

RE: MP24

DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: MP24

Lot/Block: Model: Address: Subdivision: City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.6

Wind Code: ASCE 7-10 Wind Speed: 120 mph Floor Load: N/A psf Roof Load: 40.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	159163116	A01AG	6/26/2023
2	159163117	A02	6/26/2023
3	159163118	A02A	6/26/2023
4	159163119	A03	6/26/2023
5	159163120	A04V	6/26/2023
6	159163121	A05AV	6/26/2023
7	159163122	A05V	6/26/2023
8	159163123	A06AVG	6/26/2023
9	159163124	B01G	6/26/2023
10	159163125	B02GR	6/26/2023
11	159163126	P01G	6/26/2023
12	159163127	P02	6/26/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Apex,NC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

June 26, 2023

1 of 1

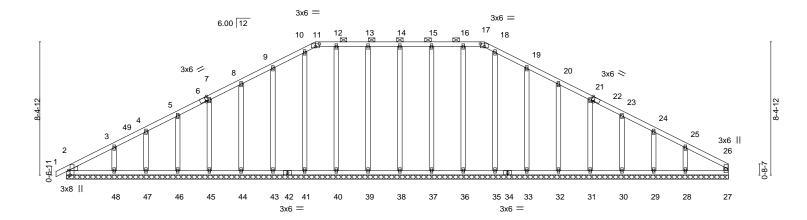
Job Truss Truss Type Qty DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE 159163116 MP24 A01AG **GABLE** Job Reference (optional) 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:17 2023 Page 1 Builders FirstSource (Apex, NC), Apex, NC - 27523 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5-3-14

26-3-14

5-3-14

Scale = 1:72.6


41-8-8

15-4-10

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 11-17.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Off	41-8-8 Plate Offsets (X,Y) [2:0-3-8,Edge], [6:0-1-13,Edge], [11:0-3-0,0-2-0], [17:0-3-0,0-2-0], [22:0-1-13,Edge]											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.16	Horz(CT)	0.01	27	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix	-S						Weight: 284 lb	FT = 20%

BOT CHORD

41-8-8

LUMBER-**BRACING-**TOP CHORD

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

REACTIONS. All bearings 41-8-8.

Max Horz 2=121(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 38, 39, 40, 43, 44, 45, 46, 47,

48, 37, 36, 33, 32, 31, 30, 29, 28

15-8-2

Max Grav All reactions 250 lb or less at joint(s) 27, 2, 38, 39, 40, 41, 43, 44, 45,

46, 47, 48, 37, 36, 35, 33, 32, 31, 30, 29, 28

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-0 to 4-1-10, Exterior(2) 4-1-10 to 15-8-2, Corner(3) 15-8-2 to 20-5-12, Exterior(2) 20-5-12 to 26-3-14, Corner(3) 26-3-14 to 31-0-0, Exterior(2) 31-0-0 to 41-6-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 38, 39, 40, 43, 44, 45, 46, 47, 48, 37, 36, 33, 32, 31, 30, 29, 28.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 26,2023

Job Truss Truss Type Qty DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE 159163117 MP24 A02 COMMON Job Reference (optional) 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:19 2023 Page 1 Builders FirstSource (Apex, NC), Apex, NC - 27523 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 27-11-8 41-8-8 7-0-15 6-11-8 6-11-8 6-11-8 6-11-8 6-9-8 Scale = 1:74.1 5x6 = 6.00 12 6 4x6 🖊 4x6 < 3x6 / 3x6 < 27 2x4 \\ 2x4 // 9 3 4x6 > 10 0-6-11 16 30 15 33 13 12 3x10 MT20HS 4x6 = 5x6 || 4x6 = 4x6 = 3x6 =5x6 =4x6

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

0.15

-0.33 14-15

-0.61 14-15

0.10 15-17

11

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 *Except*

8-11: 2x4 SP No.1

8-4-9 8-4-9

[2:0-0-0,0-1-6]

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

Plate Offsets (X,Y)--

20.0

10.0

10.0

0.0

LOADING (psf)

SLIDER Right 2x4 SP No.3 1-11-12

REACTIONS. (size) 2=0-3-8, 11=Mechanical

Max Horz 2=151(LC 12)

Max Uplift 2=-25(LC 12), 11=-12(LC 13) Max Grav 2=1709(LC 1), 11=1668(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3068/235, 3-5=-2946/290, 5-6=-2417/308, 6-7=-2406/306, 7-9=-2848/297,

9-11=-2940/243

BOT CHORD 2-17=-135/2661, 15-17=-82/2259, 14-15=0/1698, 12-14=-67/2239, 11-12=-136/2557 3-17=-344/179, 5-17=-103/581, 5-15=-673/200, 6-15=-94/988, 6-14=-92/964,

7-14=-646/200, 7-12=-106/492, 9-12=-287/176

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 21-0-0, Exterior(2) 21-0-0 to 27-11-8, Interior(1) 27-11-8 to 41-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

16-4-9

CSI.

TC

BC

WB

Matrix-MS

0.97

0.85

0.76

2-0-0

1.15

1.15

YES

- 3) All plates are MT20 plates unless otherwise indicated
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

41-8-8

GRIP

244/190

187/143

FT = 20%

PLATES

MT20HS

Weight: 230 lb

MT20

7-11-13

L/d

360

240

n/a

240

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc bracing.

I/def

>999

>827

>999

n/a

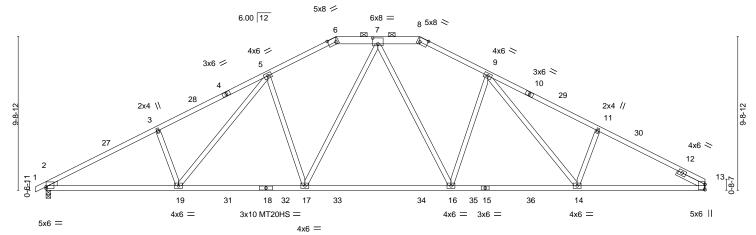
June 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty DRHORTON/WILMINGTON: LOT 24 MCKAY PLACE 159163118 MP24 A02A COMMON Job Reference (optional) 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:21 2023 Page 1 Builders FirstSource (Apex, NC), Apex, NC - 27523

ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-0-0 oc purlins (3-2-2 max.): 6-8.

23-7-14 27-11-8 41-8-8 7-0-15 6-11-8 4-3-10 2-7-14 2-7-14 4-3-10 6-11-8 6-9-8

Scale = 1:72.9

		8-4-9	16-	-4-9	1	25-7-8		3	<i>3-7-</i> 6	41-8-8	3
		8-4-9	8-0	0-0	1	9-3-0	1	7-	11-13	8-1-2	1
Plate Offsets	s (X,Y)	[2:0-0-0,0-1-6], [6:0-5-1-	4,0-3-4], [7:0-4-	0,0-4-8], [8:0-5-	14,0-3-4]						
LOADING ((psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defI	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	TC 0.	.97	Vert(LL)	-0.40 16-17	>999	360	MT20	244/190
TCDL 1	10.0	Lumber DOL	1.15	BC 0.	.87	Vert(CT)	-0.77 16-17	>649	240	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.	.60	Horz(CT)	0.15 13	n/a	n/a		
BCDL 1	10.0	Code IRC2015/7	TPI2014	Matrix-M	1S	Wind(LL)	0.14 17	>999	240	Weight: 230 lb	FT = 20%
						. ,					

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 *Except* TOP CHORD

6-8: 2x6 SP DSS

BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

SLIDER Right 2x4 SP No.3 1-11-12

REACTIONS. (size) 2=0-3-8, 13=Mechanical

Max Horz 2=139(LC 12)

Max Uplift 2=-16(LC 12), 13=-3(LC 13) Max Grav 2=1709(LC 1), 13=1668(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2\text{-}3\text{--}3064/269, 3\text{-}5\text{--}2945/324, 5\text{-}6\text{--}2355/339, 8\text{-}9\text{--}2346/336, 9\text{-}11\text{--}2847/331,}$

11-13=-2935/276, 6-7=-2066/325, 7-8=-2056/322

2-19=-190/2660, 17-19=-122/2218, 16-17=-28/1710, 14-16=-107/2199, 13-14=-168/2556 **BOT CHORD**

WEBS 3-19=-377/186, 5-19=-110/617, 5-17=-534/187, 7-17=-82/858, 7-16=-81/836,

9-16=-509/186, 9-14=-113/523, 11-14=-319/182

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 18-4-2, Exterior(2) 18-4-2 to 30-5-5, Interior(1) 30-5-5 to 41-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE Truss Truss Type Qty 159163119 MP24 A03 COMMON Job Reference (optional) 8.630 s Mar 9 2023 MiTek Industries, Inc. Mon Jun 26 11:55:41 2023 Page 1 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-NQRDedu51ZDhazGHUTsT_UadO3ummHGwz7UNSBz2QDm Builders FirstSource, Apex, NC -0-8-0 0-8-0 7-0-15 14-0-8 21-0-0 27-11-8 34-11-0 41-8-8 7-0-15 6-11-8 6-11-8 6-11-8 6-11-8 6-9-8 Scale = 1:74.1 5x6 = 6.00 12 6 4x6 / 4x6 < 3x6 🖊 5 3x6 <> 33 11-0-11 4x6 < 10 19 35 18 36 17 14 37 13 38 12 15 5x6 II 4x6 =3x10 MT20HS = 4x6 = 3x6 =4x6 =5x6 = 4x6 = 8-4-9 16-4-9 19-0-0 23-0-0 25-7-8 33-7-6 41-8-8 8-4-9 8-0-0 7-11-13 8-1-2 2-7-7 4-0-0 Plate Offsets (X,Y)--[2:0-0-0,0-1-6] LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP in (loc) I/defl Plate Grip DOL 244/190 TCLL 20.0 1 15 TC 0.97 Vert(LL) -0 45 15-16 >999 360 MT20 TCDL Lumber DOL BC MT20HS 10.0 0.94 Vert(CT) -0.69 15-16 >722 240 187/143 1.15 Rep Stress Incr **BCLL** 0.0 NO WB 0.99 Horz(CT) 0.16 11 n/a n/a

Wind(LL)

BRACING-

WEBS

TOP CHORD

BOT CHORD

0.10 17-19

>999

1 Row at midpt

240

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 244 lb

FT = 20%

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 *Except*

1-4: 2x4 SP No.1, 8-11: 2x4 SP SS

BOT CHORD 2x4 SP No.1 **WEBS** 2x4 SP No.3

10.0

WEDGE

Left: 2x4 SP No.3

Right 2x4 SP No.3 1-11-12 SLIDER

REACTIONS. (lb/size) 2=1709/0-3-8 (min. 0-2-1), 11=1668/Mechanical

Max Horz 2=151(LC 12)

Max Uplift 2=-25(LC 12), 11=-12(LC 13) Max Grav 2=1732(LC 2), 11=1701(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

TOP CHORD 2-31=-3160/215, 3-31=-3065/235, 3-32=-3037/256, 4-32=-2966/271, 4-5=-2896/289,

5-6=-2508/309, 6-7=-2497/307, 7-8=-2795/297, 8-33=-2871/278, 9-33=-2921/263, 9-34=-2945/242, 10-34=-3030/225, 10-11=-1009/0

BOT CHORD 2-19=-134/2742 19-35=-83/2341 18-35=-83/2341 18-36=-83/2341 17-36=-83/2341

16-17=0/1827, 15-16=0/1827, 14-15=0/1827, 14-37=-68/2320, 13-37=-68/2320,

13-38=-68/2320, 12-38=-68/2320, 11-12=-136/2634

WEBS $3-19=-343/180,\ 5-19=-101/585,\ 5-17=-673/199,\ 17-20=-101/962,\ 6-20=-94/1033,$ 6-21=-93/1008, 14-21=-99/937, 7-14=-646/199, 7-12=-104/496, 9-12=-286/177

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 21-0-0, Exterior(2) 21-0-0 to 27-11-8, Interior(1) 27-11-8 to 41-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) All plates are MT20 plates unless otherwise indicated.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 2 and 12 lb uplift at ioint 11.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) N/A

June 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE	159163119
MP24	A03	соммом	5	1	Joh Reference (antional)	159163118

Builders FirstSource, Apex, NC

8.630 s Mar 9 2023 MiTek Industries, Inc. Mon Jun 26 11:55:41 2023 Page 2 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-NQRDedu51ZDhazGHUTsT_UadO3ummHGwz7UNSBz2QDm

NOTES-

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-60, 6-11=-60, 24-27=-20

2) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-50, 6-11=-50, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F)

3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-20, 24-27=-40, 20-21=-40(F)

4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=47, 2-31=25, 6-31=14, 6-7=25, 7-11=14, 24-27=-12

Horz: 1-2=-59, 2-31=-37, 6-31=-26, 6-7=37, 7-11=26

5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=9, 2-5=14, 5-6=25, 6-34=14, 11-34=25, 24-27=-12

Horz: 1-2=-21, 2-5=-26, 5-6=-37, 6-34=26, 11-34=37

6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-12, 2-6=-33, 6-11=-33, 24-27=-20

Horz: 1-2=-8, 2-6=13, 6-11=-13

7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-28, 2-6=-33, 6-11=-33, 24-27=-20

Horz: 1-2=8, 2-6=13, 6-11=-13

8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=9, 2-6=-2, 6-11=9, 24-27=-12

Horz: 1-2=-21, 2-6=-10, 6-11=21

9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=4, 2-6=9, 6-11=-2, 24-27=-12

Horz: 1-2=-16, 2-6=-21, 6-11=10

10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-15, 2-6=-20, 6-11=-9, 24-27=-20

Horz: 1-2=-5, 2-6=-0, 6-11=11

11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-4, 2-6=-9, 6-11=-20, 24-27=-20

Horz: 1-2=-16, 2-6=-11, 6-11=0

12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=17, 2-32=22, 6-32=11, 6-11=3, 24-27=-12

Horz: 1-2=-29, 2-32=-34, 6-32=-23, 6-11=15

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-2, 2-6=3, 6-33=11, 11-33=22, 24-27=-12

Horz: 1-2=-10, 2-6=-15, 6-33=23, 11-33=34

14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=7, 2-6=11, 6-11=3, 24-27=-12

Horz: 1-2=-19, 2-6=-23, 6-11=15

15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-2. 2-6=3. 6-11=11. 24-27=-12

Horz: 1-2=-10, 2-6=-15, 6-11=23

16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=9, 2-32=4, 6-32=-6, 6-11=-15, 24-27=-20

Horz: 1-2=-29, 2-32=-24, 6-32=-14, 6-11=5

17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-10, 2-6=-15, 6-33=-6, 11-33=4, 24-27=-20

Horz: 1-2=-10, 2-6=-5, 6-33=14, 11-33=24

18) Dead + Uninhabitable Attic Storage: Lumber Increase=1.25. Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-20, 24-35=-20, 35-36=-60, 36-37=-20, 37-38=-60, 27-38=-20, 20-21=-40(F)

19) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-46, 2-6=-50, 6-11=-42, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F)

Horz: 1-2=-4, 2-6=-0, 6-11=8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE	
MP24	A03	COMMON	5	1		159163119
			_		Job Reference (optional)	

Builders FirstSource, Apex, NC

8.630 s Mar 9 2023 MiTek Industries, Inc. Mon Jun 26 11:55:41 2023 Page 3 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-NQRDedu51ZDhazGHUTsT_UadO3ummHGwz7UNSBz2QDm

LOAD CASE(S)

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-38, 2-6=-42, 6-11=-50, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F) Horz: 1-2=-12, 2-6=-8, 6-11=0

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-28, 2-32=-32, 6-32=-40, 6-11=-46, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F)

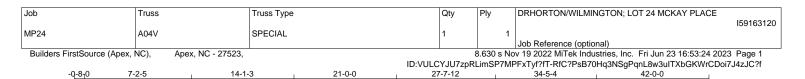
Horz: 1-2=-22, 2-32=-18, 6-32=-10, 6-11=4 22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-43, 2-6=-46, 6-33=-40, 11-33=-32, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F) Horz: 1-2=-7, 2-6=-4, 6-33=10, 11-33=18

23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-60, 6-11=-20, 24-27=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-6=-20, 6-11=-60, 24-27=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-50, 6-11=-20, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F)

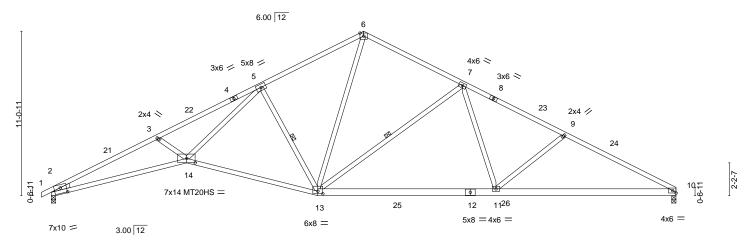
26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-50, 24-35=-20, 35-36=-50, 36-37=-20, 37-38=-50, 27-38=-20, 20-21=-30(F)

6-7-12

6-10-13

Structural wood sheathing directly applied.


1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-13, 7-13

7-6-12

6-9-8

	9-1-4				29-10-1	2	1	42-0-0		
	9-1-4				11-11-1	2	ı	12-1-4	<u>'</u>	
Plate Offsets (X,Y) [2:0-5-0,0-4-8], [13:0-4-0,0-2-0], [14:0-6-12,0-3-8]										
LOADING (p	osf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP	
TCLL 20	0.0	Plate Grip DOL	1.15	TC 0.93	3 Vert(LL)	-0.44 11-13	>999 360	MT20	244/190	
TCDL 10	0.0	Lumber DOL	1.15	BC 0.86	Vert(CT)	-0.94 13-14	>537 240	MT20HS	187/143	
BCLL (0.0 *	Rep Stress Incr	YES	WB 0.70) Horz(CT)	0.35 10	n/a n/a			
BCDL 10	0.0	Code IRC2015/TF	PI2014	Matrix-MS	Wind(LL)	0.23 13-14	>999 240	Weight: 236 lb	FT = 20%	

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP SS *Except*

8-10: 2x4 SP No.2

BOT CHORD 2x6 SP No.2 *Except* 2-14: 2x4 SP SS, 13-14: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

5-14: 2x4 SP No.2

WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=149(LC 16)

Max Uplift 2=-24(LC 12), 10=-13(LC 13) Max Grav 2=1720(LC 1), 10=1680(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5379/348, 3-5=-5101/327, 5-6=-2199/287, 6-7=-1766/270, 7-9=-2728/239,

6-10-13

9-10=-3079/265

BOT CHORD 2-14=-262/4846, 13-14=-115/2602, 11-13=-55/2193, 10-11=-148/2671

WEBS 3-14=-264/184, 5-14=-77/2862, 5-13=-1377/219, 6-13=-115/1379, 7-13=-896/139,

7-11=0/671, 9-11=-410/186

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 21-0-0, Exterior(2) 21-0-0 to 27-7-12, Interior(1) 27-7-12 to 42-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

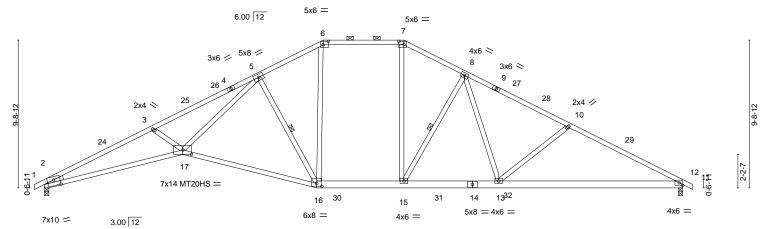
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty DRHORTON/WILMINGTON: LOT 24 MCKAY PLACE 159163121 MP24 A05AV **SPECIAL** Job Reference (optional) Builders FirstSource (Apex, NC), Apex, NC - 27523 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:26 2023 Page 1

Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

5-16, 8-15


2-0-0 oc purlins (3-6-4 max.): 6-7.

2-2-0 oc bracing: 13-15.

1 Row at midpt

ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 27-7-12 42-8-0 0-8-0 42-0-0 6-10-13 4-2-15 5-3-12 3-11-14 6-9-8 7-6-12

Scale = 1:75.8

		9-1-4	17	7-11-0	23-7-14	29-10-12	1		42-0-0	
	1	9-1-4	8	-9-12	5-8-14	6-2-14			12-1-4	ı
Plate Offse	ts (X,Y)	[2:0-5-0,0-4-8], [6:0-4-0,0)-2-8], [7:0-4-0,	0-2-8], [16:0-4-0,0	-2-4], [17:0-6-12,0-3-8]					
LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 1.00 BC 0.95 WB 0.71	- ' '	in (loc) -0.58 16-17 -1.10 16-17 0.35 11	l/defl >875 >458 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix-MS	Wind(LL)	0.31 16-17	>999	240	Weight: 241 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.1 *Except*

1-4,9-12: 2x4 SP SS, 6-7: 2x4 SP No.2

BOT CHORD 2x6 SP No.2 *Except*

2-17: 2x4 SP SS, 16-17: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

5-17: 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 11=0-3-8

Max Horz 2=134(LC 12)

Max Uplift 2=-15(LC 12), 11=-15(LC 13) Max Grav 2=1720(LC 1), 11=1720(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

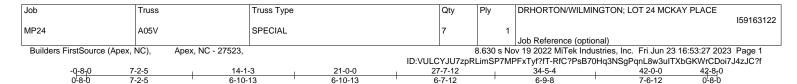
TOP CHORD 2-3=-5388/427, 3-5=-5102/409, 5-6=-2190/315, 7-8=-2133/319, 8-10=-2709/279,

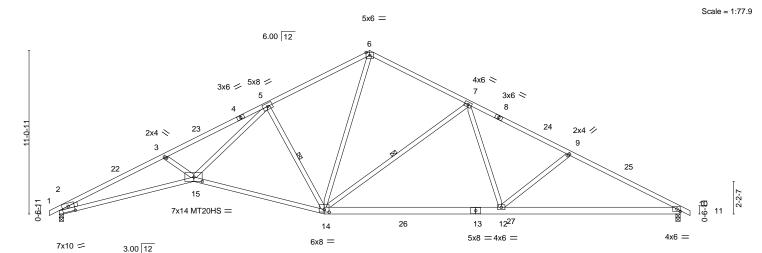
10-11=-3069/299, 6-7=-1857/302

BOT CHORD 2-17=-326/4856, 16-17=-140/2587, 15-16=-19/1857, 13-15=-86/2183, 11-13=-190/2665 WEBS 3-17=-269/190, 5-17=-117/2875, 5-16=-1312/220, 6-16=-50/712, 8-15=-802/163,

8-13=-41/631, 10-13=-431/186, 7-15=-51/741

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 18-4-2, Exterior(2) 18-4-2 to 30-5-5, Interior(1) 30-5-5 to 42-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets	(X Y)	9-1-4 [2:0-5-0,0-4-8], [14:0-4-0,		8-9-12 6-12 0-3-81	11-11-1				12-1-4	
LOADING (r		SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 2 TCDL 1	0.0 0.0 0.0 0.0 *	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC 0.93 BC 0.86 WB 0.76	3 Vert(LL) 6 Vert(CT)	-0.43 12-14 -0.93 14-15 0.35 10	>999 >542 n/a	360 240 n/a	MT20 MT20HS	244/190 187/143
	0.0	Code IRC2015/TP		Matrix-MS	- (- /	0.23 14-15	>999	240	Weight: 237 lb	FT = 20%

29-10-12

BRACING-

WEBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-14, 7-14

LUMBER-

TOP CHORD 2x4 SP SS

BOT CHORD 2x6 SP No.2 *Except*

2-15: 2x4 SP SS, 14-15: 2x4 SP No.1 2x4 SP No.3 *Except*

WEBS

5-15: 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=145(LC 16)

Max Uplift 2=-24(LC 12), 10=-24(LC 13) Max Grav 2=1720(LC 1), 10=1720(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-5378/342, 3-5=-5100/318, 5-6=-2199/287, 6-7=-1766/268, 7-9=-2726/231, TOP CHORD

9-10=-3077/255

BOT CHORD 2-15=-228/4845, 14-15=-93/2601, 12-14=-47/2191, 10-12=-122/2670

WEBS 3-15=-264/185, 5-15=-69/2861, 5-14=-1377/212, 6-14=-113/1377, 7-14=-893/139,

7-12=0/671, 9-12=-412/186

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 21-0-0, Exterior(2) 21-0-0 to 27-7-12, Interior(1) 27-7-12 to 42-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

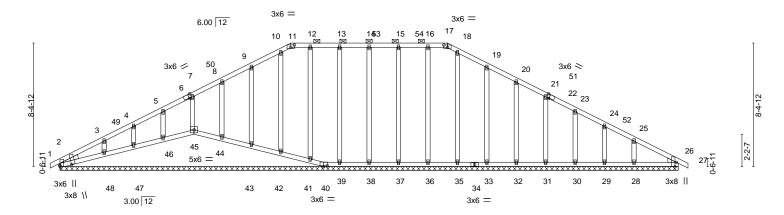
17-11-0

- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

June 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty DRHORTON/WILMINGTON; LOT 24 MCKAY PLACE 159163123 MP24 A06AVG **GABLE** Job Reference (optional) 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:29 2023 Page 1 Apex, NC - 27523 Builders FirstSource (Apex, NC),

ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 43-4-0 0-8-0 26-11-14 15-8-2 5-3-14 5-3-14 15-8-2

Scale = 1:78.3

	-0-8 ₁ 0	9-9-4	ı	18-7-0	į.			42-8-0			43-4 ₁ 0
	0-8-0	9-1-4	ı	8-9-12				24-1-0			o <u>'</u> -8-b
Plate Offs	sets (X,Y)	[2:0-1-8,0-9-8], [2:0-0-14,E	dge], [6:0-1-1	3,Edge], [11:0-3-0	0,0-2-0], [17:0-3-0,0-2-0],	[22:0-1-	13,Edg	e], [26:0-	3-8,Edge], [4	40:0-3-0,0-0-12]	
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.09	Vert(LL)	0.00	27	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.07	Vert(CT)	0.00	27	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.15	Horz(CT)	0.01	26	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matrix-S						Weight: 275 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. All bearings 42-0-0.

Max Horz 2=123(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 45, 40, 2, 38, 39, 41, 43, 44, 46, 47, 48, 37, 36, 33, 32, 31,

30, 29, 28

Max Grav All reactions 250 lb or less at joint(s) 45, 40, 2, 26, 38, 39, 41, 42, 43, 44, 46, 47, 48, 37, 36, 35, 33, 32, 31, 30, 29, 28

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-0 to 4-1-10, Interior(1) 4-1-10 to 15-8-2, Exterior(2) 15-8-2 to 22-5-9, Interior(1) 22-5-9 to 26-3-14, Exterior(2) 26-3-14 to 33-0-0, Interior(1) 33-0-0 to 42-8-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 45, 40, 2, 38, 39, 41, 43, 44, 46, 47, 48, 37, 36, 33, 32, 31, 30, 29, 28,
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 11-17.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty DRHORTON/WILMINGTON: LOT 24 MCKAY PLACE 159163124 MP24 B01G **GABLE** Job Reference (optional) Builders FirstSource (Apex, NC), Apex, NC - 27523 8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:31 2023 Page 1 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 20-8-0 0-8-0 11-6-0 20-0-0 -0-8-0 0-8-0 8-6-0 3-0-0 8-6-0 4x6 || Scale = 1:46.1 8 8.00 12 5 10 11 12 13 0-8-0 24 23 22 21 17 16 15 20 19 18 14 5x6 = 3x6 || 3x6 || 20-0-0 Plate Offsets (X,Y)--[19:0-3-0,0-3-0]

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	-0.00	12	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.00	12	n/r	120		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.13	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-R						Weight: 120 lb	FT = 20%

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals. **WEBS** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 20-0-0.

Max Horz 24=167(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-0 to 4-0-0, Exterior(2) 4-0-0 to 10-0-0, Corner(3) 10-0-0 to 14-9-10, Exterior(2) 14-9-10 to 20-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15.

Job Truss Truss Type Qty Ply DRHORTON/WILMINGTON: LOT 24 MCKAY PLACE 159163125 MP24 B02GR COMMON Job Reference (optional)
8.630 s Nov 19 2022 MiTek Industries, Inc. Fri Jun 23 16:53:32 2023 Page 1 Builders FirstSource (Apex, NC), Apex, NC - 27523 ID:VULCYJU7zpRLimSP7MPFxTyf?fT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 10-0-0 20-0-0 4-10-12 4-10-12 5-1-4 4x6 || Scale = 1:44.9 15 3 16 8.00 12 3x8 // 3x8 N 2 8 7 6 3x6 II 7x10 = 3x6 II 6x8 🖊 6x8 <> 14-10-12 10-0-0 5-1-4 4-10-12 4-10-12 Plate Offsets (X,Y)--[1:0-1-3,0-1-8], [5:0-1-3,0-1-8], [6:0-4-8,0-1-8], [7:0-5-0,0-4-8], [8:0-4-8,0-1-8]

> in (loc)

7-8

7-8

7-8

5

-0.10

-0.21

0.05

0.09

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

I/defl

>999

>999

>999

n/a

L/d

360

240

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

PLATES

Weight: 369 lb

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

GRIP

244/190

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

20.0

10.0

10.0

0.0

2x4 SP No.2 TOP CHORD BOT CHORD 2x6 SP DSS 2x4 SP No.3 *Except* **WEBS** 3-7: 2x4 SP No.2

WEDGE

Left: 2x6 SP No.2, Right: 2x6 SP No.2

REACTIONS. (size) 1=0-4-0, 5=0-4-0

Max Horz 1=-143(LC 4)

Max Uplift 1=-1045(LC 8), 5=-1045(LC 9)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

Max Grav 1=9350(LC 1), 5=9350(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-12112/1357, 2-3=-8513/1004, 3-4=-8513/1004, 4-5=-12112/1358 **BOT CHORD** 1-8=-1180/9986, 7-8=-1180/9986, 6-7=-1061/9986, 5-6=-1061/9986

3-7=-1028/9039, 4-7=-3698/537, 4-6=-420/3967, 2-7=-3698/536, 2-8=-419/3967 **WEBS**

1.15

1.15

NO

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

CSI

TC

BC

WB

Matrix-MS

0.50

0.50

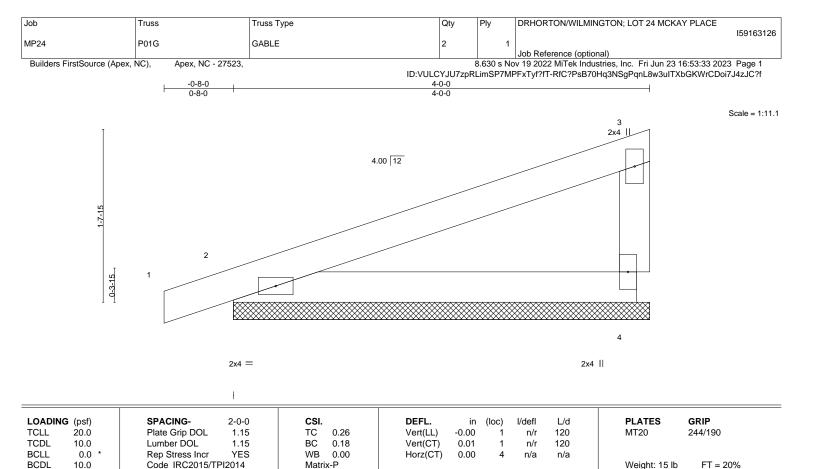
0.74

- 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope)
- gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=1045, 5=1045,

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 9-12=-875(F=-855)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.3

REACTIONS.

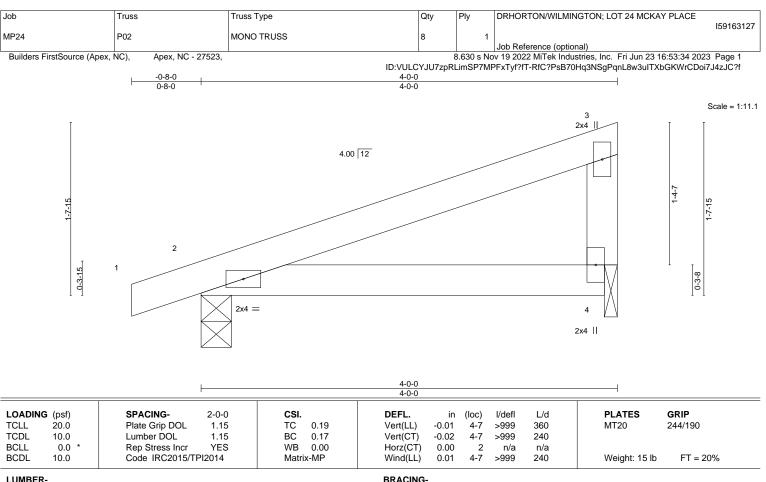
2=4-0-0, 4=4-0-0 (size) Max Horz 2=52(LC 9)

Max Uplift 2=-39(LC 8), 4=-21(LC 12) Max Grav 2=198(LC 1), 4=151(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS.

2=0-3-8, 4=0-1-8 (size) Max Horz 2=52(LC 11) Max Uplift 2=-39(LC 8), 4=-21(LC 12) Max Grav 2=198(LC 1), 4=151(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

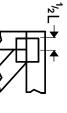
- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 4-0-0 oc purlins,

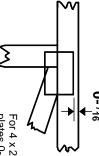
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

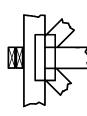
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

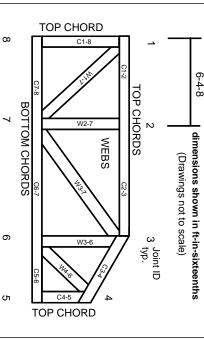

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.