Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	A01	Common Supported Gable	2	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:08 Page: 1 ID:Y0ZMomNymWrSjpuvSgiL6Fzd35R-HTzDs5hB6HQdilqz?1EwvPoj2?KzUZtgetF4btzd2al

Scale = 1:57

Plate Offsets (X, Y): [28:0-2-8,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.09 0.07 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly All bearings 31-3-0. Max Horiz 2=161 (LC Max Uplift All uplift 1 2, 22, 23, 31, 32, 33 Max Grav All reactio (s) 2, 21, 2	athing directly applied. • applied. 00 (lb) or less at joint(s) 24, 25, 26, 27, 29, 30, •, 34, 35, 36 ns 250 (lb) or less at joi 22, 23, 24, 25, 26, 27, 2	 9) Provide mec bearing plate (s) 2, 29, 30, 10) This truss is International R802.10.2 a 11) This truss de structural wc chord and 1/ the bottom c LOAD CASE(S) 	hanical conne e capable of w 31, 32, 33, 3 designed in a Residential C nd referenced usign requires od sheathing 2" gypsum sh hord. Standard	ection (by oth rithstanding 1 4, 35, 27, 26 ccordance w Code sections standard AN that a minim be applied d eetrock be a	ers) of truss 00 lb uplift a 25, 24, 23, ith the 2018 \$R502.11.1 ISI/TPI 1. um of 7/16" irectly to the pplied direct	to at joint 22, 2. and top ly to					

FORCES

(lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown. TOP CHORD 10-11=-95/270, 11-12=-95/270

NOTES

1) Unbalanced roof live loads have been considered for this design.

29, 30, 31, 32, 33, 34, 35, 36

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=2ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-6-10, Exterior(2N) 4-6-10 to 15-7-8, Corner (3R) 15-7-8 to 21-1-2, Exterior(2N) 21-1-2 to 31-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	A02	Common	12	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:10 Page: 1 ID:00QZDp9vOmZFaUM5WEBIbezd2sD-AFDkiTki9Vw3Bw7kEtJs3FyBQcXPQJ8GZVDIkezd2ah

Plate Offsets (X, Y): [2:Edge,0-1-0], [6:0-2-0,Edge], [10:Edge,0-1-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.97 0.74 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.58 0.09	(loc) 12-14 12-14 10	l/defl >999 >650 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 155 lb	GRIP 186/179 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she Rigid ceiling directly (lb/size) 2=1306/0	eathing directly applied. / applied. -3-8, (min. 0-1-12),	 * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 2 and 21 lb This truss is Internationa R802.10.2 a This truss d 	has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs uplift at joint 10. designed in accoil I Residential Code and referenced sta esign requires that	d for a liv as where vill fit betv s, with BC on (by oth standing 4 rdance w e sections indard AN t a minim	e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 7 lb uplift at th the 2018 t R502.11.1 a ISI/TPI 1. um of 7/16"	Opsf com f. to joint and						
	10=1249/ Max Horiz 2=161 (LC Max Uplift 2=-47 (LC Max Grav 2=1474 (LC	'0-3-8, (min. 0-1-11) C 11) C 12), 10=-21 (LC 12) LC 17), 10=1423 (LC 18	structural w chord and 1 the bottom (3) LOAD CASE(S)	ood sheathing be a /2" gypsum sheetr chord. Standard	applied di rock be a	irectly to the pplied directl	top y to						
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250)										
TOP CHORD BOT CHORD WEBS	(lb) or less except w 2-22=-2522/166, 3-: 3-4=-2077/166, 4-5: 5-6=-304/684, 6-7=: 8-9=-2079/172, 9-2: 10-23=-2529/187 2-15=-122/2307, 14 14-24=-24/1525, 12 11-12=-110/2199, 11 7-12=0/722, 5-14=0 3-14=-558/132, 9-12	/hen shown. 22=-2407/177, =-1977/191, 306/685, 7-8=-1979/19 3=-2401/189, -15=-122/2307, -24=-24/1525, -25=-24/1525, 0-11=-110/2199 /719, 5-7=-2105/566, 2=-565/134	8,										
NOTES			-1-										
 Unbalance design. Wind: ASC Vasd=103 B=64ft; L= Enclosed; -0-11-0 to (2R) 15-7- cantilever right expo for reactio DOL=1.60 All plates i All plates schord live 	ca root live loads have CE 7-16; Vult=130mpl imph; TCDL=6.0psf; E 55ft; eave=6ft; Ke=1. MWFRS (directional) 4-6-10, Interior (1) 4-1 8 to 21-1-2, Interior (1) left and right exposed sed;C-C for members ns shown; Lumber D(1) are MT20 plates unlea has been designed for load nonconcurrent w												

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	A03	Common	4	1	Job Reference (optional)

Carolina Structural Systems, Star, NC 27356, Jeremy Phillips Run: 8.72 S Feb

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:10 Page: 1 ID:VqRyKmFBG8NTpdEh1k_huxzd330-AFDkiTki9Vw3Bw7kEtJs3FyBwcXKQJKGZVDIkezd2ah

Plate Offsets (X, Y): [2:Edge,0-1-0], [6:0-2-0,Edge], [10:Edge,0-1-0], [13:0-4-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	1.00 0.75 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.70 0.08	(loc) 15 15 10	l/defl >918 >538 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 168 lb	GRIP 186/179 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.1 *Excep 2x4 SP DSS *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she Rigid ceiling directly 6-0-0 oc bracing: 14	ot* T3:2x4 SP No.2 ot* B2:2x4 SP No.2 eathing directly applied. y applied. Except: I-16	 * This truss on the bott 3-06-00 tall chord and a Refer to gir This truss is Internationa R802.10.2 This truss of structural weat and the second s	has been desig om chord in all a by 2-00-00 wide any other memb- der(s) for truss t s designed in ac and referenced a lesign requires t ood sheathing b	ned for a liv reas where e will fit betw ers, with BC o truss conr coordance w ode sections standard AN hat a minim pe applied d	e load of 20 a rectangle veen the bot DL = 10.0ps rections. ith the 2018 R502.11.1 ISI/TPI 1. um of 7/16" rectly to the	.0psf tom sf. and						
REACTIONS	(lb/size) 2=1392/0 10=1336/ Max Horiz 2=161 (LC Max Grav 2=1654 (L	-3-8, (min. 0-1-11), Mechanical, (min. 0-1- C 11) _C 17), 10=1603 (LC 18	the bottom 8) LOAD CASE(S	chord.) Standard		opilea alreci	iy to						
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250)										
TOP CHORD	(lb) or less except w 2-25=-2881/63, 3-25 3-4=-2481/50, 4-5=-	hen shown. 5=-2765/73, -2381/76, 5-6=-306/670 -2282/82 8 0= 2482/56),										
BOT CHORD	9-26=-2757/86, 10-2 2-18=-58/2626, 17-1 17-27=0/1831, 27-2 13-29=0/1831, 27-2	226-285/62, 6-92463/50 26=-2885/83 18=-30/2626, 8=0/1831, 13-28=0/183 9=0/1831, 4440/2540	31,										
WEBS	11-12=-18/2516, 10- 16-17=0/789, 5-16= 7-14=0/919, 12-14= 9-12=-538/148	0/917, 5-7=-2361/491, 0/790, 3-17=-534/147,											
NOTES	9-12330/140												
 Unbalanc design. Wind: AS(Vasd=103 B=64ft; L= Enclosed; 	ed roof live loads have CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B =55ft; eave=6ft; Ke=1. MWFRS (directional)	e been considered for th (3-second gust) CDL=6.0psf; h=18ft; 00; Cat. II; Exp B; and C-C Exterior(2E) 10 to 15 C 9. Evtorior	his										

-0-11-0 to 4-6-10, Interior (1) 4-6-10 to 15-7-8, Exterior (2R) 15-7-8 to 21-1-2, Interior (1) 21-1-2 to 31-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Carolina Structural Systems, Star, NC 27356, Jeremy Phillips Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:11

Page: 1 ID:ptdtTIOCbWgLYqGivPfCaGzd30F-eRn6vplKwp2wo3iwoaq5cTVN?0ty9m1Pn9yrH4zd2ag

Plate Offsets (X, Y): [2:Edge,0-1-0], [6:0-2-0,Edge], [10:Edge,0-1-0], [14:0-4-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC201	2-0-0 1.00 1.15 YES 18/TPI2014	CSI TC BC WB Matrix-AS	0.91 0.72 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.66 0.08	(loc) 16 14-18 10	l/defl >833 >494 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 168 lb	GRIP 186/179 244/190 FT = 20%								
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	MBER P CHORD 2x4 SP No.1 *Except* T3:2x4 SP No.2 T CHORD 2x4 SP DSS *Except* B2:2x4 SP No.2 EBS 2x4 SP No.3 EDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 ACING P CHORD Structural wood sheathing directly applied. T CHORD Rigid ceiling directly applied. Except: 6-0-0 oc bracing: 15-17 ACTIONS (lb/size) 2=1336/0-3-8. (min. 0-1-10).			All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 10	MT20 plates unl s been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connection e capable of withs	ess other for a 10.1 with any d for a liv as where vill fit betw s, with BC russ conr on (by oth tanding 5	wise indicat 0 psf bottom other live lo e load of 20 a rectangle veen the bot :DL = 10.0ps iections. ers) of truss i lb uplift at ju	ed. ads. .0psf tom sf. to oint													
REACTIONS	(lb/size) 2=1336/0 10=969/ M 11=423/0 Max Horiz 2=161 (LC Max Uplift 10=-5 (LC Max Grav 2=1588 (L 11=605 (L	-3-8, (min. 0-1-10), Mechanical, (min. 0-1-8, -3-8, (min. 0-1-8) C 11) C 17), 10=1084 (LC 17, C 17), 10=1084 (LC 17, C 18)	8)), 9) 7),	This truss is International R802.10.2 a This truss de structural wo chord and 1/ the bottom c	designed in acco Residential Code nd referenced sta sign requires tha od sheathing be a 2" gypsum sheetr hord.	rdance w e sections indard AN t a minim applied d rock be a	ith the 2018 R502.11.1 ISI/TPI 1. um of 7/16" irectly to the pplied direct	top ly to													
FORCES TOP CHORD	(lb) - Max. Comp./M (lb) or less except w 2-26=-2751/73, 3-26 3-4=-2334/53, 4-5=- 6-7=-310/660, 7-8=-	ax. Ten All forces 250 nen shown. =-2635/80, 2232/78, 5-6=-303/704, 2086/101, 8-9=-2206/76	ix. Ten All forces 250 ien shown. =-2635/80, 2232/78, 5-6=-303/704, 2086/101, 8-9=-2206/76	2 18) x. Ten All forces 250 ien shown. -2635/80, 2232/78, 5-6=-303/704 2086/101, 8-9=-2206/7	2 18) x. Ten All forces 25(en shown. =-2635/80, 232/78, 5-6=-303/704 2086/101, 8-9=-2206/7	C 18) ix. Ten All forces 250 ien shown. -2635/80, 232/78, 5-6=-303/704, 2086/101, 8-9=-2206/76	_C 18) lax. Ten All forces 250 vhen shown. 5=-2635/80, -2232/78, 5-6=-303/704 -2086/101, 8-9=-2206/7	LC 18) Max. Ten All forces 250 when shown. 26=-2635/80, 2232/78, 5-6=-303/704 2086/101, 8-9=-2206/7	(LC 18) Max. Ten All forces 25 when shown. 26=-2635/80, =-2232/78, 5-6=-303/704 (=-2086/101, 8-9=-2206/7	11=605 (LC 18) Comp./Max. Ten All forces 250 except when shown. 1/73, 3-26=-2635/80, /53, 4-5=-2232/78, 5-6=-303/704, 360, 7-8=-2086/101, 8-9=-2206/76		AD CASE(S)	Standard								
BOT CHORD	9-27=-1948/137, 10. 2-19=-60/2512, 18-1 18-28=0/1698, 28-2 14-30=0/1698, 13-3 12-13=-65/1796, 11. 10-11=-65/1796	-27=-2077/135 19=-39/2512, 9=0/1698, 14-29=0/169 0=0/1698, -12=-65/1796,	18,																		
WEBS	10-11=-65/1796 9-12=-463/35, 7-15=0/677, 13-15=0/550, 17-18=0/790, 5-17=0/916, 3-18=-545/145, 5-7=-2235/498, 9-13=-115/251																				
NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103 B=64ft; L= Enclosed; -0-11-0 to	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B 55ft; eave=6ft; Ke=1. MWFRS (directional) 4-6-10. Interior (1) 4-6	e been considered for th (3-second gust) ICDL=6.0psf; h=18ft; 00; Cat. II; Exp B; and C-C Exterior(2E) 5-10 to 15-7-8 Exterior	nis																		

(2R) 15-7-8 to 21-1-2, Interior (1) 21-1-2 to 31-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job		Truss		Truss Type		Qty	Ply		Baker 2024-SAN-008
Q2400457		A05		Roof Special		1	1		Job Reference (optional)
Carolina Structur	al Systems, Sta	r, NC 27	356, Jeremy Phillips	-	Run: 8.72 S Feb	1 2024 F	Print: 8.72	0 S Fe	b 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:12 Page: 1
					16-7-8	ID:YI	n i Lpimne	szvon:	ырахнюзрадии на портинатории и портина Портинатории и портинатории и портинатории и портинатории и портинатории и портинатории и портинатории и портина
		-0-11-0	5-10-12	. 14-7-8	15-7-8	22-1	11-8		29-1-0 <u>35-11-8</u>
		0-11-0	5-10-12	8-8-12	1-0-0 1-0-0	6-4	1-0	I	6-1-8 ¹ 6-10-8 ¹
					3x6				
\rightarrow	\uparrow				$\begin{array}{c} 3x6 & 6 & 3x6 \\ 5 & 7 \\ \hline 7 \end{array}$				
	5 0 0			M18AHS 3x10	12 W4 P	13			
	å m			6 ¹² 4			29	5x6	12
7-3	+		3x 3	K4	/w3	W3		٠ بلا	
¢	ကုကု		28	K j			k	NG X	9 9 30
	4-8-4- 4-8-		И	vi wiz 🖌	/		$\langle $	110	
	0-6-7	1	THW1 ®	B1 19	34 1 ^{B2}	3 <u>5 1</u>			
~			21	1 2 3 1 4 3x4	3218 15 3x10	33 1 25	43 4		12 11 3x6
		4xt	3	2x4	2x4	M18A	HS 4x8		3x4
				11 5 1	^{2x4}	20	3x4)-3-4		
		Ŀ	5-10-12 L	 11-4-12 بالالــــــــــــــــــــــــــــــــــ	2 15-7-8 L L 19-	-9- 19-1 9-6	10-4	25-7-	-4 L 31-2-0 L 35-11-8 L
		T	5-10-12 1	5-1-0 1 1 0-5-0	1 ₁₋₈₋₀ 1 4-1	-14 0-0	11 -14	5-4-0	0 1 5-6-12 1 4-8-8 1 0-1-0
Scale = 1:74.6				0-0-12	4 2-5-14	0- 0-	1-4 3-12		
Plate Offsets (2	X, Y): [2:Edge	e,0-1-0],	[6:0-3-0,Edge], [14:0	0-3-12,Edge]				-	
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.80 \	DEFL /ert(LL)	-0	in (loc) l/defl L/d PLATES GRIP 0.45 17 >841 240 M18AHS 186/179
TCDL		10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.99 \ 0.62 F	/ert(CT)	-0	0.75 17-19 >500 180 MT20 244/190
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-AS	0.02	1012(01)	, 0	Weight: 193 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP Structural w Rigid ceiling 6-0-0 oc bra (lb/size) 21 Max Horiz 2= Max Grav 2= (lb) - Max. C (lb) or less e 2-282843/ 3-4=-2424/1 5-6=-301/49 7-29=-2303/ 8-9=-2107/7 10-30=-272/ 2-21=-115/2 2-0-31=0/177 15-18=0/177 13-14=0/177 13-14=0/177 13-14=0/177 13-14=0/177 13-14=0/177 13-14=0/971, 9-12=0/957,	*Excep *Excep *Excep No.3 ood she directly cing: 16 =1367/0 =1737/0 =1737/0 =1631 (L omp./M xcept w 173, 3-2 31, 4-5= 0, 6-7= 152, 8-2 6, 9-30= 538 592, 200 , 6-7= 152, 12-1 2, 31-3 72, 12-1 288 02, 5-7= 16, 19-2 13-16= 8-12=-5	bt* T3,T4:2x4 SP No.: bt* B2:2x4 SP No.2 bt*	 4) This truss h chord live lo 5) * This truss on the botto 3-06-00 tall chord and a 6) This truss is Internationa R802.10.2 a 7) This truss d structural w chord and 1 10) LOAD CASE(S) 250 	as been designed for vad nonconcurrent with has been designed for m chord in all areas v by 2-00-00 wide will f ny other members, w o designed in accorda I Residential Code se and referenced standa esign requires that a ood sheathing be app /2" gypsum sheetrock chord.) Standard	a 10.0 p h any ot or a live where a it betwe ith BCD nce with cctions F cctions F minimum lied dire (be app	ssf botto ther live load of 2 rectangl en the b L = 10.0 the 2011. Sto2.11. I/TPI 1. n of 7/16 cctly to th lied dire	m loads. 20.0ps e ottom psf. 8 1 and 5" Te top ctly to	s. sf 1 2 0
NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r B=64ft; L= Enclosed; -0-11-0 to (2R) 15-7-4 (2R) 1) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=6ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-6-10, Interior (1) 4-6-10 to 15-7-8, Exterior (2R) 15-7-8 to 21-1-2, Interior (1) 21-1-2 to 35-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 								

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	A06	Roof Special	1	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:12 Page: 1

ID:itHWCwQD4qYYwWwcei6DIUzd2uS-6dLU69myh7AmQDH7MILK8g1XRP9yuBpY0piOpXzd2af

Scale = 1:68.3

Plate Offsets (X, Y): [2:Edge,0-1-0], [6:0-3-0,Edge], [15:0-3-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-(1. 1. 1. YI IRC2018/TPI20	0CSI00TC5BCSWB4Matrix-AS	1.00 0.99 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.61 0.08	(loc) 14-16 14-16 12	l/defl >999 >617 n/a	L/d 240 180 n/a	PLATES M18AHS MT20 Weight: 181 lb	GRIP 186/179 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she Rigid ceiling directly (lb/size) 2=1272/0 Max Horiz 2=-159 (L Max Uplift 2=-42 (LC Max Grav 2=1445 (I (lb) - Max. Comp./M (lb) or less except w 2-25=-2470/273, 3-2 3-4=-2010/242, 4-5= 5-6=-311/519, 6-7=- 7-26=-1875/258, 8-2 8-9=-1748/147, 9-27 10-27=-399/713 2-18=-180/2264, 17 16-17=-180/2264, 17 16-17=-180/2264, 17 16-17=-180/2264, 17 16-17=-180/2264, 17 14-15=-22/1459, 13 12-13=0/907, 10-12 5-7=-1910/616, 5-16 9-12=-2176/472, 9-1 8-13=-437/131, 3-16	bt* B3:2x4 SP No.1 eathing directly applied. applied. -3-8, (min. 0-1-11), 0-3-8, (min. 0-2-3) C 10) : 12), 12=-56 (LC 12) .C 17), 12=1854 (LC 12) ax. Ten All forces 250 hen shown. 25=-2354/280, -1906/266, 277/493, 26=-1941/234, 7=-380/779, -18=-180/2264, 6-28=-22/1459, -29=-22/1459, -14=-72/1810, =-676/425 S=-1/725, 7-14=0/694, 13=-71/850, S=-573/190,	 4) This trus chord liv 5) * This tru on the bit 3:06:00 chord an 6) Provide 1 bearing 1 2 and 56 7) This trus Internatia R802.10 8) This trus chord an the botto LOAD CASE 	 has been design load nonconcurre ss has been design ttom chord in all a all by 2-00-00 wide any other member echanical connec- late capable of with buplift at joint 12. is designed in ac nal Residential Co 2 and referenced a design requires th wood sheathing b 1/2" gypsum she n chord. Standard 	ed for a 10.0 ent with any ined for a liv reas where e will fit betv ers, with BC cition (by oth thstanding 4 cordance w ode sections standard AN hat a minim be applied d betrock be a	0 psf bottom other live loa e load of 20. a rectangle veen the bot CDL = 10.0ps ers) of truss 12 lb uplift at ith the 2018 s R502.11.1 at SI/TPI 1. um of 7/16" irectly to the pplied direct	ads. .0psf tom sf. joint and top ly to					
NOTES 1) Unbalance	ed roof live loads have	e been considered for th	nis									

design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=6ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-6-10, Interior (1) 4-6-10 to 15-7-8, Exterior (2R) 15-7-8 to 21-1-2, Interior (1) 21-1-2 to 36-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	A07	Roof Special	4	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:13 Page: 1

ID:FmqrGqEEIQ_1SpYU3HpwWdzd2tP-aqvsKUmaSQId2NsJw?sZhuaiDpVBde2iFTRyLzzd2ae

Weight: 180 lb FT = 20%

IRC2018/TPI2014

4)

5)

6)

7)

8)

Matrix-AS

1 and 56 lb uplift at joint 11.

the bottom chord. LOAD CASE(S) Standard

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint

This truss is designed in accordance with the 2018

This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

chord and 1/2" gypsum sheetrock be applied directly to

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x4 3	o.2 o.2 *Except* B3:2x4 SP No.1 o.3 SP No.3
BRACING TOP CHORD BOT CHORD	Structural Rigid ceili	wood sheathing directly applied. ing directly applied.
REACTIONS	(lb/size) Max Horiz Max Uplift Max Grav	1=1217/0-3-8, (min. 0-1-10), 11=1713/0-3-8, (min. 0-2-3) 1=-157 (LC 10) 1=-18 (LC 12), 11=-56 (LC 12) 1=1394 (LC 17), 11=1854 (LC 19)
FORCES	(lb) - Max (lb) or less	. Comp./Max. Ten All forces 250
TOP CHORD	1-24=-247 2-3=-2013 4-5=-310/ 6-25=-187 7-8=-1749 9-26=-399	77/288, 2-24=-2349/290, 3/247, 3-4=-1909/270, 518, 5-6=-276/491, 76/260, 7-25=-1943/237, 9/149, 8-26=-380/779, 0/713
BOT CHORD	1-17=-182 15-16=-18 27-28=-24 13-14=-24 11-12=0/9	2/2271, 16-17=-182/2271, 32/2271, 15-27=-24/1460, 4/1460, 14-28=-24/1460, 4/1460, 12-13=-74/1811, 08, 9-11=-676/425
WEBS	4-6=-1909 8-12=-72/ 7-13=-332 2-15=-579	0616, 4-15=-1/728, 6-13=0/694, 851, 7-12=-437/132, 2/103, 8-11=-2177/473, 0/192

10.0

Code

NOTES

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=6ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-5-10, Interior (1) 5-5-10 to 15-7-8, Exterior(2R) 15-7-8 to 21-1-2, Interior (1) 21-1-2 to 36-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008	
Q2400457	A08	Common	3	1	Job Reference (optional)	
Carolina Structural Systems, Sta	ar, NC 27356, Jeremy Phillips	Run: 8.72 S Feb	1 2024 Print	: 8.720 S Fe	b 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:13	Page: 1

ID:yEUTVtmrxxXokavyeWcFIvzd2sj-aqvsKUmaSQId2NsJw?sZhuaigpZ6dftiFTRyLzzd2ae

Plate Offsets (X, Y): [1:Edge,0-1-4], [5:0-2-0,Edge], [9:Edge,0-1-4]

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15	CSI TC BC	0.97 0.74	DEFL Vert(LL) Vert(CT)	in -0.34 -0.58	(loc) 11-13 11-13	l/defl >999 >650	L/d 240 180	PLATES M18AHS MT20	GRIP 186/179 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS	0.46	HOIZ(CT)	0.09	9	n/a	n/a	Weight: 153 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she Rigid ceiling directly (lb/size) 1=1250/0 9=1250/0	athing directly applied. • applied. -3-8, (min. 0-1-11), -3-8, (min. 0-1-11)	 5) * This truss I on the bottor 3-06-00 tall I chord and ar 6) Provide mec bearing plate 1 and 22 lb u 7) This truss is International R802.10.2 a 8) This truss de structural work 	has been desig m chord in all a by 2-00-00 wid y other memb hanical connect capable of wi uplift at joint 9. designed in ac Residential Co nd referenced esign requires t od sheathing to	Ined for a liv Ireas where e will fit betw ers, with BC ction (by oth thstanding 2 ccordance w bode sections standard AN that a minim be applied di	e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 2 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the	Opsf tom if. to joint and top					
	Max Horiz 1=154 (LC Max Uplift 1=-22 (LC Max Grav 1=1423 (L	C 11) C 12), 9=-22 (LC 12) LC 17), 9=1423 (LC 18)	chord and 1/ the bottom c LOAD CASE(S)	2" gypsum she hord. Standard	etrock be a	oplied direct	ly to					
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250)									
TOP CHORD	(ii) of less except w 1-21=-2530/187, 2-2 2-3=-2080/172, 3-4= 4-5=-304/683, 5-6=- 7-8=-2080/172, 8-22 9-22=-2530/187	21=-2401/190, 1980/198, 304/683, 6-7=-1980/19 2=-2402/190,	8,									
BOT CHORD	1-14=-123/2315, 13- 13-23=-24/1526, 12- 12-24=-24/1526, 11- 10-11=-111/2200, 9-	-14=-123/2315, -23=-24/1526, -24=-24/1526, 10=-111/2200										
WEBS	4-6=-2105/566, 8-11	=-565/134										
NOTES	,-											
 Unbalance design. Wind: ASG Vasd=103 B=64ft; L= Enclosed; 0-0-0 to 5 15-7-8 to 5 cantilever right expo for reactio DOL=1.66 All platca 	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B 55ft; eave=6ft; Ke=1.1 MWFRS (directional) 5-10, Interior (1) 5-5- 21-1-2, Interior (1) 21- left and right exposed sed;C-C for members ns shown; Lumber DC	e been considered for th (3-second gust) CDL=6.0psf; h=18ft; 00; Cat. II; Exp B; and C-C Exterior(2E) 10 to 15-7-8, Exterior(2 1-2 to 31-3-0 zone; 1; end vertical left and and forces & MWFRS DL=1.60 plate grip	nis R)									
4) This trues	han haan daalanad fa	a 10.0 pof bottom										

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	B01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:14 Page: 1 ID:iI6MOkojWFUYBlsyey4KI7zd2nW-aqvsKUmaSQId2NsJw?sZhuaqApgudediFTRyLzzd2ae

Scale = 1:45.3

Plate Offsets (X, Y): [15:0-1-8,0-3-6]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-AS	0.49 0.31 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Right 2x4 SP No.2 - Structural wood she Rigid ceiling directly 1 Brace at Jt(s): 26, 28	- 2-6-0 eathing directly applied. / applied.	 Wind: ASC Vasd=103n B=64ft; L=5 Enclosed; N -0-11-0 to 4 (2R) 10-10. zone; cantil and right ex MWFRS fo grip DOL=1 Truss desigonly. For s 	E 7-16; Vult=130n ph; TCDL=6.0psf 5ft; eave=6ft; Ke= IWFRS (direction -6-10, Interior (1) 2 to 16-4-14, Inter ever left and right posed;C-C for me reactions shown .60 gned for wind load uds exposed to w	nph (3-see f; BCDL=6 =1.00; Cat lal) and C 4-6-10 to rior (1) 16 c exposed embers ar ; Lumber ds in the p <i>v</i> ind (norm	cond gust) .0psf; h=181 . II; Exp B; .C Exterior(2 10-10-2, Ex -4-14 to 21-7; : end vertica d forces & DOL=1.60 p lane of the tu al to the fac	t; 2E) terior 7-8 Il left late russ e),					
REACTIONS (lb) -	All bearings 14-3-8. Max Horiz 2=112 (LC Max Uplift All uplift 1 19, 20, 21 (LC 24) Max Grav All reactio (s) 2, 21, (LC 24) (LC 24) Xax Grav (LC 24)	C 11), 34=112 (LC 11) 00 (lb) or less at joint(s) 1, 22, 25 except 2=-152 24=-140 (LC 24), 34=-152 ons 250 (lb) or less at join 22, 24, 34 except 19=49(20=894 (LC 1), 25=300	see Standa or consult of 4) All plates a 5) Gable stud: 2 6) This truss 4 chord live lo the total 3-06-00 tall chord and a	rd Industry Gable ualified building d e 2x4 MT20 unlet s spaced at 2-0-0 as been designee oad nonconcurren has been designe m chord in all are by 2-00-00 wide v ny other member	End Deta lesigner a ss otherw oc. d for a 10. it with any ed for a liv eas where will fit betw s.	ils as applic s per ANSI/I se indicated 0 psf bottom other live lo re load of 20 a rectangle veen the bot	able, IPI 1. ads. .0psf					
FORCES TOP CHORD	(lb) - Max. Comp./M (lb) or less except w 2-3=-216/431, 3-37= 4-37=-151/401, 4-5= 6-7=-175/571, 7-8=- 9-10=-203/655, 10-' 11-12=-167/476, 12: 12-14=-152/250	ax. Ten All forces 250 hen shown. =-160/398, =-182/482, 5-6=-196/534, -125/540, 8-9=-146/589, 11=-184/553, -13=-120/356,	 8) Provide me bearing pla (s) 22, 20, 2 2=151. 9) Non Standa 10) This truss is Internationa R802.10.2 	chanical connecti e capable of with 1, 25, 19 except rd bearing condit designed in acco l Residential Cod and referenced st	on (by oth standing ' (jt=lb) 2=1 ion. Revie ordance w le sections andard AN	ers) of truss 100 lb uplift a 51, 24=140, ww required. ith the 2018 \$ R502.11.1 ISI/TPI 1.	to at joint and					
BOT CHORD	2-55=-365/200, 24-2 23-24=-365/200, 22 21-22=-634/348, 20 19-20=-649/354, 18 17-18=-286/158, 16	25=-365/200, -23=-365/200, -21=-634/348, -19=-649/354, -17=-286/158,	11) This truss of structural w chord and of the bottom LOAD CASE(S	esign requires tha ood sheathing be /2" gypsum sheet chord.) Standard	at a minim applied d trock be a	um of 7/16" irectly to the pplied direct	top ly to					
WEBS	15-16=-286/158 18-29=-393/212, 11 22-26=-155/314, 8-2 22-27=-279/151, 8-2 9-28=-265/123, 19-2	-29=-488/262, 26=-155/313, 20=-918/343, 28=-317/146										

NO

1) Unbalanced roof live loads have been considered for this design.

- 5) Refer to girder(s) for truss to truss connections.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 7, 44 lb uplift at joint 2 and 52 lb uplift at joint 8.
 7) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 This truss design requires that a minimum of 7/16"

the bottom chord.

LOAD CASE(S) Standard

structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied.

 BOT CHORD
 Rigid ceiling directly applied.

REACTIONS (lb/size) 2=626/0-3-8, (min. 0-1-8), 7=260/ Mechanical, (min. 0-1-8), 8=898/0-3-8, (min. 0-1-8) Max Horiz 2=113 (LC 11) Max Uplift 2=-44 (LC 12), 7=-88 (LC 12), 8=-52 (LC 12)

Right 2x4 SP No.2 -- 2-6-0

2x4 SP No.2

2x4 SP No.3

Left: 2x4 SP No.3

BOT CHORD

WEBS

WEDGE

SLIDER

- Max Grav 2=691 (LC 17), 7=299 (LC 26), 8=978 (LC 2) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250
- (lb) or less except when shown. TOP CHORD 2-18=-897/134, 3-18=-790/160,
- 3-4=-745/173, 6-7=-444/291

 BOT CHORD
 2-10=-101/826, 9-10=0/302, 9-19=0/302, 19-20=0/302, 8-20=0/302

 WEBS
 4-8=-640/5, 5-8=-335/179, 4-10=-35/658,
- 3-10=-324/156
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=6ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 4-6-10, Interior (1) 4-6-10 to 10-11-4, Exterior (2R) 10-11-4 to 16-4-14, Interior (1) 16-4-14 to 21-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Plate Offsets (X, Y): [1:Edge,0-1-0], [6:0-2-0,0-0-6], [8:0-2-4,0-3-0]

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI TC BC WB	0.35 0.52 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.11 0.01	(loc) 7-15 9-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 102 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEDS WEDGE SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right 2x4 SP No. Structural wood s Rigid ceiling direct	3 2 2-6-0 sheathing directly applied ctly applied.	 6) Provide met bearing plat 1, 90 lb upli 7) This truss is Internationa R802.10.2 a 8) This truss di structural we chord and 1 the bottom of 	chanical connect e capable of with ft at joint 6 and 5 designed in acc I Residential Co and referenced s esign requires th bood sheathing b /2" gypsum shee shord.	tion (by oth hstanding 2 50 lb uplift a cordance w de sections standard AN nat a minim e applied d etrock be a	ers) of truss 20 lb uplift at at joint 7. ith the 2018 & R502.11.1 at SI/TPI 1. um of 7/16" irectly to the pplied direct	to joint and top ly to					
REACTIONS	(Ib/size) 1=571/ Mechai 7=895/ Max Horiz 1=-107 Max Uplift 1=-20 (7=-50 (Max Grav 1=641 7=975	0-3-8, (min. 0-1-8), 6=26- nical, (min. 0-1-8), 0-3-8, (min. 0-1-8) (LC 10) LC 12), 6=-90 (LC 12), LC 12) (LC 17), 6=300 (LC 26), (LC 2)	4/ LOAD CASE(S)	Standard								
FORCES	(lb) - Max. Comp.	/Max. Ten All forces 25	0									
	(lb) or less excep	t when shown.	0									
TOP CHORD	1-2=-905/162, 2-3	3=-754/175,5-6=-445/29. 2=0/306 8-17=0/306	2									
	17-18=0/306, 7-1	8=0/306										
WEBS	3-7=-637/4, 4-7=-	335/179, 3-9=-36/663,										
	2-9=-327/157											
NOTES			u- : -									
design		ave been considered for t										
2) Wind: ASV Vasd=103 B=64ft; L= Enclosed; 0-0-0 to 5 (2R) 10-1 zone; can and right and force DOL=1.6(CE 7-16; Vult=130n Bmph; TCDL=6.0psf =55ft; eave=6ft; Ke= ; MWFRS (direction -5-10, Interior (1) 5- 1-4 to 16-4-14, Inter tilever left and right exposed; porch righ s & MWFRS for rea 0 plate grip DOL=1.	nph (3-second gust) ; BCDL=6.0psf; h=18ft; :1.00; Cat. II; Exp B; al) and C-C Exterior(2E) :5-10 to 10-11-4, Exterior rior (1) 16-4-14 to 21-7-8 exposed; end vertical le t exposed; C-C for memb ctions shown; Lumber 60	ft ers									
3) This truss	has been designed	for a 10.0 psf bottom										
chord live 4) * This true	load nonconcurren	t with any other live loads	S. Ief									
on the ho	ttom chord in all are	a ioi a inte ioau oi 20.0p	-01									

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.5) Refer to girder(s) for truss to truss connections.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	B04	Common Girder	1	3	Job Reference (optional)
Carolina Structural Systems, Sta	ar, NC 27356, Jeremy Phillips	Run: 8.72 S Feb	1 2024 Print	: 8.720 S Fe	eb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:15 Page: 1
			ID:Cfu	198aSfFLk67	7orHAD1SL0zd2IN-20SFXqnDDkQUfXRVTjNoD570bDsyM3prT7BVtPzd2ad
/	5-8-10	10-11-4		16-1-14	21-7-8
	5-8-10	5-2-10		5-2-10	5-5-10
		4>	(5		
\rightarrow		3			
Ň		12 6			
				\searrow	
		300			3X4
-		W	3		
9-0					
		W1 W2		W2	w1
1					5
0-6-7	P1		\frown		
	17 18	109 19 20 8	21		<u>6 23 24</u>
		7x8 6>	(8	22	7 2x4 6x6
	5x5				
/	5-8-10	10-11-4	14-	7-0	16-1-14 21-7-8
Scale = 1:42.9	5-8-10	5-2-10	3-7	-12	1-6-14 5-5-10
Plate Offsets (X, Y): [1:0-1-	0,0-0-14], [2:0-2-0,0-1-8], [5:	Edge,0-2-8], [8:0-4-0,0-4-0], [9:0-3-8,0-0-8]		_	· · · · · · · · · · · · · · · · · · ·
Loading TCLL (roof)	(psf) Spacing 20.0 Plate Grip DOI	2-0-0 CSI 1 00 TC	0 44 Vert	=∟ :() -(in (loc) I/defl L/d PLATES GRIP
TCDL	10.0 Lumber DOL	1.15 BC	0.96 Vert	(CT) -(0.23 8-10 >757 180
BCDL	10.0 Rep Stress Incr	NO WB IRC2018/TPI2014 Matrix-MS	0.67 Hor	z(CT) (0.03 / n/a n/a Weight: 361 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.: BOT CHORD 2x6 SP No.: WEBS 2x4 SP No.: WEDGE Right: 2x4 S BRACING TOP CHORD Structural w 6-0-0 oc pu BOT CHORD Rigid ceiling bracing. REACTIONS (lb/size) 1: 5 7 Max Horiz 1: Max Grav 1: Max Grav 1: 7 FORCES (lb) - Max. C (lb) or less 6 TOP CHORD 1-2=-11189/ 4-5=-4544/C BOT CHORD 1-17=0/100: 10-18=0/100 9-19=0/100: 8-20=0/100:	2 1 *Except* B2:2x6 SP DSS 3 SP No.3 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	 4) Write ASCE 7-16, Vulte 150mph; TCDL=6.0psf; BC B=64ft; L=55ft; eave=6ft; Ke=1.00 Enclosed; MWFRS (directional); exposed; end vertical left and rig DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for chord live load nonconcurrent wit 6) * This truss has been designed for chord live load nonconcurrent wit 6) * This truss has been designed for chord and any other members. 1-8), 7) Refer to girder(s) for truss to truss 8) This truss is designed in accordat International Residential Code se R802.10.2 and referenced standa 9) Hanger(s) or other connection de provided sufficient to support con lb down and 33 lb up at 2-0-12, 1403 lb down and 12 lb down and 33 lb up at 8-0 8-11-4, 1583 lb down at 11-2-4, 1 12-0-12, 1583 lb down at 11-2-4, 1 12-0-12, and 1064 lb down and 1 bottom chord. The design/selectid device(s) is the responsibility of o LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lu Plate Increase=1.00 I''x3'') Uniform Loads (lb/ft) Vert: 1-3=-60, 3-5=-60, 11-14-0 Concentrated Loads (lb) Vert: 9=-1229 (B), 6=-949 (B), (B), 18=-1229 (B), 22=-1316 (B), 2 (B) 	3-second 2 DL=6.0psf DL=6.0psf Cat. II; E cantilever la ht exposed a 10.0 psf h any other r a live loa where a reco it between s connectic nce with th ctions R50 ard ANSI/TI vice(s) sha centrated l 403 lb dov 3 lb up at on of such thers. Imber Incree =-20 8=-1316 (B), 20=-13 23=-949 (B	(s), s), s), s), s), s), s), s), s), s),	ht s.sf n 4 33 b 5 17 n n 229
unless otherwise indica3) Unbalanced roof live load design.	ted. ads have been considered fo	or this			

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	C01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:15 Page: 1

Scale = 1:44.2

Loa TC тс BC BC 5-11-3

		-	_									I
ading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
LL (roof)	20.0	Plate Grip DOL	1.00	тс	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
DL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	n/a	-	n/a	999		
L	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	-0.01	14	n/a	n/a		
DL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 107 lb	FT = 20%
			0) Brovido mos		otion (by oth	ora) of truca	to				-	

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

REACTIONS All bearings 20-7-0.

(lb) - Max Horiz 2=111 (LC 11), 24=111 (LC 11) Max Uplift All uplift 100 (lb) or less at joint(s)

2, 14, 15, 16, 17, 20, 21, 22, 23, 24 the bottom chord. Max Grav All reactions 250 (lb) or less at joint LOAD CASE(S) Standard (s) 2, 15, 16, 17, 20, 21, 22, 23, 24 except 14=293 (LC 1), 18=319 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 7-18=-277/0

WEBS

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=2ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-11-0 to 4-3-8, Exterior(2N) 4-3-8 to 10-3-8, Corner (3R) 10-3-8 to 15-9-2, Exterior(2N) 15-9-2 to 21-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Provide mechanical connection (by others) of truss t bearing plate capable of withstanding 100 lb uplift at joint (s) 2, 20, 21, 22, 23, 17, 16, 15, 14, 2.
- 10) Beveled plate or shim required to provide full bearing
- surface with truss chord at joint(s) 2, 24.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008	
Q2400457	C02	Common	7	1	Job Reference (optional)	
Carolina Structural Systems, Sta	Run: 8.72 S Feb	1 2024 Print	: 8.720 S Fe	b 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:15 Pa	age: 1	

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:15

Page: 1 ID:5w3DR0iKiulu15HSPbITFgzd2dJ-WC0dlAor 2YLHh0i1Qv1mJfDedJ65ef?inw3Qszd2ac

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 5) Provide mechanical connection (by others) of truss to

TCDL

BCLL

BCDL

WEBS

2)

3)

4)

bearing plate capable of withstanding 39 lb uplift at joint 2 and 39 lb uplift at joint 6.

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	C03	Common	2	1	Job Reference (optional)

5-11-3

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

WEDGE

BRACING

FORCES

WEBS

NOTES

2)

3)

4)

design.

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:16 Page: 1

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 14 lb uplift at joint 1 and 39 lb uplift at joint 5.

Job		Truss		Truss Type				Qty	Ply	Baker 20	24-SAN-0	08			7
Q2400457		C04		Common				1	1	Job Refe	rence (op	tional)			
Carolina Structura	al Systems, Sta	r, NC 27	7356, Jeremy Phillips			Run: 8.7	2 S Feb	0 1 2024 Prin	it: 8.720 S Fe	b 1 2024 M	iTek Industi	ries, Inc.	. Fri Mar 08 08:34:1	16	Page: 1
								ID:	CitZkH38f6Xe	ediaD9uqV1	9zd2cr-?Pa	a?yWp11	LgCvraub8QGJWC	Com1eJq5t8xQ	gcylzd2ab
		,	5-2-12	2	/	10-3-8			15	5-4-4			20-7-0		
			5-2-12	-		5-0-12		I	5-	0-12	I		5-2-12	I	
								4x5							
<u> </u>	_							3 ∽							
Ì					1 <u>2</u> 6				\sim						
					2x4			$// \sim$	$\langle \rangle$		2x	4			
					16 🦯						 17				
ې بې				154		1	/wz		ŚW			418			
5-4					TE						17	\sim			
					W					<u> </u>	/w/				
		1				$\backslash //$				$\backslash \backslash$				5	
	0-6-7	-	HW1		B1		٦					B2		HWE	
		-	×			8	7			6				X	
						3x4	3x4			3x4					
			4x5											4x5	
		,		6-11-0		_/		13-8-0					20-7-0		
Scale = 1:41.4			1	6-11-0		I		6-9-1		I			0-11-0	I	
Loading	-	(psf)	Spacing	-	2-0-0	CSI		DE	FL	in (loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL		20.0 10.0	Plate Grip DOL Lumber DOL		1.00 1.15	TC BC		0.27 Ver 0.45 Ver	t(LL) -0 t(CT) -0).05 6-8).12 6-8	3 >999 3 >999	240 180	MT20	244/190	
BCLL		0.0* 10.0	Rep Stress Incr	IRC2018	YES 77014	WB Matrix-AS		0.18 Hor	rz(CT) (0.03 5	5 n/a	n/a	Weight [,] 94 lb	FT = 20%	
			0000										Troigne of ib		
LUMBER TOP CHORD	2x4 SP No.2	2		6) Th Int	is truss is ternational	designed in a Residential (accorda Code s	ance with th ections R50	ne 2018 02.11.1 and						
BOT CHORD	2x4 SP No.2	2		R8 7) Th	302.10.2 a nis truss de	nd referenced	d stand s that a	lard ANSI/T	PI 1. of 7/16"						
WEDGE	Left: 2x4 SP	No.3		, str	uctural wo	ood sheathing	be ap	plied direct	y to the top						
BRACING	Right: 2x4 S	P N0.3		the	e bottom c	chord.	leeuoc	k be applie	a aneony it	,					
TOP CHORD	Structural we	ood she	eathing directly applie	d. LOAD	CASE(S)	Standard									
REACTIONS ((lb/size) 1=	=823/0-:	3-8, (min. 0-1-8),												
,	5= Max Horiz 1=	=823/0-; =-102 (I	3-8, (min. 0-1-8)												
I	Max Uplift 1=	-14 (LC	C 12), 5=-14 (LC 12)												
FORCES	(lb) - Max. C (lb) or less e	omp./M xcept w	lax. Ten All forces 2 /hen shown.	250											
TOP CHORD	1-15=-1375/2-16=-1215/	211, 2-′ 199, 3-′	15=-1242/213, 16=-1206/227.												
	3-17=-1206/2	227, 4-	17=-1215/199, 18=-1375/211												
BOT CHORD	1-8=-145/110	68, 7-8=	-38/798, 6-7=-38/798	8,											
WEBS	3-6=-50/444	, 4-6=-2	286/149, 3-8=-50/444	,											
NOTES	2-8=-286/14	9													
 Unbalance design 	d roof live loa	ds have	e been considered for	r this											
2) Wind: ASC	E 7-16; Vult=	130mpl	n (3-second gust)												
B=64ft; L=5	55ft; eave=6ft	; Ke=1.	00; Cat. II; Exp B;												
Enclosed; I 0-0-0 to 5-5	5-10, Interior	(1) 5-5-	10 to 10-3-8, Exterior	:) (2R)											
10-3-8 to 1 cantilever l	5-9-2, Interior eft and right e	r (1) 15. exposed	-9-2 to 20-7-0 zone; d : end vertical left and	d											
right expos	ed;C-C for m	embers	and forces & MWFR	S											
DOL=1.60															
chord live l	oad nonconci	urrent w	vith any other live load	ds.											
 This truss on the botter 	s has been de om chord in a	signed II areas	for a live load of 20.0 where a rectangle	lpsf											
3-06-00 tal	l by 2-00-00 v	vide wil mbers	I fit between the botto	om											
5) Provide me	echanical con	nection	(by others) of truss to	D											
bearing pla 1 and 14 lb	are capable of uplift at joint	withsta 5.	anding 14 lb uplift at jo	JUUC											

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	D01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:16 Page: 1 ID:oOjsg3EwMPIfJsev_q4n16zd2cd-?Pa?yWpTILgCvraub8QGJWCQo1kvq6b8xQgcyIzd2ab

4x5

Scale = 1:34.1

			I								I		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	10	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 54 lb	FT = 20%	
		-	0) Provide mer	hanical connec	tion (by oth	ers) of truss	to				_		

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

REACTIONS All bearings 12-0-0.

- (lb) Max Horiz 2=68 (LC 11), 15=68 (LC 11) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 10, 11, 13, 14, 15
 - All reactions 250 (lb) or less at joint LOAD CASE(S) Standard Max Grav (s) 2, 10, 11, 13, 14, 15 except 12=326 (LC 1)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 5-12=-277/67

WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=2ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-10-8 to 4-7-2, Exterior(2N) 4-7-2 to 6-0-0, Corner(3R) 6-0-0 to 11-5-10, Exterior(2N) 11-5-10 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- bearing plate capable of withstanding 100 lb uplift at joint (s) 2, 13, 14, 11, 10, 2.
- 10) Beveled plate or shim required to provide full bearing
- surface with truss chord at joint(s) 2, 15. 11) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	D02	Common	5	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:17 Page: 1

6-0-0

6-0-0

Scale =	1:34.2
---------	--------

3-9-3

											ļ	
Loadin	n (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCLL (r	anf) 20.0	Plate Grin DOI	1.00	TC	0.37	Vert(LL)	0.04	6-9	>999	240	MT20	244/190
TCDI	10.0	Lumber DOI	1 15	BC	0.35	Vert(CT)	-0.06	6-12	>999	180		2
BCLL	0.0*	Ren Stress Incr	YES	WB	0.10	Horz(CT)	0.01	2	n/a	n/a		
BCDI	10.0	Code	IRC2018/TPI2014	Matrix-AS	0.10	11012(01)	0.01	-	n/a	11/0	Weight [.] 45 lb	FT = 20%
		0000				_			-		Wolght. To ib	
LUMBE TOP CH BOT CH WEBS BRACII	R IORD 2x4 SP No.2 IORD 2x4 SP No.2 2x4 SP No.3 IG	pathing directly applied	 This truss de structural we chord and 1, the bottom c LOAD CASE(S) 	esign requires tha bod sheathing be '2" gypsum sheet hord. Standard	at a minim applied d trock be a	um of 7/16" irectly to the pplied directl	top y to					
BOT CH	IORD Rigid ceiling directly	v applied.										
REACT	IONS (Ib/size) 2=533/0- 4=532/0- Max Horiz 2=68 (LC Max Uplift 2=-141 (L	3-0, (min. 0-1-8), 3-0, (min. 0-1-8) 11) .C 12), 4=-141 (LC 12)										
FORCE	s (lb) - Max. Comp./M	lax. Ten All forces 25	0									
TOP CH	(lb) or less except w ORD 2-13=-650/349, 13- 3-14=-533/380, 3-1	/hen shown. 14=-641/364, 5=-533/380,										
	15-16=-641/364, 4-	16=-650/349										
BOT CH	ORD 2-6=-234/514, 4-6=-	-234/514										
WEBS	3-6=-106/261											
NOTES												
1) Unb	alanced roof live loads have	e been considered for t	this									
2) Win Vas B=6 Enc -0-1 6-0- can righ mer	gn. d: ASCE 7-16; Vult=130mpl j=103mph; TCDL=6.0psf; E 4ft; L=55ft; eave=6ft; Ke=1. osed; MWFRS (directional) 0-8 to 4-7-2, Interior (1) 4-7 0 to 11-5-10, Interior (1) 11- ilever left and right exposed exposed; porch left and rig bers and forces & MWFRS ber DQL=1 60 plate grip D0	h (3-second gust) SCDL=6.0psf; h=18ft; 00; Cat. II; Exp B; and C-C Exterior(2E) -2 to 6-0-0, Exterior(2F) 5-10 to 12-10-8 zone; d; end vertical left and ht exposed;C-C for S for reactions shown; O = 1 60	۶)									
3) This	truss has been designed for	or a 10.0 psf bottom										
cho	d live load nonconcurrent w	vith any other live loads	3. _f									
4) ~ Th on t 3-06	is truss has been designed ne bottom chord in all areas i-00 tall by 2-00-00 wide wil	where a rectangle fit between the botton	sī									
cho	d and any other members.											
5) Prov bea	vide mechanical connection ring plate capable of withstand ring 141 lb uplift at joint 4	(by others) of truss to anding 141 lb uplift at jo	bint									
6) This Inte R80	truss is designed in accord national Residential Code s 2.10.2 and referenced stan	lance with the 2018 sections R502.11.1 and dard ANSI/TPI 1.	Ŀ									

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	V01	Valley	3	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:17 Page: 1 ID:3kvGJAXg0J9FxC7evhz9pizd36W-Tb8NAsp5Wfo3W_949rxVrklczQ4tZa_IA4P9Ukzd2aa

2x4

Scale = 1:26.9

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%

- LUMBER
- TOP CHORD 2x4 SP No.2
- BOT CHORD 2x4 SP No.2
- BRACING
- TOP CHORD Structural wood sheathing directly applied or 3-11-0 oc purlins.
- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 1=157/3-11-0, (min. 0-1-8), 3=157/3-11-0, (min. 0-1-8) Max Horiz 1=17 (LC 11)

- Max Uplift 1=-3 (LC 12), 3=-3 (LC 12) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250
- (ib) Max. Comp./Max. Ten. Air forces 2 (ib) or less except when shown.

TOP CHORD 1-2=-271/142

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; B=64ft; L=55ft; eave=6ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 1 and 3 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	V02	Valley	3	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:17 Page: 1 ID:fQIZFziSjcwGdMBKkdDROfzd36I-Tb8NAsp5Wfo3W_949rxVrklb0Q3mZZmIA4P9Ukzd2aa

Scale = 1:27.3

Loading TCLL (root TCDL)	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15	CSI TC BC	0.17	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL		0.0* 10.0	Code	IRC2018/TPI2014	WB Matrix-AS	0.08	Horiz(IL)	0.00	4	n/a	n/a	Weight: 25 lb	FT = 20%
LUMBER TOP CHO BOT CHO OTHERS BRACING TOP CHO BOT CHO	RD 2x4 SP N RD 2x4 SP N 2x4 SP N RD Structura RD Rigid ceil	lo.2 lo.2 lo.3 l wood she ing directly	eathing directly applied. / applied.	 9) This truss is International R802.10.2 a 10) This truss de structural we chord and 1, the bottom c LOAD CASE(S) 	designed in ac l Residential Cc nd referenced a esign requires t bod sheathing t /2" gypsum she thord. Standard	cordance w ode sections standard AN that a minim be applied d setrock be a	ith the 2018 R502.11.1 ISI/TPI 1. um of 7/16" irectly to the pplied direct	and top ly to					
REACTION	Max Horiz Max Uplift Max Grav	3=55/7-11 4=523/7-1 1=-36 (LC 4=-14 (LC 1=81 (LC (LC 1)	(1-0, (min. 0-1-8), (1-0, (min. 0-1-8)) (1-0, (min. 0-1-8) (1-0, (2-1-8)) (1-0, (2-1-8))) (1-0, (2-1-8)) (1-0, (2-1-8))) (1-0, (2-1-8))) (1-0	523									
FORCES TOP CHOI WEBS NOTES	(lb) - Max (lb) or les 2-4=-364	. Comp./M s except w /252, 2-3=- /264	ax. Ten All forces 250 /hen shown. ·138/252)									
 Unbala design Wind: Vasd= B=64ft Enclos zone; and rig MWFF grip D0 	ASCE 7-16; VL 103mph; TCDI L=55ft; eave= ed; MWFRS (d antilever left a ht exposed; C- S for reactions DL=1.60	loads have ult=130mpł _=6.0psf; E =2ft; Ke=1. directional) and right e C for mem s shown; L	e been considered for th n (3-second gust) ICDL=6.0psf; h=18ft; 00; Cat. II; Exp B; and C-C Corner(3E) posed ; end vertical lef bers and forces & umber DOL=1.60 plate	nis t									
 3) Truss only. F see St or con: 4) Gable 5) Gable 6) This tri- chord 7) * This on the 3-06-0 chord 	designed for w for studs expo andard Industr sult qualified b requires contin studs spaced ive load nonco russ has been bottom chord bottom chord o tall by 2-00-0 and any other	vind loads i sed to wind y Gable Er uilding des nuous botto at 4-0-0 oc designed fo ncurrent w designed n all areas 00 wide will members.	in the plane of the truss d (normal to the face), nd Details as applicable igner as per ANSI/TPI 1 om chord bearing. or a 10.0 psf bottom ith any other live loads for a live load of 20.0ps where a rectangle fit between the bottom	, sf									
 Provid bearing 4. 	e mechanical o g plate capable	connection e of withsta	(by others) of truss to Inding 14 lb uplift at join	ht									

Job	Truss	Truss Type	Qty	Ply	Baker 2024-SAN-008
Q2400457	V03	Valley	2	1	Job Reference (optional)

Run: 8.72 S Feb 1 2024 Print: 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:17 Page: 1 ID:MLLLLOqkNhArquyFJkPnomzd368-Tb8NAsp5Wfo3W_949rxVrklY3Q1JZYWIA4P9Ukzd2aa

Scale = 1:32.1

				-									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.31	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	* Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 39 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s Rigid ceiling dire (lb/size) 1=42/1 3=42/1 4=870/ Max Horiz 1=-56 Max Uplift 1=-29 4=-27	heathing directly applied tly applied. 1-11-0, (min. 0-1-8), 1-11-0, (min. 0-1-8), 11-11-0, (min. 0-1-8) LC 10) LC 24), 3=-29 (LC 23), LC 12)	 7) * This truss on the botto 3-06-00 tall chord and a 8) Provide met bearing plat 1, 29 lb uplif 9) This truss is Internationa R802.10.2 a 10) This truss d structural w chord and 1 the bottom of 	has been design m chord in all a by 2-00-00 wic ny other memb chanical conne e capable of w t at joint 3 and designed in a I Residential C and referenced esign requires bod sheathing /2" gypsum sh chord.	gned for a liv areas where de will fit betv bers. ection (by oth rithstanding 2 27 Ib uplift a ccordance w code sections standard AN that a minim be applied d eetrock be a	e load of 20. a rectangle veen the bott ers) of truss 29 lb uplift at it joint 4. ith the 2018 5 R502.11.1 at ISI/TPI 1. um of 7/16" irectly to the pplied directl	Opsf tom joint and top ly to						
	(LC 1)	.C 23), 3=91 (LC 24), 4=	=870 LOAD CASE(S)	Standard									
FORCES	(lb) - Max. Comp	Max. Ten All forces 2	50										
FOP CHORD	(lb) or less excep 1-9=-169/379, 2-9 3-10=-166/379	t when shown. 9=-146/455, 2-10=-143/4	455,										
BOT CHORD	1-4=-339/222, 3-4	=-339/222											
NEBS	2-4=-681/352												
NOTES													
 Unbalance design. Wind: ASC Vasd=103 B=64ft; L= Enclosed; 0-0-8 to 5- 	ed roof live loads h CE 7-16; Vult=130n imph; TCDL=6.0psi =55ft; eave=2ft; Ke= MWFRS (direction -6-2, Exterior(2N) 5	ave been considered for ph (3-second gust) ; BCDL=6.0psf; h=18ft; 1.00; Cat. II; Exp B; al) and C-C Corner(3E) -6-2 to 6-0-0, Corner(3R)	this t)										

- 0-0-8 to 5-6-2, Exterior(2N) 5-6-2 to 6-0-0, Corner(3R) 6-0-0 to 11-5-10, Exterior(2N) 11-5-10 to 11-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Tru	iss Type		Qty	Qty Ply Baker 2024-SAN-008							
Q2400457	V04	Valley			2	1	Job Reference (optional)						
Image: Carolina Structural Systems, Star, NC 27356, Jeremy Phillips Run: 8.72 S Feb 1 2024 Print 8.720 S Feb 1 2024 MiTek Industries, Inc. Fri Mar 08 08:34:18 Pag										8 Page: 1			
ID:b4OIE1xNFSJZPG8_L73vffzd36?-xnilNCqjHzww88kGiZSkOxHlAqQ3l0rROk9j0Azd2aZ													
7 11 8						L				15-11-0			
		7-	1-8		1	7-4-9							
												0-6-15	
4x5													
\rightarrow \rightarrow \rightarrow \rightarrow													
2x4 13 14 2x4													
<u>-00</u> 			2	TI		ST2 II							
4			The second secon										
		ST1 S							1				
	0-0-4	1			****		<u>B1</u>					5	
		3x4	o 2x4			7 2x4			2x	3x4			
				1	5-11-0								
Scale = 1:36.1		1											
Loading	(psf) Spacing		2-0-0	CSI	D	EFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	20.0 Plate Grip 10.0 Lumber D	DOL DOL	1.00 1.15	TC BC	0.21 V 0.12 V	ert(LL) ert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	244/190	
BCLL	0.0* Rep Stres	ss Incr	YES RC2018/TPI2014	WB Matrix-AS	0.09 H	oriz(TL)	0.00	5	n/a	n/a	Weight: 58 lb	FT = 20%	
						the 2019							
LUMBER 5) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SP No.2 International Residential Code sections R502.11.1 and BOT CHORD 2x4 SP No.2 R802.10.2 and referenced standard ANSI/TPI 1. OTHERS 2x4 SP No.3 10) This truss design requires that a minimum of 7/16" BRACING structural wood sheathing be applied directly to the top													
TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.													
REACTIONS All bearings 15-11-0.													
(Ib) - Max Horiz 1=-76 (LC 10) Max Uplift All uplift 100 (Ib) or less at joint(s)													
6, δ Max Grav All reactions 250 (Ib) or less at joint													
(s) 1, 5 except 0=370 (LC 24), 7=357 (LC 1), 8=370 (LC 23)													
(Ib) or less	except when showr	All forces 250 1. 											
WEBS 3-7=-288/74, 2-8=-265/207, 4-6=-265/207 NOTES													
 Unbalanced roof live loads have been considered for this design. 													
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft; 													
B=64ft; L=55ft; eave=2ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E)													
0-0-8 to 5-6-2, Exterior(2N) 5-6-2 to 8-0-0, Corner(3R) 8-0-0 to 13-5-10, Exterior(2N) 13-5-10 to 15-11-8 zone;													
cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS													
for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60													
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 													
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.													
 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 													
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.													
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle													
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.													
3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint													
(s) 8, 6.													

Plate Offsets (X, Y): [8:0-2-8,0-3-0]

											_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-AS							Weight: 75 lb	FT = 20%
LUMBER			8) Provide med	hanical connection	(by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing plat	e capable of withsta	nding 1	100 lb uplift at	t joint					
BOT CHORD	2x4 SP No.2		(s) 8, 6.									
OTHERS 2x4 SP No.3 9) This truss is designed in accordance with the 2018												
BRACING	Renarcial Code sections K502,11.1 and Renarcial Code sections K502,11.1 and Renarcial Astronomy Renarcial											
TOP CHORD	Structural wood she	eathing directly applied.	10) This truss d	sign requires that a	a minim	um of 7/16"						
BOT CHORD Rigid ceiling directly applied.												
REACTIONS All bearings 19-11-0 chord and 1/2" gyosum sheetrock be abbiled directly to de op												
(b) - Max Horiz 1=-94 (I C 10) the bottom chord.												
Max Uplift All uplift 100 (lb) or less at joint(s) LOAD CASE(S) Standard												
	6, 8											
	Max Grav All reaction	ons 250 (lb) or less at jo	pint									
	(s) 1, 5 e	xcept 6=469 (LC 18),										
	7=346 (L	C 1), 8=493 (LC 23)	_									
FORCES	(Ib) - Max. Comp./N	lax. Ien All forces 250)									
	(ID) OF less except v	vnen snown.										
WEBS	3-7=-310/54 2-8=-	342/230 4-6=-330/237										
NOTES	0-1010/04, 2-00	542/200, 4-0000/201										
1) Unbalance	ed roof live loads hav	e been considered for t	his									
design			110									
 Wind: AS0 	0 Wind: ASCE 7-16: Vult=130mph (3-second aust)											
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=18ft;												
B=64ft; L=	B=64ft; L=55ft; eave=2ft; Ke=1.00; Cat. II; Exp B;											
Enclosed;	Enclosed; MWFRS (directional) and C-C Corner(3E)											
0-0-8 to 5	0-0-8 to 5-6-2, Exterior(2N) 5-6-2 to 10-0-0, Corner(3R)											
10-0-0 to	10-0-0 to 15-5-10, Exterior(2N) 15-5-10 to 19-4-9 zone;											
right expo	cantilever lett and right exposed; end vertical lett and											
for reactio	Ignit exposed,C to intermotes and forces & MWFRS											
DOL=1.60)											
3) Truss des	signed for wind loads	in the plane of the truss	5									
only. For	studs exposed to win	d (normal to the face),										
see Standard Industry Gable End Details as applicable,												
or consult qualified building designer as per ANSI/TPI 1.												
 Gable req Cable -tri 	uires continuous bott	om chord bearing.										
i) Gable studs spaced at 4-0-0 oc. 3) This trues has been designed for a 10.0 psf bottom												
chord live	chord live load ponconcurrent with any other live loads											
 This trus 	s has been designed	for a live load of 20 0ns	sf									
on the bottom chord in all areas where a rectangle												
3-06-00 ta	all by 2-00-00 wide wi	Il fit between the bottom	ı									
chord and	any other members.											