -C for r shown;	ond gust) .0psf; h=25ft elope) exterior -8-10, Interio to 42-11-10 (2E) 51-2-6 to posed ; end nembers and Lumber	; or (1) , 0						
BOT CHORD	2-0-0 oc purlins (3-7 Rigid ceiling directly	-10 max.): 6-8. applied or 10-0-0 oc	3)	Plate DOL=1	.15); Pf=20.0 psf (L		L=1.15 Plate	1.15 9 n.						
WEBS REACTIONS	bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=173 (LC Max Uplift 2=-244 (L Max Grav 2=2575 (L	7-17, 3-19, 11-15 l2=0-3-8 C 14) C 14), 12=-244 (LC ⁻ .C 45), 12=2575 (LC	4) 5) 45)	DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p	s=1.0; Rough Cat I =1.10 snow loads have b s been designed fo osf or 1.00 times fit	een cor or great at roof le	Exp.; Ce=0.s isidered for the er of min roof bad of 20.0 p	9; his f live sf on						
FORCES	(lb) - Maximum Com	pression/Maximum	6)	Provide adec	juate drainage to p	revent	vater ponding	g.						
TOP CHORD	Tension 1-2=0/23, 2-3=-4506 5-6=-4238/613, 6-7= 7-8=-3382/511, 8-9= 9-11=-4178/485, 11- 12_13=0/23	6/466, 3-5=-4178/485 3382/511, 4238/613, -12=-4506/466,	7) 8)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	s been designed for ad nonconcurrent w las been designed n chord in all areas by 2-00-00 wide will	or a 10. vith any for a liv where fit betw) psf bottom other live loa e load of 20.0 a rectangle veen the bott	ads. Opsf om			A.L.	OR EESS	BOLA	11. ·
BOT CHORD	2-20=-447/3922, 19- 15-19=-171/3054, 14	20=-447/3922, 4-15=-310/3922,	9)	One H2.5A S recommende	Simpson Strong-Tie	conne to bear	tors	to		9	U.	A Ja		27
WEBS	7-14=-310/39/2 7-17=-716/204, 8-17 6-17=-101/744, 3-20 3-19=-373/186, 5-19 6-19=-231/1434, 9-1 8-15=-231/1434, 11- 11-14=-57/118	'=-101/744, =-57/118, =-737/244, 5=-737/244, 15=-373/187,	10 11	UPLIF I at jt(only and doe) This truss is International R802.10.2 ar) Graphical pu or the orienta	s) 2 and 12. This c s not consider later designed in accord Residential Code s nd referenced stand rlin representation ation of the purlin al	onnecti ral force ance w sections dard AN does no long the	on is for uplif es. R502.11.1 a ISI/TPI 1. of depict the s top and/or	t and size		111111		SEA 0363	22 EER.A	annun
	ad reaf live leads have	haan aanaidanad far		bottom chord	l. Standard						11	CAG	ILBE IN	
i) Unpaiance	eu root live loads have	been considered for	LC	AD CASE(S)	Siandard							1, 7. 0	1	

 Unbalanced roof live loads have been considered for this design.

February 15,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A05	Piggyback Base Structural Gable	1	1	Job Reference (optional)	163640963

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:02 ID:IddnOXHqsyV1qLmU4YI8VaznZrF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:98.6

Plate Offsets (X, Y): [7:0-5-4,0-3-0],	[14:0-6-0,0-3-0], [38	3:0-6-0,0-3-8], [38	:0-8-5,0-2-0], [39:0-5-0	,0-4-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-MSH	0.85 1.00 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.53 0.14	(loc) 42-44 42-44 34	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 494	GRIP 244/190 Hb FT = 209	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E ⁴ 41-39,43-41:2x6 SP 2x4 SP No.3 *Excep No.2, 38-38:2x6 SP 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (3-8 Rigid ceiling directly	'Except* No.2 * 42-7,40-7,40-8:2x No.2 athing directly applie ept -11 max.): 7-13, 8-3 applied or 10-0-0 or	TOP CH 4 SP ed or 8.	ORD 1-2=0/27, 2-4=- 6-7=-3116/443, 8-9=-1006/246, 11-13=-1006/24 15-17=-1120/23 19-21=-1176/18 25-27=-1151/87 29-31=-1134/32 32-33=-1132/0, 8-10=-1988/215 12-14=-1998/22 16-20=-2523/27 22-24=-2622/31 26-28=-2736/38 20.28=-2736/38	4048/416, 4 7-8=-2784, 9-11=-100 6, 13-15=- 11, 17-19=- 12, 21-25=- 1, 31-32=-1 33-34=-11 3, 10-12-22 2, 14-16=- 10, 20-22=- 9, 24-26=- 5, 28-30=-	4-6=-3892/42 (443, 6/246, 1007/247, 1137/202, 1168/132, 1108/0, 65/0, 34-35= 033/228, 2479/252, 2547/279, 2674/350, 2761/391,	27, 0/23,	2) Win Va: Ca zor 4-8 Inte 56- ver for 0C 3) Tri onl see	nd: ASCE sd=103m t. II; Exp ne and C- -10 to 12 9-8 zone tical left ces & MV IL=1.60 p uss desig y. For st Standar consult q	E 7-16 aph; T(B; End -C Ext 2-11-6, 2-11-6, 2-11-6; c anti and rig vFRS vFRS vFRS vFRS vFRS vFRS vFRS values valu	; Vult=130mp ; Cult=130mp Colt=6.0psf; E Colt=6.0psf; MVFF erior(2E) -0-1 Exterior(2R) 10 to 51-2-6, for reactions for reactions for reactions for reactions for wind loads cosed to win ustry Gable E d building des	h (3-second gu 3CDL=6.0psf; I 3S (envelope) 0-8 to 4-8-10, 12-11-6 to 42- Exterior(2E) 51 right exposed C-C for membe shown; Lumbe in the plane of d (normal to th nd Details as a signer as per A	ist) n=25ft; exterior Interior (1) 11-10, I-2-6 to ; end ; end r the truss e face), pplicable, NSI/TPI 1.
WEBS JOINTS	bracing, Except: 2-2-0 oc bracing: 42- 1 Row at midpt 1 Brace at Jt(s): 10, 12, 16, 20, 22, 26, 28, 30, 14	-44. 7-40, 6-42, 14-40	BOT CH WEBS	30-38=,2851/42 ORD 2-44=-429/3514 40-42=-133/271 37-38=0/997, 36 9-10=-107/34, 1 14-15=-24/202,	2 4, 42-44=-3 8, 38-40=- 6-37=0/997 1-12=-13/1 16-17=-12	04/3227, 230/3435, , 34-36=0/99 33, 2/43,	97	4) TC Pla DC Cs 5) Un des	LL: ASCI te DOL= L=1.15); =1.00; C1 balanced sign.	= 7-16 1.15); Is=1.(≔1.10 I snow	r; Pr=20.0 psf Pf=20.0 psf (); Rough Cat Ploads have b	(roof LL: Lum Lum DOL=1.15 B; Fully Exp.; (een considere	DOL=1.15 5 Plate Ce=0.9; d for this
REACTIONS	(size) 2=0-3-8, 3 37=6-3-8, Max Horiz 2=173 (LC Max Uplift 2=-235 (L 37=-181 (U Max Grav 2=2373 (L 36=37 (LC 38=2094 ((lb) - Maximum Com Tension	44=6-3-8, 36=6-3-8, 38=6-3-8, 49=6-3-8 38 18) C 14), 36=-128 (LC LC 5), 38=-234 (LC C 45), 34=861 (LC 31), 37=-23 (LC 14) LC 45), 49=861 (LC pression/Maximum	52), 15) 45), 45, 245) NOTES 1) Unb this	19-20=-68/22, 2 25-26=-249/101 29-30=-190/68, 32-37=-48/47, 3 7-40=-244/318, 6-44=-15/518, 6 14-40=-516/125 24-39=-500/216 alanced roof live loads h tesian.	1-22=-263, , 27-28=-6; 31-38=-20; 33-36=-36/6; -4-44=-216; -42=-934/2 5; 14-39=-4; 5; 8-40=0/7; have been (/106, 8/20, 3/102, 3/102, 3/102, 1/191, 1/48, 2/797, 23 considered fo	'1078, or		Jan 199		ORTH C OFES	EAL	

818 Soundside Road Edenton, NC 27932

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTesk connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A05	Piggyback Base Structural Gable	1	1	Job Reference (optional)	163640963

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 37, 36, and 38. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) 2 X 4 notch at 20000 o.c. is allowed along the stacked top chord. No notches allowed in overhang and 1008 from left end and 1008 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:02 ID:/ddnOXHgsyV1gLmU4YI8VaznZrF-RfC?PsB70Hg3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A06	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163640964

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Wed Feb 14 16:26:05 ID:yrpeu2jmpn6OmZlf0UQvsznZuZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:97.7

Plate Offsets (2	X, Y): [43:0	-5-0,0-4-8], [49:0-5-0,0-4-8], [5	5:0-5-0,0-4-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix	-MSH	0.07 0.04 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 552 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No 2x6 SP No 2x4 SP No 49-18,50- 2x4 SP No Left: 2x4 S Right: 2x4 Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili	5.2 5.3 *Excep 17,51-16,5 5.2 SP No.3 SP No.3 wood shea purlins, exc purlins (6-0 ng directly	t* 2-15,48-19,47-20,46 athing directly applie ept -0 max.): 14-22. applied or 10-0-0 oc	-21: d or	Max Uplif	t 2=-22 (L 37=-34 (39=-43 (41=-44 (43=-47 (47=-29 (51=-30 (55=-46 (57=-44 (59=-43 (61=-30 (63=-22 (2=-179 ()	C 10), 3 LC 15), LC 15), LC 15), LC 15), LC 15), LC 11), LC 11), LC 11), LC 14), LC 14), LC 14), LC 14), LC 14), LC 14), LC 14), LC 10)	6=-92 (LC 11 38=-46 (LC 40=-44 (LC 42=-43 (LC 44=-50 (LC 50=-27 (LC 50=-27 (LC 56=-43 (LC 56=-43 (LC 60=-47 (LC 62=-113 (LC	5), 15), 15), 15), 15), 10), 10), 10), 14), 14), 14), 14), 14), 20)	TOP CH	iord	1-2=0, 4-5=-1 7-8=-7 11-12: 13-14: 15-16: 17-18: 19-20: 21-22: 23-24: 25-26: 28-29: 31-32: 33-34:	/23, 2-3=-240/81 154/89, 5-6=-116 70/144, 8-10=-66 95/254, 12-13 117/300, 14-1 =-112/301, 16-1 =-112/301, 16-1 =-112/301, 20-2 =-112/301, 20-2 =-114/301, 24-2 =-76/207, 26-28 =-57/117, 29-30 79/26, 32-33= -160/65 34-35	, 3-4=-193/78 /101, 6-7=-92 /168, 10-11=- =-114/301, 5=-112/301, 7=-112/301, 1=-112/301, 1=-112/301, 3=-117/300, 5=-95/254, =-58/162, =-46/71, 30-31 -118/44, =0/23	, 76/207, 1=-57/27,
WEBS	(size)	midpt 2=55-11-0 36=55-11- 38=55-11- 40=55-11- 42=55-11- 44=55-11- 50=55-11- 52=55-11- 52=55-11- 58=55-11- 60=55-11- 60=55-11- 2=173 (LC	$\begin{array}{l} 18.49, 17-50, 16-51, \\ 15-52, 13-53, 12-54, \\ 11-55, 19-48, 20-47, \\ 21-46, 23-43, \\ 25-43, \\ 0, 37=55-11-0, \\ 0, 39=55-11-0, \\ 0, 39=55-11-0, \\ 0, 43=55-11-0, \\ 0, 43=55-11-0, \\ 0, 45=55-11-0, \\ 0, 45=55-11-0, \\ 0, 53=55-11-0, \\ 0, 53=55-11-0, \\ 0, 53=55-11-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=55-10-0, \\ 0, 63=50-10-0, \\ 0, 63=5-10-0, \\ 0, 63=50-10-0, \\ 0, 63=50$	FORCES	(lb) - Ma Tension	36=157 38=160 40=197 42=233 44=238 46=198 48=217 50=217 50=217 52=198 54=238 56=233 58=197 60=160 62=157 66=142 aximum Col	(LC 43), (LC 43), (LC 43), (LC 43), (LC 38), (LC 38), (LC 38), (LC 41), (LC 41), (LC 41), (LC 41), (LC 41), (LC 41), (LC 22) mpressio	37=160 (LC 39=160 (LC 41=234 (LC 43=233 (LC 45=202 (LC 47=220 (LC 51=220 (LC 53=202 (LC 55=233 (LC 55=233 (LC 55=234 (LC 55=160 (LC 61=160 (LC 63=179 (LC	22), 22), 43), 43), 43), 38), 38), 38), 41), 41), 41), 21), 26),				SEA 0363	L 22 EER.K	and an

February 15,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Tracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	A06	Piggyback Base Supported Gable 1		1	Job Reference (optional)	163640964
Carter Components (Sanford, NC	C), Sanford, NC - 27332.	Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 16:26:05				Page: 2

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

bottom chord. LOAD CASE(S) Standard

ID:yrpeu2jrnpn6OmZlf0UQvsznZuZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

BOT CHORD	$\begin{array}{l} 2\mbox{-}62\mbox{-}2-62\mbox{-}11/193, 61\mbox{-}62\mbox{-}52/193, \\ 60\mbox{-}61\mbox{-}52/193, 59\mbox{-}62\mbox{-}52/193, \\ 58\mbox{-}59\mbox{-}52/193, 51\mbox{-}58\mbox{-}52/193, \\ 53\mbox{-}52\mbox{-}52/193, 50\mbox{-}51\mbox{-}52/193, \\ 51\mbox{-}52/193, 50\mbox{-}51\mbox{-}52/193, \\ 48\mbox{-}50\mbox{-}52/193, 45\mbox{-}46\mbox{-}52/193, \\ 44\mbox{-}52/193, 42\mbox{-}48\mbox{-}52/193, \\ 41\mbox{-}42\mbox{-}52/193, 40\mbox{-}41\mbox{-}52/193, \\ 39\mbox{-}40\mbox{-}52/193, 38\mbox{-}39\mbox{-}52/193, \\ 37\mbox{-}38\mbox{-}52/193, 36\mbox{-}37\mbox{-}38\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, 36\mbox{-}37\mbox{-}38\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, 36\mbox{-}37\mbox{-}38\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, 36\mbox{-}37\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, 36\mbox{-}37\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, 36\mbox{-}37\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, \\ 34\mbox{-}36\mbox{-}52/193, \\ 36\mbox{-}37\mbox{-}52/193, \\ 36\mbox{-}36\mbox{-}52/193, \\ 36\mbox{-}37\mbox{-}38\mbox{-}52/193, \\ 36\mbox{-}36\mbox{-}52/193, \\ 36\mbox{-}36\mbox{-}36\mbox{-}52/193, \\ 36\mbox{-}36$
WEBS	$18-49=-176/56, 17-50=-177/60, \\16-51=-180/62, 15-52=-158/23, \\13-53=-162/11, 12-54=-198/84, \\11-55=-193/81, 10-56=-193/77, \\8-57=-194/77, 7-58=-157/77, 6-59=-120/77, \\5-60=-120/80, 4-61=-122/112, \\3-62=-109/131, 19-48=-177/60, \\20-47=-180/62, 21-46=-158/19, \\23-45=-162/0, 24-44=-198/84, \\25-43=-193/81, 26-42=-193/77, \\28-41=-194/77, 29-40=-157/77, \\ \end{cases}$

NOTES

1) Unbalanced roof live loads have been considered for this design.

30-39=-120/77, 31-38=-120/80. 32-37=-122/112, 33-36=-109/131

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-8-10, Exterior (2N) 4-8-10 to 15-3-2, Corner(3R) 15-3-2 to 26-5-6, Exterior(2N) 26-5-6 to 29-5-10, Corner(3R) 29-5-10 to 40-7-14, Exterior(2N) 40-7-14 to 51-2-6, Corner(3E) 51-2-6 to 56-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2, 25 lb uplift at joint 49, 27 lb uplift at joint 50, 30 lb uplift at joint 51, 49 lb uplift at joint 54, 46 lb uplift at joint 55, 43 lb uplift at joint 56, 44 lb uplift at joint 57, 44 lb uplift at joint 58, 43 lb uplift at joint 59, 47 lb uplift at joint
- 60, 30 lb uplift at joint 61, 113 lb uplift at joint 62, 27 lb uplift at joint 48, 29 lb uplift at joint 47, 50 lb uplift at joint 44, 47 lb uplift at joint 43, 43 lb uplift at joint 42, 44 lb uplift at joint 41, 44 lb uplift at joint 40, 43 lb uplift at joint 39, 46 lb uplift at joint 38, 34 lb uplift at joint 37, 92 lb uplift at joint 36 and 22 lb uplift at joint 2.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 63.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	B01	Piggyback Base	2	1	Job Reference (optional)	163640965

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:07 ID:55U7_A9oFAdzVQV2tZiFSfznZzA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:88.5

Plate Offsets (X, Y): [2:Edge,0-1-10], [6:0-5-4,0-3-0], [11:Edge,0-1-10]

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.77 0.47	DEFL Vert(LL) Vert(CT)	in -0.31 -0.54	(loc) 17-19 17-19	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH	0.40	11012(01)	0.15		n/a	n/a	Weight: 369 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 2-6-9 oc purlins, exc 2-0-0 oc purlins (3-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-173 (L Max Uplift 2=-216 (L Max Grav 2=2374 (L (lb) - Maximum Com Tension 1-2=0/23, 2-3=-4160 5-6=-3135/425, 6-7= 7-8=-3127/425, 8-10 10-11=-4150/402, 11	t* 17-6,15-6,15-7:2x athing directly applie tept -6 max.): 6-7. applied or 10-0-0 oc 5-17, 6-15, 8-15 11=0-3-8 C 15) C 14), 11=-216 (LC .C 45), 11=2370 (LC pression/Maximum 1/402, 3-5=-3958/411 2696/421, I=-3949/411, 1-12=0/23 10-272/2262	2) 4 SP 4 d or 3) 5 (4) (5) (5) (5) (6) (7) (7) (8)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-4 4-1-6 to 13-9 (1) 35-11-12 zone; cantile and right exp MWFRS for grip DOL=1.6; TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adeo This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b	7-16; Vult=130mpl b; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2R) 13 to 45-9-10, Exterior ver left and right ex- posed;C-C for mem reactions shown; L 50 7-16; Pr=20.0 psf (I is=1.0; Rough Cat I =1.10 snow loads have b is been designed for posf or 1.00 times fla on-concurrent with quate drainage to p is been designed for ad nonconcurrent with quate drainage to p is been designed for ad nonconcurrent with as been designed for ad nonconcurrent with pase nd esigned for ad nonconcurrent with as been designed for ad nonconcurent with as b	n (3-sec SCDL=6 SC (env 0-8 to 4 -9-9 to r(2E) 4: posed bers an umber I (roof LL um DC B; Fully een cor or great at roof k to ther lin revent v or a 10.0 vith any for a liv where l fit betw	cond gust) .0psf; h=25ft; elope) exteric 1-6, Interior 35-11-12, Inte 5-9-10 to 50-9; end vertical d forces & DOL=1.60 pla .: Lum DOL=: L=1.15 Plate Exp.; Ce=0.9; asidered for the er of min roof pad of 20.0 pic vater ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the bottk	; or (1) erior 9-8 left 1.15 9; his f live sf on g. ds. Dpsf om			- ANI	Weight: Joa ID	R01111
WEBS	2-19=-410/3605, 1/- 15-17=-100/2703, 13 11-13=-253/3597 5-19=-25/567, 3-19= 5-17=-896/251, 6-17	-19=-273/3262, 3-15=-181/3254, 276/204, '=-73/1063,	9)	chord and ar One H2.5A S recommende UPLIFT at jt(only and doe	y other members, Simpson Strong-Tie ed to connect truss s) 2 and 11. This c is not consider late	with BC conne to bear onnecti ral force	DL = 10.0psf ctors ing walls due on is for uplift es.	to t		4		SEA	L
NOTES 1) Unbalance this design	6-15=-287/293, 7-15 8-15=-894/252, 8-13 10-13=-276/204 ed roof live loads have n.	i=-29/1013, i=-25/566, been considered for	10 11 LC	 i) This truss is International R802.10.2 ar ii) Graphical pu or the orienta bottom chore CASE(S) 	designed in accord Residential Code s nd referenced stan rlin representation stion of the purlin al l. Standard	ance w sections dard AN does no long the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	ind size		11115	A A A A A A A A A A A A A A A A A A A		EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information. Structure Building former the component compon and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	B02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163640966

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:09 ID:qjMAmjKisUIR55GeQMwSlcznZwM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:88.5

Plate Offsets (X, Y): [2:0-0-6	5,0-3-11]	, [14:0-5-0,0-3-0], [1	8:0-5-0,0-3-0], [29:0-0)-6,0-3-11]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	MSH	0.11 0.05 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 30	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 478 lb	GRIP 244/190 FT = 20%	0
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.3 45-16,46-15, Left: 2x4 SP Right: 2x4 SP Structural wc 6-0-0 oc purl 2-0-0 oc purl Pracing. 1 Row at mic (size) 2= 32 34 36 38 41 44 46 48 51 53 55 7 Max Horiz 2=	*Except 47-14,44 No.3 P No.3 P No.3 bood sheat lins, exco lins (6-0- directly a directly a dpt =49-11- 3=49-11-	* 4-17,42-18:2x4 SP N 4-17,42-18:2x4 SP N 4-17,42-18:2x4 SP N 0 max.): 14-18. applied or 10-0-0 oc 16-45, 15-46, 14-47, 13-48, 12-49, 17-44, 18-42, 19-41, 20-40 0, 33=49-11-0, 0, 35=49-11-0, 0, 45=49-11-0, 0, 47=49-11-0, 0, 49=49-11-0, 0, 52=49-11-0, 0, 54=49-11-0, 0, 56=49-11-0, 0 C 15)	lo.2 d or FORCES TOP CHORD	Max Uplift Max Uplift Max Grav (lb) - Max Tension 1-2=0/30 5-6=-126 8-9=-61/ ⁻ 12-13=-1 14-15=-1 16-17=-1 18-19=-1	$\begin{array}{c} 2=-1 \ (LC\\ 33=-12 \ (l)\\ 35=-43 \ (l)\\ 35=-43 \ (l)\\ 35=-43 \ (l)\\ 35=-42 \ (l)\\ 40=-48 \ (l)\\ 40=-47 \ (l)\\ 40=-47 \ (l)\\ 52=-42 \ (l)\\ 52=-42 \ (l)\\ 52=-42 \ (l)\\ 55=-12 \ (l)\\ 2=-129 \ (l)\\ 32=258 \ (l)\\ 41=215 \ (l)\\ 55=-165 \ ($	10), 32 LC 15), LC 15), LC 15), LC 15), LC 15), LC 11), LC 11), LC 14), LC 14), LC 14), LC 14), LC 14), LC 14), LC 39), LC 43), LC 43), LC 43), LC 43), LC 43), LC 38), LC 43), LC 41), LC 38), LC 41), LC 41, LC 41), LC 41, LC 41,	=-117 (LC 15 34=-46 (LC 1 336=-42 (LC 1 336=-42 (LC 1 338=-43 (LC 1 41=-27 (LC 1 445=-30 (LC 1 551=-43 (LC 1 571=97 (LC 1 33=92 (LC 4 435=155 (LC 33=92 (LC 4 45=214 (LC 45=214 (LC 45=214 (LC 45=214 (LC 45=214 (LC 45=214 (LC 45=214 (LC 55=92 (LC 45=155 (LC 55=15) (LC 55	;), (5), (5), (5), (5), (5), (4), (4), (4), (4), (4), (4), (4), (4	BOT CH	IORD	2-57= 55-56 53-54 51-52 48-49 46-47: 44-45 38-40 36-37 34-35 32-33	47/166, 56-57=- -41/164, 54-55= -41/164, 52-53= -41/164, 49-51= -42/164, 45-45= -42/164, 47-48= -42/164, 47-48= -42/164, 47-48= -41/164, 37-38= -41/164, 37-38= -41/164, 33-34= -41/164, 30-32= 000000000000000000000000000000000000	11/164, -41/164, -41/164, -41/164, -41/164, -42/164, -42/164, -41/164, -41/164, -41/164, -41/164, -41/164, -41/164, -47/166	
					20-21=-8 23-24=-5 26-27=-5 30-31=0/	1/223, 21- 3/135, 24- 7/28, 27-2 30	23=-64/ 25=-45/ 8=-95/2	'179, '91, 25-26=-4 0, 28-29=-14	6/47, 5/67,			in the	A. G February	LBER 15,2024	1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company dependencies for an observation. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	B02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163640966

WEBS 16-45=-176/64, 15-46=-179/44, 14-47=-128/0, 13-48=-176/55, 12-49=-183/82, 11-51=-180/75, 9-52=-181/75, 8-53=-148/75, 7-54=-116/74, 6-55=-127/85, 5-66=-49/28, 4-57=-232/233, 2-3=-219/68, 17-44=-179/44, 18-42=-128/0, 19-41=-176/55, 20-40=-183/82, 21-38=-180/75, 23-37=-181/75, 24-36=-148/75, 25-35=-116/74, 26-34=-127/85, 27-33=-49/28, 28-32=-232/233, 29-30=-146/56

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-6, Exterior(2N) 4-1-6 to 15-10-6, Corner(3R) 15-10-6 to 34-0-10, Exterior(2N) 34-0-10 to 45-9-10, Corner(3E) 45-9-10 to 50-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 2, 30 lb uplift at joint 45, 21 lb uplift at joint 46, 31 lb uplift at joint 48, 47 lb uplift at joint 49, 43 lb uplift at joint 51, 42 lb uplift at joint 52, 42 lb uplift at joint 53, 42 lb uplift at joint 54, 46 lb uplift at joint 55, 12 lb uplift at joint 56, 97 lb uplift at joint 57, 21 lb uplift at joint 44, 27 lb uplift at joint 41, 48 lb uplift at joint 40, 43 lb uplift at joint 38, 42 lb uplift at joint 37, 42 lb uplift at joint 36, 43 lb uplift at joint 35, 46 lb uplift at joint 34, 12 lb uplift at joint 33 and 117 lb uplift at joint 32.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:09 ID:qjMAmjKisUIR55GeQMwSlcznZwM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F01	Floor	14	1	Job Reference (optional)	163640967

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:11 ID:kw0_lcw3LxOch2qP7ECb61yyC0k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Load TCLL TCDI BCLL	ling - L	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.64 0.83 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.51 -0.71 0.11	(loc) 15-16 15-16 13	l/defl >598 >429 n/a	L/d 480 360 n/a	PLATES MT20HS MT20	GRIP 187/143 244/190	440/ 5
BCD	L	5.0	Code	IRC2018/1PI2014	Matrix-MSH							weight: 131 lb	FT = 20%F,	11%E
LUM TOP BOT WEB OTH	BER CHORD CHORD S ERS	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)												
BRA		Otwork web web a disk a	- 41- 1											
TOP	CHORD	5-3-4 oc purlins ex	athing directly applie	ed or										
вот	CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c										
REA	CTIONS	(size) 13=0-3-8, Max Grav 13=925 (L	19=0-3-8 .C 1), 19=925 (LC 1)										
FOR	CES	(lb) - Maximum Com Tension	pression/Maximum											
TOP	CHORD	1-19=-69/0, 12-13=-0 2-3=-2815/0, 3-4=-20 5-6=-4147/0, 6-7=-4 9-10=-2815/0, 10-11	69/0, 1-2=-3/0, 815/0, 4-5=-4147/0, 153/0, 7-9=-4153/0, =-2815/0, 11-12=-3.	/0										
вот	CHORD	18-19=0/1609, 16-18 14-15=0/3646, 13-14	3=0/3648, 15-16=0/4 4=0/1609	4284,										
WEB	S	11-13=-1813/0, 2-19 2-18=0/1369, 10-14= 9-14=-943/0, 4-18=- 4-16=0/567, 7-15=-1 6-15=-148/0, 6-16=-	=-1813/0, 11-14=0/ =-163/0, 3-18=-162/0 945/0, 9-15=0/576, 71/0, 5-16=-150/0, 162/0	1369, 0,									11111	
ΝΟΤ	ES	0 10 110/0, 0 10	102/0								1	TH UA	HO MA	
1) A	All plates a	are MT20 plates unless	s otherwise indicate	d.						/	S.	Quit 85	02.10	50
2) A	All plates a	are 1.5x3 MT20 unless	otherwise indicated	d.							20	.09	14.9	
3) T I	This truss i nternation	is designed in accorda al Residential Code se	ance with the 2018 ections R502.11.1 a	nd								·Q`	× .	1111
F	R802.10.2	and referenced stand	ard ANSI/TPI 1.							=		SEA	- :	=
4) F 1	≺ecommei 10-00-00 c	nd 2x6 strongbacks, o oc and fastened to eac	n edge, spaced at h truss with 3-10d							Ξ		0363	22 🕴	111

(0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F02	Floor Girder	1	1	Job Reference (optional)	163640968

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:11 ID:?_VDjhKJAHokvDpP4IIV?HyyByL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Plate Offsets (X, Y): [17:0-3-0,Edge], [21:0-1-8,0-0-8], [22:0-1-8,0-0-8]

Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00		TC	0.78	Vert(LL)	-0.48	16-17	>635	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00		BC	0.72	Vert(CT)	-0.67	16-17	>455	360	MT20HS	187/143	
BCLL	0.0	Rep Stress Incr	NO		WB	0.88	Horz(CT)	0.12	14	n/a	n/a			
BCDL	5.0	Code	IRC2018	/TPI2014	Matrix-MSH							Weight: 189 lb	FT = 20%F, 11	%E
UMBER			5)	Use Simpsor	Strong-Tie THA4	22 (6-16	d Girder. 6-1	0d						
FOP CHORD	2x4 SP No.2(flat) *E 2400E 2 0E(flat)	xcept* 1-5,9-1:2x4 S	SP	Truss) or equ	ivalent at 4-0-12 fi	rom the	left end to ord.							
BOT CHORD	2x4 SP No.1(flat) *E 2400F 2 0F(flat)	xcept* 18-14:2x4 SF	⊃ 6) 7)	Fill all nail ho In the LOAD	les where hanger i CASE(S) section.	is in cor loads ai	tact with lum	lber. face						
NEBS	2x4 SP No 3(flat)		,	of the truss a	re noted as front (I	F) or ba	- ck (B).							
OTHERS	2x4 SP No 3(flat)		10	AD CASE(S)	Standard	/	()							
BRACING	2,11 01 11010(1101)		1)	Dead + Flor	or Live (balanced).	Lumber	Increase=1	00						
	Structural wood she	athing directly applie	ed or	Plate Increa	ise=1.00	2411.00		,						
	6-0-0 oc purlins ex	cent end verticals		Uniform Loa	ads (lb/ft)									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c	Vert: 14-2	20=-7. 1-13=-67									
	bracing		•	Concentrate	ed Loads (lb)									
REACTIONS	(size) 14=0-3-8	20=0-3-8		Vert 23=	-1231 (F)									
	(32c) 14=0-0-0, Max Grav 14=1116	(I.C. 1) 20=1964 (I.C	2 1)	1011.20	.201 (.)									
OBCES	(lb) Maximum Com		51)											
FURCES	(ib) - Maximum Com Tension	ipression/maximum												
FOP CHORD	1-20=0/6, 13-14=-76	6/0, 1-2=0/0, 2-3=-63	325/0,											
	3-4=-6325/0, 4-6=-6	844/0, 6-7=-6855/0,												
	7-8=-5850/0, 8-10=-	5850/0, 10-11=-369	8/0,											
	11-12=-3698/0, 12-1	13=-4/0												
BOT CHORD	19-20=0/4091, 17-19	9=0/6605, 16-17=0/	6476,											
	15-16=0/4920, 14-1	5=0/2054												
NEBS	12-14=-2292/0, 12-1	15=0/1848, 11-15=-1	179/0,									11111	1111	
	10-15=-1373/0, 10-1	16=0/1045, 8-16=-20	07/0,									IN TH UA	Roille	
	6-17=-215/0, 7-16=-	703/0, 2-19=0/2486	,								1	R	ALA'L	
	3-19=-928/0, 4-19=-	312/0, 4-17=0/267,									55	FESS	ON V.	-
	7-17=0/437, 2-20=-4	4531/0								4	0	UP /	Call	/
NOTES										1			× .	-
1) All plates a	are MT20 plates unles	s otherwise indicate	d.							-	:	SEA		-

- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4)
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F03	Floor	3	1	Job Reference (optional)	163640969

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:12 ID:V0ZtZzRPSrhfkV2Ta3zSptyyC04-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.6

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge] 1-4-0 PLATES GRIP Loading Spacing CSI DEFL in (loc) l/defl L/d (psf) TCLL 40.0 Plate Grip DOL 1.00 тс 0.36 Vert(LL) -0.27 14-15 >936 480 MT20HS 187/143 TCDL 10.0 Lumber DOL 1.00 BC 0.81 Vert(CT) -0.37 13-14 >678 360 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.50 Horz(CT) 0.07 12 n/a n/a IRC2018/TPI2014 BCDL 5.0 Code Matrix-MSH Weight: 111 lb FT = 20%F, 11%E

LUMBER

TOP CHORD	2x4 SP No.2(flat)
WERS	2x4 SP No.2(flat)
OTHERS	2x4 SF No.3(flat) 2x4 SP No.3(flat)
BRACING	274 01 110.0(1101)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 12=0-3-8, 18= Mechanical
	Max Grav 12=770 (LC 1), 18=775 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-18=-70/0, 11-12=-69/0, 1-2=0/0,
	2-3=-2235/0, 3-4=-2235/0, 4-5=-2992/0,
	5-6=-2992/0, 6-7=-2992/0, 7-9=-2235/0,
	9-10=-2235/0, 10-11=-3/0
BOT CHORD	17-18=0/1316, 15-17=0/2780, 14-15=0/2992,
	13-14=0/2780, 12-13=0/1315
WEBS	10-12=-1481/0, 2-18=-1486/0, 10-13=0/1044,
	2-17=0/1043, 9-13=-163/0, 3-17=-162/0,
	7-13=-618/0, 4-17=-618/0, 7-14=-80/425,
	4-15=-80/425, 5-15=-115/0, 6-14=-115/0
NOTES	,, .

NOTES

- Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F04	Floor	5	1	Job Reference (optional)	163640970

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:13 ID:szMichVXGNJxqGwRNcYdWxyyC0?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.1

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge]

		1										
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.42	Vert(LL)	-0.29	14-15	>901	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.83	Vert(CT)	-0.39	15-17	>654	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.07	12	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 112 lb	FT = 20%F, 11%E
TOP CHORD	2x4 SP No 2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING	. ,											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
REACTIONS	(size) 12=0-3-8	18=0-3-8										
	Max Grav 12=781 (L	_C 1). 18=781 (LC 1)									
FORCES	(lb) - Maximum Com	pression/Maximum	1									
	Tension	procoronamaan										
TOP CHORD	1-18=-69/0, 11-12=-	69/0, 1-2=-3/0,										
	2-3=-2276/0, 3-4=-2	276/0, 4-5=-3069/0,										
	5-6=-3069/0, 6-7=-3	069/0, 7-9=-2276/0,										
	9-10=-2276/0, 10-11	=-3/0										
BOT CHORD	17-18=0/1336, 15-1	7=0/2840, 14-15=0/3	3069,									
	13-14=0/2840, 12-1	3=0/1336										
WEBS	10-12=-1504/0, 2-18	3=-1504/0, 10-13=0/	1067,									
	2-17=0/1067, 9-13=	-162/0, 3-17=-162/0									minin	1111
	A-1571/A50 5-15-	-136/0 6-14136/0	<i>,</i> ,								I'''H CA	Po'll
NOTES	4-1011/409, 0-10-	130/0, 0-14130/0								1	all	Alin
1) Unholonor	ad flaar live leade heve	been considered fo								A.	O' EESS	Giz Vin
this design			1							15	10/1	
 All plates a 	i. are MT20 plates unles	s otherwise indicate	d						-			K
 All plates a 	are 1 5x3 MT20 unless	s otherwise indicated	1								OFA	
 This truss 	is designed in accorda	ance with the 2018							=		SEA	4 8 8 .
, Internation	nal Residential Code s	ections R502.11.1 a	nd						=	:	0363	22 : =
R802.10.2	and referenced stand	ard ANSI/TPI 1.							-			- 1 2
5) Recomme	end 2x6 strongbacks, o	n edge, spaced at										1 3
10-00-00 d	oc and fastened to eac	h truss with 3-10d								21	N. ENO	ER. AS
(0.131" X 3	3") nails. Strongbacks	to be attached to w	alls							1	S, GINI	A.S.
at their out	ter ends or restrained	by other means.								1		, BK I

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F05	Floor	1	1	Job Reference (optional)	163640971

0-2-0

2-2-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-6-0

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:13 ID:LzVQXT791MsZ3FvQQXUpdvyyC?B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.1

1-6-0

Plate Offsets (X, Y): [4:0-1-8,Edge], [16:0-1-8,Edge]

Loa TCL TCI BCI	ading _L DL LL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.60 0.46 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.14 0.02	(loc) 17-19 15-16 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190	
BCI	DL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 117 lb	FT = 20%F, 11	1%E
LUI TOF BO WE OTH BR TOF BO	MBER P CHORD T CHORD BS HERS ACING P CHORD T CHORD T CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 13=0-3-8, Max Uplift 13=-620 (Max Grav 13=-67 (L 20=548 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 14=0-3-8, 20=0-3-8 LC 3) C 4), 14=1558 (LC 1 C 3)	5) Recomm 10-00-00 (0.131" x at their o 6) CAUTIOI LOAD CASE d or	 dx6 strongbacks, oc and fastened to ea 3") nails. Strongbacuter ends or restraine d, Do not erect truss f Standard 	on edge ach truss ks to be d by othe backward	e, spaced at e, svith 3-10d attached to w er means. ds.	valls						
FO	RCES	(lb) - Maximum Com	pression/Maximum											
TOF	P CHORD	1-20=-71/0, 12-13=- 2-3=-1383/0, 3-4=-1 5-6=-1500/0, 6-7=-7 8-10=0/1515_10-11	45/0, 1-2=0/0, 383/0, 4-5=-1500/0, 18/0, 7-8=-718/0, =0/1515_11-12=-2/0											
BO	T CHORD	19-20=0/883, 17-19=	=0/1500, 16-17=0/15 5=-227/0 13-14=-77	00, 2/0										
WE	BS	10-14=-158/0, 8-14= 8-15=0/1064, 2-19=(3-19=-177/0, 6-15=- 6-16=0/349, 4-17=-1 11-13=0/1001, 11-14	1461/0, 2-20=-997/ 0/567, 7-15=-171/0, 634/0, 4-19=-265/92 132/34, 5-16=-54/12, 4=-1058/0	,							ALL I	ORTH CA	ROLIN	2
NO.	TES	,								-		Sel 1	4.	-
1) 2) 3) 4)	Unbalance this design All plates i One RT8A truss to be connection forces. This truss Internation B802 10.2	ed floor live loads have n. are 3x5 MT20 unless of A MiTek connectors red earing walls due to UPI n is for uplift only and of is designed in accorda nal Residential Code sy 2 and referenced stand	e been considered for otherwise indicated. commended to conne LIFT at jt(s) 13. This does not consider late ance with the 2018 ections R502.11.1 ar and ANS//TPL 1	r ect eral nd						111111AV	A A A A A A A A A A A A A A A A A A A	SEA 0363	ER K	WILLING .

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information. Structure Building former the component compon and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F06	Floor	1	1	Job Reference (optional)	163640972

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:14 ID:hCqk8_Oyr7eRieafj9tzWYyyC_r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

Loading TCLL TCDI	(psf) 40.0 10.0	Spacing Plate Grip DOL	1-4-0 1.00 1.00		CSI TC BC	0.50 0.34	DEFL Vert(LL) Vert(CT)	in -0.07 -0 11	(loc) 17-18 17-18	l/defl >999 >999	L/d 480 360	PLATES MT20	GRIP 244/190	
BCLL	0.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.01	16	n/a	n/a			
BCDL	5.0	Code	IRC2018/	TPI2014	Matrix-MSH		(-)					Weight: 139 lb	FT = 20%F,	11%E
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N BRACING TOP CHORD Structural 6-0-0 oc il bracing. REACTIONS (size) Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-23=-71 8-07-643 8-10=-643 8-10=-643 12-13=0/10 5-6=-683 8-10=-643 12-13=0/10 5-6=-683 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-613 8-10=-643 12-13=0/10 5-6=-633 8-10=-643 12-13=-11 10-17=-11 6-21=-421 7-18=0/20 13-16=-83 NOTES 1) Unbalanced floor live this design. 2) All plates are 3x5 MT2	0.2(flat) 0.2(flat) 0.3(flat) 0.3(flat) 0.3(flat) wood sheat purlins, exc ng directly 15=0-3-8, 23=0-3-8 15=-25 (Lt 15=-25 (Lt 22=1198 (imum Com 0, 14-15=-4 02, 3-4=0/11 154, 13-14 09/0, 21-22 00/0, 11-17 70/0, 5-21= 06/0, 11-17 70/0, 5-21= 06/0, 13-15 loads have 20 unless o	athing directly applied sept end verticals. applied or 6-0-0 oc 16=0-3-8, 22=0-3-8, LC 6), 23=-349 (LC 6) C 5), 16=1303 (LC 4), LC 3), 23=27 (LC 5) pression/Maximum 42/0, 1-2=-3/0, 092, 4-5=-683/0, 26/0, 7-8=-1026/0, -645/0, 11-12=0/1174 =-2/0 =-143/79, 19-21=0/10 i=0/996, 16-17=-134/^ -159/0, 11-16=-1225// =0/831, 4-21=0/798, -179/0, 8-17=-400/0, i=2/191, 6-19=-88/73, 01, 2-22=-666/0, =0/752 been considered for therwise indicated.	3) 4) or 5) 6) 7) LO/	One H2.5A S recommende UPLIFT at jt(does not com One RT8A M truss to beari connection is forces. This truss is of International R802.10.2 ar Recommend 10-00-00 cc a (0.131" X 3") at their outer CAUTION, D AD CASE(S)	impson Strong-Tie d to connect truss t s) 23. This connects sider lateral forces. Tek connectors rea ng walls due to UP for uplift only and of designed in accorda Residential Code s d referenced stand 2x6 strongbacks, o and fastened to ead nails. Strongbacks ends or restrained to not erect truss ba Standard	connee to bear ion is for comme LIFT at does no ance w ections lard AN truss to be by othe by othe ckward	tors ng walls due or uplift only a nded to conn jt(s) 15. This ot consider lat ith the 2018 R502.11.1 a ISI/TPI 1. a, spaced at attached to w or means. Is.	to and lect teral nd ralls				SEAL OBCEESS SEAL O3632		and an

TRENCO A MITCH ATFILIT

February 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F07	Floor	1	1	Job Reference (optional)	163640973

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:15 ID:I5EPI6aMJkWJ?xEX5ofUdiyyC_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Scale = 1:45.1

Plate Offsets	(X, Y): [14:Edge,0-1-8	3], [17:0-1-8,Edge], [1	8:0-1-8,Edge]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MSH	0.79 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.39 0.04	(loc) 18-20 18-20 15	l/defl >967 >679 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 14=-888 (Max Grav 14=-141 (21=667 (L	athing directly applie cept end verticals. applied or 6-0-0 oc , 15=0-3-8, 21=0-3-8 (LC 3) (LC 4), 15=1999 (LC _C 3)	5) This tr Intern R802. 6) Recor 10-00 (0.131 at the 7) CAUT LOAD CA	uss is designed in acc ational Residential Coo 10.2 and referenced st nmend 2x6 strongback -00 oc and fastened to " X 3") nails. Strongbac r outer ends or restrair ION, Do not erect trus: SE(S) Standard	cordance w de sections tandard AN ks, on edge each truss acks to be ned by othe s backward	th the 2018 FR502.11.1 a USI/TPI 1. Sypaced at s with 3-10d attached to w attached to w attached s. ds.	and valls					
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	1ension 1-21=-68/0, 13-14=- 2-3=-1850/0, 3-4=-1 5-6=-2143/0, 6-7=-2 9-10=-673/0, 10-11= 12-13=-2/0	42/0, 1-2=-3/0, 850/0, 4-5=-2143/0, 143/0, 7-9=-673/0, =0/2167, 11-12=0/210	67,									
BOT CHORD WEBS	20-21=0/1122, 18-2(16-17=0/1539, 15-1) 11-15=-165/0, 10-15 10-16=0/1408, 2-20 3-20=-152/0, 7-16=- 7-17=0/738, 4-18=-2	0=0/2201, 17-18=0/2 6=-572/0, 14-15=-10 5=-1805/0, 2-21=-126 =0/825, 9-16=-178/0, 983/0, 4-20=-398/0, 246/230, 5-18=-77/22	2143, 51/0 54/0,						4	The last	ORTH CA	111111 201111 2011111
NOTES 1) Unbalanc this desig 2) All plates 3) All plates 4) Provide m bearing p joint 14.	ed floor live loads have in. are MT20 plates unles are 1.5x3 MT20 unless nechanical connection (late capable of withstar	e been considered fo s otherwise indicated s otherwise indicated (by others) of truss to nding 898 lb uplift at	r 1.						THE REAL PROPERTY OF THE PROPE	A MARTINE AND	SEA 03632 CA.G	ER
WAR	NING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED N	ITEK REFERENCE PAGE N	/III-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINEERI	NG BY

Design valid for use only with MTesk connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F08	Floor	1	1	Job Reference (optional)	163640974

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:15 ID:Px0oyr7DUsJnX0INnSTHUPyyBzu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.1

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.23 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.05 0.00	(loc) 34-35 34-35 32	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 3 (size) 19=0-3-8, 22=14-6-1 24=14-6-1 26=14-6-1 28=14-6-1 38=14-6-1 38=14-6-1 21=215 (L 23=230 (L 25=231 (L 27=232 (L 29=238 (L 32=416 (L	athing directly applie sept end verticals. applied or 6-0-0 oc 4-35,33-34. 20=14-6-14, 21=14- 4, 23=14-6-14, 4, 25=14-6-14, 4, 25=14-6-14, 4, 29=14-6-14, 35=1 C 4), 20=244 (LC 1) C 3), 22=237 (LC 7) C 3), 24=232 (LC 7) C 3), 24=232 (LC 7) C 3), 28=231 (LC 7) C 3), 31=234 (LC 7) C 3), 31=234 (LC 7) C 3), 31=234 (LC 7) C 3), 35=268 (LC 3)	v dor 1 2 66-14, 4 5 0-3-8 6 1, 7 1, 7 1, 8 1, 8	VEBS 4 COTES) Unbalanced i this design.) All plates are) Truss to be fi braced again) Gable studs 3) This truss is a International R802.10.2 ar) Load case(s) designer mus correct for th) Recommend 10-00-00 oc : (0.131" X 3") at their outer) CAUTION, D	-32=-409/0, 16-20 -29=-229/0, 7-28= -26=-222/0, 10-25 3-23=-222/0, 14-2 2-35=-399/0, 2-34= -33=0/440, 17-19= floor live loads have 1.5x3 MT20 unles ully sheathed from st lateral movemer spaced at 1-4-0 oc designed in accord Residential Code s and referenced stand 1 has/have been r st review loads to v e intended use of tt 2x6 strongbacks, c and fastened to ea nails. Strongbacks, ends or restrained o not erect truss be	=-143/0 -222/0, =-222/0 2=-226, -70/59, 84/14, e been s othen one fac that (i.e. d - ance w sections dard AN modifiee erify that his truss on edge con truss s to be by othe ackward	, 5-31=-225/C 8-27=-223/O, , 12-24=-222/ O, 15-21=-21/ 3-33=-181/O, 17-20=-123/C considered fo wise indicated e or securely iagonal web). ith the 2018 R502.11.1 a SIS/TPI 1. J. Building at they are s. , spaced at with 3-10d attached to w er means. Is.), /0, 6/0, 7 1. nd alls					
TOP CHORD	(b) - Maximum Com Tension 1-35=-68/0, 18-19=-4 2-3=-342/0, 3-4=-342 6-7=0/47, 7-8=0/47, 10-12=0/47, 12-13=0 14-15=0/47, 15-16=0 17-18=-2/0 34-35=0/357, 33-34= 31-32=-47/0, 29-31= 27-28=-47/0, 29-31= 27-28=-47/0, 23-24= 21-22=-47/0, 20-21=	40/0, 1-2=-3/0, 2/0, 4-5=0/47, 5-6=0 8-9=0/47, 9-10=0/47)/47, 13-14=0/47,)/47, 16-17=0/47, =0/342, 32-33=-47/0, -47/0, 28-29=-47/0, -47/0, 22-23=-47/0, -47/0, 19-20=-11/65	1 /47, ,) Dead + Floo Plate Increa Uniform Loa Vert: 19-3	or Live (balanced): ise=1.00 ids (lb/ft) 35=-7, 1-4=-67, 4-1	Lumber 6=-167	Increase=1.6	00,		Contraction of the second seco	The second secon	SEA 0363	ROCTATION INTERNET

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F09	Floor	1	1	Job Reference (optional)	163640975

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:17 ID:LbgzxLM8?ij5Jxi1PyJkmPyyBzb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (ate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge]													
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.57 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.19 0.04	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%F, 11	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-18 (L Max Grav 14=627 (L 23=237 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 20=0-4-14, 23=0-3- C 4) _C 7), 20=1071 (LC 4 _C 3)	3) 4) ed or 5) 8 6) 8), L	One H2.5A S recommende UPLIFT at jt(does not cor This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, E DAD CASE(S)	Simpson Strong-Tie d to connect truss s) 23. This connec sider lateral forces designed in accord Residential Code e nd referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained to not erect truss b Standard	e conne to bear tion is fo lance w sections dard AN on edge ch truss s to be l by othe ackward	ctors ng walls due or uplift only a ith the 2018 R502.11.1 a ISI/TPI 1. a, spaced at with 3-10d attached to w er means. Is.	to and walls						
FORCES	(lb) - Maximum Com Tension 1-23=-93/0, 13-14=- 2-3=-285/146, 3-4=0 5-6=-1540/0, 6-7=-1 9-10=-1976/0, 10-11 11-12=-1694/0 12-1	pression/Maximum 69/0, 1-2=-4/0, 0/608, 4-5=0/608, 540/0, 7-9=-1976/0, I=-1694/0, 3=-3/0												
BOT CHORD	22-23=-146/285, 21- 20-21=-146/285, 18- 17-18=0/1918, 16-17 14-15=0/1040	-22=-146/285, -20=0/782, 7=0/1976, 15-16=0/1	1976,									TH CA	ROUT	
NOTES 1) Unbalance this desigr 2) All plates a	4-20=-166/0, 3-20=- 2-22=-60/0, 3-21=0/9 12-14=-1170/0, 5-18 6-18=-171/0, 11-15= 10-15=-387/5, 7-17= 10-16=-111/54 ed floor live loads have n. are 1.5x3 MT20 unless	657/0, 2-23=-317/16 91, 5-20=-1302/0, =-0/909, 12-15=0/74 =-177/0, 7-18=-472/0 =-115/253, 9-17=-13/ e been considered fo	96, 2, 7, 729, r							Contraction of the second	and the second s	SEA 0363	EPERTUU	Manunna

NOTES

GI A. GILIN February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information. Structure Building former the component compon and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F10	Floor	1	1	Job Reference (optional)	163640976

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:17 ID:ENvUniPe3wDXnY?oeoOgwFyyBzX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets	(X, Y): [2:0-1-8,E	Edge],	[3:0-1-8,Edge], [10:	:0-1-8,Ec	lge], [17:0-1-8,Ec	lge]								
Loading TCLL TCDL BCLL BCDL	(F 4 1	psf) 0.0 0.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.59 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.21 0.03	(loc) 17 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(fl 2x4 SP No.2(fl 2x4 SP No.3(fl 2x4 SP No.3(fl Structural woo 6-0-0 oc purlin Rigid ceiling di bracing. (size) 14= Max Uplift 23= Max Grav 14= 23=	lat) lat) lat) lat) sod shea ss, exc lirectly =0-3-8, =-234 (L =614 (L =130 (L	athing directly applie xept end verticals. applied or 6-0-0 oc 20=0-4-14, 23=0-3- .C 4) C 7), 20=1322 (LC C 3)	ed or -8 1),	 One H2.5A S recommende UPLIFT at jtt does not cor This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, E LOAD CASE(S) 	Simpson Strong-T ed to connect trus (s) 23. This conne isider lateral force designed in accoo Residential Code not referenced sta 1 2x6 strongbacks and fastened to e n nails. Strongbac ends or restraine o not erect truss Standard	Tie conner so to bear ection is for so. rdance w e sections undard AN s, on edge each truss close to be each truss close to be backward	ctors ing walls due or uplift only ith the 2018 is R502.11.1 a SI/TPI 1. e, spaced at is with 3-10d attached to v er means. ds.	e to and and valls					
FORCES TOP CHORD BOT CHORD	(b) - Maximun Tension 1-23=-95/0, 13 2-3=-77/574, 3 5-6=-1077/0, 6 9-10=-1902/0, 11-12=-1648/0 22-23=-574/77 20-21=-574/77 17-18=0/1660	3-14=-7 3-4=0/1 6-7=-10 , 10-11 7, 12-11 7, 21-2 7, 18-2 , 16-17	70/0, 1-2=-4/0, 1342, 4-5=0/1342, 177/0, 7-9=-1902/0, =-1648/0, 3=-3/0 2=-574/77, 0=-37/119, =0/1902, 15-16=0/ ²	1902,									WITH CA	ROUT
WEBS NOTES 1) Unbalanc this desig 2) All plates	14-15=0/1016 4-20=-163/0, 3 2-22=-197/0, 3 12-14=-1143/0 6-18=-167/0, 1 10-15=-410/12 10-16=-70/62 ed floor live loads n. are 1.5x3 MT20 (3-20=-1 3-21=0, 0, 5-18 11-15= 2, 7-17 s have unless	1008/0, 2-23=-82/64 /221, 5-20=-1520/0, =0/1113, 12-15=0/7 -194/0, 7-18=-682/0 =0/419, 9-17=-112/v been considered fo otherwise indicated	46, , 18, 0, 0, or d.							Within		SEA 0363	L 22 LBERTIN

February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F11	Floor	4	1	Job Reference (optional)	163640977

3x5=

7

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-6-0

0 - 3 - 4

23

3x5 = 3x5 =

3x5 II

4

0-1-8

1-6-0

Loading

TCLL

TCDL

BCLL

BCDL

LUMBER

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:17 ID:eybdPkSXMrb5e?kNJwxNYuyyBzU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-3-12

3x5 =

11

10

3x6 FP

89

0-1-8 ||

 \bigotimes

3x6 =

GRIP

244/190

FT = 20%F, 11%E

-9-

3x5=

12

PLATES

Weight: 135 lb

MT20

23 ₿ Ø 2221 18 17 16 19 15 20 3x6= 3x6 FP 3x8 = 3x5= 3x5 = 3x8= 5-10-12 25-7-0 5-10-12 19-8-4 Scale = 1:45.1 Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge], [10:0-1-8,Edge], [17:0-1-8,Edge] Spacing 1-4-0 CSI DEFL in (loc) l/defl L/d (psf) 40.0 Plate Grip DOL 1.00 тс 0.77 Vert(LL) -0.15 17-18 >999 480 10.0 Lumber DOL 1.00 BC 0.65 Vert(CT) -0.22 17-18 >999 360 0.0 Rep Stress Incr YES WB 0.55 Horz(CT) 0.03 14 n/a n/a 5.0 Code IRC2018/TPI2014 Matrix-MSH 4) This truss is designed in accordance with the 2018 2v4 SD No 2/flot) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1. Recommend 2x6 strongbacks, on edge, spaced at

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6

3x6 =

5

BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP Ni 2x4 SP Ni 2x4 SP Ni 2x4 SP Ni Structural 6-0-0 oc p Rigid ceili bracing.	o.2(flat) o.2(flat) o.3(flat) o.3(flat) wood sheathing directly applied or ourlins, except end verticals. ng directly applied or 6-0-0 oc	5) 6) LC	R802.10.2 and referenced standard ANSI R802.10.2 and referenced standard ANSI Recommend 2x6 strongbacks, on edge, s 10-00-00 oc and fastened to each truss w (0.131" X 3") nails. Strongbacks to be att at their outer ends or restrained by other in CAUTION, Do not erect truss backwards. DAD CASE(S) Standard
REACTIONS	(size) Max Liplift	14=0-3-8, 20=0-3-8, 23=0-3-8		
	Max Grav	14=608 (LC 7), 20=1406 (LC 1), 23=99 (LC 3)		
FORCES	(lb) - Max Tension	imum Compression/Maximum		
TOP CHORD	1-23=-89/ 2-3=-26/6 5-6=-923/ 9-10=-185 11-12=-16	0, 13-14=-70/0, 1-2=-4/0, 94, 3-4=0/1536, 4-5=0/1536, 0, 6-7=-923/0, 7-9=-1858/0, 36/0, 10-11=-1627/0, 327/0, 12-13=-3/0		
BOT CHORD	22-23=-69 20-21=-69 16-17=0/1	94/26, 21-22=-694/26, 94/26, 18-20=-160/0, 17-18=0/1557, 1858, 15-16=0/1858, 14-15=0/1004		
WEBS	4-20=-17 2-22=-252 12-14=-1 6-18=-168 10-15=-39	1/0, 3-20=-1110/0, 2-23=-25/781, 2/0, 3-21=0/272, 5-20=-1568/0, 130/0, 5-18=0/1161, 12-15=0/707, 3/0, 11-15=-199/0, 7-18=-731/0, 06/11, 7-17=0/461, 9-17=-133/0.		

NOTES

1) Unbalanced floor live loads have been considered for this design.

All plates are 1.5x3 MT20 unless otherwise indicated. 2)

10-16=-70/56

One H2.5A Simpson Strong-Tie connectors 3)

recommended to connect truss to bearing walls due to UPLIFT at jt(s) 23. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F12	Floor	5	1	Job Reference (optional)	163640978

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:18 ID:T5yufnWIxhLFMwBXfB2nn9yyBzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45 1

3cale = 1.43.1													
Plate Offsets	(X, Y): [2:0-1-8,Edge],	[3:0-1-8,Edge], [10:	0-1-8,Edge],	[17:0-1-8,Ed	ge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.65 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=0-3-8, Max Uplift 23=-306 (athing directly applie cept end verticals. applied or 6-0-0 oc 20=0-3-8, 23=0-3-8 LC 4)	4) 5) d or 6) LOA	This truss is of International R802.10.2 ar Recommend 10-00-00 oc o (0.131" X 3") at their outer CAUTION, D AD CASE(S)	designed in accorn Residential Code Id referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b Standard	dance wi sections ndard AN on edge ach truss ks to be d by othe backward	ith the 2018 R502.11.1 a ISI/TPI 1. e, spaced at with 3-10d attached to w er means. Is.	und valls					
EORCES	Max Grav 14=608 (L 23=99 (LC	.C 7), 20=1406 (LC · C 3)	1),										
TOP CHORD	(ib) - Maximum Com Tension 1-23=-89/0, 13-14=- 2-3=-26/694, 3-4=0/ 5-6=-923/0, 6-7=-92 9-10=-1858/0, 10-11 11-12=-1627/0, 12-1	70/0, 1-2=-4/0, 1536, 4-5=0/1536, 3/0, 7-9=-1858/0, =-1627/0, 3=-3/0											
BOT CHORD	22-23=-694/26, 21-2 20-21=-694/26, 18-2 16-17=0/1858, 15-16	2=-694/26, 0=-160/0, 17-18=0/1 6=0/1858, 14-15=0/1	1557, 004									TH CA	RO
WEBS	4-20=-171/0, 3-20=- 2-22=-252/0, 3-21=0 12-14=-1130/0, 5-18 6-18=-168/0, 11-15= 10-15=-396/11, 7-17 10-16=-70/56	1110/0, 2-23=-25/78 //272, 5-20=-1568/0, =0/1161, 12-15=0/7 199/0, 7-18=-731/0 /=0/461, 9-17=-133/0	1, 07, ,),							4	A A	ORIEESS	Ale I
NOTES										-	:	0202	22 : I
 Unbalanc this desig All plates One RT8/ truss to be connectio forces. 	ed floor live loads have n. are 1.5x3 MT20 unless A MiTek connectors rec earing walls due to UPI n is for uplift only and c	been considered fo otherwise indicated commended to connu- LIFT at jt(s) 23. This loes not consider lat	r ect eral							1109 T	A A A A A A A A A A A A A A A A A A A		E.R. K.

February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F13	Floor	4	1	Job Reference (optional)	163640979

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:18 ID:MtBPV9Zo?wshrYVIu07jy?yyBzK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	CSI TC BC WB	0.61 0.93 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.37 0.06	(loc) 12-13 12-13 11	l/defl >907 >631 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH			-	-			Weight: 102 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)											
TOP CHORD BOT CHORD	Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly broging Except:	athing directly applie cept end verticals. applied or 10-0-0 oc	ed or									
REACTIONS	2-2-0 oc bracing: 14 (size) 11=0-3-8, Max Grav 11=714 (L	-15. 17=0-3-8 _C 1), 17=714 (LC 1))									
FORCES	(lb) - Maximum Com Tension 1-17=-69/0, 10-11=-	pression/Maximum										
	2-3=-2013/0, 3-4=-2 5-6=-2518/0, 6-7=-2 9-10=-3/0	013/0, 4-5=-2518/0, 025/0, 7-9=-2025/0,										
BOT CHORD	15-17=0/1206, 14-1 12-13=0/2464 11-1	5=0/2518, 13-14=0/2 2=0/1210	2518,									
WEBS	12-13=0/2464, 11-12=0/1210 9-11=-1363/0, 2-17=-1357/0, 9-12=0/924, 2-15=0/916, 7-12=-155/0, 3-15=-187/16, 6-12=-498/0, 4-15=-684/0, 6-13=-166/325, 4-14=-39/(11) 5-13=-05/11						ROUT					
NOTES										55	ESS	Di Via
1) Unbalance this design	ed floor live loads have n.	been considered fo	r						Y		:000	
 All plates a This truss i Internation R802.10.2 	are 1.5x3 MT20 unless is designed in accorda al Residential Code so and referenced stand	s otherwise indicated ance with the 2018 ections R502.11.1 ar ard ANSI/TPI 1.	ı. nd								SEA 0363	L
4) Recomment 10-00-00 c (0.131" X 3	nd 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks	n edge, spaced at th truss with 3-10d to be attached to wa	alls								S. ENGIN	EERCAL
LOAD CASE(S	s) Standard	by other means.								1	A G	ILBEIN

AD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F15	Floor	1	1	Job Reference (optional)	163640980

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:19 ID:3ooBbah4e?6G24GDU7I3M6yyBzA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:32
---------	------

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.01	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.14	Vert(CT)	-0.02	5-6	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 37 lb	FT = 20%F, 11%E

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 5=0-3-8, 8=0-3-8
	Max Grav 5=212 (LC 1), 8=208 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-8=-75/0, 4-5=-76/0, 1-2=-3/0, 2-3=-258/0,
	3-4=0/0
BOT CHORD	7-8=0/258, 6-7=0/258, 5-6=0/258
WEBS	3-5=-290/0, 2-8=-287/0, 2-7=-58/86.
	3-6=-62/82

NOTES

- Unbalanced floor live loads have been considered for this design.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	F17	Floor Girder	1	1	Job Reference (optional)	163640981

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:19 ID:I3uRdHC2WCX9ih2UVfa8bAyyByV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Page: 1

THA422 THA422

3x6 u

1-6-0

Scale = 1:25.4													
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.74 0.52 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.04 0.01	(loc) - 4-5 4	l/defl n/a >999 n/a	L/d 999 360 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD	2x4 SP No.2(flat)	•		·									

FOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)

WEBS	2X4 SP NO.3(IIal)
	· · · · · · · · · · · · · · · · · · ·

BRACING	
TOP CHORD	Structural wood sheathing directly applied or

	4-7-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4=0-3-8, 5= Mechanical
	Max Grav	4=1233 (LC 1), 5=1275 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
	1 5- 420	0 2 4- 207/0 4 2-0/0 2 2-0/0

OP CHORD 29/0, 3 ·387/0, 1-2=0/0, 2-3=0/0 BOT CHORD 4-5=0/1372 WEBS 2-4=-1605/0, 2-5=-1605/0

NOTES

1) Refer to girder(s) for truss to truss connections.

- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-8 oc max. starting at 0-10-12 from the left end to 3-6-12 to connect truss(es) to back face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber.
- 6) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 4-5=-7, 1-3=-67

Concentrated Loads (lb)

Vert: 2=-730 (B), 6=-730 (B), 7=-730 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	FW16	Floor Supported Gable	1	1	Job Reference (optional)	163640982

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:19 ID:ca1VeAxIr8YtMgUzNBehuKyyBwG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.1

Ocale - 1.50.1														
Loading		(psf)	Spacing	1-4-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		40.0	Plate Grip DOL	1.00		тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLI		0.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	17	n/a	n/a		
BCDL		5.0	Code	IRC2	018/TPI2014	Matrix-MR	0.02		0.00	••			Weight: 92 lb	FT = 20%F, 11%E
														,
LUMBER					WEBS	2-31=-86/0, 3-30=	-90/0, 4-2	29=-89/0,						
TOP CHORD	2x4 SP N	lo.2(flat)				5-28=-89/0, 6-27=	-89/0, 7-2	26=-89/0,						
BOT CHORD	2x4 SP N	lo.2(flat)				3-25=-89/0, 9-24=	-89/0, 10	-23=-89/0,						
WEBS	2x4 SP N	lo.3(flat)			11-22=-89/0, 12-21=-87/0, 13-20=-88/0,									
OTHERS	2x4 SP N	lo.3(flat)				14-1993/0, 15-1	002/0							
BRACING	NOTES													
TOP CHORD	JRD Structural wood sheathing directly applied or 1) All plates are 1.5x3 MT20 unless otherwise indicated.													
	6-0-0 oc purlins, except end verticals. 2) Gable requires continuous bottom chord bearing.													
BOT CHORD	Rigid ceil	ling directly	applied or 10-0-0 oc	C	 I russ to be t 	ully sneathed from	n one tac	e or securely						
DEACTIONS		17-10 10	0 10-10 10 0		 Gable studs 	snaced at 1-4-0 o	nii (i.e. u c	lagonal web).						
REACTIONS	(size)	10-10-10	-0, 10 = 19 - 10 - 0,		5) This truss is	designed in accor	o. dance w	ith the 2018						
		21-10-10	-0, 20-19-10-0,		International	Residential Code	sections	R502.11.1 a	nd					
		23=19-10	-0, 22=10-10-0,		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
		25=19-10	-0. 26=19-10-0.		6) Recommend	2x6 strongbacks,	on edge	, spaced at						
		27=19-10-	-0. 28=19-10-0.		10-00-00 oc	and fastened to e	ach truss	with 3-10d						
		29=19-10	-0, 30=19-10-0,		(0.131" X 3")	nails. Strongbac	ks to be	attached to wa	alls					
		31=19-10	-0, 32=19-10-0		at their outer	ends or restraine	d by othe	er means.						
	Max Grav	17=29 (LC	C 1), 18=90 (LC 1),		LOAD CASE(S)	Standard								
		19=102 (L	.C 1), 20=97 (LC 1),											
		21=96 (LC	C 1), 22=98 (LC 1), 2	23=98										
		(LC 1), 24	=98 (LC 1), 25=98 (LC										
		1), 26=98	(LC 1), 27=98 (LC 1	1),										
		28=98 (LC	(LC 1), 29=98 (LC 1), 3	30=99									minin	unin.
	<i></i>	(LC 1), 31	=94 (LC 1), 32=38 (-	"TH CA	Rolly
FORCES	(Ib) - Max	kimum Com	pression/Maximum									- N	R	- Chile
	1 22- 24	/0 16 17-	26/0 1 2- 5/0 2 3-	5/0							/	1	FESS	D. Vill
TOP CHORD	3_1=_5/0	A-5-5/0 5	20/0, 1-23/0, 2-3- 5-65/0 6-75/0	-3/0,							7		10° /	1216
	7-8=-5/0,	8-9=-5/0		0									:x	
	11-12=-5	/0 12-14=-	5/0 14-15=-3/0	0,							-		CEA	1 1 2
	15-16=-3	/0	o, o, i i i o o, o,								=	:	SEA	- : :
BOT CHORD	31-32=0/	5, 30-31=0/	5, 28-30=0/5, 27-28	=0/5,							=		0363	22 : =
	26-27=0/	5, 25-26=0/	5, 24-25=0/5, 23-24	=0/5,							-			
	22-23=0/	5, 21-22=0/	5, 20-21=0/5, 19-20)=0/3,								-	1. A.	
	18-19=0/	3, 17-18=0/	3									10	N. SNOW	EFR. A S
												1	A. GIN	5. 28 1
												1	CAC	II BEIN
													111. 6	in in its
													201111	III.

February 15,2024

Job	Truss	Truss Type		Ply	DRB - 191 FaNC	
24020061	FW25	Floor Supported Gable	1	1	Job Reference (optional)	163640983

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:20 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [10:0-1-8 Edge] [30:0-1-8 Edge]

Lading (CL) (sf) (L) Spacing (not proposition (CL) Spacing (not proproproposition (CL)	late Unsets (X, Y): [10:0-1-8,Edge], [30:0-1-8,Edge]															
Subset Subset Code Record (F1/2014) Mature Month UMMERE TOP CHORD 2x4 SP No.2(fts) The Commend 2x4 SP No.2(fts) The Commend 2x4 SP No.2(fts) Second Structural Wood Anashing directly applied or GOP CHORD Structural Wood Anashing directly applied or GO	Loading TCLL TCDL BCLL		(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES	49/50/2044	CSI TC BC WB	0.73 0.02 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
	ACDL LUMBER TOP CHORD SOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Uplift Max Uplift Max Grav	5.0 o.2(flat) o.3(flat) o.3(flat) o.3(flat) l wood sheat burlins, exc ing directly 21=25-7-0 24=25-7-0 30=25-7-0 37=25-7-0 37=25-7-0 40=25-7-0 21=-9 (LC 23=-98 (Ll 25=-80 (Ll 25=-80 (Ll 25=-80 (Ll 25=-80 (Ll 25=-80 (Ll 25=-80 (Ll 25=-80 (Ll 25=-37 (Ll 36=-97 (Ll 38=-97	Code athing directly applie pept end verticals. applied or 10-0-0 oc 0, 22=25-7-0, 23=25- 0, 25=25-7-0, 23=25- 0, 28=25-7-0, 23=25- 0, 31=25-7-0, 32=25- 0, 31=25-7-0, 32=25- 0, 31=25-7-0, 38=25- 0, 32=291 (LC 8), C 8), 22=-91 (LC 8), C 8), 22=-91 (LC 8), C 8), 28=-80 (LC 8), C 8), 35=-80 (LC 3), C 8), 22=610 (LC 3), C 6), 22=610 (LC 3), C 6), 22=610 (LC 3), C 6), 22=839 (LC 6), C 3), 35=339 (LC 6), C 3), 35=339 (LC 3), C 6), 32=387 (LC 3), C 6), 32=387 (LC 3), C 6), 39=378 (LC 3), C 6), 39=378 (LC 3), C 7), 70=378 (LC 3), C 7), 70=378 (LC 3), C 7), 70=378 (LC 3	IRC20	18/TPI2014 TOP CHORD BOT CHORD WEBS VEBS VIDES	Matrix-MSH 1-41=-114/14, 20- 2-3=-5/1, 3-4=-5/1 6-7=-5/1, 7-8=-5/1 10-11=-16/3, 11-12 11-15=-6/0, 15-16 17-18=-6/0, 18-19 40-41=-1/5, 39-40 37-38=-1/5, 36-37 34-35=-1/5, 29-30 27-28=0/6, 22-23= 2-40=-427/40, 3-33 5-37=-383/104, 6- 7-35=-330/86, 8-3 9-32=-378/102, 10 11-30=-385/104, 11 13-28=-331/86, 14 15-26=-377/102, 11 17-24=-395/104, 11 19-22=-599/97, 10 floor live loads have the 1.5x3 MT20 unle res continuous both fully sheathed from nst lateral movements spaced at 1-4-0 on Simpson Strong-Tie do connect truss (s) 41, 21, 40, 39, 27, 26, 25, 24, 23, 47 and does not cond designed in accord 1 Residential Code nd referenced star	21=-141, , 4-5=-5/, , 8-9=-5/ 22=-16/3, 12 =-6/0, 19 =-1/5, 38 =-1/5, 38 =-1/5, 31 =-3/16, 2 00/6, 25-1 :0/6, 21-1 9=-369/1 36=-378, 4=-383/1 -36=-378, 4=-383/1 -36=-378, 4=-383/1 -36=-378, 4=-383/1 -27=-39 6-25=-3; 8-23=-3; 0-30=-4/1 ve been ss other to one face ont (i.e. do c. e connet s to bear 38, 37, 3 and 22. ⁻ sidance w sections ndard AN	(11, 1-2=-5/1, 1, 5-6=-5/1, 1, 9-10=-5/1, 12-14=-16/3, 5-17=-6/0, 5-20=-6/0 5-39=-1/5, 5-36=-1/5, 5-36=-1/5, 5-36=-1/5, 5-36=-1/5, 5-22=0/6 09, 4-38=-332 (102, 04, 1/88, 70/100, 1/106, 28/86, 32/103, 6 considered fo wise indicated d bearing. the or securely liagonal web). ctors ing walls due 1 16, 35, 34, 32, This connection eral forces. ith the 2018 s FS02.11.1 ar ISI/TPI 1.	=0/6, 2/84, r 31, n is nd	8) Re 10 (0. at pr lb up do up lb lb 23 ch (s) 10) In of D LOAD 1) D P U	commen 00-00 or 131" X 3 heir oute nger(s) c vided st down and 1 9-0-4, 5 wn and 1 9-0-4, and is the re the LOAI the truss CASE(S ead + FH late Incre niform L	d 2x6 s c and fr ") nails or other fficient d 75 lb , 516 ll d 62 lb u 4, 516 lb d 62 lb u 4, 516 lb d 62 lb u 4, 516 lb d 62 lb u d 4, 516 lb d 62 lb u d 60 lb d 62 lb u d 60 lb d 60	Weight: 119 I strongbacks, or astened to each . Strongbacks or restrained the to support con- up at 1-0-4, 5 b down and 16 b down and 16 b up at 13-0-4, 5 l b down and 16 b in at 13-0-4, 5 l b down and 16 b own and 16 b in at 13-0-4, 5 l b down and 16 b own and 15 l b down and 75 l selection of si biblity of others. E(S) section, lo ted as front (F) ndard e (balanced): L .00 b/ft) H C SE SE 036	b FT = 20%I n edge, space h truss with 3- to be attached by other means vice(s) shall b icentrated load 16 lb down and 2 lb up at 5-0- 6 lb down and 2 lb up at 17- 516 lb down and 62 lb up at 17- 516 lb down and 62 lb up at 12- 516 lb down and 162 lb up b up at 24-6- uch connection ads applied to for back (B). umber Increase AL 322	F, 11%E d at 10d 1 to walls s. e ((s) 513 d 162 lb 4, 516 lb 162 lb up 516 lb d 162 lb -0-4, 516 and 162 o at 12 on top n device the face se=1.00,
	Continued or													1		

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building component Association (www.sbcacomponents.com)

ENGINEERING BY A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	FW25	Floor Supported Gable	1	1	Job Reference (optional)	163640983

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:20 ID:vwy86Z18CIRtikWJH9GKgpyyBw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Vert: 21-41=-7, 1-20=-67 Concentrated Loads (lb)

Vert: 44=-191 (B), 45=-191 (B), 46=-191 (B),

- 47=-191 (B), 48=-191 (B), 49=-191 (B), 50=-191 (B), 51=-191 (B), 52=-191 (B), 53=-191 (B), 54=-191 (B),
- 51=-191 (B), 52=-191 (B), 53= 55=-191 (B), 56=-191 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	PB1	Piggyback	11	1	Job Reference (optional)	163640984

6-1-11

6-1-11

6 □

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-6-10

Scale = 1:31.9 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

1)

NOTES

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

TCDL

BCLL

BCDL

3-5-0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Grav

Tension

1)

(lb) - Maximum Compression/Maximum

2-10=-5/47 9-10=-2/47 8-9=-2/47 6-8=-5/47

4-9=-214/87, 3-10=-375/190, 5-8=-375/190

1-2=0/17, 2-3=-54/44, 3-4=-124/97

4-5=-124/97. 5-6=-37/44. 6-7=0/17

Unbalanced roof live loads have been considered for

-0-11-1

0-11-1

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Feb 14 16:26:21 ID:80p I7GX6NJU1uIsCRS6qhznadd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 4

12-3-6

6-1-11

19

l/defl

n/a 999

n/a 999

n/a n/a

2x4 I

5

þ

8

L/d

2x4 ı

13-2-7 0-11-1

6

3x5 =

GRIP

244/190

FT = 20%

2x4 u 18 3 ø 2 4-3 10 9 3x5 = 2x4 II 2x4 ı 12-3-6 Spacing 2-0-0 CSI DEFL (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.29 Vert(LL) n/a BC Vert(CT) 20.0 Lumber DOL 1 15 0.12 n/a 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 15 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-1-4, Interior (1) 3-1-4 to 4-1-4, Exterior(2R) 4-1-4 to 10-1-4, Interior (1) 10-1-4 to 10-10-5, Exterior(2E) 10-10-5 to 13-10-5 zone; Structural wood sheathing directly applied or cantilever left and right exposed ; end vertical left and 6-0-0 oc purlins. right exposed:C-C for members and forces & MWFRS Rigid ceiling directly applied or 10-0-0 oc for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2=12-3-6, 6=12-3-6, 8=12-3-6, 3) Truss designed for wind loads in the plane of the truss 9=12-3-6, 10=12-3-6, 11=12-3-6, only. For studs exposed to wind (normal to the face), 15=12-3-6 see Standard Industry Gable End Details as applicable, Max Horiz 2=-54 (LC 15), 11=-54 (LC 15) or consult qualified building designer as per ANSI/TPI 1.

- Max Uplift 2=-11 (LC 15), 6=-5 (LC 15), 8=-88 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 (LC 15), 10=-88 (LC 14), 11=-11 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate (LC 15), 15=-5 (LC 15) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2=98 (LC 1), 6=98 (LC 1), 8=429 Cs=1.00; Ct=1.10 (LC 22), 9=300 (LC 21), 10=429 5) Unbalanced snow loads have been considered for this (LC 21), 11=98 (LC 1), 15=98 (LC
 - design. This truss has been designed for greater of min roof live 6)
 - load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 - Gable requires continuous bottom chord bearing.
 - Gable studs spaced at 4-0-0 oc. 8)
 - This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
 - 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.
 - 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

Weight: 49 lb

PLATES

MT20

ORT Contraction of the VIIIIIIIIIII SEAL 036322 GI 111111111 February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	PB2	Piggyback	2	1	Job Reference (optional)	163640985

6-1-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

|-0-11-1|

0-11-1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:21 ID:fVu?QeeSQfv62hXPl2sn7OznZug-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-3-6

13-2-7

0-11-1

6-1-11 6-1-11 4x5 = 5 1<u>2</u> 6 [4 6

12-3-6

Scale = 1:31.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		(-)						
BCDL	10.0										Weight: 54 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=12-3-6 14=12-3- 14=12-3- 14=12-3- 14=12-3- (10=-49 (L 10=-49 (L 15=-9 (LC Max Uplift 2=-9 (LC 10=-49 (L 15=-9 (LC 10=257 (I 12=144 (I 14=257 (I 12=134 (I 19=134 (I	eathing directly applied applied or 10-0-0 oc , 8=12-3-6, 10=12-3-6 6, 12=12-3-6, 13=12-3-6 , 15=12-3-6, 19=12-3-6 , 15=12-3-6, 19=12-3-1 18), 15=54 (LC 18) 15), 8=-13 (LC 15), .C 15), 11=-46 (LC 15 .C 14), 14=-49 (LC 14) C 15), 19=-13 (LC 22), LC 22), 13=238 (LC 2 LC 22), 13=238 (LC 2 LC 22), 15=134 (LC 2) LC 22), 15=14 (LC 2) LC 22), 15	 2) Wind: AS Vasd=100 Cat. II; E zone and 3-1-4 to 4 10-1-4 to 4 1	CE 7-16; Vult=130r smph; TCDL=6.0ps p B; Enclosed; MW C-C Exterior(2E) 0- 1-4.4, Exterior(2R) 4 10-10-5, Exterior(2I) left and right expos- sed;C-C for member or shown; Lumber) signed for wind load studs exposed to w lard Industry Gable qualified building c CE 7-16; Pr=20.0 p =1.15); Pf=20.0 p =1.15); Pf=20.0 p ct=1.10 ed snow loads have has been designed 0.0 psf or 1.00 times	nph (3-sec ; BCDL=6 FRS (env. 4-3 to 3-1 -1-4 to 10 E) 10-10-5 ed ; end v vers and for DOL=1.60 Is in the p vind (norm End Deta esigner a: sf (roof LL f (Lum DC at B; Fully e been cor If or great flat roof IL that flat roof IL that the point that the point the point the point the point the po	cond gust) .opsf; h=25ft; elope) exterior -4, Interior (1) -1-4, Interior (1) -1-4, Interior (is to 13-10-5 zc ertical left ann ces & MWFR) plate grip lane of the tru al to the face) ils as applicat s per ANSI/TP L=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 ps	r 1) 5 5 5 5 5 5 5 7 1 1. 15 ; is live f on	14) See Deta cons LOAD C	Standa ail for Co sult qual ASE(S)	rd Indi onnect lified b) Sta	ustry Piggyback T ion to base truss uilding designer. ndard	russ Connection as applicable, or
FORCES	(lb) - Maximum Con	pression/Maximum	7) All plates	are 2x4 MT20 unle	ss otherwi	se indicated.						11111
TOP CHORD BOT CHORD WEBS	1-2=0/17, 2-3=-48/3 4-5=-64/108, 5-6=-6 7-8=-33/29, 8-9=0/1 2-14=-9/58, 13-14=- 11-12=-9/58, 10-11= 5-12=-102/0, 4-13=-	5, 3-4=-58/51, ;4/108, 6-7=-58/45, 7 :9/58, 12-13=-9/58, =-9/58, 8-10=-9/58 :204/117, 3-14=-194/8	8) Gable re 9) Gable str 10) This trus chord live 11) * This tru on the bo 3-06-00 f	uires continuous bo ds spaced at 2-0-0 has been designed load nonconcurren s has been designe tom chord in all are ll by 2-00-00 wide	ottom chor oc. I for a 10.0 t with any ed for a liv eas where will fit bety	d bearing. 0 psf bottom other live load e load of 20.0 a rectangle yeen the botto	ds. psf m		Grun	in the second seco	OR TH CA	
NOTES 1) Unbalance this design	6-11=-204/117, 7-10 ed roof live loads have	3-00-00 I chord an 12) One H2. recomme UPLIFT a is for upli 13) This trus Internatio	any other member A Simpson Strong- nded to connect tru t jt(s) 2, 8, 13, 14, 1 t only and does not is designed in acco nal Residential Cod	s. Tie conners ss to bear 1, and 10 consider ordance w e sections	ctors ing walls due This connect ateral forces. ith the 2018 5 R502.11.1 ar	to ion nd		1111VY	A A A A A A A A A A A A A A A A A A A		EEP. HUILIN	

- UPLIFT at jt(s) 2, 8, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information. Structure Building former the component compon and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GI A. GIL

Job	Truss	Truss Type	Qty	Ply	DRB - 191 FaNC	
24020061	PB3	Piggyback	3	1	Job Reference (optional)	163640986

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Feb 14 16:26:22 ID:hWp_L86wyFFOeznTCR8Yq0znZzD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.9	
Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]	

Flate Olisets ((A, T). [2:0-	s-o,⊏agej,	[4.0-3-0,⊏dge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.23 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift	0.2 0.2 0.3 wood sheaurins. ng directly 1=8-2-8, 2 5=8-2-8, 6 13=8-2-8 1=30 (LC 1=-112 (LI 4=-1 (LC - (LC 15) -	athing directly applie applied or 6-0-0 oc 2=8-2-8, 4=8-2-8, 3=8-2-8, 7=8-2-8, 14) C 21), 2=-69 (LC 14 15), 5=-14 (LC 15), 6 3=69 (LC 14), 13=-14	2 ed or 3), 4 5=-32	 Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 3-4-3 to 4-10 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); 	r २) S ss , ble, , 11. .15 ;	 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard 								
FORCES TOP CHORD	Max Grav (lb) - Maxi Tension 1-2=-45/8 ⁻ 4-5=-53/28	15) 1=42 (LC (LC 22), 5 22), 7=35: mum Com 1, 2-3=-61/ 8	14), 2=352 (LC 21), =125 (LC 22), 6=47 2 (LC 21), 13=4 (LC pression/Maximum /200, 3-4=-57/231,	4=4 0 (LC 22) 7 8 9	 CS=1.00; CI= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 	es now loads have b es continuous botto spaced at 4-0-0 oc s been designed fo ad nonconcurrent w has been designed n chord in all areas	een cor om chor or a 10.0 vith any for a liv where	nsidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle	is Is. psf				WITH CA	ROLA	
30T CHORD WEBS NOTES 1) Unbalance this design	2-6=-168/114, 4-6=-168/114 3-6=-322/161 eed roof live loads have been considered for in.				 3-06-00 tall b chord and ar provide mecibearing plate 1, 14 lb upliff 1) One H2.5A S recommende UPLIFT at jt(and does not 2) This truss is International R802.10.2 at 	y 2-00-00 wide wil y 2-00-00 wide wil y other members. hanical connection capable of withsta at joint 5 and 32 lb simpson Strong-Tie d to connect truss s) 2 and 4. This co t consider lateral for designed in accord Residential Code s nd referenced stand	(by oth nding 1 o uplift a connectio rces. ance w sections dard AN	veen the botto ers) of truss to 12 lb uplift at J t joint 6. ctors ing walls due t n is for uplift o ith the 2018 R F502.11.1 ar ISI/TPI 1.	m o joint to nly nd		Mennine.		SEA 0363	ER RA	Mannung

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 15,2024

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.