Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 45442 JOB: 24-1269-R01 JOB NAME: LOT 36 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. *28 Truss Design(s)*

Trusses:

J01, J02, J03, P01, R01, R02, R03, R04, R05, R05A, R06, R07, R08, R09, R10, R11, R12, R13, SP01, SP02, SP03, V01, V02, V03, V04, V05, V06, VSP01

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

REACTIONS. (lb/size) 5=184/0-3-8 (min. 0-1-8), 3=71/Mechanical, 4=29/Mechanical Max Horz 5=48(LC 11) Max Uplift5=-23(LC 14), 3=-41(LC 14) Max Grav 5=254(LC 21), 3=102(LC 21), 4=52(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 4=112/0-3-8 (min. 0-1-8), 2=78/Mechanical, 3=33/Mechanical Max Horz 4=40(LC 11) Max Uplift4=-2(LC 14), 2=-42(LC 14) Max Grav 4=144(LC 20), 2=108(LC 20), 3=54(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOAD CASE(S) Standard

Max Horz 5=43(LC 14)

Max Uplift5=-49(LC 10), 3=-35(LC 14), 4=-13(LC 11) Max Grav 5=251(LC 21), 3=89(LC 21), 4=46(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

LOAD CASE(S) Standard

SEAL 28147 2/16/2024

Scale = 1:100.3

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Plate Offsets (XY)- [6:02:00-4:0] [7:04-0.03-13], [16:02-12:05-0] 10-42 10-42 10-42 10-42 10-42 10-42 10-42 LOADING [pdf] 200 PLACES 00-4-01, [7:04-0.03-13], [16:02-12:05-0] CSL 0 10-42 PLATES GRIP LOADING [pdf] 200 Lumber DOL 1.15 EC 0.79 Vert(CT) 0.02 14-16 9964 1800 PLATES GRIP DCUL 10.0 Code IRC20217FP2014 Matrix-AS Wert(CT) 0.02 14-16 9964 1800 Weight: 423 br FT = 20% UMBER Code IRC20217FP2014 Matrix-AS BRACING- TOP CHORD 266 SP No.2 Structural wood sheathing directly applied. BOT CHORD 266 SP No.2 BOT CHORD 266 SP No.2 Structural wood sheathing directly applied. Weight: 423 br FT = 20% BUDER Left 2x4 SP No.3 * 1-11-0. Right 2x4 SP No.3 * 1-11-0 WEBS Xeight 26-160. Tot 26-160 Mite recommends that Stabilizer and required cross bracing be stacking wood sheathing directly applied. SUDER Left 2x4 SP No.3 * 1-11-0. Right 2x4 SP No.3 * 1-11-0 Night 26-160. Zo 39-39 Mite 2-160. Zo 39-39 Night 26-160. Zo 39-39	1	12-(0-0	23-9-12		3	34-2-4	46-0-0		58-0-0	
LONDING (pf) TCLL (root) SPACING- 20.0 2-0.0 CSL. DEFL. In (oc) I/deft L/d PLATES GRIP Snow (P) 20.0 Number DOL. 115 BC.0. 0.0 Verti(L) 0.0.9 Verti(L) 0.0.9 Verti(L) 0.0.4 14.16 9-96 24.0 MT20 244/190 BCLL 0.0 Code IRC2021/TPI2014 Wattix.AS Weintx.AS Weintx.AS Weintx.AS Weintx.AS Weintx.AS Weintx.AS Weintx.AS Weight: 423 lb FT = 20% LUMBER- TDP CHORD 2x6 SP No.2 Stocpt* Stocpt* Stock SP No.5 Sto	Plate Offse	ets (X,Y) [6:0-2	2-0,0-4-0], [7:0-4-0,0-3-1	13], [18:0-2-12,	0-5-0]	1	10-4-0	11-9-12		12-0-0	
LUMBER. BRACING- TOP CHORD 2x8 SP No.2 BOT CHORD 2x8 SP No.2 BOT CHORD 2x8 SP No.2 ESC TEXCORPT W4: 2x6 SP No.3 - 1-11-0, Right 2x4 SP No.3 - 1-11-0 Structural wood sheathing directly applied. BOT CHORD 2x8 SP No.3 - 1-11-0, Right 2x4 SP No.3 - 1-11-0 WEBS 1x8 or 1x1 and 1x2 and	LOADING TCLL (roof Snow (Pf) TCDL BCLL BCDI	(psf)) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/7	2-0-0 1.15 1.15 YES 'Pl2014	CSI. TC BC WB Matri	0.68 0.79 0.97 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.29 14-16 >999 -0.42 14-16 >964 0.04 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 423 lb	GRIP 244/190 FT = 20%
 REACTIONS. (Ibbize) 1=595/0.3-8 (min. 0-1-8), 18=2393/0-3-8 (min. 0-1-12), 12=1167/0-3-8 (min. 0-1-9) Max Uplift 1=-172(LC 15) Max Uplift 1=-172(LC 14), 18=-271(LC 14), 12=-216(LC 15) Max Grav 1=701(LC 41), 18=3875(LC 45), 12=1300(LC 39) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 1-2=-616/0, 2-29=-941/169, 3-29=-864/186, 3-30=-64/1723, 4-30=-546/136, 4-31=-539/137, 5-31=-452/153, 5-32=-17/1024, 32-33=-01/203, 6-33=-01/318, 0-7=-620/262, 7-34=-604/221, 3-4-35=-6002/16, 8-35=-772/01, 8-36=-176/0339, 9-37=-1780/337, 10-37=-1884/334, 10-38=-2041/383, 11-38=-2177(355, 11-12=-852/0 BOT CHORD 1-20=-2484/034, 10-38=-2041/383, 11-38=-2177(355, 11-42=-852/252, 16-43=-71/1244, 4-34=-71/1244, 15-44=-7343/253, 9-43/2253, 90-4-33/2253, 18-41=-652/252, 41-42=-652/252, 17-42=-652/252, 16-43=-71/1244, 4-34=-71/1244, 15-44=-771/244, 11-48=-201/2929 WEBS 3-20=-560/247, 5-20=-91/932, 5-18=-1340/323, 6-18=-2477/282, 6-16=-220/1940, 7-16=-342/79, 8-16=-1300/321, 8-18=-78/779, 10-14=-464/233 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vaad=95mph; TCDL=5 0psf; BCDL=5 0psf; h=35f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Extenior(2E) 0-0-10 4-9-10, Interior(1) 4-9-10 to 19-2-9, Exterior(2R) 19-2-9 to 38-9-7, Interior(1) 38-9-7 to 54-0-14, Exterior(2E) 54-0-14 to 58-10-8 zone; cantilever left and right exposed; cat Vertical left and right exposed; C-C for members and forces & MWFRS for raccions shown; Lumber DOL=1.16) pale gipt DOL=1.60 3) TCLL: ASCE 7-16; WHCRS for raccions shown; Lumber DOL=1.16) pale gipt DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (cord L1: Lum DOL=1.15); PI=20.0 psf (Lum DOL=1.15); PI=20.0 psf on overhangs non-concurrent with WHCRS for raccions shown; Lumber DOL=1.160 3) ToLL: ASCE 7-16; Pr=20.0 psf (cord L1: Lum DOL=1.15); PI=20.0 psf (2.0 0 times flat roof load of 20	LUMBER- TOP CHOR BOT CHOR WEBS SLIDER	RD 2x6 SP No.2 RD 2x6 SP No.2 B2: 2x6 SP I 2x4 SP No.3 W4: 2x6 SP Left 2x4 SP	2 ? *Except* DSS 3 *Except* No.2 No.3 -° 1-11-0, Right 2:	(4 SP No.3 -° 1	-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sh Rigid ceiling directl 1 Row at midpt MiTek recommen be installed during Installation guide.	eathing directl y applied. 5-18, 6 ds that Stabili g truss erectio	ly applied. i-18, 6-16, 7-16, 8-16 zers and required cro n, in accordance with	ss bracing Stabilizer
 FORCES. (b) - Max Comp./Max Ten All forces 250 (b) or less except when shown. TOP CHORD 1:2e-616/0, 2:29=-941/169, 3:29=-864/186, 3:30=-641/123, 4:30=-546/136, 4:31=-539/137, 5:31=-452/153, 5:32=-1771/084, 32:33=01/1203, 6:33=-01/1638, 6:73=-620/262, 7:34=-604/231, 34:35=-609/216, 8:35=-737/201, 9:35=-737/201, 9:3	REACTION	IS. (Ib/size) 1= Max Horz 1= Max Uplift1= Max Grav 1=	=595/0-3-8 (min. 0-1-8) =-172(LC 15) =-111(LC 14), 18=-271(=701(LC 41), 18=3875(), 18=2930/0-3- LC 14), 12=-21 LC 45), 12=13(-8 (min. 0-1 I6(LC 15) 00(LC 39)	I-12), 12=1	1167/0-3-8 (min. 0-	1-9)			
 WEBS 3-20=-560/247, 5-20=-91/932, 5-18=-1340/323, 6-18=-2477/282, 6-16=-220/1940, 7-16=-342/79, 8-16=-1300/321, 8-14=-78/779, 10-14=-464/233 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 4-9-10, Interior(1) 4-9-10 to 19-2-9, Exterior(2R) 19-2-9 to 38-9-7, Interior(1) 38-9-7 to 54-0-14, Exterior(2E) 54-0-14 to 58-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh CARO, at B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilf at point any other members, with BCDL = 10.0psf. Bear	FORCES. TOP CHOR BOT CHOR	(lb) - Max. Com, RD 1-2=-616/0 5-31=-452 34-35=-60 10-37=-188 RD 1-20=-248 18-41=-652 43-44=-71/	p./Max. Ten All force: 0, 2-29=-941/169, 3-29= 1/153, 5-32=-17/1084, 3 15/216, 8-35=-737/201, 84/334, 10-38=-2041/38 1810, 19-20=-433/235, 2/252, 41-42=-652/252, 1244, 15-44=-711/244, 15-44=	s 250 (lb) or les -864/186, 3-30 2-33=0/1203, (8-36=-1668/35 33, 11-38=-217 19-39=-433/23 17-42=-652/2 14-15=-71/122	ss except wi)=-641/123, 6-33=0/1318 64, 9-36=-17 '6/355, 11-1 5, 39-40=-4 52, 16-17=-1 44, 12-14=-	hen shown 4-30=-546 8, 6-7=-620 766/338, 9- 12=-852/0 33/235, 18 652/252, 1 260/1929	n. 5/136, 4-31=-539/13 0/262, 7-34=-604/2: -37=-1780/337, 3-40=-433/235, 6-43=-71/1244,	37, 31,			
Contanuing on pergevize sign parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded											

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is tor lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVID	ENCE CREEK DRIVE FUQUA	Y-VAF
24-1269-R01	R02	PIGGYBACK BASE	5	1	Job Reference (optional)	# 45442	
		Run: 8. ID:av/	430 s Feb 1 29u_vm2c	2 2021 Prir wLtXF0Wo	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. F c5ybwyV6X0-Bz_BFrs7GoCSyoJw0KCvV	ri Feb 16 19:15:01 2024 Page Awb2HCl04SP6jvKbzkUL	2 _u

NOTES-11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

F	12-0)-0)-0	23-9-12		34-2-4	4	46-0-0		58-0-0 12-0-0	
Plate Offsets	(X,Y) [6:0-2	-0,0-4-0], [7:0-4-0,0-3-	13], [17:0-2-12,	0-5-0]	10 1 1	•			1200	
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0 BC 0 WB 0 Matrix-A).68).79).97 AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.29 13-15 >999 -0.42 13-15 >966 0.03 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 421 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 B2: 2x6 SP I 2x4 SP No.3 W4: 2x6 SP Left 2x4 SP I	*Except* DSS *Except* No.2 No.3 -° 1-11-0, Right 2	x4 SP No.3 -° 1	-11-0	BI TC BC W	RACING- OP CHORD OT CHORD /EBS	Structural wood sh Rigid ceiling direct 1 Row at midpt MiTek recommen be installed durin Installation guide	eathing direct ly applied. 5-17, (ids that Stabil g truss erectio	tly applied. 6-17, 6-15, 7-15, 8-15 lizers and required cros on, in accordance with	ss bracing Stabilizer
REACTIONS.	(lb/size) 1= Max Horz 1= Max Uplift1= Max Grav 1=	596/0-3-8 (min. 0-1-8 161(LC 15) 110(LC 14), 17=-272 -700(LC 40), 17=3874), 17=2929/0-3- (LC 14), 12=-19 LC 44), 12=124	8 (min. 0-1-1) 97(LC 15) 48(LC 38)	2), 12=1115/	/0-3-8 (min. 0-	1-8)			
FORCES. (III TOP CHORD	 b) - Max. Comp 1-2=-616/0 5-30=-453 7-33=-606/ 9-36=-1786 	o./Max. Ten All force , 2-28=-939/167, 3-28= , 151, 5-31=-19/1082, 3 228, 33-34=-608/214, 5(335, 10-36=-1889(33)	s 250 (lb) or les =-862/184, 3-29 31-32=-1/1200, 8-34=-740/198, 2 10-37=-2048	s except when =-639/121, 4- 6-32=0/1315, 8-35=-1673/3 /381_11-37=-	n shown. -29=-545/134 6-7=-622/25 352, 9-35=-1 -2182/353 11	4, 4-30=-537/13 59, 772/336, 1-12=-862/0	35,			
BOT CHORD	1-19=-252/ 17-40=-650 42-43=-80/	808, 18-19=-430/228,)/244, 40-41=-650/244 1247, 14-43=-80/1247	18-38=-430/228 , 16-41=-650/24 , 13-14=-80/124	3, 38-39=-430/ 44, 15-16=-65/ 47, 12-13=-26/	2102/303, 11 0/228, 17-39= 50/244, 15-42 59/1936	-430/228, 2=-80/1247,				
WEBS	3-19=-560/ 7-15=-341/	247, 5-19=-91/932, 5- [.] 80, 8-15=-1301/321, 8	17=-1340/323, (-13=-79/782, 1(6-17=-2476/28)-13=-466/234	87, 6-15=-222 4	2/1940,				
NOTES- 1) Unbalance 2) Wind: ASC (envelope) 38-9-7 to 5 members a 3) TCLL: ASC Cat B; Part 4) Unbalance 5) Provide ad 6) This truss between th 8) Bearing at of bearing 9) Provide me 17=272, 12 10) This truss	d roof live load 2E 7-16; Vult= gable end zor 3-2-6, Exterior and forces & M CE 7-16; Pr=20 tially Exp.; Ces- d snow loads lequate draina has been desi s has been desi s has been desi s has been desi s has been desi c bottom chor joint(s) 17 con surface. echanical conr 2=197. s design required	ds have been consider 120mph (3-second gus e and C-C Exterior(2E r(2E) 53-2-6 to 58-0-0 IWFRS for reactions s 0.0 psf (roof LL: Lum D =1.0; Cs=1.00; Ct=1.10 gned for a 10.0 psf bol signed for a 10.0 psf bol signed for a 10.0 psf bol signed for a live load o d and any other memb usiders parallel to grain nection (by others) of tr es that a minimum of 7	ed for this desig (t) Vasd=95mpf (c) 0-0-0 to 4-9-1 zone; cantilever hown; Lumber I OL=1.15 Plate (c) for this design. nding. tom chord live f 30.0psf on the ers, with BCDL value using Al uss to bearing (7/16" structural and	gn. i; TCDL=5.0ps 0, Interior(1) 4 r left and right DOL=1.60 plat DOL=1.15); P oad nonconcu bottom chorco = 10.0psf. NSI/TPI 1 angl plate capable wood sheathir	sf; BCDL=5.(4-9-10 to 19- exposed ; er te grip DOL= of=20.0 psf (L urrent with ar d in all areas le to grain for of withstandi ng be applied	0psf; h=35ft; C. 2-9, Exterior(21 nd vertical left a :1.60 _um DOL=1.15 ny other live loa where a rectar rmula. Building ing 100 lb uplif d directly to the	at. II; Exp B; Enclose R) 19-2-9 to 38-9-7, and right exposed;C Plate DOL=1.15); Is ads. ngle 3-6-0 tall by 1-0 g designer should ve t at joint(s) except (jt top chord and 1/2"	ed; MWFRS Interior(1) -C for =1.0; Rough -0 wide will fit wrify capacity =Ib) 1=110, gypsum	SEAL 28147 2/16/2024	IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	: be applied di Ve rgif y2lesign p	rectly to the bottom ch arameters and read note	ord. s before use. This	design is based	l only upon par	ameters shown, a	nd is for an individual b	uilding compon	ent to be installed and load	led

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVIDENCE CREEK DRIVE FUQUAY-	VAF
24-1269-R01	R03	PIGGYBACK BASE	1	1	Job Reference (optional) # 45442	
		Run: 8.4 ID:	30 s Feb 1 av29u_vm	2 2021 Prin 12cwLtXF	it: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Feb 16 19:15:04 2024 Page $\widehat{2}$ DWc5ybwyV6X0-cYgJutu0Yja0pF2VhSlc6doRrFJwyMqv54xZxwzkULr	

LOAD CASE(S) Standard

2/16/2024

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVIDENCE	CE CREEK DRIVE FUC	QUAY-VAF
24-1269-R01	R04	PIGGYBACK BASE	3	1	Job Reference (optional)	# 45442	
		Run: 8.4 ID:av:	130 s Feb 1 29u_vm2c	2 2021 Prir wLtXF0W	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Fe c5ybwyV6X0-07LSWvxureybgjm4NbIJkFQya	eb 16 19:15:07 2024 Pa aTO99nYLo2ADYFz	age 2 kULo

NOTES-12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

	8-10-5	5 17-5-3	27-9-12		39-9-12	1	50-8-8	
	8-10-5	5 8-6-13	10-4-9		12-0-0	1	10-10-12	1
Plate Offse	ts (X,Y) [13:0-	3-0,0-4-0], [15:0-2-8,0-4-8]						
LOADING (TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.64 BC 0.90 WB 0.96 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.31 14-15 >999 -0.43 14-15 >999 0.06 14 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 405 It	GRIP 244/190 D FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS SLIDER	RD 2x6 SP No.2 RD 2x6 SP No.2 2x4 SP No.3 W7: 2x6 SP Left 2x4 SP	*Except* No.1 No.3 -° 1-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts MiTek recommend be installed during Installation guide.	athing directly applied. 4-17, 6- 8-14 Is that Stabiliz truss erection	y applied, except en -17, 7-17, 7-15, 11-1 zers and required cro n, in accordance with	nd verticals. 4 Doss bracing h Stabilizer
REACTION	S. (Ib/size) 2= Max Horz 2= Max Uplift2= Max Grav 2=	=1462/0-3-8 (min. 0-2-0), 13=-248/M =177(LC 18) =-220(LC 14), 13=-408(LC 54), 14=-2 =1670(LC 39), 13=92(LC 14), 14=378	echanical, 14=2883/0-3- 53(LC 14) 6(LC 45)	-8 (min. 0-2-9)	¥			
FORCES. TOP CHOP BOT CHOP WEBS	(lb) - Max. Com 2-3=-1067/ 5-26=-227(7-8=-1041) 10-31=-81/ RD 2-19=-422/ 16-34=-31/ 14-37=-46; 4-19=0/29; 8-15=-139/	p./Max. Ten All forces 250 (lb) or le 34, 3-24=-3013/353, 4-24=-2912/372 3/299, 6-26=-2147/301, 6-27=-2452/4 264, 8-29=-11/1265, 29-30=-11/1127 1134, 10-32=-90/1062, 11-32=-91/10 2688, 18-19=-422/2688, 17-18=-422 1156, 15-34=-31/1156, 15-35=-7/523 3/102, 37-38=-463/102, 13-38=-463/102, 37-38=-463/102, 13-38=-38=-38-38=-38-38-38=-38-38-38=-38-38-38-38=-38-38-38=-38-38-38	ss except when shown. 2, 4-25=-2370/276, 5-25= 08, 27-28=-2290/423, 7 , 9-30=-27/1000, 9-31=- 43 12688, 17-33=-31/1156, , 35-36=-7/523, 14-36=- 02 7=-351/1776, 7-15=-102 7, 11-14=-804/164, 11-	=-2288/283, -28=-2235/438, -69/1273, 16-33=-31/1156, -7/523, 20/251, 13=-97/782				
NOTES- 1) Unbalan: 2) Wind: AS (envelop 38-9-7 to: member: 3) TCLL: A: Cat B; P: 4) Unbalan: 5) This trus 8) * This trus 8) * This trus 8) * This trus 9) Refer to 10) Bearing of bearing	ced roof live loar SCE 7-16; Vult= e) gable end zoi o 45-9-2, Exterio s and forces & M SCE 7-16; Pr=2/ artially Exp.; Ce- ced snow loads s has been desi surrent with othe adequate draina s has been desi uss has been desi uss has been desi our di to the difference of the girder(s) for trus of a joint(s) 14 co ng surface.	ds have been considered for this des 120mph (3-second gust) Vasd=95mp ne and C-C Exterior(2E) -0-10-8 to 3- r(2E) 45-9-2 to 50-6-12 zone; cantilev 1WFRS for reactions shown; Lumber 0.0 psf (roof LL: Lum DOL=1.15 Plate =1.0; Cs=1.00; Ct=1.10 have been considered for this design gned for greater of min roof live load r live loads. ge to prevent water ponding. gned for a 10.0 psf bottom chord live signed for a live load of 30.0psf on th rd and any other members, with BCD s to truss connections. onsiders parallel to grain value using arameters and read notes before use. Th	ign. h; TCDL=5.0psf; BCDL= 11-2, Interior(1) 3-11-2 t ver left and right exposed DOL=1.60 plate grip DC DOL=1.15); Pf=20.0 ps of 12.0 psf or 2.00 times load nonconcurrent with e bottom chord in all are L = 10.0psf. ANSI/TPI 1 angle to gra is design is based only upon	=5.0psf; h=35ft; C o 19-2-9, Exterior d ; end vertical lef DL=1.60 sf (Lum DOL=1.15 s flat roof load of 2 h any other live lo eas where a rectar in formula. Buildi parameters shown, a	at. II; Exp B; Enclosed (2R) 19-2-9 to 38-9-7 t and right exposed;C 5 Plate DOL=1.15); Is= 20.0 psf on overhangs ads. ngle 3-6-0 tall by 1-0-1 ng designer should ve	d; MWFRS Interior(1) -C for =1.0; Rough) wide will the prify capacity ilding compone	SEAL 28147 2/16/2024 nt to be installed and loa	aded
vertically.	Applicability of de	sign parameters and proper incorporation o	f component is responsibility	y of building designe	r - not truss designer or the erector Addition	uss engineer. E	Bracing shown is for late	eral support

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PRO	OVIDENCE CREEK DRIVE FUQUAY-VA
24-1269-R01	R05	Piggyback Base	3	1	Job Reference (optional)	# 45442
		Run: 8.4 ID:av	30 s Feb 1 v29u vm2	2 2021 Prir	nt: 8.430 s Feb 12 2021 MiTek Industries, li Nc5ybwyV6X0-N59LZc?1gAbunUf19	nc. Fri Feb 16 19:15:12 2024 Page 2 8uURJ7pPU?1g?x4xJt_DSzkULj

NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=220, 13=408, 14=253.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

	8-1	0-5 8	-6-13		10-4-9	5-11-2		6-0-14	•	10-10-12	
Plate Offsets	(X,Y) [13:0-	3-0,0-4-0], [14:0-3-12,0	-5-0], [19:0-4-0),0-4-12]							
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matr	0.63 0.84 0.99 rix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.48 17-18 -0.69 17-18 0.06 14) l/defl 3 >999 3 >697 4 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 422 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 B1: 2x6 SP I 2x4 SP No.3	*Except* DSS, B3: 2x4 SP No.2 *Except*				BRACING- TOP CHORD BOT CHORD WEBS	Structural Rigid ceili 10-0-0 oc 1 Row at	wood sheang directly bracing: 1	athing directly applied. Exc 6-18 4-21, 6-	y applied, except end cept: -21, 7-21, 7-19, 11-14	verticals.
SLIDER	W7: 2x6 SP Left 2x4 SP	DSS No.3 -° 1-11-0					2 Rows at MiTek re be instal Installati	1/3 pts commend led during on auide.	8-16 Is that Stabiliz truss erection	zers and required cros n, in accordance with	s bracing Stabilizer
REACTIONS.	(lb/size) 2= Max Horz 2= Max Uplift2= Max Grav 2=	=1501/0-3-8 (min. 0-1-1 =177(LC 18) =-208(LC 14), 13=-411(=1712(LC 39), 13=72(LC	I2), 13=-231/№ LC 56), 14=-1; C 14), 14=422	lechanical, 33(LC 14) 2(LC 45)	14=3052/0-3	3-8 (min. 0-2-14)					
FORCES. (Ib)) - Max. Comp 2-3=-1171/ 5-30=-2457 7-8=-1264/ 10-36=-67/	p./Max. Ten All forces 22, 3-28=-3104/326, 4- 7/269, 6-30=-2328/271, 226, 8-33=0/1214, 33-3 1037, 11-36=-68/1021	250 (lb) or le 28=-3004/345 6-31=-2617/3 34=0/1090, 9-3	ss except w , 4-29=-255 82, 31-32=- 4=-5/988, 9	vhen shown. 51/251, 5-29 -2471/397, 7 9-35=-46/122	=-2469/254, -32=-2417/412, 21, 10-35=-57/109	95,				
BOT CHORD	2-23=-398/ 20-38=0/13 14-41=-461 17-44=-33/	2773, 22-23=-398/2773 360, 19-38=0/1360, 19- 1/88, 41-42=-461/88, 13 275, 16-44=-33/275	8, 21-22=-398/ 39=0/475, 15-3 3-42=-461/88,	2773, 21-3 39=0/475, 1 18-43=-33/	7=0/1360, 20 15-40=0/475 275, 17-43=-	0-37=0/1360, , 14-40=0/475, -33/275,					
WEBS	4-23=0/297 18-19=-129 11-14=-779	7, 4-21=-668/210, 6-21= 9/1738, 8-18=-90/1737, 9/158, 11-13=-79/756, 1	=-927/279, 7-2 8-16=-2940/1 5-17=-389/0	1=-362/175 63, 14-16=-	51, 7-19=-96 -2857/130, 9	0/270, -14=-783/237,					
NOTES- 1) Unbalanced 2) Wind: ASCI (envelope) (38-9-7to 44 members and 3) TCLL: ASC Cat B; Parti 4) Unbalanced 5) This truss h non-concur 6) Provide adde 7) This truss h 8) * This truss h 8) * This truss h 9) Refer to the	d roof live load E 7-16; Vult= gable end zor 5-9-2, Exterior nd forces & M E 7-16; Pr=2(ally Exp.; Ce- d snow loads is been desi bas been desi has been desi has been desi bas been desi has been desi has been desi has been desi has been desi	ds have been considered 120mph (3-second gust he and C-C Exterior(2E r(2E) 45-9-2 to 50-6-12 IWFRS for reactions sh 0.0 psf (roof LL: Lum D0 =1.0; Cs=1.00; Ct=1.10 have been considered gned for greater of min r live loads. ge to prevent water por gned for a 10.0 psf bott signed for a live load of d and any other memot	ed for this desi () Vasd=95mpl) -0-10-8 to 3 zone; cantiber own; Lumber OL=1.15 Plate for this design roof live load om chord live 30.0psf on the ers, with BCDL	gn. h; TCDL=5. 11-2, Interic er left and h DOL=1.60 DOL=1.15 of 12.0 psf load nonco bottom ch = 10.0psf.	.0psf; BCDL: r(1) 3-11-2 t right expose plate grip DC); Pf=20.0 ps or 2.00 times oncurrent with ord in all are	=5.0psf; h=35ft; C o 19-2-9, Exterior d ; end vertical left DL=1.60 sf (Lum DOL=1.15 s flat roof load of 2 n any other live loa eas where a rectar	at. II; Exp B (2R) 19-2-9 t and right e Plate DOL 20.0 psf on o ads. ngle 3-6-0 ta	; Enclosed to 38-9-7, xposed;C- =1.15); Is= overhangs all by 1-0-0	t; MWFRS Interior(1) C for 1.0; Rough	SEAL 28147 2/16/2024	HITHIN IN I
vertically. Ap	egy Zlesign p age of the second seco	arameters and read notes sign parameters and proper	before use. Thi incorporation of	s design is ba component i	ised only upon is responsibility	parameters shown, a of building designer	ınd is for an ir r – not truss d	idividual bui esigner or tr	ulding component uss engineer. E	nt to be installed and load Bracing shown is for later	led al support

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVIDENC	E CREEK DRIVE FUQUAY-V
24-1269-R01	R05A	Piggyback Base	7	1	Job Reference (optional)	# 45442
		Run: 8.4 ID:av2	30 s Feb 1 29u vm2c	2 2021 Prin wLtXF0W	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Fe c5ybwyV6X0-FsOrPz2YkP5JF5zpO_zQc8IVc	b 16 19:15:16 2024 Page 2 d5OgmoUgsxrCMDzkULf

NOTES-

10) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

11) Provide metal plate or equivalent at bearing(s) 14 to support reaction shown.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=208, 13=411, 14=133.
13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

2/16/2024

50-8-8 50-8-8 Plate Offsets (X,Y)-- [10:0-4-0,0-4-4], [28:0-4-0,0-4-4] LOADING (psf) DEFL PLATES GRIP SPACING-2-0-0 CSI. in (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.11 Vert(LL) 0.00 n/r 180 **MT20** 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.03 Vert(CT) 0.00 n/r 80 TCDL 10.0 WB 0.21 Rep Stress Incr YES Horz(CT) -0.00 33 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Weight: 540 lb Matrix-S FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 2x6 SP No.2 end verticals 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: WFBS 2x4 SP No 3 OTHERS 6-0-0 oc bracing: 48-49,47-48,45-47,44-45. SLIDER Left 2x4 SP No.3 -° 1-11-0 WFBS 1 Row at midpt 19-47, 18-48, 16-50, 15-51, 14-52, 13-53, 17-49, 20-45, 22-43, 23-42, 24-41, 25-40, 21-44 REACTIONS. All bearings 50-8-8. (lb) - Max Horz 2=174(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 33, 2, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 49, 42, 41, 40, 39, 37, 36, 35, 34, 44 except 62=-107(LC 14) Max Grav All reactions 250 lb or less at joint(s) 33, 2, 48, 50, 58, 59, 60, 61, 49, 45, 43, 35, 34, 44, 62 except 47=305(LC 44), 51=297(LC 45), 52=287(LC 45), 53=287(LC 45), 54=286(LC 45), 56=289(LC 45), 57=276(LC 45), 57=276 42=297(LC 45), 41=287(LC 45), 40=287(LC 45), 39=286(LC 45), 37=289(LC 45), 36=273(LC 45) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown TOP CHORD 12-13=-117/270, 13-14=-129/304, 14-15=-142/339, 15-65=-158/371, 16-65=-154/374, 16-17=-160/383, 17-18=-155/374, 18-19=-155/373, 19-20=-155/373, 20-21=-155/374, 21-22=-159/382, 22-23=-158/374, 23-66=-137/339, 24-66=-142/335, 24-25=-129/304, 25-26=-117/270 NOTES-1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 21-0-0, Corner(3R) 21-0-0 to 37-0-0,

- Exterior(2N) 37-0-0 to 45-9-2, Corner(3E) 45-9-2 to 50-6-12 zone; cantilever left and right exposed ; end vertical left and right

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will 12) fit between the bottom chord and any other members, with BCDL = 10.0psf.

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 F	PROVIDENCE CREEK DRIVE FUQUAY	-VAR
24-1269-R01	R06	Piggyback Base Supported Gable	1	1	Job Reference (optional)	# 45442	
		Run: 8.4 ID:av2	30 s Feb 1 29u vm2c	2 2021 Prir wLtXF0W	nt: 8.430 s Feb 12 2021 MiTek Industries c5ybwyV6X0-yn?dVOApNTMvSeil	s, Inc. Fri Feb 16 19:15:26 2024 Page 2 k 48m?FiLC7?x6V589VGkjezkULV	,

NOTES-

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33, 2, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 49, 42, 41, 40, 39, 37, 36, 35, 34, 44 except (jt=lb) 62=107.

LOAD CASE(S) Standard

Scale = 1:20.8

F	1-2-8 1-4-4	6-10-0	9-5-12	9-8-0
Plate Offsets (X,Y) [7:0-4	-1,0-0-2]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2021/TPI2014	CSI. DEFL. TC 0.43 Vert(LL) BC 0.26 Vert(CT) WB 0.11 Horz(CT) Matrix-MSH Horz(CT) Horz(CT)	in (loc) l/defl L/d -0.02 9-10 >999 240 -0.04 9-10 >999 180 0.01 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 49 lb FT = 20%
LUMBER-		BRACING-		
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2		TOP CHORD	Structural wood sheathing direct	ly applied or 6-0-0 oc purlins, except
WEBS 2x4 SP No.3		BOT CHORD	Rigid ceiling directly applied or 6	6-0-0 oc bracing.
SLIDER Right 2x6 SF	9 No.2 -° 1-11-0		MiTek recommends that Stabil be installed during truss erection Installation quide.	izers and required cross bracing on, in accordance with Stabilizer
REACTIONS. (Ib/size) 10 Max Horz 10 Max Uplift10 Max Grav 10	l=550/0-3-8 (min. 0-1-8), 7=428/0-3- l=-19(LC 17) l=-160(LC 8), 7=-157(LC 9) l=657(LC 37), 7=512(LC 37)	8 (min. 0-1-8)	_	
FORCES. (lb) - Max. Comp. TOP CHORD 4-18=-426/ BOT CHORD 10-19=-84/ WEBS 4-10=-492/	o./Max. Ten All forces 250 (lb) or le 172, 5-18=-426/172, 5-6=-494/186 297, 19-20=-84/297, 9-20=-84/297, 7 151	ss except when shown. -9=-128/426		
 NOTES- 1) Unbalanced roof live load 2) Wind: ASCE 7-16; Vult=' (envelope) gable end zor plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=22 Cat B; Partially Exp.; Ce= 4) Unbalanced snow loads 5) This truss has been designon-concurrent with othe 6) Provide adequate drainage 7) This truss has been designon-concurrent with othe 6) Provide adequate drainage 7) This truss has been designon-concurrent with othe 6) Provide adequate drainage 7) This truss has been designon-concurrent with othe 6) Provide mechanical contract of the provid	ds have been considered for this des 120mph (3-second gust) Vasd=95mp he; cantilever left and right exposed ; 0.0 psf (roof LL: Lum DOL=1.15 Plate =1.0; Cs=1.00; Ct=1.10 have been considered for this design gned for greater of min roof live load r live loads. ge to prevent water ponding. gned for a 10.0 psf bottom chord live signed for a live load of 30.0psf on th d and any other members. hection (by others) of truss to bearing 0d (0.148"x3") or 3-12d (0.148"x3.25 fection, loads applied to the face of th : Lumber Increase=1.15, Plate Increa 4=-60, 4-5=-60, 5-8=-60, 11-12=-20	ign. h; TCDL=5.0psf; BCDL=5.0psf; h=35ft; f end vertical left and right exposed; porc DOL=1.15); Pf=20.0 psf (Lum DOL=1.1 of 12.0 psf or 2.00 times flat roof load of load nonconcurrent with any other live le e bottom chord in all areas where a rect plate capable of withstanding 100 lb up ') toe-nails per NDS guidlines. he truss are noted as front (F) or back (B ase=1.15	Cat. II; Exp B; Enclosed; MWFRS h right exposed; Lumber DOL=1.60 5 Plate DOL=1.15); Is=1.0; Rough 20.0 psf on overhangs bads. angle 3-6-0 tall by 1-0-0 wide will fit ift at joint(s) except (jt=lb) 10=160,).	SEAL 28147
				2/16/2024
Convanuing on pergity 2 lesign pa	arameters and read notes before use. Th	is design is based only upon parameters shown,	and is for an individual building compon	ent to be installed and loaded

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVIDENC	E CREEK DRIVE FUQUAY	VAF
24-1269-R01	R07	Hip Girder	1	1	Job Reference (optional)	# 45442	

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Feb 16 19:15:29 2024 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-NMhm7QChgOkTJ5SJfCiTduKmQKz_JuTarTVOKzzkULS

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 4=-29(F) 5=-29(F) 9=-6(F) 18=-29(F) 19=-6(F) 20=-6(F)

2/16/2024

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVI	DENCE CREEK DRIVE FUQUAY-VAP
24-1269-R01	R09	Half Hip Girder	1	1	Job Reference (optional)	# 45442
		Burn 0	120 a Cab 1	2 2024 Dain	the Accession of the Ac	En: Enh 46 40.45.24 2024 Dame 2

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Feb 16 19:15:34 2024 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-kKUfA7GqUxMmQsLGSmHeKx1XYLXU_zLJ?kC9?AzkULN

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-9=-60, 10-17=-20

Concentrated Loads (lb)

Vert: 3=-42(F) 5⁻=-42(F) 16=-11(F) 21=-42(F) 22=-42(F) 23=-42(F) 24=-42(F) 25=-42(F) 26=-42(F) 27=-48(F) 28=-11(F) 29=-11(F) 30=-11(F) 31=-11(F) 32=-11(F) 33=-11(F) 33=-11(F) 34=-11(F) 35=-16(F)

2/16/2024

Job	Truss	Truss Type		Qty	Ply LOT	T 36 PROVI	DENCE CRE	EK 122 PROVIDEN	CE CREE	
24-1269-R01	R10	Roof Special		1	1	Reference	e (ontional)		# 4	45442
				Run: 8.430 s Feb 1	2 2021 Print: 8.4	430 s Feb 1	2 2021 MiTek	Industries, Inc. Fri F	eb 16 19 /rz9E7S	:15:36 2024 Page 1 SsdcS2hE43zkUU
4-2-0)	12-1-12		<u>20-1-8</u> 7-11-12			23-8-0 3-6-8	27-1-8		<u>29-4-8</u>
4-2-0	,	7-11-12		7-11-12			5-0-0	0-0-0		2-0-0
										Scale = 1:49.0
								6x10 =		
								5 17		
5.00 12	6x8 =		2x4		6	6x8 =	T2		3x6	I
	2		3 T2				~//		T46	40 T T
o N 4x6 ≠ T1		14	15		16		W5	We		18 7
1 1 4	W3	₩4	vv3	₩4		W3			w	8-13
No W2	B1							/	ДI.	5 5
						Ш.			- M	1 1
13	12 eve —		11 10 3x8 MT20	HS=		9 eve —			8	
3X4	0x0 —		7x8 =			0X0 —			4x4 —	
4-2-0)	12-1-12		20-1-8			2	27-1-8		
Plate Offsets (X,Y) [2:0-	, -5-4,0-2-4], [4:0-5-4,0-3-0]	1-11-12		7-11-12						
LOADING (psf)	SPACING-	2-0-0 C	sı.	DEFL.	in (loc)	l/defl	L/d	PLATES		GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 T	C 0.92	Vert(LL)	-0.32 9-11	>999 >601	240 180	MT20 MT20HS		244/190 187/1/3
TCDL 10.0 BCLL 0.0 *	Rep Stress Incr	YES V	VB 0.91	Horz(CT)	0.07 8	n/a	n/a	Waisht		FT - 200%
BCDL 10.0		12014	hatrix-AS					weight:	149 10	FT = 20%
LUMBER- TOP CHORD 2x4 SP No	.2 *Except*			BRACING- TOP CHORD	Structural w	ood shea	athina direc	tly applied. exce	pt end	verticals.
T2: 2x4 SP	SS, T4: 2x6 SP No.2			BOT CHORD	Rigid ceiling	directly	applied.	, , , ,	·	
WEBS 2x4 SP No	.3 *Except*				be installe	ommends d during f	s that Stabi truss erecti	lizers and require on, in accordanc	ed cros e with \$	s bracing Stabilizer
W5: 2x4 SI	P No.2				Installation	n guide.				
REACTIONS. (lb/size)	13=1067/0-3-8 (min. 0-1-8), 8=1224/0-3-8 (mi	n. 0-1-8)							
Max Uplift	13=-187(LC 14), 8=-162(LC	2 14)								
Max Grav	13=1274(LC 41), 8=1292(L	C 46)								
FORCES. (lb) - Max. Cor	np./Max. Ten All forces 2	250 (lb) or less exce	pt when shown.	3- 1113/568						
4-16=-41	43/568, 4-5=-3259/480, 6-8	8=-461/223, 1-13=-1	240/197							
WEBS 2-11=-28	70/2042, 10-11=-352/2852 1/2197, 3-11=-885/220, 4-1	, 9-10=-352/2852, 8- 1=-191/1350, 4-9=-	-9=-95/881 2069/375, 5-9=-4	07/3051,						
5-8=-130	8/190, 1-12=-225/2004									
NOTES-										
2) Wind: ASCE 7-16; Vult	ads have been considered =120mph (3-second gust) '	for this design. √asd=95mph; TCDL	_=5.0psf; BCDL=	5.0psf; h=35ft; Ca	it. II; Exp B; E	Enclosed	MWFRS			
(envelope) gable end z 20-1-8 to 24-6-14 Exte	one and C-C Exterior(2E) (rior(2E) 24-6-14 to 29-4-8 ;)-1-12 to 4-2-0, Exte	rior(2R) 4-2-0 to and right exposed	8-11-10, Interior(1	l) 8-11-10 to t and right ex	20-1-8, E	Exterior(2R))		
members and forces &	MWFRS for reactions show	wn; Lumber DOL=1.	60 plate grip DOI	L=1.60						
Cat B; Partially Exp.; C	e=1.0; Cs=1.00; Ct=1.10	-= 1.15 Plate DOL= 1	. 15); PI=20.0 pSI	(Lum DOL=1.15	Plate DOL= I	.15); IS=	1.0; Rough			
4) Unbalanced snow load	s have been considered for signed for greater of min ro	⁻ this design. of live load of 12.0 r	osf or 2 00 times	flat roof load of 20) () nsf on ov	erhands		Multiminian CAD	Itille	
non-concurrent with oth	ner live loads.		o. _ .oo umoo					WINGTH UNA	Lin	111,
6) Provide adequate drain7) All plates are MT20 pla	age to prevent water pond tes unless otherwise indica	ing. ated.					Inn	Japor Lop	12.9	New
8) This truss has been de	signed for a 10.0 psf bottor	n chord live load not 0 0psf on the bottom	nconcurrent with	any other live load	ds. ale 3-6-0 tell	by 1_0_0	wide will fi	SEAL		MHI
between the bottom cho	ord and any other members	S.				Sy 1-0-0		28147		
10) Provide mechanical co , 8=162.	onnection (by others) of tru	ss to bearing plate o	capable of withsta	anding 100 lb uplit	rt at joint(s) e	except (jt=	=1D) 13 =1 87	1.0.		MIN
11) This truss design requ	uires that a minimum of 7/1	6" structural wood s	heathing be appli	ed directly to the	top chord an	d 1/2" gy	psum 🐴	ARYOINEE	ARIS	and the second s
								MININ K. MO	HILLING .	

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

2/16/2024

Scale = 1:46.4

	<u>6-2-0</u> <u>14-1-12</u> <u>7 11 12</u>			22-1-8	+ <u>27-1-8</u> 5-0-0			
Plate Offsets (X,Y) [2:0-5	5-4,0-2-4], [4:0-5-8,0-3-4], [8:0-2-8,0-1	-8]		1-11-12	5-5-5			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.67 BC 0.65 WB 0.88 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.19 10 >999 240 -0.33 10-11 >960 180 0.06 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 146 lb FT = 20%			
LUMBER- TOP CHORD 2x4 SP No.2 T2: 2x4 SP BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 W1: 2x6 SP	2 *Except* SS 3 *Except* No.2	E T	3RACING- FOP CHORD 3OT CHORD	Structural wood sheathing direc Rigid ceiling directly applied. MiTek recommends that Stab be installed during truss erect Installation guide.	ctly applied, except end verticals. ilizers and required cross bracing tion, in accordance with Stabilizer			
REACTIONS. (lb/size) 1: Max Horz 1: Max Uplift1: Max Grav 1:	2=1070/0-3-8 (min. 0-1-8), 7=1070/0 2=87(LC 11) 2=-186(LC 14), 7=-151(LC 14) 2=1199(LC 40), 7=1241(LC 40)	3-8 (min. 0-1-8)						
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-13=-2175/303, 2-13=-2109/315, 2-14=-3134/443, 3-14=-3134/443, 3-15=-3134/443, 4-15=-3134/443, 4-5=-2028/305, 1-12=-1137/211 BOT CHORD 11-12=-103/402, 10-11=-271/1975, 9-10=-195/1743, 8-9=-195/1743, 7-8=-96/984 WEBS 2-10=-162/1254, 3-10=-887/219, 4-10=-217/1504, 4-8=-1811/332, 5-8=-286/2119, 5-7=-1484/178, 1-11=-177/1804								
 BOT CHORD 11-12=-103/402, 10-11=-271/1975, 9-10=-195/1743, 8-9=-195/1743, 7-8=-96/984 WEBS 2-10=-162/1254, 3-10=-887/219, 4-10=-217/1504, 4-8=-1811/332, 5-8=-286/2119, 5-7=-1484/178, 1-11=-177/1804 NOTES- Uhalanced roof live loads have been considered for this design. Wild: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-2-12 to 50-06, Exterior(2R) 50-06 to 10-11-10, Interior(1) 10-11-10 to 22-1-8, Exterior(2R) 22-1-8 to 23-8-0, Exterior(2E) 0-2-12 to 50-06, Exterior(2R) 50-06 to 10-11-10, Interior(1) 10-11-10 to 22-1-8, Exterior(2R) 22-1-8 to 23-8-0, Exterior(2E) 23-8-0 to 26-11-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Uhalanced snow loads have been considered for this design. Provide adequate driange to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the fore field of the load of 30.0psf on the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=180, Jaint (28) 437, 7=151. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(
					2/16/2024			

Job	Truss	Truss Type	Qty	Ply	LOT 36 PROVIDENCE CREEK 122 PROVID	ENCE CREEK DRIVE FUQUAY-V	AR
24-1269-R01	R13	Hip Girder	1	3	Job Reference (optional)	# 45442	
		Run: ID:a	8.430 s Feb /29u_vm2cv	12 2021 Prin vLtXF0Wc	nt: 8.430 s Feb 12 2021 MiTek Industries, Inc. F 5ybwyV6X0-nCuKKGREyYFejA_9qP3AR	ri Feb 16 19:15:49 2024 Page 2 869AxOjZ?tvWSaLR1pzkUL8	

NOTES-

11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-5-4 from the left end to 25-5-4 to connect truss(es) R05 (1 ply 2x6 SP), R05A (1 ply 2x6 SP), R04 (1 ply 2x6 SP) to back face of bottom chord. 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 6-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 11=149(B) 10=149(B) 9=-1068(B) 21=144(B) 22=144(B) 23=144(B) 24=149(B) 25=149(B) 26=149(B) 27=149(B) 28=149(B) 29=-1068(B) 30=-1068(B)

LOAD CASE(S) Standard

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

Structural wood sheathing directly applied or 5-9-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=172/5-9-0 (min. 0-1-8), 3=172/5-9-0 (min. 0-1-8) Max Horz 1=13(LC 18) Max Uplift1=-22(LC 14), 3=-22(LC 15) Max Grav 1=189(LC 20), 3=189(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 7)
- between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TP	2-0-0 1.15 1.15 YES 1/2014	CSI. TC BC WB Matri	0.39 0.27 0.08 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3					BRACING- TOP CHORD BOT CHORD	Struc end v Rigid MiT be i Inst	tural wo verticals ceiling ek reco nstalleo allation	ood shea a directly mmends during f guide.	athing direct applied or 1 s that Stabili truss erectio	ly applied or 6-0-0 oc 0-0-0 oc bracing. zers and required cr on, in accordance wit	: purlins, except oss bracing h Stabilizer

REACTIONS. (lb/size) 1=144/7-2-0 (min. 0-1-8), 4=-5/7-2-0 (min. 0-1-8), 5=365/7-2-0 (min. 0-1-8) Max Horz 1=97(LC 11) Max Uplift1=-8(LC 14), 4=-15(LC 13), 5=-93(LC 14) Max Uprift1=-8(LC 14), 4=-10(LC 10), 5==50(LC 14)

Max Grav 1=181(LC 20), 4=10(LC 10), 5=500(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-408/249

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.

LOAD CASE(S) Standard

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.72 BC 0.51 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 19 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No. BOT CHORD 2x4 SP No. WEBS 2x4 SP No.	2 3 3		BRACING- TOP CHORD BOT CHORD	Structural wo end verticals Rigid ceiling MiTek reco be installed Installation	bod sheathing dires directly applied o mmends that Stal d during truss erec quide.	ctly applied or 5-9-8 oc purlins, except 10-0-0 oc bracing. Dilizers and required cross bracing tion, in accordance with Stabilizer

REACTIONS. (lb/size) 1=197/5-9-8 (min. 0-1-8), 3=197/5-9-8 (min. 0-1-8) Max Horz 1=75(LC 11) Max Uplift1=-28(LC 14), 3=-43(LC 14) Max Grav 1=271(LC 20), 3=271(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.21 BC 0.16 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/da n/a - n, n/a - n, 0.00 3 n,	efl L/d /a 999 /a 999 /a 999 /a n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood s end verticals. Rigid ceiling dire MiTek recomme be installed dur Installation guid	sheathing direct ctly applied or 1 ends that Stabil ing truss erection de.	ly applied or 3-9-8 or 0-0-0 oc bracing. izers and required cr on, in accordance wit	c purlins, except oss bracing h Stabilizer

REACTIONS. (Ib/size) 1=117/3-9-8 (min. 0-1-8), 3=117/3-9-8 (min. 0-1-8) Max Horz 1=45(LC 11) Max Uplift1=-17(LC 14), 3=-25(LC 14) Max Grav 1=151(LC 20), 3=151(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

