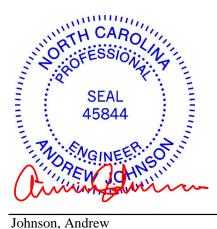
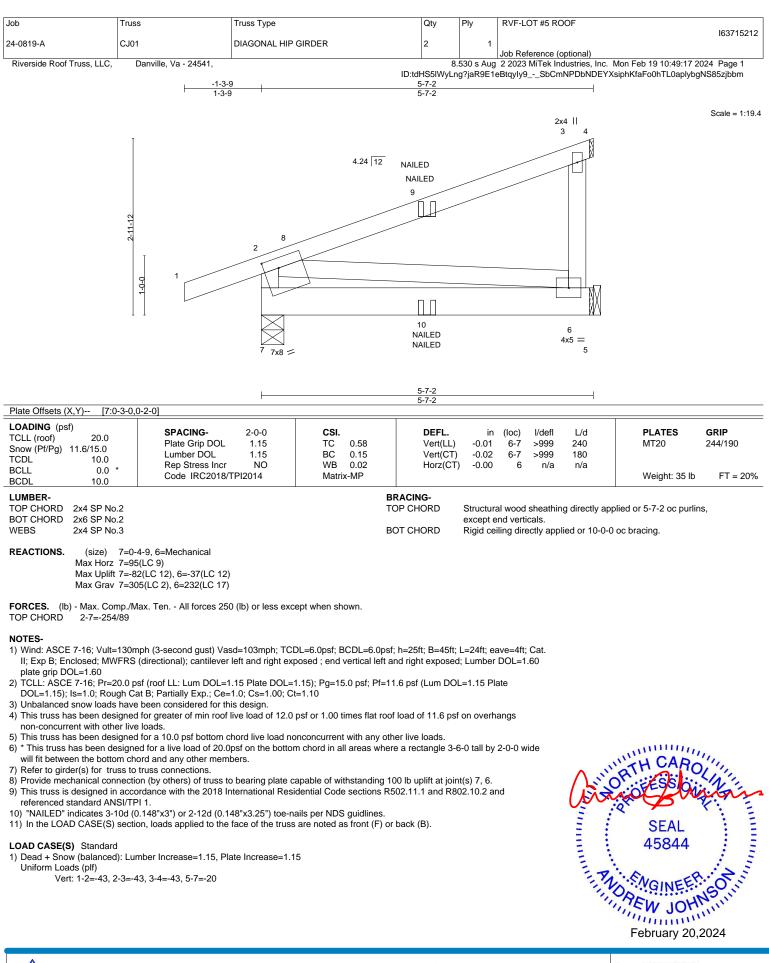


Trenco 818 Soundside Rd Edenton, NC 27932

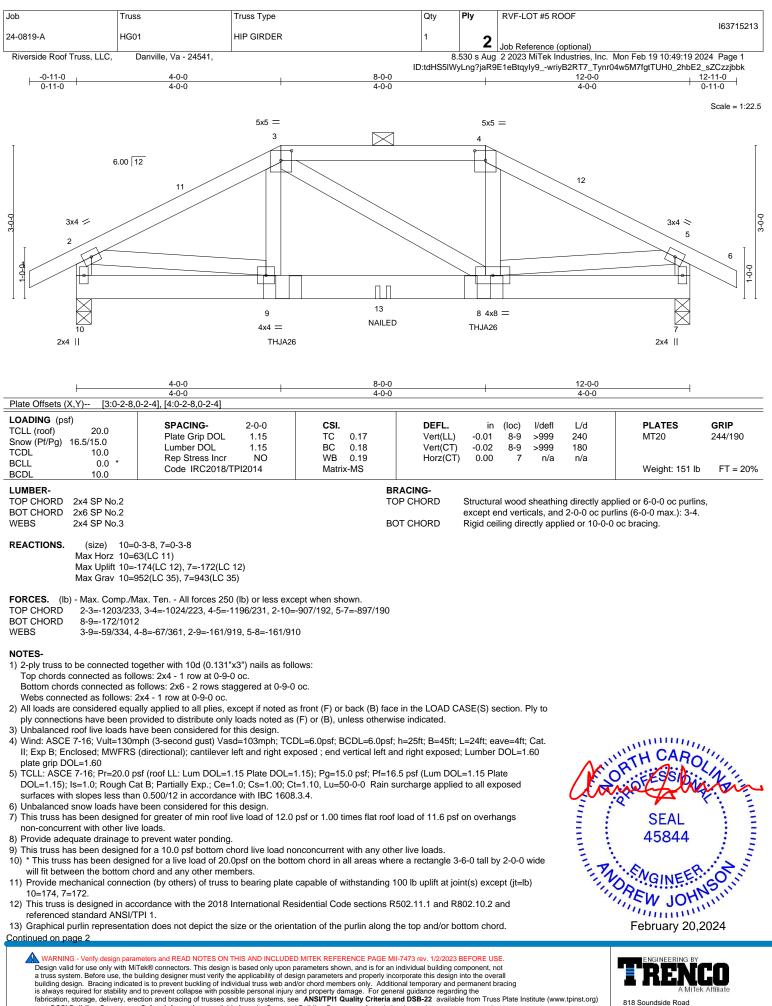

Re: 24-0819-A RVF-LOT #5 ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Riverside Roof Truss.

Pages or sheets covered by this seal: I63715212 thru I63715244


My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844



February 20,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

A MITek / 818 Soundside Road Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
					l63715213
24-0819-A	HG01	HIP GIRDER	1	2	
				_	Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:19 2024 Page 2
		ID	tdHS5IW	/Lng?jaR9	E1eBtqyIy9wriyB2RT7_Tynr04w5M7fgtTUH0_2hbE2_sZCzzjbbk

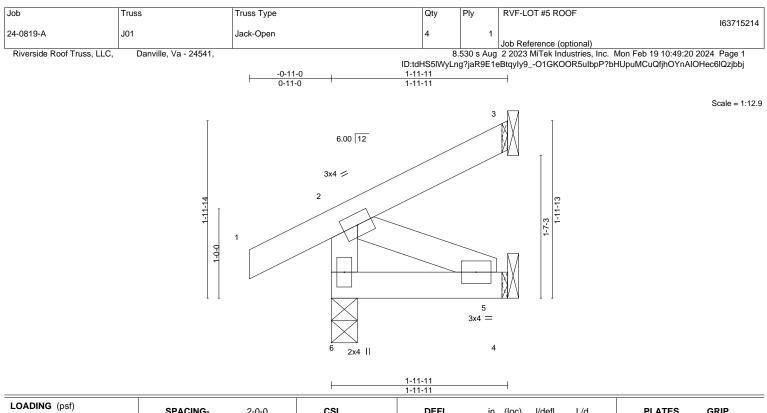
14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 4-0-6 from the left end to connect truss(es) to back face of bottom chord.

15) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 7-11-10 from the left end to connect truss(es) to back face of bottom chord.

(a) Fill all nail holes where hanger is in contact with lumber.
 (b) Fill all nail holes where hanger is in contact with lumber.
 (c) NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-43, 2-3=-43, 3-4=-53, 4-5=-43, 5-6=-43, 7-10=-20

Concentrated Loads (lb)

Vert: 9=-338(B) 8=-338(B) 13=-134(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 TOLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.03 WB 0.03	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 6 >999 240 Vert(CT) -0.00 5-6 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 11 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

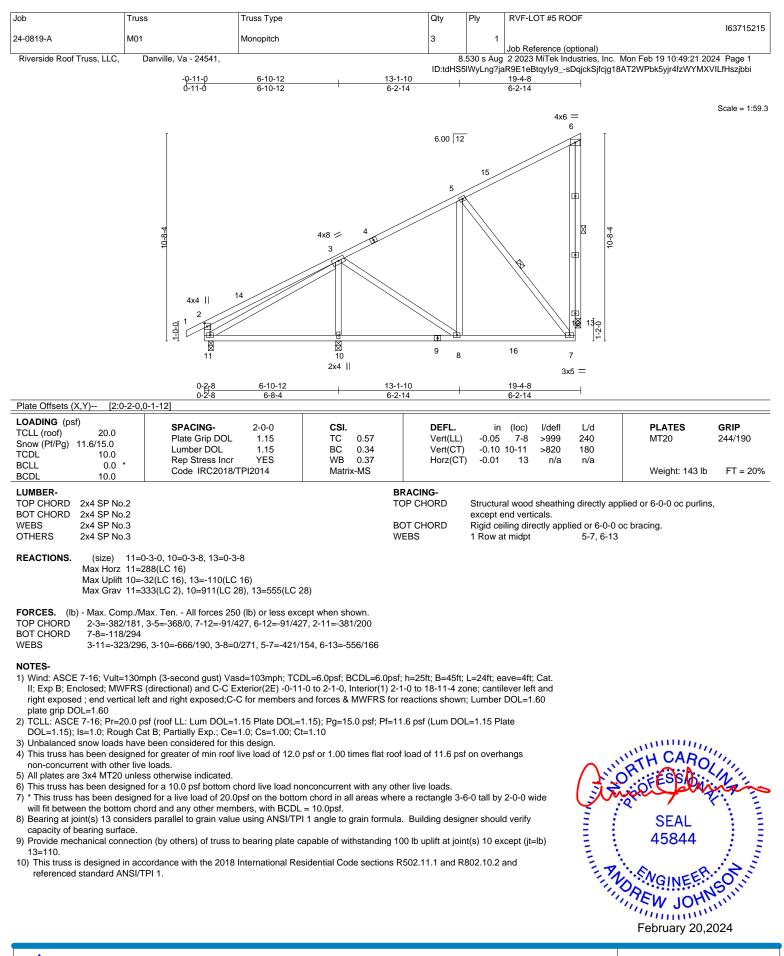
BRACING-TOP CHORD

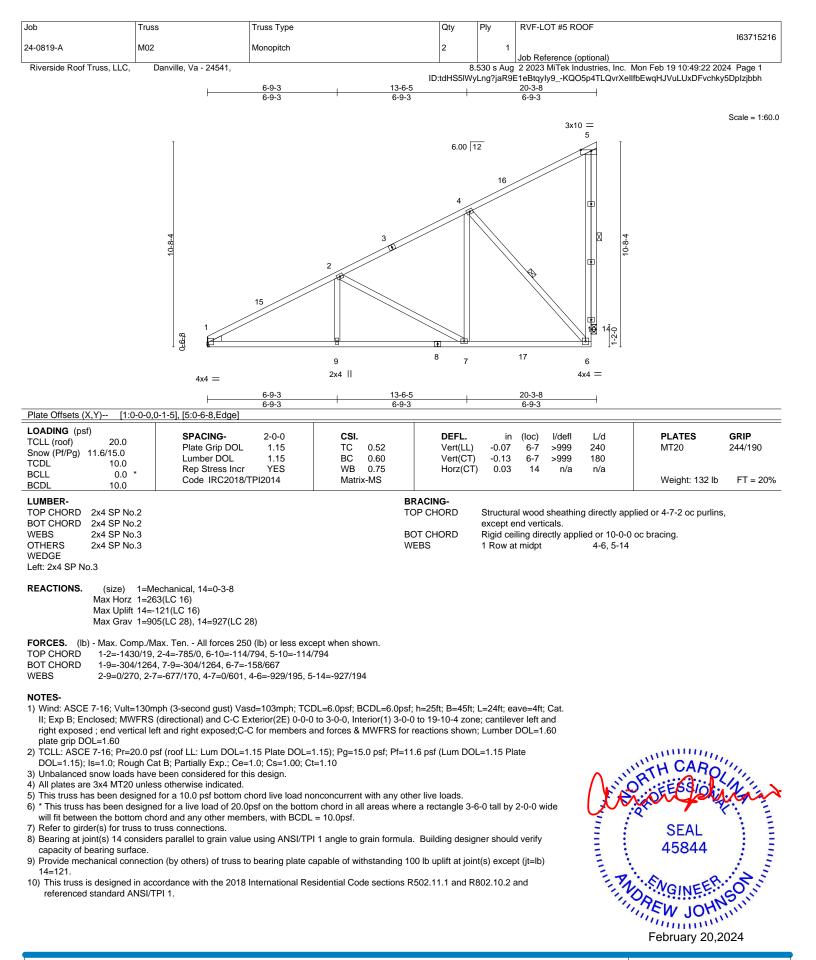
 TOP CHORD
 Structural wood sheathing directly applied or 1-11-11 oc purlins, except end verticals.

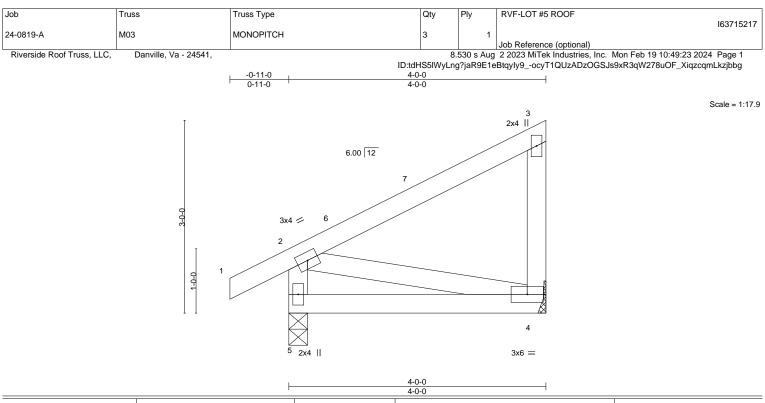
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 6=67(LC 16) Max Uplift 6=-20(LC 16), 3=-10(LC 13), 4=-14(LC 16)

Max Grav 6=159(LC 21), 3=37(LC 21), 4=36(LC 7)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-


- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

4-0-0							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.16 WB 0.06 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-5 >999 240 Vert(CT) -0.02 4-5 >999 180 Horz(CT) -0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 24 lb FT = 20%			
BCDL 10.0		IVIALITA-IVII					

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-

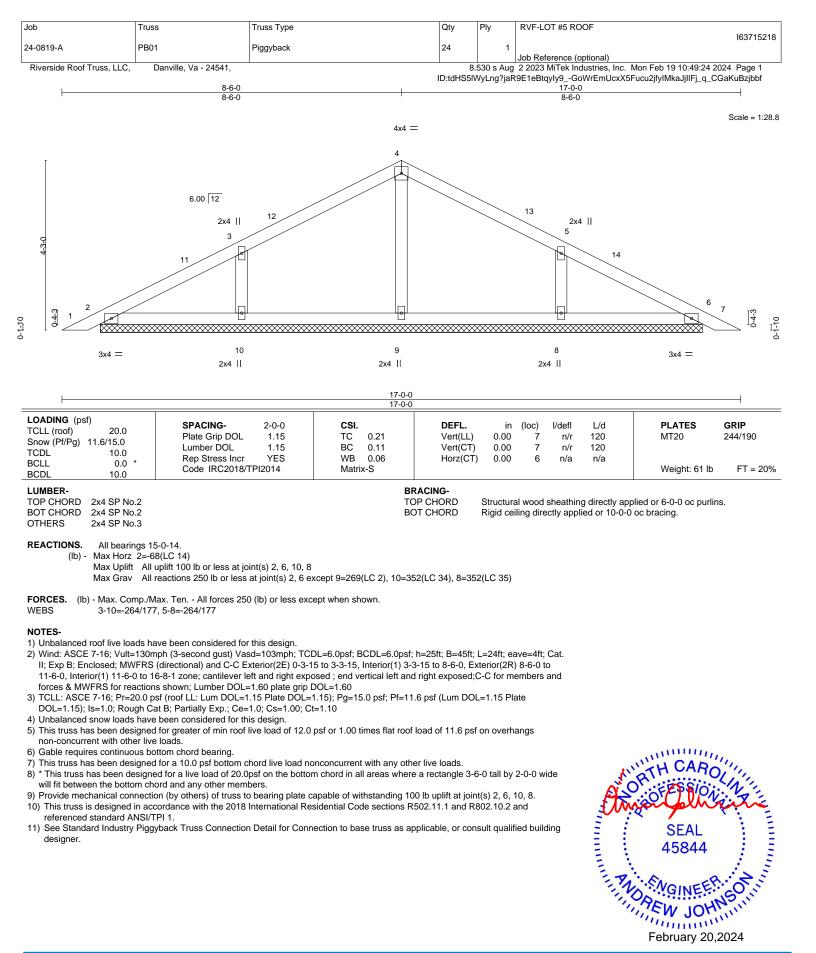
 TOP CHORD
 Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

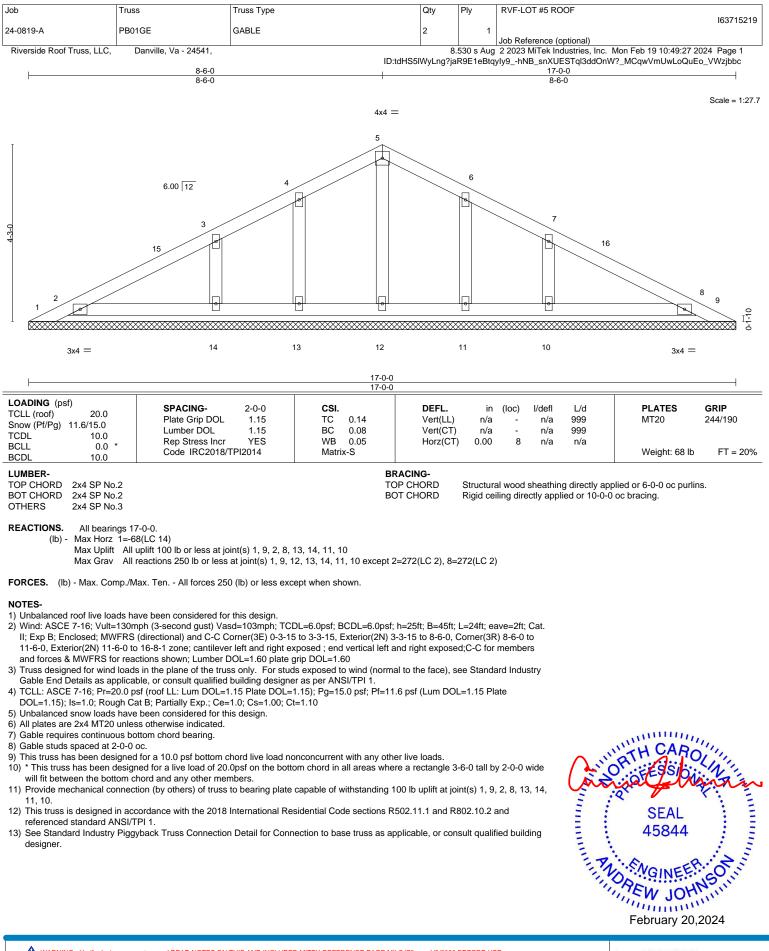
REACTIONS. (size) 5=0-3-8, 4=Mechanical Max Horz 5=97(LC 13) Max Uplift 5=-39(LC 16), 4=-26(LC 13)

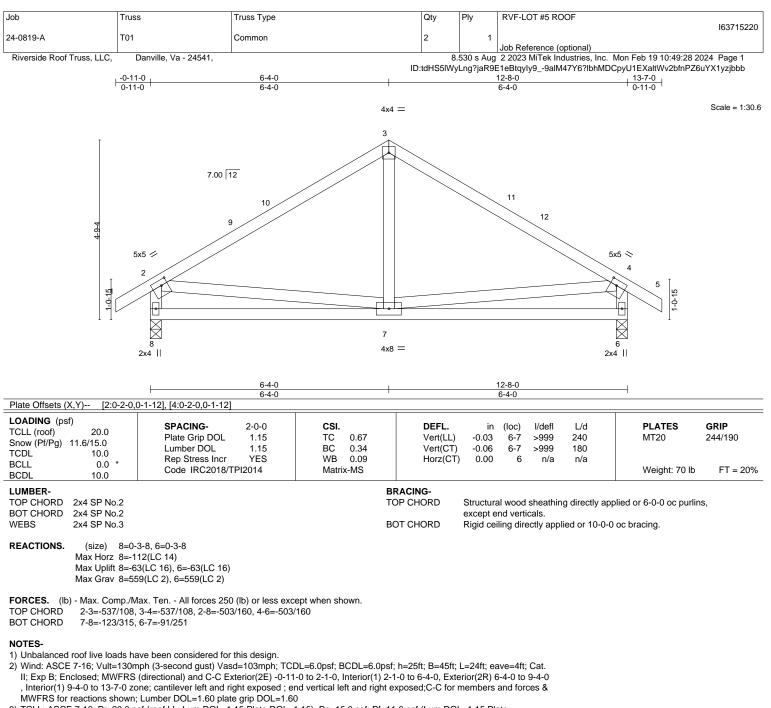
Max Grav 5=221(LC 2), 4=155(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



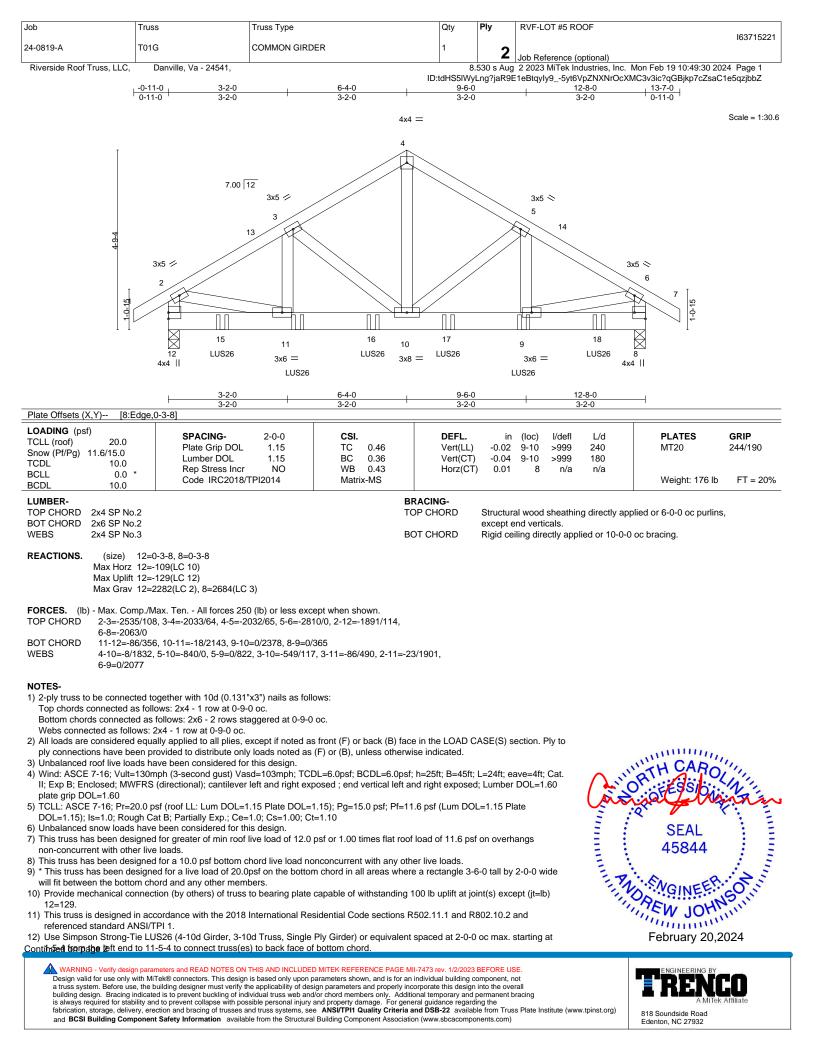
818 Soundside Road Edenton, NC 27932

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

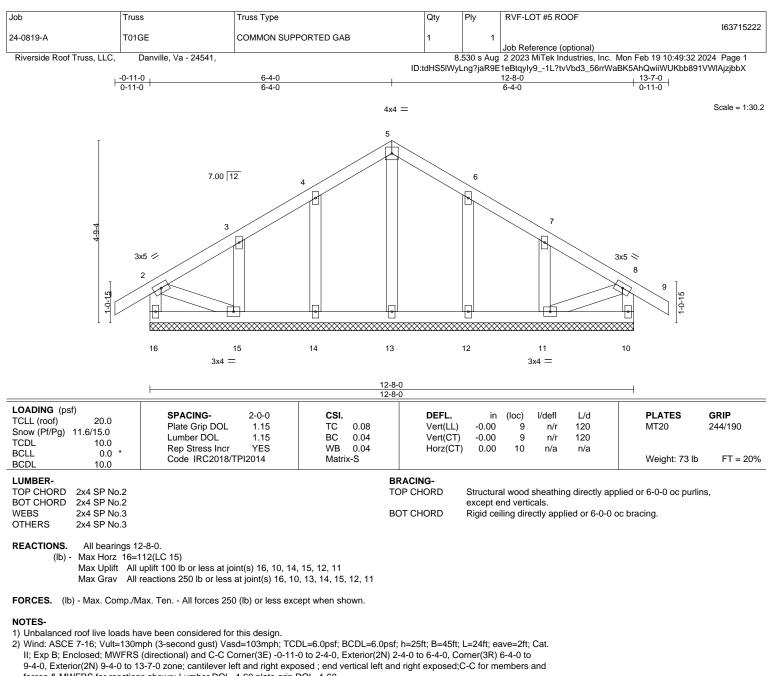
Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
					l63715221
24-0819-A	T01G	COMMON GIRDER	1	2	
				_	Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:30 2024 Page 2

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-5yt6VpZNXNrOcXMC3v3ic?qGBjkp7cZsaC1e5qzjbbZ

NOTES-

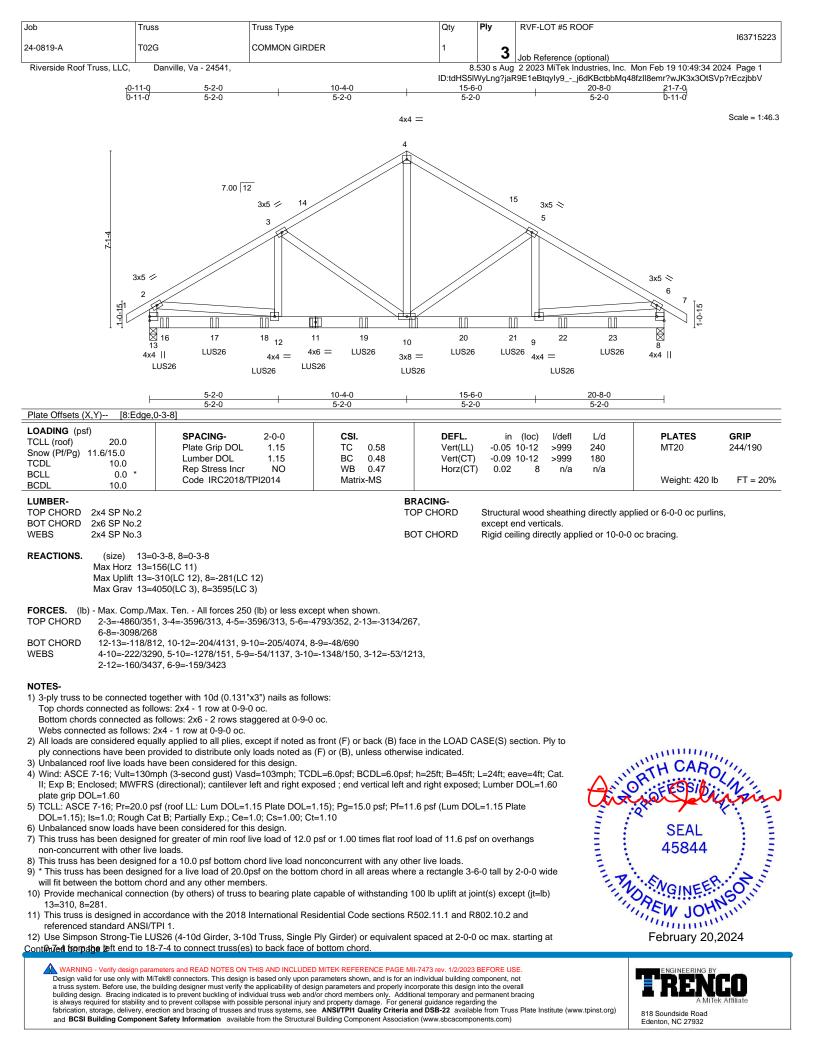
13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-4=-43, 4-6=-43, 6-7=-43, 8-12=-20

Concentrated Loads (lb) Vert: 9=-628(B) 11=-454(B) 15=-454(B) 16=-454(B) 17=-453(B) 18=-628(B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

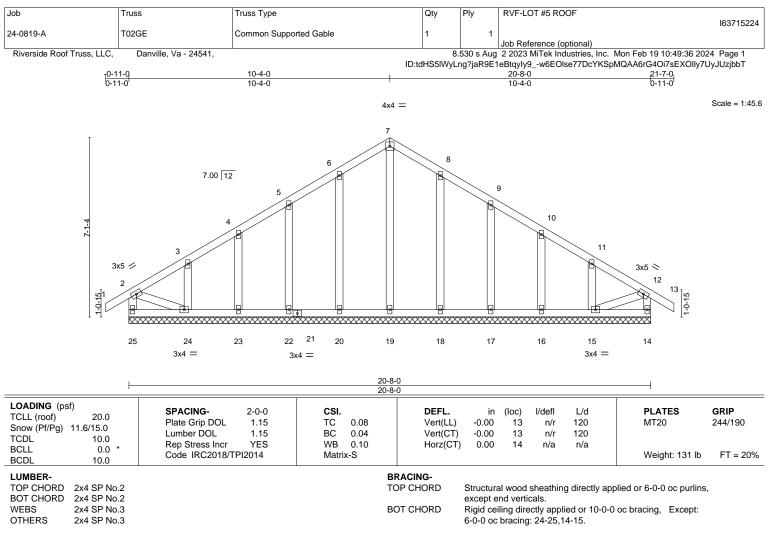
- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
						I63715223
	24-0819-A	T02G	COMMON GIRDER	1	3	lah Deference (entional)
					-	Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:35 2024 Page 2
			IC	D:tdHS5IW	yLng?jaR9	E1eBtqyly9Swg?YXdVMvUhilE9sSftJ2Y53kPAor7bjTkPn2zjbbU

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-2=-43, 2-4=-43, 4-6=-43, 6-7=-43, 8-13=-20 Concentrated Loads (lb)

Vert: 11=-477(B) 10=-477(B) 16=-459(B) 17=-477(B) 18=-477(B) 19=-477(B) 20=-477(B) 21=-477(B) 22=-477(B) 23=-454(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. All bearings 20-8-0.

(lb) - Max Horz 25=158(LC 15)

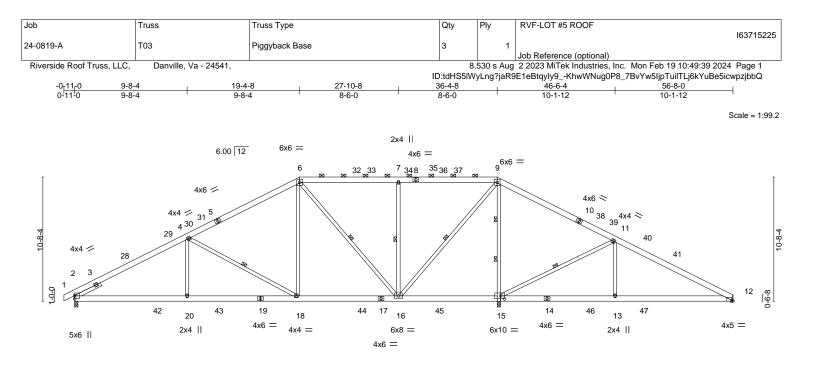
Max Uplift All uplift 100 lb or less at joint(s) 25, 20, 22, 23, 24, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 25, 14, 19, 20, 22, 23, 24, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 2-4-0, Exterior(2N) 2-4-0 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Coblecture spaced at 2.0.0 ac
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 20, 22, 23, 24, 18, 17, 16, 15.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

L	9-8-4	19-4-8	27-10-8	36-4-8	36-6-4	46-6-4	56-8-0	
	9-8-4	9-8-4	8-6-0	8-6-0	0-1-12	10-0-0	10-1-12	1
Plate Offsets (>	(,Y) [12:0-1-6	,Edge], [15:0-4-0,0-3-0]						
LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL) 20.0 16.5/15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 18-20 -0.24 18-20 0.05 12	l/defl L/d >999 240 >999 180 n/a n/a	MT20	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3			BRACING- TOP CHORD	except	I sheathing direc	applied or 4-5-15 oc purlin	ıs,
SLIDER	Left 2x4 SP No.3	3 2-6-0		BOT CHORD	Rigid ceiling dir 6-0-0 oc bracino	2 11	10-0-0 oc bracing, Except:	
				WEBS	1 Row at midpt 2 Rows at 1/3 p		8, 6-16, 7-16, 9-16, 11-15 5	
REACTIONS.	Max Horz 2=21 Max Uplift 2=-1	3-8, 12=Mechanical, 15=0-3-8 1(LC 15) 14(LC 16), 12=-42(LC 16), 15=-148(LC 12(LC 28), 12=629(LC 29), 15=3150(I			F			

FORCES. (lb)	- Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
TOP CHORD	2-4=-2447/235, 4-6=-1521/243, 6-7=-752/231, 7-9=-752/231, 9-11=0/888,
	11-12=-642/108
BOT CHORD	2-20=-114/2253, 18-20=-114/2253, 16-18=0/1334, 15-16=-693/176, 13-15=-4/512,
	12-13=-4/512
WEBS	4-20=0/452, 4-18=-1071/179, 6-18=0/914, 6-16=-1034/64, 7-16=-736/171,

9-16=-146/2014, 9-15=-2258/246, 11-15=-1341/194, 11-13=0/545

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=57ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-9-0, Interior(1) 4-9-0 to 19-4-8, Exterior(2R) 19-4-8 to 27-4-11, Interior(1) 27-4-11 to 36-4-8, Exterior(2R) 36-4-8 to 44-4-11, Interior(1) 44-4-11 to 56-8-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

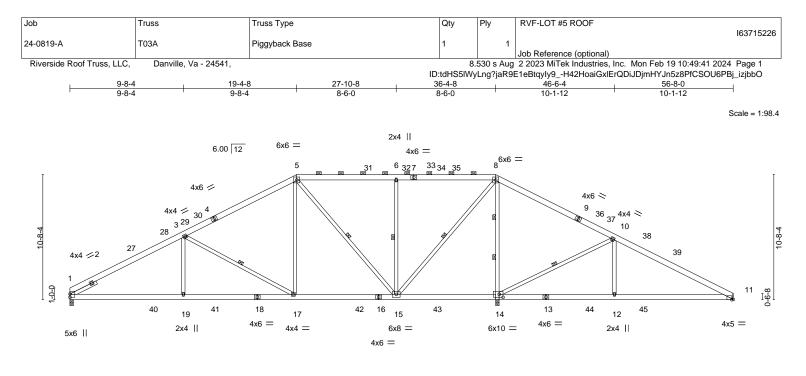
6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

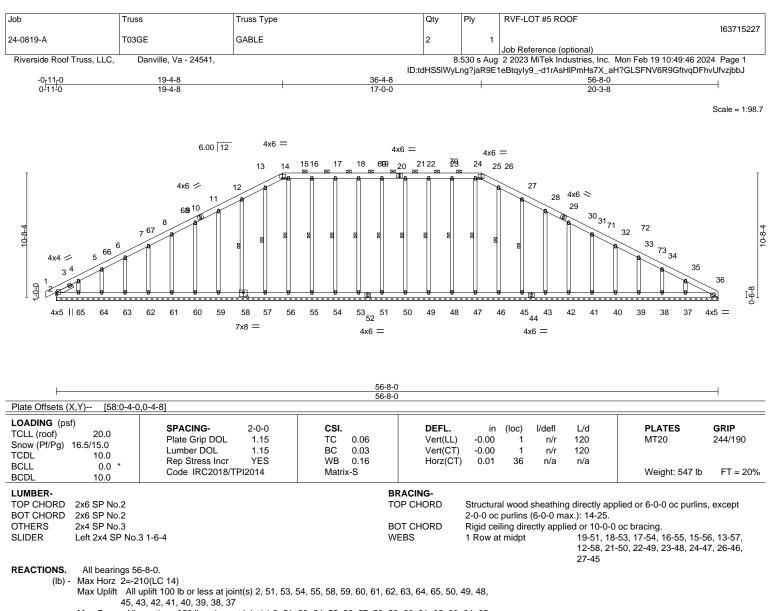
818 Soundside Road


Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
					163715225
24-0819-A	T03	Piggyback Base	3	1	
					Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:39 2024 Page 2
		IC	D:tdHS5IW	yLng?jaR9	E1eBtqyIy9KhwWNug0P8_7BvYw5IjpTuilTLj6kYuBe5icwpzjbbQ

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=114, 15=148.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


9-8-4	19-4-8 9-8-4	27-10-8	<u>36-4-8</u> 8-6-0	36-6-4 0-1-12	46-6-4		<u>56-8-0</u> 10-1-12	
	,Edge], [14:0-4-0,0-3-0]	000	000	0.12			10 1 12	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.75 BC 0.66 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 17-19 -0.24 17-19 0.05 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 408 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3	3 2-6-0	Т	OT CHORD /EBS	2-0-0 oc purlin	s (6-0-0 ma rectly appli g: 14-15.	ax.): 5-8. ed or 10-0-0	blied or 4-6-0 oc purlins oc bracing, Except: 5, 6-15, 8-15, 10-14	, except
Max Horz 1=20 Max Uplift 1=-8	3-8, 11=Mechanical, 14=0-3-8)5(LC 15) 5(LC 16), 11=-42(LC 16), 14=-147(LC)62(LC 27), 11=630(LC 28), 14=3149(
TOP CHORD 1-3=-2452/241 10-11=-643/11 BOT CHORD 1-19=-114/225 11-12=-7/513 WEBS 3-19=0/453, 3-	ax. Ten All forces 250 (lb) or less e: , 3-5=-1524/247, 5-6=-753/234, 6-8=- 1 8, 17-19=-114/2258, 15-17=0/1337, 1 -17=-1074/179, 5-15=-1033/64, 6-15= -14=-2257/246, 10-14=-1341/194, 10-	-753/234, 8-10=0/886, 4-15=-691/176, 12-14=-7/ -736/171, 8-15=-146/2014						
 2) Wind: ASCE 7-16; Vult=130m II; Exp B; Enclosed; MWFRS 27-4-11, Interior(1) 27-4-11 to exposed ; end vertical left and grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 pp DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) This truss has been designed 7) * This truss has been designed will fit between the bottom cho 8) Refer to girder(s) for truss to to 9) Bearing at joint(s) 14 conside capacity of bearing surface. 	for a 10.0 psf bottom chord live load ad for a live load of 20.0psf on the bottor ord and any other members, with BCE truss connections. rs parallel to grain value using ANSI/T tion (by others) of truss to bearing plat	-0 to 5-8-0, Interior(1) 5-8- 1, Interior(1) 44-4-11 to 56 forces & MWFRS for reac =1.15); Pg=15.0 psf; Pf=11 Ct=1.10, Lu=50-0-0; Min. f 100/12 in accordance with I nonconcurrent with any oth tom chord in all areas when DL = 10.0psf. PI 1 angle to grain formula	0 to 19-4-8, Exteri 5-8-0 zone; cantile tions shown; Luml 6.5 psf (Lum DOL: lat roof snow load BC 1608.3.4. her live loads. re a rectangle 3-6- a. Building design	ior(2R) 19-4-8 t iver left and righ ber DOL=1.60 (=1.15 Plate governs. Rain -0 tall by 2-0-0 (er should verify	o nt olate wide	Contraction of the second seco	SEAL 45844	All Shannan All

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
						163715226
	24-0819-A	T03A	Piggyback Base	1	1	
						Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:41 2024 Page 2
			ID	:tdHS5IWy	Lng?jaR9	E1eBtqyIy9H42HoaiGxIErQDiJDjmHYJn5z8PfCSOU6PBj_izjbbO

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Max Grav All reactions 250 lb or less at joint(s) 2, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 50, 49, 48, 47, 46, 45, 43, 42, 41, 40, 39, 38, 37, 36

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 12-13=-107/268, 13-14=-117/291, 14-15=-110/283, 15-16=-110/283, 16-17=-110/283, 17-18=-110/283, 18-19=-110/283, 19-21=-110/283, 21-22=-110/283, 22-23=-110/283, 21-22=-110/283, 21-2

23-24=-110/283, 24-25=-110/283, 25-26=-117/291, 26-27=-107/267

NOTES-

1) Unbalanced roof live loads have been considered for this design.

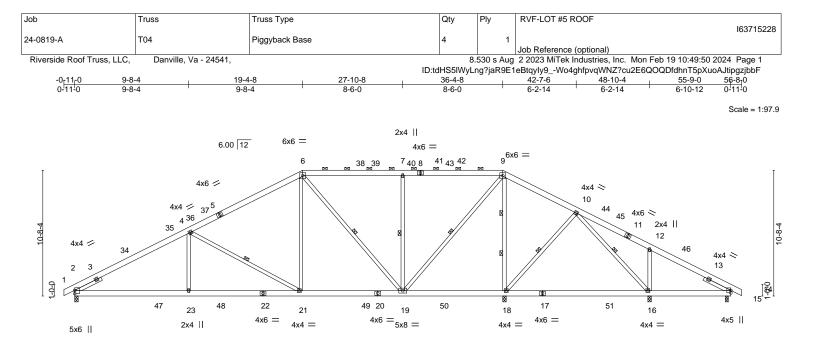
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=57ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-9-0, Exterior(2N) 4-9-0 to 19-4-8, Corner(3R) 19-4-8 to 25-0-8, Exterior(2N) 25-0-8 to 36-4-8, Corner(3R) 36-4-8 to 41-10-8, Exterior(2N) 41-10-8 to 56-8-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

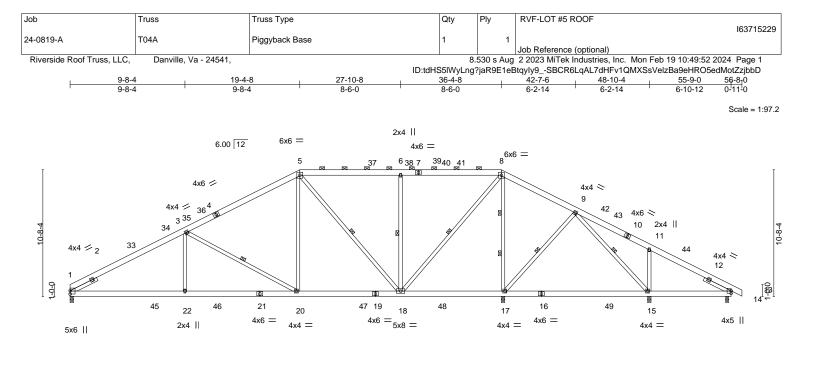
	ob	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
		TODOF				I63715227
4	4-0819-A	T03GE	GABLE	2	1	
						Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:47 2024 Page 2
			ID:tdl	HS5IWyLn	g?jaR9E1e	Btqyly95DPY3dm1Xb889TZ_thoa1HBZcucM4MULe1CLzjbbl

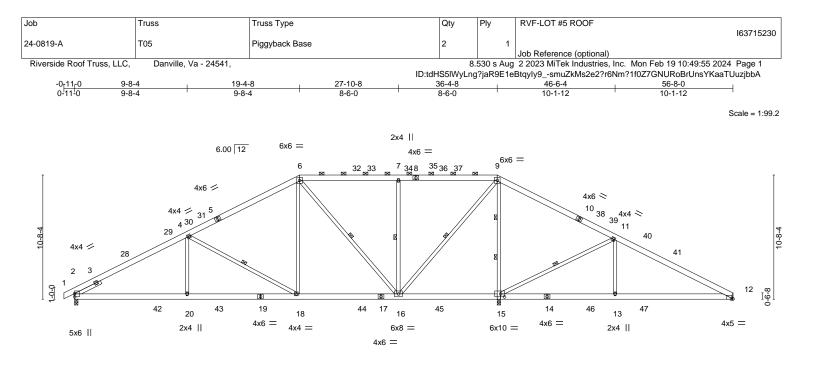

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 50, 49, 48, 45, 43, 42, 41, 40, 39, 38, 37.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)




F	<u>9-8-4</u> 9-8-4	<u>19-4-8</u> 9-8-4	27-10-8 8-6-0	36-4-8	36-6-4 0-1-12	48-10-4 12-4-0	55-6-8	<u>55</u> -9-0 0-2-8
LOADING (ps		3-0-4	0-0-0		0-1-12	12-4-0	0-0-4	0-2-0
TCLL (roof) Snow (Pf/Pg)	20.0 16.5/15.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.75 BC 0.70	DEFL. Vert(LL) Vert(CT)	in (loc) -0.19 16-18 -0.30 16-18	l/defl L/d >766 240 >498 180	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.85 Matrix-MS	Horz(CT)	0.05 18	n/a n/a	Weight: 421	b FT = 20%
LUMBER-			E	BRACING-				
TOP CHORD			Т				pplied or 4-3-4 oc purli	ns, except
BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.3		R			(6-0-0 max.): 6-9. ectly applied or 6-0-0) oc bracing	
SLIDER		3 2-6-0, Right 2x4 SP No.3 2-6-0		VEBS	1 Row at midpt 2 Rows at 1/3 p	4-21, 6-	19, 7-19, 9-19, 10-18,	10-16
REACTIONS.		3-8 except (jt=length) 14=0-3-0.						
(lb) ·	 Max Horz 2=20 Max Unlift All 1 	8(LC 15) µplift 100 lb or less at joint(s) 16, 14 ex	cent 2-125/I C 16) 18	106(LC 16)				
	Max Grav All r	reactions 250 lb or less at joint(s) ro, reex 48(LC 55)			2(LC 29),			
2) Wind: ASCE	9-19=-149/189 I roof live loads ha E 7-16; Vult=130m	21=-1059/177, 6-21=0/925, 6-19=-986 1, 9-18=-1996/192, 10-18=-509/188, 1 we been considered for this design. ph (3-second gust) Vasd=103mph; TC	0-16=-57/271, 12-16=-38	f; h=25ft; B=45ft; L				
27-3-2, Inte	rior(1) 27-3-2 to 3	(directional) and C-C Exterior(2E) -0-1 6-4-8, Exterior(2R) 36-4-8 to 44-3-2, Ir osed;C-C for members and forces & M	terior(1) 44-3-2 to 56-8-0	zone; cantilever le	eft and right exp		annuur.	
3) TCLL: ASC DOL=1.15); surcharge a	Is=1.0; Rough Ca pplied to all expos	sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; C sed surfaces with slopes less than 0.50	Ct=1.10, Lu=50-0-0; Min. 1	flat roof snow load		ΔS	OP FESSIO	LINU
5) This truss h		been considered for this design. for greater of min roof live load of 12.0 loads.) psf or 1.00 times flat roc	of load of 11.6 psf	on overhangs			gras
		prevent water ponding.				Ξ.	: SEAL	1 2
8) * This truss	has been designe	for a 10.0 psf bottom chord live load r ad for a live load of 20.0psf on the botto ord and any other members, with BCD	om chord in all areas whe		0 tall by 2-0-0 w	ride t	45844	A. M. Martin
(jt=lb) 2=12	5, 18=106.	on (by others) of truss to bearing plate	, c	. ,		t The second	NGINEE	3
referenced	standard ANSI/T					11	REMON	NSIII
11) Graphical	purlin representat	ion does not depict the size or the orie	ntation of the purlin along	the top and/or bo	ttom chord.		Eebruary 20	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 20,2024

	8-4 19-4-8	27-10-8	36-4-8	36 ₁ 6-4	48-10-4		55 ₁ 9-0
9-	8-4 9-8-4	8-6-0	8-6-0	0-1 ["] 12	12-4-0	6-8-4	0-2-8
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 CSI. 1.15 TC 0.7 1.15 BC 0.7 YES WB 0.8 I2014 Matrix-MS	70Vert(CT)35Horz(CT)	in (loc) -0.19 15-17 -0.30 15-17 0.05 17	l/defl L/d >766 240 >498 180 n/a n/a	PLATES MT20 Weight: 419 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP I BOT CHORD 2x6 SP I WEBS 2x4 SP I SLIDER Left 2x4 REACTIONS. All bea (lb) - Max Ho Max Up	ło.2 ło.2	0-3-0. (s) 1, 15, 13 except 17=-105(L	BOT CHORD WEBS C 16)	2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt 2 Rows at 1/3 p			, I
TOP CHORD 1-3=-2 BOT CHORD 1-22=- WEBS 3-22=(8-18=- NOTES- 1) Unbalanced roof live I 2) Wind: ASCE 7-16; Vu II; Exp B; Enclosed; M 27-3-2, Interior(1) 27- end vertical left and ri	omp./Max. Ten All forces 250 (549/265, 3-5=-1631/272, 5-6=-83 125/2345, 20-22=-125/2345, 18-2 /445, 3-20=-1062/177, 5-18=-986 149/1891, 8-17=-1994/192, 9-17= oads have been considered for th tt=130mph (3-second gust) Vasd= WFRS (directional) and C-C Exte 3-2 to 36-4-8, Exterior(2R) 36-4-8 ght exposed;C-C for members an	2/270, 6-8=-832/270, 8-9=0/62 0=0/1435, 17-18=-437/151, 15 i/42, 6-18=-739/179, 5-20=0/92 -509/187, 9-15=-56/269, 11-15 is design. =103mph; TCDL=6.0psf; BCDL prior(2E) 0-0-0 to 5-6-14, Interio to 44-3-2, Interior(1) 44-3-2 to	8 5-17=-255/72 26, 5=-388/168 ==6.0psf; h=25ft; B=45ft; L or(1) 5-6-14 to 19-4-8, Ext 56-8-0 zone; cantilever le	terior(2R) 19-4-8 eft and right exp	3 to		
 DOL=1.15); Is=1.0; R surcharge applied to a 4) Unbalanced snow loa 5) This truss has been d non-concurrent with o 6) Provide adequate dra 7) This truss has been d 8) * This truss has been d 8) * This truss has been d 9) Provide mechanical c (jt=lb) 17=105. 10) This truss is designer referenced standard 	nage to prevent water ponding. esigned for a 10.0 psf bottom cho designed for a live load of 20.0ps tom chord and any other membe ponnection (by others) of truss to b d in accordance with the 2018 Int	D; Cs=1.00; Ct=1.10, Lu=50-0-1 ess than 0.500/12 in accordance design. e load of 12.0 psf or 1.00 times rd live load nonconcurrent with f on the bottom chord in all are rs, with BCDL = 10.0psf. earing plate capable of withsta ernational Residential Code se	0; Min. flat roof snow load ce with IBC 1608.3.4. a flat roof load of 11.6 psf a any other live loads. as where a rectangle 3-6- anding 100 lb uplift at joint ections R502.11.1 and R8	9 governs. Rain on overhangs -0 tall by 2-0-0 w (s) 1, 15, 13 exc 02.10.2 and	vide xept	SEAL 45844	2024

L	9-8-4	19-4-8	27-10	-8	36-4-8	36-6-4		46-6-4	1	56-8-0	
	9-8-4	9-8-4	8-6-	2	8-6-0	0-1-12		10-0-0	1	10-1-12	1
Plate Offsets (X,Y)	- [12:0-1-6,Edge]	, [15:0-4-0,0-3-0]									
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 16.5/ TCDL BCLL BCDL	20.0 /15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI:	2-0-0 CS 1.15 TC 1.15 BC YES WB 2014 Ma	0.75 0.67	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.05		l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 411 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6	SP No.2 SP No.2 SP No.3					except		sheathing	5 y 11	lied or 4-5-15 oc purlin	S,
SLIDER Left	2x4 SP No.3 2-6-0)				Rigid cei 6-0-0 oc	0	2 11	ied or 10-0-0	oc bracing, Except:	
					WEBS	1 Row at 2 Rows a			4-18, 6-16 9-15	, 7-16, 9-16, 11-15	
,	size) 2=0-3-8, 12 x Horz 2=211(LC 1	eMechanical, 15=0-	-3-8								

```
12-13=-4/512
WEBS 4-20=0/452, 4-18=-1071/179, 6-18=0/914, 6-16=-1034/64, 7-16=-736/171,
9-16=-146/2014, 9-15=-2258/246, 11-15=-1341/194, 11-13=0/545
```

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=57ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-9-0, Interior(1) 4-9-0 to 19-4-8, Exterior(2R) 19-4-8 to 27-4-11, Interior(1) 27-4-11 to 36-4-8, Exterior(2R) 36-4-8 to 44-4-11, Interior(1) 44-4-11 to 56-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

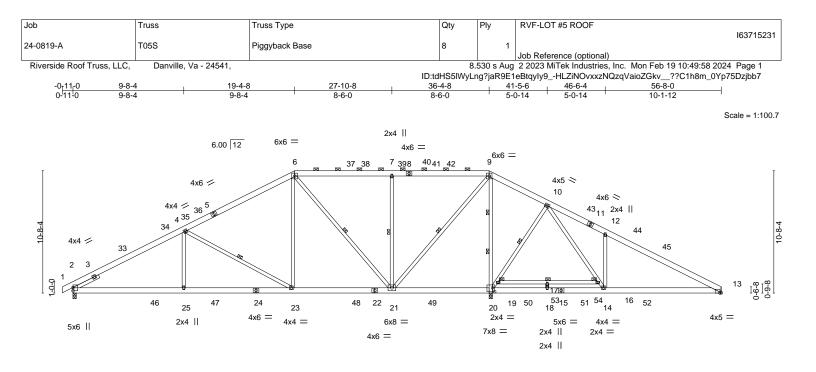
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
					163715230
24-0819-A	T05	Piggyback Base	2	1	
					Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:55 2024 Page 2
		ID:tdH	IS5IWyLng	/?jaR9E1e	Btqyly9smuZkMs2e2?r6Nm?1f0Z7GNURoBrUnsYKaaTUuzjbbA

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=114, 15=148.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L	9-8-4	19-4-8	27-10-8	36-4-8	36-6-4 41-5-6	46-6-4	56-8-0	
	9-8-4	9-8-4	8-6-0	8-6-0	0-1-12 4-11-2	5-0-14	10-1-12	
Plate Offsets ((X,Y) [13:0-1-6	,Edge], [20:0-2-4,0-4-0]						
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.73 BC 0.70 WB 0.93 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT	-0.19 17 -0.30 16-17	l/defl L/d >999 240 >817 180 n/a n/a	PLATES MT20 Weight: 434 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER		lo.2		BRACING- TOP CHORD BOT CHORD WEBS	except 2-0-0 oc purlins ((6-0-0 max.): 6-9. ctly applied or 6-0-0 : 16-19 4-23, 6-2	oplied or 4-6-12 oc purlin oc bracing. Except: 21, 7-21, 9-21, 10-19	IS,
REACTIONS.	Max Horz 2=21 Max Uplift 2=-1 Max Grav 2=15	3-8, 13=Mechanical, 20=0-3-8 1(LC 15) 21(LC 16), 13=-28(LC 16), 20=-45(L i87(LC 28), 13=675(LC 29), 20=352 ax. Ten All forces 250 (lb) or less	5(LC 29)					
TOP CHORD	2-4=-2396/249 10-12=-793/17	(a), 161 All forces 230 (b) of less (), 4-6=-1469/258, 6-7=-679/253, 7-9: /5, 12-13=-740/53)8, 23-25=-127/2208, 21-23=0/1287.	=-679/253, 9-10=0/931,	=0/597				

 BOT CHORD
 2-25=-127/2208, 23-25=-127/2208, 21-23=0/1287, 20-21=-780/157, 13-14=0/597

 WEBS
 4-25=0/453, 4-23=-1075/178, 6-23=0/921, 6-21=-1068/52, 7-21=-739/181, 9-21=-149/2028, 9-20=-2239/197, 19-20=-1135/106, 10-19=-1024/141, 10-16=-64/1504, 14-16=-100/1392, 12-14=-536/221

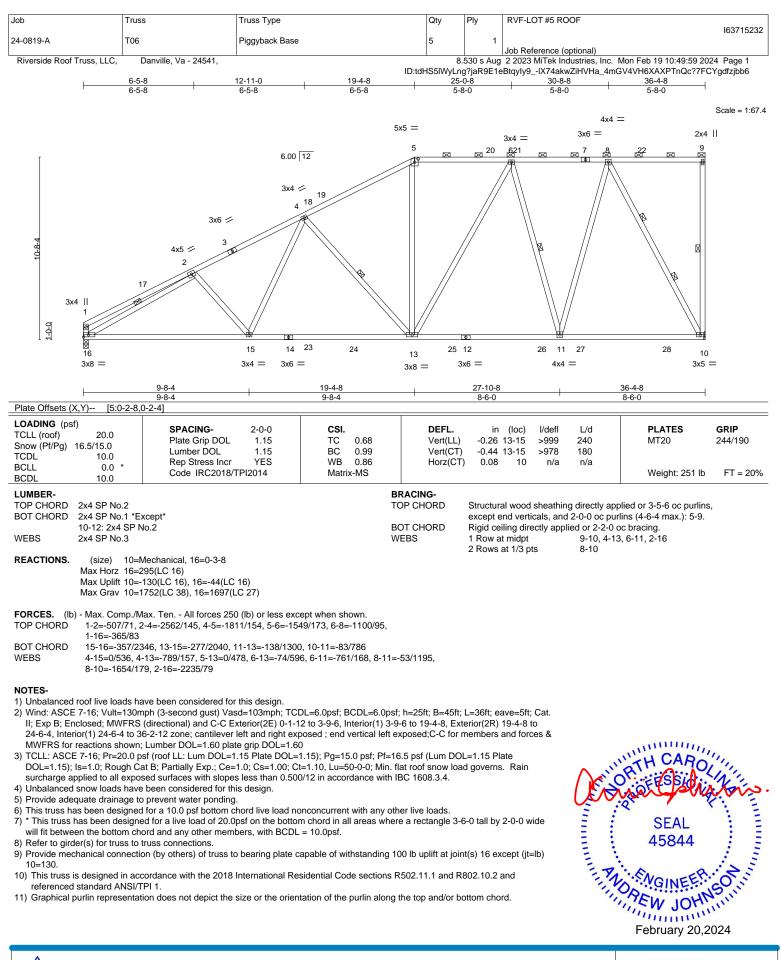
NOTES-

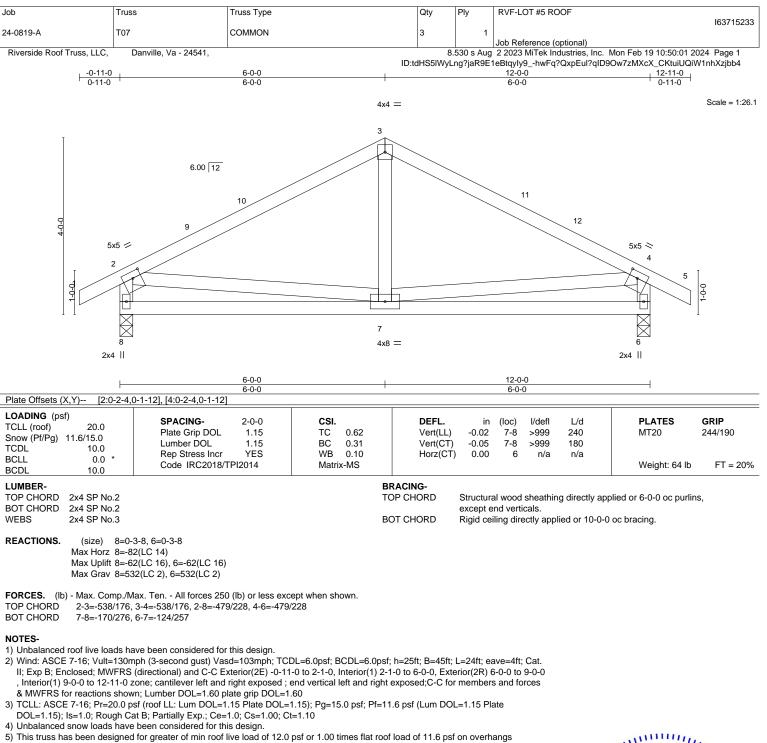
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=57ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-9-0, Interior(1) 4-9-0 to 19-4-8, Exterior(2R) 19-4-8 to 27-4-11, Interior(1) 27-4-11 to 36-4-8, Exterior(2R) 36-4-8 to 44-4-11, Interior(1) 44-4-11 to 56-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



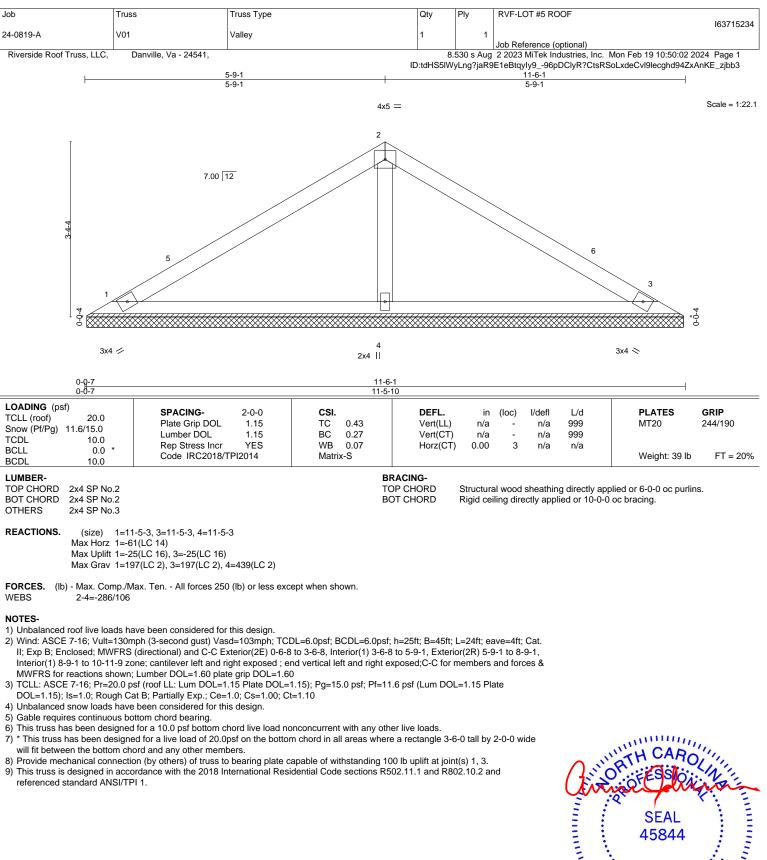

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #5 ROOF
					163715231
24-0819-A	T05S	Piggyback Base	8	1	
					Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Mon Feb 19 10:49:58 2024 Page 2
		ID:to	HS5IWyLi	ng?jaR9E1	eBtqyly9HLZiNOvxxzNQzqVaioZGkv??C1h8m_0Yp75Dzjbb7

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 20 except (jt=lb) 2=121.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

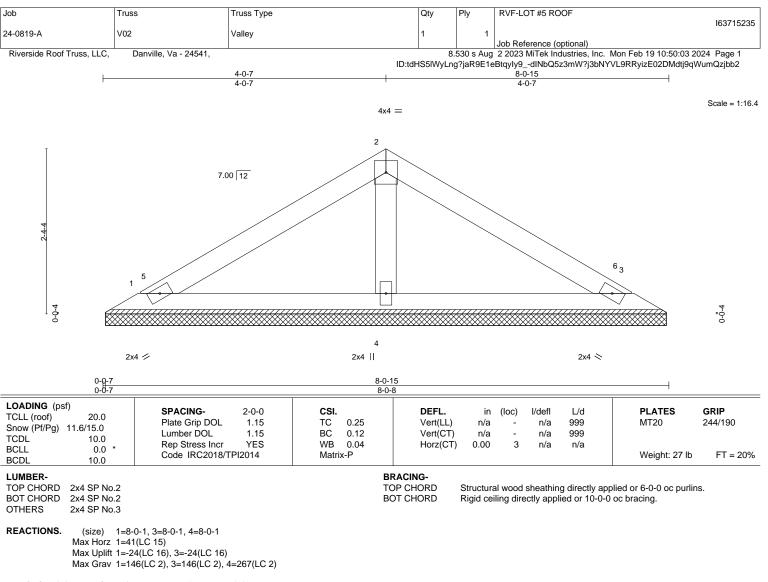
non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

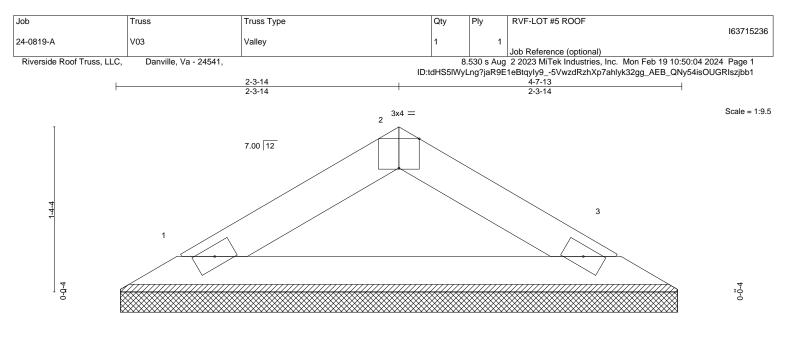
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-0-7, Exterior(2R) 4-0-7 to 7-0-7, Interior(1) 7-0-7 to 7-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

2x4 💋

2x4 📎

Structural wood sheathing directly applied or 4-7-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <u>0-</u> 7 0-0-7		<u>4-7-1</u> 4-7-6							
Plate Offsets (X,Y) [2:0-2-0,	Edge]								
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.16 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 13 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=4-6-15, 3=4-6-15 Max Horz 1=-21(LC 14) Max Uplift 1=-9(LC 16), 3=-9(LC 16) Max Grav 1=143(LC 2), 3=143(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

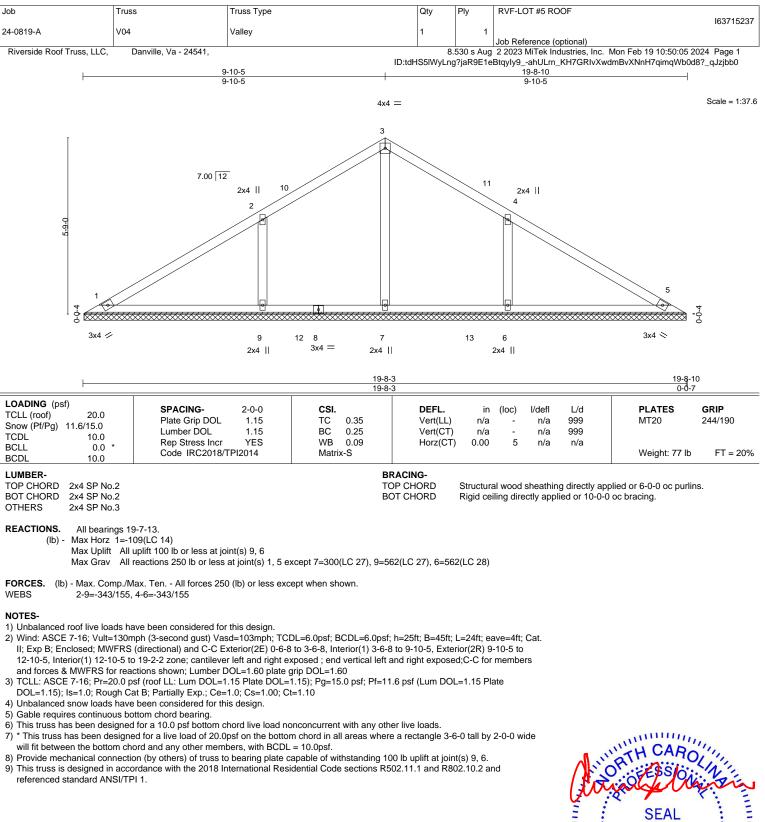
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

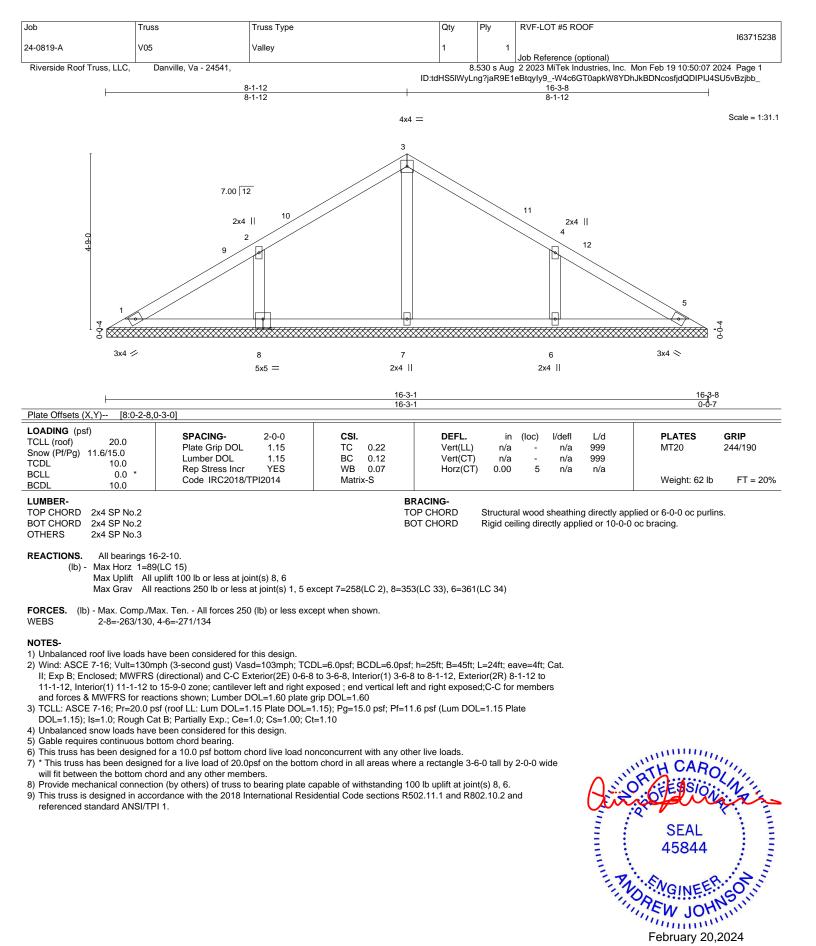
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

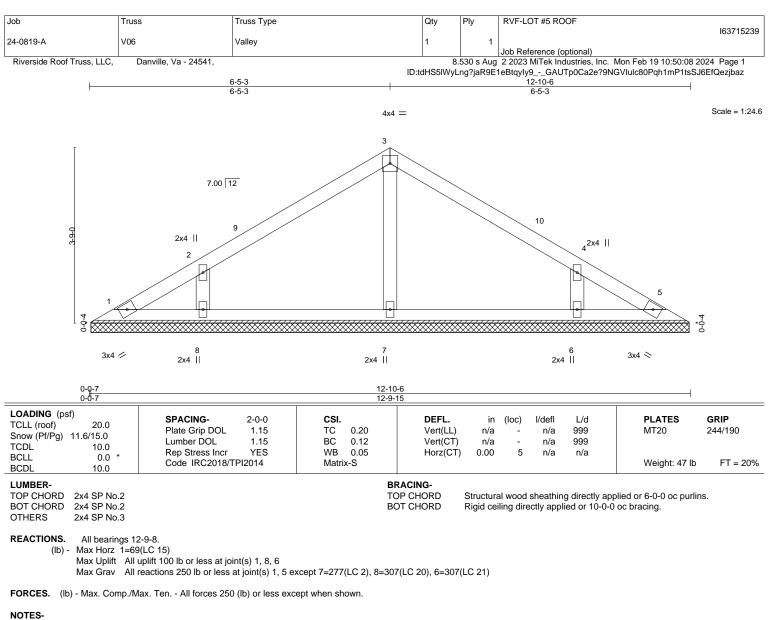
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

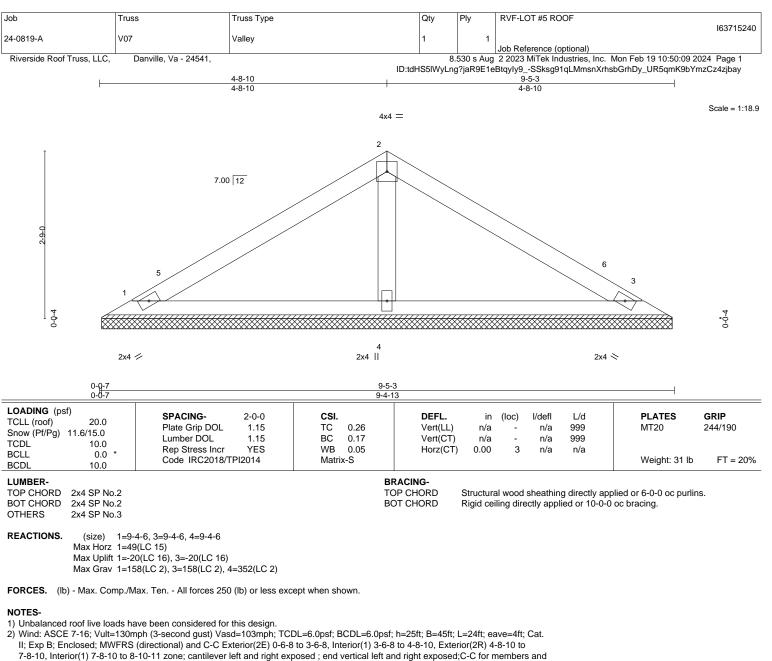
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



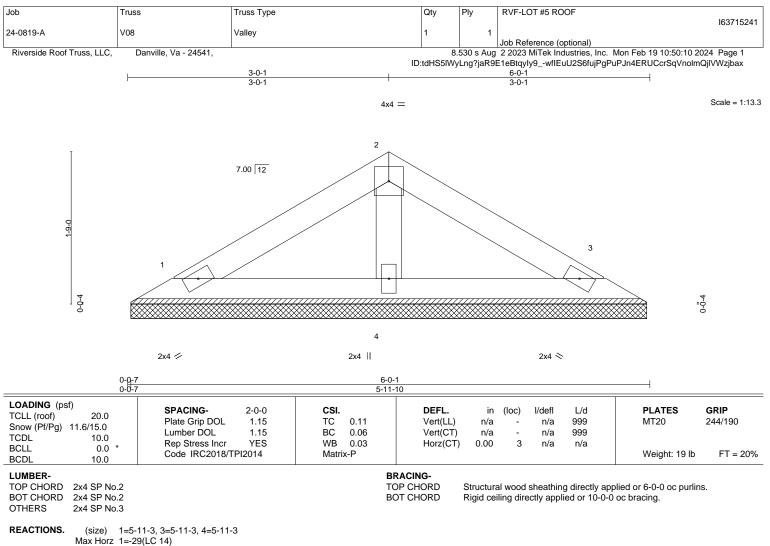
818 Soundside Road



A MiTek Af 818 Soundside Road


TRENGINEERING BY AMITEK Affiliate

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-5-3, Exterior(2R) 6-5-3 to 9-5-3, Interior(1) 9-5-3 to 12-3-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

A MiTek Affilia 818 Soundside Road

Max Uplift 1=-29(LC 14) Max Uplift 1=-17(LC 16), 3=-17(LC 16)

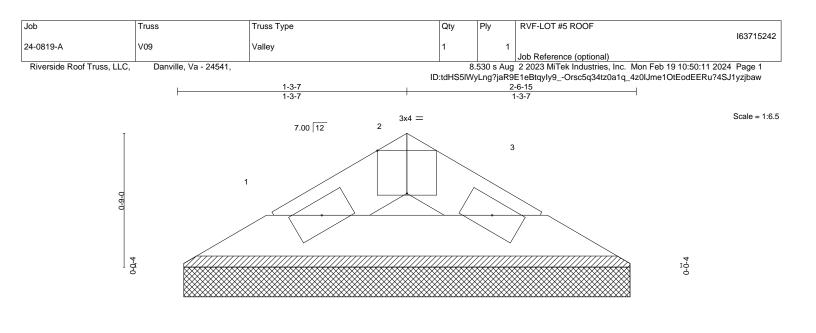
Max Grav 1=103(LC 2), 3=103(LC 2), 4=188(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A Mittek Affiliate

818 Soundside Road

2x4 💋

2x4 🔍

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-6-8<u>2-6-</u>15 0-0-7 2-6-8 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL in (loc) l/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.01 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 11.6/15.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 * Code IRC2018/TPI2014 FT = 20% Matrix-P Weight: 6 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 2-6-15 oc purlins.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=2-6-1, 3=2-6-1 Max Horz 1=-9(LC 14) Max Uplift 1=-4(LC 16), 3=-4(LC 16) Max Grav 1=60(LC 2), 3=60(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

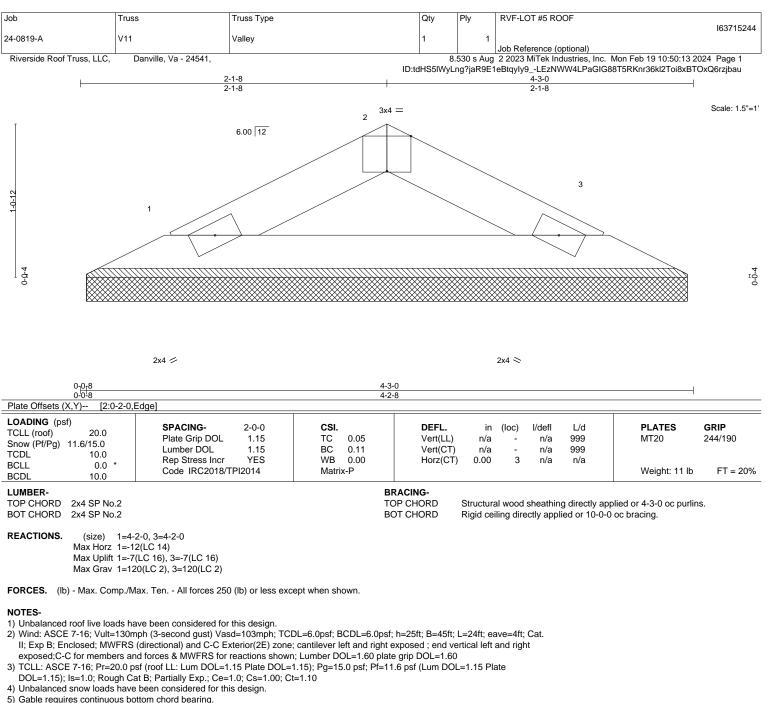
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

