

Trenco 818 Soundside Rd Edenton, NC 27932

Re: ELV F Roof Roof F

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I63425436 thru I63425469

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 6,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A01	Common	11	1	Job Reference (optional)	163425436

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:12 ID:JkzNl6jLXIrZbTYHkPA?VbyhjJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1<u>0-8-8</u> 15-10-5 5-7-7 20-11-0 25-11-11 31-1-8 36-2-9 41-10-0 5-7-7 5-1-1 5-1-13 5-0-11 5-0-11 5-1-13 5-1-1 5-7-7 5x6= 6 3x6 🞜 3x6 👟 27⁵ 7₂₈ 1<u>2</u> 6 2x4 ı 2x4 I 3x6 ≠ 4 8 2x4 🍃 10-9-15 2x4。 3x6. 3 9 2 10 11 0-4-7 ∏ 16 29 15 30 31 13 32 12 14 MT20HS 3x10 = 3x8= MT20HS 3x10 = 4x8= 3x8= 7x10 🞜 7x10 0-11-0 41-10-0 10-8-8 20-11-0 31-1-8 40-11-0 0-11-0 9-9-8 10-2-8 10-2-8 9-9-8 0-11-0 Scale = 1:71.9 Plate Offsets (X, Y): [1:0-0-13,Edge], [11:0-0-13,Edge] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.81 Vert(LL) -0.41 12-14 >999 240 MT20 244/190 Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.71 12-14 >704 180 MT20HS 187/143 TCDL Rep Stress Incr WB 0.57 Horz(CT) 10.0 YES 0.11 11 n/a n/a BCLL 0.0 IRC2015/TPI2014 Matrix-MS Code Weight: 238 lb FT = 20% BCDL 10.0 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) LUMBER Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; TOP CHORD 2x4 SP No.2 *Except* 1-3,9-11:2x4 SP SS Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior BOT CHORD 2x4 SP SS zone and C-C Exterior (2) zone; cantilever left and right WEBS 2x4 SP No.3 WEDGE Left: 2x6 SP No.2 exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Right: 2x6 SP No.2 Lumber DOL=1.60 plate grip DOL=1.33 BRACING TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) TOP CHORD Structural wood sheathing directly applied or DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2-7-13 oc purlins. snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied or 6-11-1 oc DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; bracing. Unobstructed slippery surface WEBS 1 Row at midpt 6-14, 5-14, 7-14 4) Roof design snow load has been reduced to account for REACTIONS 1=0-3-8 11=0-3-8 (size) slope. Max Horiz 1=-232 (LC 17) Unbalanced snow loads have been considered for this 5) Max Uplift 1=-433 (LC 16), 11=-433 (LC 17) desian. Max Grav 1=1673 (LC 2), 11=1673 (LC 2) All plates are MT20 plates unless otherwise indicated. 6) FORCES (Ib) - Maximum Compression/Maximum 7) This truss has been designed for a 10.0 psf bottom Tension chord live load nonconcurrent with any other live loads. TOP CHORD 1-2=-2678/1168, 2-4=-2526/1091, * This truss has been designed for a live load of 20.0psf 8) 4-5=-2564/1270, 5-6=-1840/967, on the bottom chord in all areas where a rectangle 6-7=-1840/967, 7-8=-2564/1270, 3-06-00 tall by 2-00-00 wide will fit between the bottom 8-10=-2526/1091, 10-11=-2678/1168 chord and any other members, with BCDL = 10.0psf. BOT CHORD 1-16=-905/2277, 14-16=-565/1889, 9) All bearings are assumed to be SP SS crushing capacity 12-14=-565/1889, 11-12=-905/2277 of 565 psi. WEBS 6-14=-645/1351, 2-16=-108/197, 10) Provide mechanical connection (by others) of truss to 4-16=-371/337, 5-16=-331/671, bearing plate capable of withstanding 433 lb uplift at 5-14=-628/447, 7-14=-628/447, - IIIIIII WAARAAN WILLIAM PARTY joint 1 and 433 lb uplift at joint 11. 7-12=-331/671, 8-12=-371/337, 11) This truss is designed in accordance with the 2015 SEAL 10-12=-108/198 International Residential Code sections R502.11.1 and 036322 NOTES R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

GI minim February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A01H	Common	1	1	Job Reference (optional)	163425437

BCDL

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Sun Feb 04 12:44:15 ID:COutZADVa4L6sNRwRlur_XyhjHA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A03	Нір	1	1	Job Reference (optional)	163425438

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:16 ID:Gf?mt2WzQDCECA7LQfubUEyhiCM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	<u>5-6-</u> 5-6-	<u>0 10-8</u> 0 5-2-	-8 8	<u>15-5-15</u> 4-9-7		20-5-8 4-11-9	21-4-8 0-11-0	3 26-4-1) 4-11-9	1 9	<u>31-1</u> 4-9-	-8 7		<u>36-4-0</u> 5-2-8	41-10-0 5-6-0	
10-7-3 10-5-8 10-5-8 0-1-11		2x4 27 2	61 ² 3) 2x4 II 3 4	26 ≠ 28 29	3x6 = 5	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	5x6= 6 30	6= 7 8	3x6. 8	31	2: 3x6 32 9	x4 II 10	33 2	x4 ≈ 11	
	7-4-0 1		16	24		25	15	26	14	27	1				12
	4×12 -		5x8=	34		30	6x ⁻	12=	MT20HS :	3x10 =	3	5 x8=			1v12-
	0-11-0	10-8-8			21-6-4	4			31-1-8	3			40-1	I-0 41	-10-0
Seele - 1:74 1	0-11-0	9-9-8			10-9-1	2			9-7-4				9-9-	8 0-	-11-0
$\frac{\text{Scale} = 1.74.1}{\text{Plate Offsets (}}$	X, Y): [1:Edge,0-1-14	4], [12:0-5-12,Edge],	16:0-4-0,0-3	·0]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix	-MS	0.94 0.71 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.51 -0.83 0.14	(loc) 15-16 15-16 12	l/defl >987 >603 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 255	GRIP 244/190 187/143 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP SS 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x8 SP DSS Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, Max Horiz 1=-226 (L Max Uplift 1=-434 (L Max Grav 1=2005 (I (lb) - Maximum Con Tension	eathing directly applie cept 3-12 max.): 6-7. 7 applied or 6-11-13 or 5-15, 8-15 12=0-3-8 .C 17) .C 16), 12=-434 (LC LC 38), 12=2005 (LC apression/Maximum	2) V SS C z a d or 3) * 4) F s 4) F 5) L 5) C 17) c 38) 6) F 7) A 2) V 2) V 2) V 2) V 2) V 2) V 2) V 2) V	Vind: ASCE (asd=119m cat. II; Exp one and C- xposed ; en nembers ar umber DOI * TCLL: AS DOL=1.15 F now); Ps= DOL=1.15 F Now); Ps= DOL=1.15 F Now); Ps= DOL=1.15 F now); Ps= DOL=1.15 F vot design lope. Jnbalanced lesign. Provide ade ad letas ar	E 7-10; V ph; TCD B; Enclos- C Exteri- nd vertic: d forces L=1.60 p CE 7-10 Plate DOI varies (n Plate DOI varies (n Plate DOI s Exp.; Cl s snow lo s snow lo quate dr e MT20 p	ult=150mp L=6.0psf; sed; MWF or (2) zone al left and & MWFR late grip D L=1.00); P nin. roof sr L=1.00) se t=1.10; Un ad has been ads have I ainage to p plates unle	wh (3-sec BCDL=6, BCDL=6, RS (enve ; cantile exp S for reac OCL=1.33 pof (cof 1 f=20.0 ps iow=14.5 en load ca obstructe en reduce peen con prevent wiss othen or a 10.0	ond gust) Opsf; h=30f elope) exterii ver left and osed;C-C fc tions show ive load: Lu- of (flat roof psf Lumbe ases; Categ d slippery ed to accou sidered for vater pondir wise indicat	it; ior right or mber r ory II; nt for this ng. ed.	1) De Inc Ur	ead + Sn rrease=1 ilform Lc Vert: 1-6	ow (ba ⊧.00 ads (lt ∋=-49, t	ılanced): Lum 5/ft) 6-7=-60, 7-12	ber Increase=1.15 =-49, 17-22=-20	, Plate
TOP CHORD	1-2=-3342/1161, 2-3 3-5=-3357/1260, 5-6 6-7=-2090/924, 7-8- 8-10=-3350/1263, 1 11-12=-3340/1163 1-15=-897/2856, 13	3=-3286/1086, 6=-2356/941, =-2431/969, 0-11=-3280/1089, -15=-574/2509,	8) 1 c 9) * c 3 c 10) A	his truss ha hord live lo This truss in the botto -06-00 tall hord and a ill bearings	as been ad nonco has beer m chord by 2-00-0 ny other are assu	designed f oncurrent v n designed in all area 00 wide wi members, umed to be	or a 10.0 with any o I for a live s where a Il fit betw with BCI e SP SS o	bottom other live load e load of 20 a rectangle een the bot DL = 10.0ps crushing cap	ads. .0psf tom sf. pacity			ALL	ORTH C	ARO	
WEBS NOTES 1) Unbalance this design	12-13=-898/2855 3-16=-541/332, 5-16 2-16=-97/210, 5-15 7-15=-298/788, 6-16 8-15=-783/424, 8-11 10-13=-539/332, 11 ed roof live loads have h.	6=-314/772, =-803/425, 5=-288/760, 3=-323/752, -13=-102/199 • been considered for	11) F b 12) T 13) T 13) C 5 LOAI	f 565 psi. Provide mec earing plat bint 1 and 4 this truss is internationa 8802.10.2 a Graphical pu or the orient ottom chor D CASE(S)	chanical e capabl 34 lb up designe l Resider and refere urlin repr cation of t d. Stand	connectior e of withst lift at joint d in accorn ntial Code enced star esentation the purlin a ard	n (by othe anding 4: 12. dance wir sections ndard AN does no along the	ers) of truss 34 lb uplift a th the 2015 R502.11.1 SI/TPI 1. t depict the top and/or	to at and size		Within W.			AL 322 NEER GILBER	Wall and the
													Febr	uary 6,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A04	Нір	1	1	Job Reference (optional)	163425439

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:16 ID:jmSRp8iyCdlkgtVT?5BuG6yhiDP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.9

Plate Offsets (X, Y): [1:Edge,0-1-14], [10:0-5-12,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.98 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.43 -0.73 0.15	(loc) 13-15 13-15 13-15 10	l/defl >999 >684 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 231 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 *Except 2x4 SP SS *Except* 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x8 SP DSS	t* 1-3,8-10:2x4 SP S 14-12:2x4 SP No.1	2) S	Wind: ASCE Vasd=119mp Cat. II; Exp B zone and C-0 exposed ; en members and Lumber DOL	7-10; Vult=150mpl h; TCDL=6.0psf; E ; Enclosed; MWFF C Exterior (2) zone d vertical left and r d forces & MWFRS =1.60 plate grip D0	h (3-sec 3CDL=6 RS (enve ; cantile ight exp 3 for rea 2L=1.33	cond gust) .0psf; h=30ft; elope) exteric ver left and ri losed;C-C for ctions shown	; or ight ;	1) De Inc Ur	ead + Sn crease= niform Lo Vert: 1-{	iow (ba 1.00 bads (ll 5=-49,	alanced): Lumbe b/ft) 5-6=-60, 6-10=-4	r Increase=1 49, 16-21=-2	.15, Plate 0
BRACING TOP CHORD BOT CHORD	Structural wood sheat except 2-0-0 oc purlins (3-3 Rigid ceiling directly	athing directly applied -12 max.): 5-6. applied or 2-2-0 oc	d, 3)	** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI Exp B; Fully	CE 7-10; Pr=20.0 p ate DOL=1.00); Pf aries (min. roof sn ate DOL=1.00) see Exp.; Ct=1.10; Unc	sf (roof =20.0 p ow=14.5 e load c obstructe	live load: Lur sf (flat roof 5 psf Lumber ases; Catego ed slippery	nber ory II;						
WEBS REACTIONS	1 Row at midpt (size) 1=0-3-8, 1 Max Horiz 1=-204 (Li Max Uplift 1=-440 (Li Max Grav 1=1971 (L	4-13, 7-13 10=0-3-8 C 17) C 16), 10=-440 (LC 1 .C 38), 10=1971 (LC	4) 5) 38) 6)	surface Roof design s slope. Unbalanced design. Provide adec	snow load has bee snow loads have b uate drainage to p	n reduc een cor revent v	ed to accoun isidered for th	t for nis						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) 8)	All plates are This truss ha	MT20 plates unles	ss other	wise indicate	d.						
TOP CHORD	1-2=-3339/1154, 2-4 4-5=-2305/922, 5-6= 6-7=-2305/922, 7-9= 9-10=-3339/1154	.=-3099/1076, 2114/936, 3099/1076,	9)	* This truss h on the botton	a honconcurrent w as been designed h chord in all areas	ith any for a liv where	other live loa e load of 20.0 a rectangle	ds. Opsf				TH CA	Ro	5
BOT CHORD	1-15=-887/2876, 13- 11-13=-690/2640, 10	15=-690/2640, D-11=-887/2876	10	chord and an All bearings a	y other members, are assumed to be	with BC SP SS	DL = 10.0psf crushing cap	acity			AN -	ORIEESS	AN I	in the second se
WEBS	4-15=-12/386, 2-15= 4-13=-871/403, 5-13 6-13=-191/667, 7-13 7-11=-13/386, 9-11=	209/244, =-191/667, =871/403, 209/244	11	of 565 psi.) Provide mech bearing plate joint 1 and 44	nanical connection capable of withsta 10 lb uplift at joint 1	(by oth Inding 4 0.	ers) of truss t 40 lb uplift at	0				SEA	L.	Million III
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	12	This truss is of International R802.10.2 ar	designed in accord Residential Code s ad referenced stan	lance wi sections dard AN	th the 2015 R502.11.1 a ISI/TPI 1.	ind		LITE.		0363	22	

desigi

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A05	Нір	1	1	Job Reference (optional)	163425440

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:17 ID:yhwZ_nBc5jThdQHOYGR1ZFyhiE3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.6

Plate Offsets	(X, Y): [1:Edge,0-1-14]], [5:0-4-0,0-1-15], [7	:0-4-0,0-1-	15], [11:0-5-12	2,Edge], [12:0-4-0,0	0-3-0], [14:0-4-0,0-3-0)]						
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.83 1.00 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.44 -0.71 0.13	(loc) 13-14 13-14 11	l/defl >999 >703 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 238 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except 2x4 SP SS *Except* No.1 2x4 SP No.3 Left: 2x8 SP DSS Right: 2x8 SP DSS Structural wood shee 2-2-0 oc purlins, exc 2-0-0 oc purlins (3-9 Rigid ceiling directly	t* 1-3,9-11:2x4 SP S 13-12,13-14:2x4 SP athing directly applied tept -1 max.): 5-7. applied or 1-4-12 oc	2) S 3) d or	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-(exposed ; en members an Lumber DOL ** TCLL: ASC DOL=1.15 P snow); Ps= v DOL=1.15 P Exp B; Fully	7-10; Vult=150mpl bh; TCDL=6.0psf; E 8; Enclosed; MWFF C Exterior (2) zone d vertical left and r d forces & MWFRS =1.60 plate grip DC CE 7-10; Pr=20.0 p ate DOL=1.00); Pf aries (min. roof smu ate DOL=1.00) set Exp.; Ct=1.10; Unc	h (3-sec 3CDL=6 RS (env; cantile ight exp for rea DL=1.3 sf (roof =20.0 p ow=14.9 e load c obstruct	ond gust) .0psf; h=30ft; elope) exterior ver left and rig iosed;C-C for ctions shown; live load: Lum sf (flat roof p sf Lumber ases; Categor ed slippery	r ght hber ry II;	Ur	iform Lc Vert: 1-{	oads (ll 5=-49,	b/ft) 5-7=-60, 7-11=-4	9, 15-20=-20	
WEBS REACTIONS	bracing. 1 Row at midpt (size) 1=0-3-8, 1 Max Horiz 1=-180 (L Max Uplift 1=-445 (L Max Grav 1=1938 (L	6-13 11=0-3-8 C 17) C 16), 11=-445 (LC 1 _C 38), 11=1938 (LC	4) 5) 7) 6) 38) 7)	Roof design slope. Unbalanced design. Provide adec	snow load has bee snow loads have b quate drainage to p	n reduc een cor revent	ed to account isidered for th water ponding	is						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	chord live loa * This truss h	ad nonconcurrent w as been designed	ith any for a liv	other live load e load of 20.0	ds. psf						
TOP CHORD	1-2=-3215/1137, 2-4 4-5=-3006/1240, 5-6 6-7=-2191/995, 7-8= 8-10=-2955/1054, 10	↓=-2955/1054, δ=-2191/995, 3006/1240, 0-11=-3215/1137	9)	on the botton 3-06-00 tall b chord and an All bearings	n chord in all areas by 2-00-00 wide wil by other members, are assumed to be	where I fit betv with BC SP SS	a rectangle veen the botto DL = 10.0psf. crushing capa	m			an an	TH CA	ROLI	
BOT CHORD WEBS	1-11=-873/2749 4-14=-577/357, 5-14 2-14=-181/199, 5-13 6-13=-578/210, 7-13 7-12=-367/955, 8-12 10-12=-181/199	4=-367/955, 3=-143/524, 3=-143/524, 2=-577/357,	10) 11)	of 565 psi.) Provide mec bearing plate joint 1 and 4) This truss is International	hanical connection capable of withsta 15 lb uplift at joint 1 designed in accord Residential Code s	(by oth inding 4 1. lance w sections	ers) of truss to 45 lb uplift at ith the 2015 R502.11.1 at	o nd			v	SEA 0363	L 22	Mannin
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for	12) LO	R802.10.2 ar) Graphical pu or the orienta bottom chorce DAD CASE(S)	nd referenced stand rlin representation ation of the purlin a l. Standard	dard AN does no long the	ISI/TPI 1. ot depict the si top and/or	ize		111.		S SNGIN	EREAL	anna -
					www.udanuceut. Luff		$\Box \Box $	ICILE						

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Increase=1.00

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A06	Нір	1	1	Job Reference (optional)	l63425441

7-5-12

7-5-12

14-5-8

6-11-12

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:17 ID:uX_THqoXduREoVrEgYsXGVyhiEZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

20-11-0 27-4-8 34-4-4 41-10-0 6-5-8 6-5-8 6-11-12 7-5-12 5x8= 3x4= 5x8= 27528 6 4

Scale = 1:73.4

Plate Offsets ((X, Y): [1:Edge,0-1-14], [4:0-4-0,0-1-15], [6:	0-4-0,0-1-	15], [9:0-5-12,	Edgej									
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.98 0.78 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.59 0.13	(loc) 13-15 13-15 9	l/defl >999 >857 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 218 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP SS *Except* 2x4 SP SS *Except* 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shere except 2-0-0 oc purlins (3-0 Pioid ceiling directly	4-6:2x4 SP No.1 14-11:2x4 SP No.1 athing directly applied -9 max.): 4-6.	2) I, 3)	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-(exposed ; en members an Lumber DOL ** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI	7-10; Vult=150mph bh; TCDL=6.0psf; B i; Enclosed; MWFR C Exterior (2) zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC CE 7-10; Pr=20.0 p ate DOL=1.00; Pf= aries (min. roof snc ate DOL=1.00) see	a (3-sec CDL=6 S (env cantile ght exp for rea DL=1.3 sf (roof =20.0 p w=14.4 e load c	cond gust) .0psf; h=30ft; lelope) exterio ver left and ri- iosed;C-C for ctions shown live load: Lun sf (flat roof 5 psf Lumber ases; Catego	r ght ; nber ry II;	1) De Inc Ur	ead + Sn crease=1 hiform Lo Vert: 1-4	ow (ba .00 ⊌ads (ll ⊧=-49,	alanced): Lumber ɔ/ft) 4-6=-60, 6-9=-49	Increase=1.1 , 16-21=-20	5, Plate
WEBS REACTIONS	bracing. 1 Row at midpt (size) 1=0-3-8, 9 Max Horiz 1=-158 (L Max Uplift 1=-449 (L Max Grav 1=1901 (L	5-13, 5-12 9=0-3-8 C 17) C 16), 9=-449 (LC 17 .C 38), 9=1901 (LC 3	4) 5) 8) 6)	Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec	Exp.; Ct=1.10; Uno snow load has beel snow loads have be	bstruct n reduc een cor revent	ed slippery ed to account nsidered for th water ponding	t for iis 1.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) 8)	All plates are This truss ha	MT20 plates unles s been designed fo	s othei r a 10.	wise indicated	d.						
TOP CHORD	1-2=-3084/1098, 2-4 4-5=-2344/1001, 5-6 6-8=-2904/1184, 8-9	l=-2904/1184, ∋=-2344/1001, 9=-3084/1098	9)	chord live loa * This truss h on the botton	id nonconcurrent w as been designed t n chord in all areas	ith any for a liv where	other live load e load of 20.0 a rectangle	ds.)psf					11111	
BOT CHORD	1-15=-837/2618, 13- 12-13=-678/2547, 10 9-10=-837/2618	-15=-577/2132, 0-12=-577/2132,	10	3-06-00 tall b chord and an	y 2-00-00 wide will y other members, v	fit betw with BC	veen the botto DL = 10.0psf.	om acity			ALL A	ORTHCA	ROLIN	111
WEBS	2-15=-466/335, 4-15 4-13=-108/672, 5-13 5-12=-463/229, 6-12 6-10=-248/645, 8-10	5=-248/645, 3=-463/229, 2=-108/672, 0=-466/335	11	of 565 psi. Provide mech bearing plate ioint 1 and 44	nanical connection capable of withsta 19 lb uplift at joint 9	(by oth nding 4	ers) of truss to 49 lb uplift at	D		Winn		SEA	L	1
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12 13) This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc	designed in accord Residential Code s nd referenced stand rlin representation of tion of the purlin al	ance w ections dard AN does no ong the	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	nd ize		1111		0363	22 EERER	

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G

"Innum" February 6,2024

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A07	Нір	1	1	Job Reference (optional)	163425442

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:18 ID:S5keLgYAxXrNpIzwWY5qy_yhiNx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6x8 II

9 T-7-

5x8=

11-2-5 17-1-5 28-4-10 34-4-6 40-10-2 22-9-0 5-11-0 5-11-12 5-7-11 5-7-11 11-2-5 6-5-12 4x6= 4x8= 4x6= 5x6= 8x10= 0-1-11 6-7-3 7÷ 5 625 4 3 12 61 3x4 👟 8 6-7-3 6-5-8 6-5-8 26 115 0-10-5 16 <u></u> 14 13 27 12 11 10 3x6 II 2x4 ı 6x8= MT20HS 3x10 = 3x8= 5x8= 8x12=

7x10 ≠							
8x12=							
2-2-10	11-7-2	19-11-14	24-10-2	28-6-6	34-4-6	39-11-2	40-10-2
2-2-10	9-4-8	8-4-12	4-10-4	3-8-4	5-10-0	5-6-12	0-11-0

Scale = 1:74.8

Plate Offsets (X, Y): [1:0-0-8,Edge],	[2:0-8-7,Edge], [2:0-	-3-14,0-3-0)], [3:0-7-8,0-7-	·11], [9:0-1-3,Edge]	, [9:0-0	-8,0-10-5], [1	3:0-0-9,0)-1-12], [[15:0-9-0),0-5-0)]		
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.85 0.95 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.61 0.31	(loc) 2-15 2-15 9	l/defl >999 >800 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 278 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP No.2 *Excep 7-9:2x4 SP No.1 2x6 SP No.2 *Excep 2-15:2x6 SP DSS, 1- 12-9:2x4 SP SS 2x4 SP No.3 *Excep Right: 2x6 SP No.2 Structural wood shee	t* 1-3:2x10 SP DSS, t* 16-2:2x4 SP No.3 4-12:2x4 SP No.1, t* 13-15:2x4 SP No. athing directly applie	2) , 2 3) ed or	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-0 exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 Pl snow); Ps= v	7-10; Vult=150mpf bh; TCDL=6.0psf; E 8; Enclosed; MWFR C Exterior (2) zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC CE 7-10; Pr=20.0 p ate DOL=1.00); Pfr aries (min. roof sno	n (3-sec SCDL=6 S (enve cantile ight exp for rea DL=1.33 sf (roof =20.0 p pw=14.5	cond gust) 0.0psf; h=30ft elope) exteric ver left and ri- loosed;C-C for ctions shown 3 live load: Lur sf (flat roof 5 psf Lumber	; jght r n; mber	14) Gra or ti bott LOAD (1) De Inc Ur	phical p the orient com chor CASE(S) ead + Sn crease=1 hiform Lo Vert: 1-2 2-15=-2	urlin re ation o d.) Sta ow (ba 1.00 bads (ll 2=-49, 0, 14-2	epresentation do of the purlin alon ndard alanced): Lumbe b/ft) 2-3=-49, 3-7=-6 20=-20	es not depict t g the top and/ r Increase=1. 0, 7-9=-49, 16	he size 'or 15, Plate i-17=-20,
BOT CHORD WEBS REACTIONS	2-2-0 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 9 Max Horiz 1=-144 (Li Max Uplift 1=-318 (Li Max Grav 1=1748 (Li	ept 1-1 max.): 3-7. applied or 2-2-0 oc 6-11 0=0-3-8 C 17) C 16), 9=-339 (LC 1 C 39), 9=1846 (LC 3	4) 5) 7) 6) 39) 8)	DOL=1.15 Pl Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec All plates are This truss ha	ate DOL=1.00) see Exp.; Ct=1.10; Uno snow load has bee snow loads have be quate drainage to p MT20 plates unles s been designed fo	e load c bstructo een cor revent v ss other or a 10.0	ases; Catego ed slippery red to accoun nsidered for th water ponding wise indicate D psf bottom	ory II; ht for his g. ed.						
TOP CHORD	(lb) - Maximum Com Tension 1-2=-928/379, 2-3=- 3-4=-3193/1181, 4-6 6-7=-2469/979, 7-8= 8-9=-2814/1054	pression/Maximum 3629/1209, =-3196/1131, -2776/1023,	9)	chord live loa * This truss h on the botton 3-06-00 tall b chord and an	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, y accument to be: la	rith any for a liv where fit betw with BC	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0pst	ids. Opsf om f.			in the	ORTH CA	ROIN	1.
BOT CHORD	1-16=-114/335, 2-16 2-15=-893/3329, 14- 3-15=-122/928, 13-1 11-13=-816/3170, 10 9-10=-811/2393 13-15=-809/3125 4-	=-126/391, 15=0/151, 4=-78/305,)-11=-811/2393, 15=-323/260	11	 capacity of 5 565 psi. Bearing at jo using ANSI/T designer sho 	65 psi, Joint 9 SP 5 int(s) 1 considers p Pl 1 angle to grain uld verify capacity	arallel t formula of beari	o grain value a. Building	v of		Na mana		SEA 0363	L 22	Account
NOTES 1) Unbalance this design	4-13=-442/201, 6-13 6-11=-1031/310, 7-1 8-11=-363/267, 8-10 ed roof live loads have n.	=-2/188, =-2/1890, =-92/116 been considered for	12	bearing plate joint 1 and 33) This truss is International R802.10.2 ar	capable of withsta 39 lb uplift at joint 9 designed in accord Residential Code s nd referenced stand	nding 3 ance w ections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and				NGIN	EER.X	nun .

1)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quility Criteria and DSB-22</u> available from Truss Plate Institute (www.tpinst.org) and <u>Before Building Component Scient Information</u> available from the Structural Building Component description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A08	Нір	1	1	Job Reference (optional)	163425443

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:19 ID:5WmBu5F27fMYTsIMIZhk6PyhiPc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

łq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:74.6

Plate Offsets	(X, Y): [2:0-6-15,Edge	9], [2:0-2-2,0-1-1], [3:	0-5-0,0-2-1	1], [8:0-2-0,0-3	3-4], [10:0-2-0,0-1	-8], [10:0)-0-8,0-11-5],	[16:0-7	-8,0-4-4]					
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.58 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.30 0.10	(loc) 11-26 11-26 13	l/defl >999 >610 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 259 lb	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 6-8:2x4 SP No.1 2x6 SP No.2 *Excep No.3, 15-12,12-10:2 2x4 SP No.3 Right: 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, Max Horiz 1=-121 (L Max Uplift 1=-177 (L 13=-551) Max Grav 1=917 (L1 13=2648	bt* 1-3:2x10 SP DSS bt* 18-2,4-15:2x4 SP ix4 SP No.2 eathing directly applie cept 10-8 max.): 3-8. <i>v</i> applied or 6-0-0 oc 7-13, 8-13 10=0-3-0, 13=0-3-8 .C 17) .C 16), 10=-144 (LC (LC 13) C 39), 10=513 (LC 4: (LC 38)	1) , 2) ed or 3) (17), 5) (3), 6) (7)	Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-C exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 PI Snow); Ps= v DOL=1.15 PI Exp B; Fully surface Roof design Slope. Unbalanced design. Provide adec This trues ba	roof live loads ha 7-10; Vult=150m b; TCDL=6.0psf; 8; Enclosed; MWF C Exterior (2) zon d vertical left and d forces & MWFF =1.60 plate grip I CE 7-10; Pr=20.0 late DOL=1.00); F arries (min. roof s late DOL=1.00) si Exp.; Ct=1.10; Ur snow load has be snow loads have	ve been of ph (3-sec BCDL=6 FRS (envi- e; cantile right exp; S for rea DOL=1.3; psf (roof Pf=20.0 p now=14.{; ee load c nobstructo een reduc been cor prevent 1 for a 100	considered fo cond gust) .0psf; h=30ft; elope) exterio vore left and ri vosed;C-C for ctions shown 3 live load: Lun sf (flat roof 5 psf Lumber ases; Catego ed slippery ed to accoun insidered for th water ponding	r ght ; nber ry II; t for his g.	12) Thi: Inte R8(13) Gra or t bott LOAD (1) De In: Ur	s truss is rnationa 02.10.2 a uphical p the orient tom chor CASE(S) aad + Sn crease=' niform Lo Vert: 1-2 18-19=-	desig I Resid and ref urlin re ation o d. Star ow (ba 1.00 bads (ll 2=-49, 20, 2-1	ned in accordar dential Code ser erenced standa spresentation do of the purlin alor ndard alanced): Lumbe b/ft) 2-3=-49, 3-8=-6 16=-20, 15-22=-	ice with the 20 tions R502.11 rd ANSI/TPI 1. ies not depict t ig the top and/ ir Increase=1. i0, 8-10=-49, 20	15 I.1 and the size for 15, Plate
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-456/198, 2-3=- 3-4=-1376/456, 4-5= 5-7=-792/210, 7-8=- 9-10=-430/237 1-18=-75/171, 2-18= 2-17=-239/1364, 16 15-16=0/102, 4-16= 13-14=-774/463, 11 10-11=-126/336	npression/Maximum -1498/389, =-1548/458, -323/1022, 8-9=-159/ =-54/203, -17=-290/1525, -360/195, 14-15=-2/- -13=-267/310,	(368, 9) 110, 10,	 this truss h chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 of 565 psi, Jo psi. Bearing at jo using ANSI/T 	ad onconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members assumed to be: 65 psi, Joint 13 S bint 10 SP No.2 c int(s) 1 considers PI 1 angle to gra	with any d for a liv as where rill fit betw 5. Joint 1 SF P No.2 c rushing c parallel t in formula	other live load e load of 20.C a rectangle veen the botto No.2 crushin rushing capac apacity of 568 o grain value a. Building	ds.)psf om ng city 5		Continue		OR FESS	ARO SIGNA AL 322	ALL MANUTAL
WEBS NOTES	3-17=-139/363, 4-17 14-16=-119/723, 5- 5-14=-1095/403, 7- 7-13=-1856/610, 8- 8-11=-54/394, 9-11=	7=-333/336, 16=-282/862, 14=-500/1695, 13=-1141/444, =-555/316	11	designer sho) Provide mecl bearing plate joint 1, 551 lk 10.	uld verify capacit hanical connectio capable of withs puplift at joint 13	y of beari n (by oth tanding 1 and 144	ing surface. ers) of truss to 77 lb uplift at lb uplift at join	o				NGIN A. C	IEER.	A. C.

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A09	Нір	1	1	Job Reference (optional)	163425444

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:20 ID:R7xy5kHtz4HvtZA_3mF_tYyhiQs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74.4

Plate Offsets (X, Y): [3:0-6-7,Edge],	[3:0-3-14,0-3-0], [4:0	-6-0,0-2-3	, [9:0-10-8,0-2	2-2], [10:0-0-8,0-11	-5]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.95 0.58 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.24 0.12	(loc) 5 14-15 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 239 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.1 *Except 2x4 SP No.2 *Except No.3, 3-16:2x6 SP N 2x4 SP No.3 Right: 2x6 SP No.2 Structural wood shea 4-6-8 oc purlins, exc 2-0-0 oc purlins (2-2: Rigid ceiling directly bracing, Except: 5-7-14 oc bracing: 10	t* 1-4:2x10 SP DSS t* 18-3,5-15:2x4 SP o.2 athing directly applied ept -0 max.): 4-9. applied or 10-0-0 oc 1-13	1) 2) d or 3)	Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-C exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI Exp B; Fully	roof live loads have 7-10; Vult=150mp bh; TCDL=6.0psf; E ;; Enclosed; MWFF C Exterior (2) zone d vertical left and r d vertical left and r d forces & MWFRS =1.60 plate grip DC CE 7-10; Pr=20.0 p ate DOL=1.00); Pf aries (min. roof sn ate DOL=1.00) set Exp.; Ct=1.10; Unc	e been o h (3-sec SCDL=6 SC (enve ; cantile ight exp 5 for rea 5 for rea 5 for can sf (roof =20.0 p bow=14.5 e load c obstructo	considered for cond gust) .0psf; h=30ft; elope) exterio ver left and rig ossed;C-C for ctions shown; live load: Lum sf (flat roof 5 psf Lumber ases; Categoi ed slippery	r ght ; nber ry II;	 13) This Inte R80 14) Gra or ti bott LOAD (1) De Inc Ur 	s truss is rnationa 02.10.2 a phical p he orient oom chor CASE(S) ead + Sn crease=1 iiform Lo Vert: 1-3 18-19=-:	desig I Resic I Resic I Resic I Resic I Resic A Star Ow (ba Star Ow (ba Star)) (ba Star Ow (ba Star)) (ba	ned in accordance Jential Code sect erenced standard presentation doe of the purlin along ndard alanced): Lumber b/ft) 3-4=-49, 4-9=-60 6=-20, 15-22=-2	e with the 201 ions R502.11. d ANSI/TPI 1. is not depict th g the top and/o Increase=1.1 l, 9-10=-49, 0	5 1 and ne size or 5, Plate
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=105 (LC Max Uplift 2=-228 (LC 13=-583 (I Max Grav 2=1072 (L 13=2751 (C) (h) Maximum Communication	6-13 0=0-3-0, 13=0-3-8 2 20) C 16), 10=-243 (LC 1 LC 13) C 39), 10=709 (LC 3 LC 38) procesion/Maximum	4) 7), 5) 9), 6)	surface Roof design slope. Unbalanced design. This truss ha load of 12.0 p overhangs no	snow load has bee snow loads have b s been designed fo osf or 2.00 times fla on-concurrent with	n reduc een cor or greate at roof lo other liv	ed to account nsidered for th er of min roof bad of 20.0 ps ve loads.	t for nis live sf on				mmm	Uu ₁ ,	
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/44, 2-3=-432/2 4-5=-2187/804, 5-6= 6-8202/1006, 8-9-	212, 3-4=-1955/674, -2199/812, -372/314, 9-10558	7) 8) 9)	Provide adeq All plates are This truss ha chord live loa	Juate drainage to p MT20 plates unles s been designed fo id nonconcurrent w	revent v ss other or a 10.0 vith any	water ponding wise indicated) psf bottom other live load	j. d. ds.			A	ORTH CA	ROUN	
BOT CHORD	2-18=-66/129, 3-18= 16-17=-470/1827, 15 5-16=-604/234, 14-1 13-14=-292/1042, 11 10-11=-145/378	-13/68, 3-17=-472/18 5-16=0/122, 5=-27/179, I-13=-1003/262,	321, 11)	on the botton 3-06-00 tall b chord and an All bearings a	n chord in all areas y 2-00-00 wide wil y other members. are assumed to be	SP No.	a rectangle veen the botto 2 crushing	om		NI IIIIII		SEA 0363	L 22	Name of Street
WEBS NOTES	4-17=0/240, 4-16=-2 14-16=-269/874, 6-1 8-13=-1382/427, 9-1 6-13=-2389/547, 8-1	17/445, 6-14=-1/221, 6=-315/1272, 1=-439/190, 1=-256/1144	, 12)	Provide mecl bearing plate joint 2, 243 lb 13.	capable of withsta capable of withsta ouplift at joint 10 a	(by oth Inding 2 nd 583	ers) of truss to 28 lb uplift at lb uplift at join	o it				NGIN A. G	EER. K	inne,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO AMITEK Affiliate

818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A10	Нір	1	1	Job Reference (optional)	163425445

Run: 8,63 E Feb 9 2023 Print: 8,630 E Feb 9 2023 MiTek Industries, Inc. Tue Feb 06 13:44:58 ID:McMjYjsUW8YVLakVjheYdtyhiSh-Zvrxb2E7FFvSSaSk_MmxndwH?inGPhtRxwONaizo0gL

Page: 1

Scale = 1:74.3

late Offsets (X, Y): [2:0-5-15,Edge], [8:0-6-10,Edge], [9:Edge,1-2-3], [10:0-3-8,0-1-8], [15:0-6-4,0-5-12], [17:1-3-2,0-2-12]													
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 14.5/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	1.00 0.91 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.42 0.15	(loc) 4 13-14 12	l/defl >999 >734 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0											Weight: 254 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP No.2 *Exca 8-9:2x4 SP No.2 2x6 SP No.2 *Exca No.3, 14-11,11-9:2 2x4 SP No.3 *Exca Right: 2x8 SP DSS Structural wood sh	ept* 1-3:2x10 SP DSS ept* 17-2,4-14:2x4 SP x4 SP No.2 ept* 15-5:2x4 SP No.2 ept* 15-5:2x4 SP No.2	2) 2 2 3) ed or	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-0 exposed ; en members an. Lumber DOL ** TCLL: AS0 DOL=1.15 P snow); Ps= v	7-10; Vult=150mp bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) zone Id vertical left and d forces & MWFR: =1.60 plate grip D CE 7-10; Pr=20.0 late DDL=1.00; P varies (min. roof sr	oh (3-sed BCDL=6 RS (env e; cantile right exp S for rea OL=1.3 osf (roof f=20.0 p now=14.3	cond gust) .0psf; h=30ft; elope) exterior ver left and ri- posed;C-C for- ctions shown 3 live load: Lum- 5 (flat roof 5 psf Lumber	or ght ; nber	LOAD (1) De Inc Ur	CASE(S) ead + Sn crease=1 hiform Lo Vert: 1-2 2-15=-20) Star ow (ba I.00 ⊳ads (II 2=-49, 0, 14-2	ndard alanced): Lumber b/ft) 2-3=-49, 3-8=-60 21=-20	Increase=1.15, Plate , 8-9=-49, 17-18=-20,
	2-0-0 oc purlins; e	-8.		DOL=1.15 P	late DOL=1.00) se	e load c	ases; Catego	ry II;					
BOT CHORD	Rigid ceiling direct	ly applied or 4-4-10 or	C	Exp B; Fully surface	Exp.; Ct=1.10; Un	obstruct	ed slippery						
WEBS REACTIONS	1 Row at midpt 1 Row at midpt (lb/size) 1=766/C 12=212 Max Horiz 1=-77 (I Max Uplift 1=-184 12=-675 Max Grav 1=894 (12=-303)	5-12 -3-8, 9=250/0-3-0, 0/0-3-8, (req. 0-3-9) .C 17) (LC 13), 9=-167 (LC 1 0 (LC 13) LC 38), 9=516 (LC 39 1 (LC 38)	4) 5) 7), 6) 7), 8)	Roof design slope. Unbalanced design. Provide adec All plates are This truss ha chord live loa	snow load has be snow loads have l quate drainage to p MT20 plates unle is been designed f ad nonconcurrent has been designed	en reduc peen cor prevent v press other for a 10.1 with any	ed to account nsidered for the water ponding wise indicate D psf bottom other live load e load of 20 0	t for his g. d. ds.					
FORCES	(lb) - Max. Comp./	Max. Ten All forces	250 ⁹⁾	on the bottor	n chord in all area	s where	a rectangle	ры				W'''LL CA	Dille
TOP CHORD	(ID) or less except 1-2=-477/211, 2-3: 3-26=-2269/716, 4 4-27=-3246/990, 5 5 6= 505/2247, 5	wnen snown. =-2324/687, -26=-2269/716, -27=-3246/990, 7= 505/2247, 8 0= 22	10	3-06-00 tall b chord and an WARNING: F than input be	by 2-00-00 wide wi by other members. Required bearing s earing size.	ll fit betv size at jo	veen the botto int(s) 12 grea	om ater		4	A	ORTHOR	N. S.
BOT CHORD	2-16=-546/2247, 1 2-16=-546/2247, 1 4-15=-360/190, 12 11-12=-1601/376,	7=-505/2247, 6-9=-52 5-16=-826/3317, -13=-139/479, 10-11=-1601/376	11 ⁰⁹	Bearing at jo using ANSI/I designer sho	int(s) 1 considers [PI 1 angle to grain puld verify capacity happed connection	parallel t n formul of bear	o grain value a. Building ing surface.	0		TH I I		SEA	
WEBS NOTES	3-16=-17/304, 4-1 13-15=-108/261, 5 5-12=-3057/806, 7 7-10=-364/1621, 8	6=-1099/372, -15=-704/2833, -12=-1619/514, -10=-454/211	13 13	 bearing plate Provide mec bearing plate joint 1, 679 lt Graphical put 	a at joint(s) 9. hanical connection capable of withst puplift at joint 12 a	n (by oth anding 1 and 167 does no	ers) of truss to 84 lb uplift at b uplift at join of depict the s	o nt 9. size		11 Provention		S SNGIN	ERRATION
 Unbalance this design 	ed roof live loads hav n.	e been considered fo	r	or the orienta bottom chord	ation of the purlin a 1.	along the	e top and/or					A. G	IL IIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A11GR	Hip Girder	1	2	Job Reference (optional)	163425446

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:25 ID:E77hqeoTG6Dx0VCGwoq7oqyhinR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70

Plate Offsets	(X, Y): [1:0-2-0,0-2-1]	, [1:0-4-0,Edge], [2:0-	·10-11,0-4	·12], [2:0-1-12,	0-2-0], [3:0-6-0,0-	2-8], [9:0)-6-0,0-2-8], [[18:0-2-8	8,0-4-0], [19:0-3-8	3,0-4-0]			
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.90 0.67 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.29 -0.43 0.15	(loc) 4 4 15	l/defl >999 >744 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 495 lb	GRIP 244/190 187/143 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 *Excep 5-8:2x4 SP SS 2x6 SP No.2 *Excep 2-18:2x6 SP DSS, 2 2x4 SP No.3 Left 2x4 SP No.2 Structural wood she 5-10-6 oc purlins, 6	ot* 3-5:2x4 SP No.1, ot* 20-2:2x4 SP No.1 I-17:2x4 SP No.2 2-3-15 sathing directly applie xcept 1.8 may 1: 3-9	1) , 2) d or	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord staggered at Web connec All loads are except if note CASE(S) sec provided to c	be connected tog aails as follows: connected as follow ds connected as follow ds connected as fo 0-9-0 oc, 2x4 - 1 ted as follows: 2x4 considered equal ed as front (F) or b stion. Ply to ply co listribute only load	gether wi ws: 2x4 - ollows: 2 row at 0- 4 - 1 row ly applie back (B) nnection ls noted	th 10d 1 row at 0-9 x6 - 2 rows 9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	0-0 DAD	 All t cap Pro bea join 11. This Inte R80 Gra or ti 	bearings acity of s vide me ring plat t 15, 529 s truss is rnationa 02.10.2 a phical p ne orient	are as 565 ps chanic e capa) lb up l Resig I Resig and ref urlin re cation (ssumed to be SF i. al connection (by able of withstand lift at joint 1 and ned in accordan- dential Code sec erenced standar spresentation dou of the purlin alon	No.2 crushin ' others) of tru ng 1630 lb up 190 lb uplift a ce with the 20 tions R502.11 d ANSI/TPI 1 es not depict : g the top and.	g Jss to blift at t joint 1.1 and the size /or	
BOT CHORD	2-0-0 oc punins (5- Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=-55 (L0 Max Uplift 1=-529 (I 15=-1630 Max Grav 1=1231 (15=3924	1-8 max.): 3-9. / applied or 6-0-0 oc 11=0-3-0, 15=0-3-8 C 13) .C 12), 11=-190 (LC - 0 (LC 9) LC 33), 11=336 (LC -	3) 4) 56), 34),	unless othen Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E zone; cantile and right exp DOI =1 33	wise indicated. roof live loads hav 7-10; Vult=150m; h; TCDL=6.0psf; 8; Enclosed; MWF ver left and right e oosed; Lumber DC	ve been o bh (3-sec BCDL=6 RS (env exposed DL=1.60	considered fo cond gust) 6.0psf; h=30ft elope) exterio ; end vertical plate grip	or ;; or left	15) Graphical purlin representation does not depict the s or the orientation of the purlin along the top and/or bottom chord.						
FORCES	(lb) - Maximum Con Tension 1-2=-565/260, 2-3= 3-4=-4178/1811, 4- 6-7=-1973/4643, 7- 9-10=-212/163	npression/Maximum -3517/1457, 6=-3890/1742, 9=-928/1778,	5)	** TCLL: AS(DOL=1.15 Pl snow); Ps= v DOL=1.15 Pl Exp B; Fully	CE 7-10; Pr=20.0 late DOL=1.00); P varies (min. roof sr late DOL=1.00) se Exp.; Ct=1.10; Un	psf (roof If=20.0 p now=14.9 ee load c lobstruct	live load: Lu sf (flat roof 5 psf Lumber ases; Catego ed slippery	mber ory II;			Tru'	NITH CA	ROM	171	
BOT CHORD	1-20=-53/36, 2-20= 2-19=-1225/3036, 1 17-18=0/157, 4-18= 16-17=-245/603, 15 13-15=-2840/1295, 11-12=-187/232, 10 3-19=-338/908, 3-11	-140/341, 8-19=-1304/3229, -909/479, -16=-555/165, 12-13=-178/234, I-11=-48/128 8=-543/965.	6) 7) 8) 9)	Roof design slope. Unbalanced design. Provide adec All plates are	snow load has be snow loads have l quate drainage to MT20 plates unle	en reduc been cor prevent v ess other	ed to accour nsidered for th water ponding wise indicate	nt for his g. ed.		A STATISTICS		SEA 0363	L 22	A. Marine	
NOTES	16-18=-957/397, 6- 6-16=-26/523, 6-15 7-15=-2595/1140, 7 9-13=-1839/845, 9-	18=-1851/4301, =-4471/2068, '-13=-388/1396, 12=0/264, 9-11=-192	11 /168) * This truss ha on the bottor 3-06-00 tall b chord and ar	ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members.	with any d for a liv s where ill fit betv	other live load e load of 20.0 a rectangle veen the botto	ads. Opsf om				ALC A. C	EER.X		

February 6,2024

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A11GR	Hip Girder	1	2	Job Reference (optional)	163425446

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Sun Feb.04 12:44:25

ID:E77hqeoTG6Dx0VCGwoq7oqyhinR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Apex, NC), Apex, NC - 27523,

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 82 lb down and 51 lb up at 3-11-0, 44 lb down and 53 lb up at 5-11-0, 44 lb down and 53 lb up at 7-11-0, 44 lb down and 53 lb up at 9-11-0, 44 lb down and 53 lb up at 11-11-0, 58 lb down and 76 lb up at 13-11-0, 58 lb down and 76 lb up at 15-11-0, 58 lb down and 76 lb up at 17-11-0, 58 lb down and 76 lb up at 19-11-0, 58 lb down and 76 lb up at 21-11-0, 58 lb down and 76 lb up at 23-11-0, 58 lb down and 76 lb up at 25-11-0, 62 lb down and 82 lb up at 27-11-0, 62 lb down and 82 lb up at 29-11-0, 62 lb down and 82 lb up at 31-11-0, 62 lb down and 82 lb up at 33-11-0, and 62 lb down and 82 lb up at 35-11-0, and 70 lb down and 54 lb up at 37-11-0 on top chord, and 95 lb down and 54 lb up at 3-11-0, 46 lb down and 40 lb up at 5-11-0, 46 lb down and 40 lb up at 7-11-0, 46 lb down and 40 lb up at 9-11-0, 46 lb down and 40 lb up at 11-11-0, 30 lb down and 16 lb up at 13-11-0, 30 lb down and 16 lb up at 15-11-0, 30 lb down and 16 lb up at 17-11-0, 30 lb down and 16 lb up at 19-11-0, 30 lb down and 16 lb up at 21-11-0, 30 lb down and 16 lb up at 23-11-0, 30 lb down and 16 lb up at 25-11-0, 37 lb down at 27-11-0, 37 lb down at 29-11-0, 37 lb down at 31-11-0, 37 lb down at 33-11-0, and 37 lb down at 35-11-0, and 72 lb down and 42 lb up at 37-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00

Uniform Loads (lb/ft)

Vert: 1-2=-49, 2-3=-49, 3-9=-60, 9-10=-49, 1-20=-20, 2-18=-20, 10-17=-20

Concentrated Loads (lb)

- Vert: 14=-19 (F), 13=-19 (F), 28=-62 (F), 29=-16 (F), 31=-16 (F), 32=-16 (F), 33=-16 (F), 34=-30 (F), 35=-30 (F), 36=-30 (F), 37=-30 (F), 38=-30 (F), 39=-30 (F), 40=-30 (F), 41=-34 (F), 42=-34 (F), 43=-34 (F), 44=-34 (F), 46=-34 (F), 47=-50 (F), 48=-95 (F), 49=-40 (F), 50=-40 (F), 51=-40 (F), 52=-40 (F), 53=-27 (F), 54=-27 (F), 55=-27 (F), 56=-27 (F), 57=-27 (F), 58=-27 (F), 59=-27 (F),
- 60=-19 (F), 61=-19 (F), 62=-19 (F), 63=-72 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A21	Нір	1	1	Job Reference (optional)	163425447

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Sun Feb.04.12:44:27 Page: 1 ID:QYYSkVRDXd6n4ZonOJajLwyhf4K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 28-10-0 6-9-0 12-3-0 19-3-0 35-1-0 41-10-0 22-7-0 6-9-0 5-6-0 7-0-0 3-4-0 6-3-0 6-3-0 6-9-0 7x10= 6x8= 9-11-15 -1 -1 5 36 6 à 12 61 35 37 3x4. 2x4 I 3x6 -2x4 4 4 34 38 3x4 -3x64 9-11-15 9-10-4 9-10-4 З 8 33² 9₃₉ 4x8 II 4x8 0-4-7 T 45 惦 46 Ø 22 2140 1917 14 42 1243 44 11 153 2x4 II 5x8= 2x4 ı 2x4 II 3x6= 3x4= 3x6= 2x4= 2x4= 2x4 ı 2x4 II 6x8= MT20HS 3x10 = 15 -3 22-5-4 13-0-7 21-11-9 12-11-3 16-0-0 0-8-32-2-90-9-0 2<u>1-11-0</u> 0-11-0 16-0-0 19-3-0 41-10-0 6-9-0 12-3-0 25-10-0 31-11-8 40-11-0 5-6-0 2-8-0 6-1-8 8-11-8 0-11-0 0-11-0 5-10-0 3-3-0 3-4-12 0-0-10 0-1-4 Scale = 1:76.6 Plate Offsets (X, Y): [1:0-6-4,Edge], [1:0-0-8,0-11-5], [5:0-8-12,0-3-4], [6:0-4-10,Edge], [10:0-6-4,Edge], [10:0-0-8,0-11-5] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.95 Vert(LL) -0.40 14-19 >681 240 MT20 244/190 Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.96 Vert(CT) -0.66 14-19 >406 180 MT20HS 187/143 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.97 0.01 13 n/a n/a BCLL 0.0 IRC2015/TPI2014 Matrix-MS Code Weight: 249 lb BCDL 10.0 FT = 20% WEBS LUMBER 6-13=-677/183, 7-13=-962/475, 11) Provide mechanical connection (by others) of truss to 7-11=-142/528, 9-11=-424/319, TOP CHORD 2x4 SP No 2 4-21=-661/403, 2-21=-412/283, 2x4 SP No.2 *Except* 20-15,17-12:2x4 SP BOT CHORD 20-21=-509/1293, 5-20=-478/1426, 10 No.1 WEBS 2x4 SP No.3 5-15=-1354/435, 13-15=-1439/397 2-22=0/74, 18-19=-15/13, 14-16=-109/0 WEDGE Left: 2x6 SP No.2 Right: 2x6 SP No.2 NOTES Unbalanced roof live loads have been considered for BRACING 1) TOP CHORD Structural wood sheathing directly applied or this design Wind: ASCE 7-10; Vult=150mph (3-second gust) bottom chord. 2-2-0 oc purlins, except 2) LOAD CASE(S) Standard Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; 2-0-0 oc purlins (10-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 1) bracing. Except: zone and C-C Exterior (2) zone; cantilever left and right Increase=1.00 Uniform Loads (lb/ft) 6-0-0 oc bracing: 15-20 exposed ; end vertical left and right exposed;C-C for WEBS 1 Row at midpt 6-13, 7-13, 5-21 members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 15-20=-20 WEBS 2 Rows at 1/3 pts 5-15 ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) REACTIONS (size) 1=0-3-8, 10=0-3-8, 13=0-3-8 DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof Max Horiz 1=-212 (LC 17) snow); Ps= varies (min. roof snow=14.5 psf Lumber Max Uplift 1=-211 (LC 16), 10=-219 (LC 17), DOL=1.15 Plate DOL=1.00) see load cases; Category II; 13=-351 (LC 16) Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery 1=792 (LC 53), 10=589 (LC 54), Max Grav surface 13=2962 (LC 38) Roof design snow load has been reduced to account for 4) CA FORCES (lb) - Maximum Compression/Maximum slope.

- Tension TOP CHORD 1-2=-1018/340, 2-4=-671/236, 4-5=-737/452, 5-6=0/813, 6-7=-31/1001, 7-9=-394/257, 9-10=-632/305 1-22=-336/838, 21-22=-336/838, BOT CHORD 19-21=-284/361, 14-19=-284/361, 13-14=-284/361, 11-13=-161/147, 10-11=-159/509, 18-20=-133/0, 16-18=-133/0, 15-16=-133/0
- Unbalanced snow loads have been considered for this 5)
- design. 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Bearings are assumed to be: Joint 1 SP No.2 crushing capacity of 565 psi, Joint 13 SP No.1 crushing capacity of 565 psi, Joint 10 SP No.2 crushing capacity of 565 psi.

bearing plate capable of withstanding 351 lb uplift at joint 13, 211 lb uplift at joint 1 and 219 lb uplift at joint 12) This truss is designed in accordance with the 2015

10

3x6=

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
- Dead + Snow (balanced): Lumber Increase=1.15, Plate
 - Vert: 1-5=-49, 5-6=-60, 6-10=-49, 23-28=-20,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A22	Нір	1	1	Job Reference (optional)	163425448

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:27 ID:vdoqvXuUHVEIT0_rQWjsCEyhf2S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

	6-1	-0 11-	8-0	17-3-	0	22-1-4	24-7-0	30	-2-0		35	5-9-0	41-10-0	
	6-1	-0 5-7	7-0	5-7-	о '	4-10-4	2-5-12	5	-7-0	I	5	-7-0	6-1-0	1
					5x8=		2x4 II 6x8	3=						
15					∑ 5 35	36	6 37 7	7						
⊤≟∓÷					÷= ∕₽	x x								
č. 0					<u>ف</u>		n H	\sim						
		1:	2	2x4 II				~	\sim	3x4 👟				
		01		4		\				8				
		3x6	•	ł	// ``					X		3x6≈		
4 4 -15		3×4 3	//			A				/	\sim	9 24		
<u>+ + + + + + + + + + + + + + + + + + + </u>		UNT I]/	⊠ ₽/			//		224	-	
ထ်ထ်		2						\sim	/	//		1	0	
		34						7/		//	\	<u> </u>	38	
								/		\	7			40
	4x8		\sim								//			4x8
	$\sum_{i=1}^{n}$										V			11
		۵				19/		•			•			
		23		2239 40	2018	15 ₁	614	13	41	42	12			-
	3x6=	2x4 u		4x8=	2x4 I	2x4 II 2	×4-	3x6=			3x4=			3x6=
	570=			2×4-	2×4	2x4	~							570-
				2,4=	2,77	274 1	7x10=							
				15-3-0	4x8=	22	2-1-4							
	0.11.0			12-4-14		21-	6-1							44 40 0
	0-11-0 6	-1-0 11-	8-0	12-3-12	19-0-0 19-3-0	21-5-1	25-10-0) 	31-8-	10	_	40-	11-0	41-10-0
	0-11-0 5	-2-0 5-7	7-0	0-7-122-10-2	0-9-0 3-3-0	2-2-1	3-8-12	•	5-10-	10		9-	2-6	0-11-0
Scale - 1.72 7				0-1-2		0-2 0	-7-3							
			1001	451 17:0 4 40 5	-l1 [44-0 0 0	V E al ava 1 14.4	0 0 0 0 11 5	[4.4.0.4	0.5.1	1				
	(Λ, Τ). [1:0-0-8,Eage	J, [1.0-0-8,0-11-5], [5:0· -	-4-0,0-1-	10], [7:0-4-10,E	uyej, [11:0-6-8	,⊏ugej, [11	.0-0-0,0-11-5]	, [14:0-4	-o,⊏uge]				
Loading	(nef)	Spacing	2-0-0		CSI		DEEL	in	(loc)	l/dofl	I /d		GRIP	
TCLL (roof)	(psi) 20.0	Plate Grin DOI	2-0-0			0.78	Vort(LL)	-0.42	17-10	×635	240	MT20	2///100	
Spow (Pc/Pf)	20.0		1.00		RC RC	0.70	Vert(LL)	-0.42	17-19	>033	190	101120	244/190	
3110W (F5/FI)	14.5/20.0	Lumber DOL Bon Stress Inor	1.15 VES			0.90		-0.71	17-19	>313	100			
TODE	10.0	Rep Siless Inci	TEO			0.07		0.02	11	n/a	n/a			
BCLL	0.0	Code	IRC201	5/TPI2014	Matrix-MS							Mainhu 050		,
BCDL	10.0		-									weight: 256	10 FI = 20%	0
LUMBER			N	OTES					12) Gra	phical p	urlin re	epresentation	does not depic	t the size
TOP CHORD	2x4 SP No.2		1)	Unbalanced	roof live loads	have been	considered for	r	or th	ne orient	ation	of the purlin al	ong the top an	id/or
BOT CHORD	2x4 SP No.1		.,	this design.					bott	om chor	d.		3	
WEBS	2x4 SP No 3 *Exce	nt* 14-5 22-5 [.] 2x4 SP N	lo 2 2)	Wind: ASCE	7-10: Vult=150)mph (3-seo	cond aust)			ASE(S)	Sta	ndard		
WEDGE	Left: 2x6 SP No.2	F,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Vasd=119mp	h; TCDL=6.0p	sf; BCDL=6	6.0psf; h=30ft;		1) De	ad + Sn	ow (b	alanced). I um	ber Increase=	1 15 Plate
	Right: 2x6 SP No.2			Cat. II; Exp B	; Enclosed; M	WFRS (env	elope) exterio	r	Inc	rease=	1.00			inte, i late
BRACING	0			zone and C-0	C Exterior (2) z	one; cantile	ever left and right	ght	Un	iform Lo	bads (I	b/ft)		
TOP CHORD	Structural wood she	eathing directly applied	or	exposed ; en	d vertical left a	nd right exp	oosed;C-C for		,	Vert: 1-5	5=-49,	5-7=-60, 7-11	=-49, 24-29=-2	20.
	5-4-8 oc purlins, ex	cept		members and	d forces & MW	FRS for rea	ctions shown;	;		16-21=-	20			
	2-0-0 oc purlins (10)-0-0 max.): 5-7.		Lumber DOL	=1.60 plate gri	p DOL=1.3	3							
BOT CHORD	Rigid ceiling directl	y applied or 6-0-0 oc	3)	** TCLL: ASC	CE 7-10; Pr=20).0 psf (roof	live load: Lun	nber						
	bracing. Except:			DOL=1.15 PI	ate DOL=1.00); Pf=20.0 p	sf (flat roof							
	6-0-0 oc bracing: 1	6-21		snow); Ps= v	aries (min. roo	f snow=14.	5 psf Lumber							
WEBS	1 Row at midpt	7-14, 6-14, 8-14, 5-16	6	DOL=1.15 PI	ate DOL=1.00) see load c	ases; Catego	ry II;						
REACTIONS	(size) 1=0-3-8,	11=0-3-8, 14=0-3-8		Exp B; Fully	= xp.; Ct = 1.10;	Unobstruct	ed slippery							
	Max Horiz 1=-189 (LC 21)	4)	Surface Boof design	now load has	hoon rodu	ad to oppound	for						
	Max Uplift 1=-200 (LC 16), 11=-206 (LC 1	7), ⁴⁾	slope	snow load has	been reduc	eu lo accouri							
	14=-375	(LC 16)	5)	Unhalanced	snow loads ha	ve heen coi	sidered for th	is						
	Max Grav 1=782 (L	.C 53), 11=587 (LC 54)	, 5)	design										
	14=2782	(LC 38)	6)	Provide adeo	uate drainage	to prevent	water ponding	ı.						
FORCES	(lb) - Maximum Cor	mpression/Maximum	5) 7)	This truss ha	s been design	ed for a 10	0 psf bottom	,					1111	
	Tension		• • • •	chord live loa	d nonconcurre	ent with any	other live load	ds.				11111	AD''	
TOP CHORD	1-2=-1028/302, 2-4	=-722/181, 4-5=-763/3	66, <u>8</u>)	* This truss h	as been desid	ned for a liv	e load of 20.0	psf				"TH C	",OHN	1
	5-6=-40/915, 6-7=-4	42/916, 7-8=-80/916,	-,	on the botton	n chord in all a	reas where	a rectangle	•			X	ON	in the	11
	8-10=-389/205, 10-	11=-644/293		3-06-00 tall b	y 2-00-00 wide	e will fit betw	veen the botto	m			K2	JANE -		11
BOT CHORD	1-23=-318/881, 22-	23=-318/881,		chord and an	y other member	ers, with BC	DL = 10.0psf.				12		12	C
	20-22=-100/367, 15	-20=-100/367,	9)	All bearings a	are assumed to	be SP No	1 crushing)	: 41	N 7	
	14-15=-100/367, 12	2-14=-85/204,		capacity of 5	65 psi.					=		SE	ΓA Ι	4 E -
	17 10- 171/6 10 1	9-∠1=-1/1/0, 7_ 171/6	10	 Provide mech 	nanical connec	tion (by oth	ers) of truss to	D		Ξ			2000	÷ E -
WERS	7-14-674/490 04	1-111/0 A467/170		bearing plate	capable of wit	instanding 3	375 lb uplift at			Ξ		036	322	: E
WEBS	8-14=-074/109,0-1			joint 14, 200	ib uplift at joint	1 and 206	ib uplift at join	t				1	G	1 5
	10-17	2-10/702, 161351/433		11. •••••••••••••••••••••••••••••••••••	de el enere de l		ille ale - 0045				2	·		1
	14-16=-1464/396	1-22=-575/352	11	i) I his truss is (Designed in ac	cordance w	in the 2015	ام ما			20	C. SNO	NEEK	5
	21-22=-412/1148	5-21=-384/1299		International	Residential Co	oue sections	5 KOUZ.11.1 A	na			1	810	11- 68	15
	2-22=-455/294. 2-2	3=-29/53. 19-20=-39/2		rouz. 10.2 ar	iu reierenced s	stanuaru Ar	NGI/TETT.				1	I,CA	GILBY	1
	15-17=-76/0											1111	Ginnin	
														4
												rebr	uary 6,202	4
A														

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A23	Нір	1	1	Job Reference (optional)	163425449

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:28 ID:HDmGN6Bc4NjZpSfPBU8y1oyhf0n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-10-8 15-3-0 22-1-4 26-7-0 33-11-8 41-10-0 7-10-8 7-4-8 6-10-4 4-5-12 7-4-8 7-10-8 8x10= 2x4 II 8x10= 7-11-15 4 333435 5 6 12 61 3x6 ≠ 2x4 🏿 2x 3x6 👟 3 7 7-11-15 2 7-10-4 7-10-4 8 32 36 4x8 **I** 4x8 II 31 37 9 0-4-7 ⊢ 20 16 15 13 39 10 14 38 11 12 3x6= 2x4 u 2x4 u 3x6= 3x6= 3x6 🞜 2x4 =3x6= 2x4= 2x4 II 2x4 II 6x8= 3x6= 0-11-0 41-10-0 11-3-10 14-3-0 18-3-0 31<u>-8-10</u> 40-11-0 22-1-4 0-11-0 10-4-10 2-11-6 4-0-0 3-10-4 9-7-6 9-2-6 0-11-0

Scale = 1:73.5

Plate Offsets ((X, Y): [1:0-2-0,0-1-8],	[1:0-0-8,0-11-5], [4:0	-6-10,Edg	e], [6:0-6-10,E	idge], [9:0-6-8,Edg	je], [9:0-	0-8,0-11-5]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.79 0.84 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.46 0.03	(loc) 10-12 10-12 9	l/defl >691 >518 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1-3,7-9:2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shee 3-11-6 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 9 Max Horiz 1=-165 (L Max Uplift 1=-239 (L 12=-445 (Max Grav 1=886 (LC 12=2192)	t* 4-6:2x6 SP No.2, athing directly applied topt 0-0 max.): 4-6. applied or 6-0-0 oc 6-12, 4-12, 17-18 9=0-3-8, 12=0-3-8 C 17) C 16), 9=-230 (LC 17 LC 16) 2 38), 9=756 (LC 38). (L C 38)	2) d or 4) 5) (), 6) 7)	Wind: ASCE Vasd=119m Cat. II; Exp E zone and C- exposed ; er members an Lumber DOL ** TCLL: AS(DOL=1.15 P snow); Ps= v DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide adet This truss ha chord live loa	7-10; Vult=150mp bh; TCDL=6.0psf; J 3; Enclosed; MWF C Exterior (2) zone d vertical left and d forces & MWFR =1.60 plate grip D CE 7-10; Pr=20.0 p late DOL=1.00); P aries (min. roof sr late DOL=1.00) se Exp.; Ct=1.10; Um snow load has bee snow loads have t quate drainage to p s been designed f ad nonconcurrent	h (3-sec BCDL=6 RS (envi- ; cantile right exp S for rea OL=1.3 2sf (roof f=20.0 p iow=14.5 e load c obstructure en reduc peen cor prevent v or a 10.0 with any	cond gust) .0psf; h=30ft; lelope) exterior ver left and ri- oosed; C-C for- ctions shown live load: Lum- sf (flat roof 5 psf Lumber ases; Catego ed slippery ed to accoun- asidered for the water ponding 0 psf bottom other live load	r ght ; nber ry II; t for nis j. ds.	Ur	hiform Lo	oads (ll 1=-49,	b/ft) 4-6=-60, 6-9=-49	, 21-26=-20	
	(lb) - Maximum Com Tension	pression/Maximum	8)	on the bottor 3-06-00 tall b	n chord in all areas by 2-00-00 wide wi	s where Il fit betv	e load of 20.0 a rectangle veen the botto	om				UNITH CA	Politic	
BOT CHORD	5-6=-23/682, 6-8=-6 1-16=-344/937, 15-1 13-15=-34/309, 12-1	14/330, 8-9=-906/316 6=-34/309, 3=-34/309, 0=-157/723	5, 5 9) 10)	All bearings capacity of 5 Provide mec	are assumed to be 65 psi. hanical connectior	sP No.	2 crushing ers) of truss to	0		4	i	ORIFESS	N	
WEBS NOTES	5-12=-704/264, 6-12 6-10=-294/898, 8-10 4-18=-1214/446, 12- 16-17=-202/748, 4-1 2-16=-658/411, 17-1 18-20=-64/14, 15-19	=-1133/409, ==-644/408, 18=-1270/447, 7=-203/788, 9=-64/14, 19-20=-64 =0/20, 13-20=-12/48	11) /14, 12)	pearing plate joint 12, 239 This truss is International R802.10.2 at Graphical pu or the orienta bottom chore	capable of withst Ib uplift at joint 1 a designed in accord Residential Code nd referenced star rlin representation ation of the purlin a I.	anding 4 and 230 I dance w sections idard AN does no along the	the uplift at join ith the 2015 SR502.11.1 a ISI/TPI 1. ot depict the s top and/or	ıt 9. nd ize		THE PARTY		SEA 0363	L22	
 Unbalance this design 	ed roof live loads have n.	been considered for	LO 1)	AD CASE(S) Dead + Sno Increase=1	Standard ow (balanced): Lur .00	nber Inc	rease=1.15, F	Plate			11	CA. G	ILBE IIII	

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A24	Нір	1	1	Job Reference (optional)	163425450

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:29 ID:x8fNI5Z6EO4OUzNJsQBhfqyhf??-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9

Þ

3x6=

4-9-2 9-0-5 13-3-0 17-8-2 28-7-0 34-11-8 41-10-0 22-1-4 4-9-2 4-3-2 4-2-11 4-5-2 4-5-2 6-5-12 6-4-8 6-10-8 2x4 II 5x6= 3x6= 5x8= 6-11-15 0-1-11 ÷= -6 <u>3</u>4 4 5 32 ⊠ 33 ⊠ 7 \boxtimes A 4 2x4 12 6 3 2x4 🥠 6-11-15 8 6-10-4 6-10-4 2x4 🕿 2 31 35 4x8 II 4x8 ı 0-4-7 ⊢ ħ 739 405 19 K Ř 20 36 18 16 373 11 38 10 12 7x10= 2x4 II 2x4 II 3x6= 3x4= 3x6 💋 2x4 =2x4= 2x4 II 2x4 II 6x8= MT20HS 3x10 = 22-1-4 21-5-5 $\begin{array}{c} 12-3-10\\ 12-1-14& 15-2-2& 16-0-0\\ 12-1-14& 2-10-8& 0-9-14\\ 0-11-14& 2-10-8& 0-9-14\\ 0-11-12\\ \end{array}$ 41-10-0 0-11-0 21-5-5 +<u>21-4-1</u> 2-1-15 11-2-0 25-10-0 31-8-10 40-11-0 0-11-0 10-3-0 3-8-12 5-10-10 9-2-6 0-11-0 0-1-3 0-7-15

Scale = 1:73.2

Plate Offecte	X X). [1.0.2.0 0.1.8	1 1.0-0-8 0-11-51 [7.0-4-0 0-1-	15] [0·0-6-8 E	1000_0_8 0_1	1-51								
	(A, T). [1.0-2-0,0-1-0	, [1.0-0-0,0-11-5], [i	7.0-4-0,0-1-	15], [9.0-0-8,E0	igej, [9.0-0-0,0-1	1-5]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.98 1.00 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.37 -0.70 0.02	(loc) 15-17 15-17 9	l/defl >708 >376 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 241 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Exce 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood sh 4-7-13 oc purlins, 2-0-0 oc purlins (2 Rigid ceiling direct bracing. Except: 6-0-0 oc bracing: 1 1 Row at midpt (size) 1=0-3-8 Max Horiz 1=-145 Max Uplift 1=-211 12=-366 Max Grav 1=974 (ept* 16-11:2x4 SP N except -2-0 max.): 4-7. ly applied or 6-0-0 or 14-19 7-12, 5-12 , 9=0-3-8, 12=0-3-8 (LC 17) (LC 16), 9=-225 (LC 5 (LC 16) LC 38), 9=805 (LC 3 4 (4) 0-25	1) o.1 2) lied or 3) c 4) 17), 5) 8), 6)	Unbalanced this design. Wind: ASCE Vasd=119m Cat. II; Exp E zone and C- exposed ; er members an Lumber DOL ** TCLL: AS DOL=1.15 P snow); Ps= v DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced design. Provide adee	roof live loads ha 7-10; Vult=150m oh; TCDL=6.0psf 3; Enclosed; MWC C Exterior (2) zon d vertical left and d forces & MWFI L=1.60 plate grip CE 7-10; Pr=20.(late DOL=1.00); varies (min. roof state DOL=1.00); Exp.; Ct=1.10; U snow load has b snow loads have quate drainage to	we been aph (3-sea ; BCDL= FRS (env e; cantilé d right exp RS for ree DOL=1.3: p psf (roof Pf=20.0 p snow=14. eee load c nobstruct eeen reduc been col p prevent	considered fo cond gust) .0psf; h=30ff elope) exterior vore left and r bosed;C-C fo cctions showr 3 live load: Lui sf (flat roof 5 psf Lumber ases; Catego ed slippery ed to accour nsidered for t water pondin	or t; or right n; mber r ory II; ht for g.	13) Gra or t bot LOAD (1) Do In Un	aphical p he orien tom chor CASE(S ead + Sr crease= niform Lc Vert: 1 14-19=-	urlin re tation o d.) Star low (ba 1.00 bads (ll 4=-49, 20	presentation dou of the purlin alon ndard alanced): Lumbe b/ft) 4-7=-60, 7-9=-49	is not depict g the top and r Increase=1 ∂, 21-26=-20	t the size d/or 1.15, Plate 0,
FORCES	(lb) - Maximum Co	mpression/Maximun	n 8)	All plates are This truss ha	e MT20 plates un as been designed	for a 10.	wise indicate psf bottom	ed.				mmm	un.	
TOP CHORD	1-2=-1232/354, 2-3 4-5=-589/286, 5-6 7-8=-519/263, 8-9	3=-910/229, 3-4=-76 =-119/783, 6-7=-118 =-876/323	9/252, 9) /784,	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2.00 cot set build wild wild the batware the better 								ROLA		
BOT CHORD	1-20=-325/1018, 1 13-18=-183/325, 1 10-12=-64/175, 9- 17-19=-109/0, 15-	8-20=-183/325, 2-13=-183/325, 10=-175/701, 17=-109/0. 14-15=-1	10	chord and any other members, with BCDL = 10.0psf. 10) Bearings are assumed to be: Joint 1 SP No.2 crushing capacity of 565 psi, Joint 12 SP No.1 crushing capacity of 565 psi, Joint 0 SP No.2 crushing capacity										
WEBS NOTES	7-12=-1147/449, 6 7-10=-166/646, 8- 5-14=-1058/415, 1 19-20=-295/959, 5 2-20=-309/214, 3- 13-15=-100/0	-12=-646/247, 10=-580/357, 4-20=- 2-14=-1120/361, -19=-241/1033, 20=-415/259, 17-18=	5/164, 12 =-18/2,	 Provide mec bearing plate joint 12, 211 This truss is International R802.10.2 a 	hanical connection e capable of withs Ib uplift at joint 1 designed in acco Residential Cod nd referenced sta	on (by oth standing 3 and 225 ordance w e sections andard AN	Bacity of 9005 ers) of truss = 866 lb uplift at 1b uplift at join ith the 2015 \$ R502.11.1 a ISI/TPI 1.	to t nt 9.		LTIMA.	A A A A A A A A A A A A A A A A A A A	0363	22 E.E.R.	

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A25	Нір	1	1	Job Reference (optional)	163425451

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:30 ID:rnWSRywFN07iqFo51TNFjGyhfA9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73

Plate Offsets	(X, Y): [1:0-2	-0,0-1-8],	[1:0-0-8,0-11-5], [9:	0-0-8,0-11	-5]									
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	14.	(psf) 20.0 5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.76 0.91 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.51 0.02	(loc) 13-15 13-15 9	l/defl >985 >512 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Left: 2x6 SI Right: 2x6 SI Structural V 5-1-8 oc pu 2-0-0 oc pu Rigid ceilin bracing. 1 Row at m (size) Max Horiz Max Uplift	2 *Except 2 3 9 No.2 SP No.2 SP No.2 wood sheat urlins, excur lins, excur lins	athing directly applie ept -0 max.): 3-7. applied or 6-0-0 oc 4-13 =0-3-8, 11=0-3-8, C 17) C 16), 9=-215 (LC 1 C 17), 13=-523 (LC 38), 9=809 (LC 38) (28), 9=809 (LC 38)	2) p.1 ad or 3) dor 3) 4) 5) 7), 6) 13) 7) 23	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-1 exposed ; en members an Lumber DOL ** TCLL: ASC DOL=1.15 PI Snow); Ps= v DOL=1.15 PI Exp B; Fully surface Roof design Slope. Unbalanced design. Provide adec This truss ha chord live loa	7-10; Vult=150mph bh; TCDL=6.0psf; B 8; Enclosed; MWFR C Exterior (2) zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC CE 7-10; Pr=20.0 p: late DOL=1.00); Pf= raries (min. roof snc late DOL=1.00) see Exp.; Ct=1.10; Uno snow load has been snow load has been upted drainage to pris s been designed for ad nonconcurrent w	(3-sec CDL=6 S (env cantile ght exp for rea DL=1.3 of (roof =20.0 p w=14.5 load c bstruct n reduc	ond gust) .0psf; h=30ft; elope) exterio ver left and ri, iosed;C-C for ctions shown; live load: Lum sf (flat roof 5 psf Lumber ases; Categoi ed to account usidered for th water ponding) psf bottom other live load	r ght ; nber ry II; t for is j. ds.	1) Da In Ui	ead + Sr crease= niform Lo Vert: 1-3	ow (ba 1.00 bads (II 3=-49,	alanced): Lumber ɔ/ft) 3-7=-60, 7-9=-49,	Increase=1.15, Plate 16-21=-20
FORCES	(lb) - Maxin Tension 1-2=-1119/	num Comj /380, 2-3≕	pression/Maximum	/268,	* This truss h on the bottor 3-06-00 tall b chord and an	nas been designed f n chord in all areas by 2-00-00 wide will by other members, y	or a liv where fit betv vith BC	e load of 20.0 a rectangle /een the botto DL = 10.0psf.	om				TH CA	RO
BOT CHORD	4-6=-256/7 8-9=-940/3 1-15=-325/ 11-13=-450	72, 6-7=-3 22 927, 13-1)/377, 10-	361/231, 7-8=-505/1 5=-184/276, 11=-450/377,	93, 9) 10	All bearings capacity of 5) Provide mec bearing plate	are assumed to be 65 psi. hanical connection capable of withsta	SP No. (by oth nding 5	2 crushing ers) of truss to 23 lb uplift at	D		4		ORIEESS	hu
WEBS	9-10=-183/ 3-15=-106/ 2-15=-512/ 6-13=-1251 7-10=-219/	152, 4-15 315, 4-13 1/526, 6-1 181, 8-10	=-248/862, =-1350/547, 0=-332/943, =-552/322	11	joint 13, 228 215 lb uplift a) This truss is International R802.10.2 a	Ib uplift at joint 1, 1 at joint 9. designed in accord Residential Code s nd referenced stand	2 lb upl ance w ections lard AN	ift at joint 11 a ith the 2015 R502.11.1 a ISI/TPI 1.	and nd		THUR .		SEAI 03632	22
 NOTES 1) Unbalance this design 	ed roof live lo n.	ads have	been considered for	12 T	e) Graphical pu or the orienta bottom chorc DAD CASE(S)	rlin representation of ation of the purlin al I. Standard	does no ong the	ot depict the s top and/or	ıze				A. G	E.P. KIN

February 6,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A26	Roof Special	1	1	Job Reference (optional)	163425452

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:31 ID:N2uD5_VIdGjg7scNUdF1ouyhfAi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.9

Plate Offsets ((X, Y): [1:0-	2-0,0-1-8],	[1:0-0-8,0-11-5], [7:0)-3-8,0-2-	0], [10:0-2-0,0-	1-8], [10:0-0-8,0-1	1-5], [11	:0-4-8,Edge]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	14	(psf) 20.0 4.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.91 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.45 0.02	(loc) 14-16 14-16 14	l/defl >999 >580 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 213 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x6 S Right: 2x6 Structural 4-11-8 oc 2-0-0 oc p Rigid ceili bracing. 1 Row at (size)	0.2 *Excep 0.2 0.3 SP No.2 SP No.2 SP No.2 wood shee purlins, ex purlins (5-3 ing directly midpt 1=0-3-8, 1 14=0-3-8	t* 3-5,5-7:2x4 SP No athing directly applie coept -13 max.): 3-7. applied or 6-0-0 oc 4-14 10=0-3-8, 12=0-3-8,	2)).1 d or 3) 4) 5)	Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C-I exposed ; en members an Lumber DOL ** TCLL: AS(DOL=1.15 P Snow); PS= V DOL=1.15 P Exp B; Fully surface Roof design slope. Unbalanced	7-10; Vult=150mp bh; TCDL=6.0psf; f 3; Enclosed; MWFf C Exterior (2) zone id vertical left and id d forces & MWFRS =1.60 plate grip D CE 7-10; Pr=20.0 p late DOL=1.00); Pr varies (min. roof sn late DOL=1.00) se Exp.; Ct=1.10; Und snow load has bee snow loads have b	h (3-sec 3CDL=6 RS (env; cantile right exp 5 for rea OL=1.3 osf (roof =20.0 p ow=14.3 e load c obstruct en reduc	cond gust) .0psf; h=30ft; elope) exterior ver left and rig bosed;C-C for ctions shown; live load: Lum sf (flat roof 5 psf Lumber ases; Categor ed slippery ed to account asidered for th	r ght iber y II; for is	1) De Inc Ur	ead + Sn crease=' niform Lc Vert: 1-3 17-22=-	ow (ba 1.00 bads (II 3=-49, 20	alanced): Lumber b/ft) 3-7=-60, 7-8=-49	Increase=1	.15, Plate
FORCES	Max Honz Max Uplift Max Grav (lb) - Max	1=-118 (L) 1=-229 (L) 14=-663 (1=921 (LC 12=67 (LC imum Com	C 21) C 16), 10=-190 (LC LC 16) C 41), 10=731 (LC 20 C 23), 14=2453 (LC 4 pression/Maximum	17), 6) 3), 7) 40) 8)	design. Provide adeo This truss ha chord live loa * This truss h	quate drainage to p as been designed for ad nonconcurrent v nas been designed no chord in all areas	orevent or a 10. vith any for a liv	water ponding) psf bottom other live load e load of 20.0	Is. psf						
TOP CHORD	Tension 1-2=-1148 4-6=-295/ 8-9=-568/	3/398, 2-3= 757, 6-7=-/ 187, 9-10=		239, 36, 9)	3-06-00 tall to chord and ar All bearings	by 2-00-00 wide will by other members. are assumed to be	I fit betv SP No.	veen the botto 2 crushing	m			in i	OR EESS	ROIN	
BOT CHORD	1-16=-329 12-14=-48 10-11=-19	9/952, 14-1 39/425, 11- 91/829	6=-35/518, 12=-489/425,	10) Provide mec bearing plate ioint 14 229	hanical connection capable of withsta	(by oth anding 6 nd 190	ers) of truss to 63 lb uplift at lb uplift at joint) t		4	1		R	Ø
WEBS NOTES 1) Unbalance this design	3-16=-42/ 4-14=-162 6-11=-482 7-11=-596 ed roof live l n.	172, 4-16= 20/584, 6-1 2/1064, 8-1 5/266, 9-11 oads have	-99/541, 2-16=-392/ 4=-1296/554, 1=-44/309, =-479/299 been considered for	228, 11 12 L(10. 10. 11. 11.	designed in accord Residential Code nd referenced stan Irlin representation ation of the purlin a J. Standard	lance w sections dard AN does no long the	ith the 2015 R502.11.1 ar ISI/TPI 1. ot depict the si top and/or	nd ize		1111111	A STATE OF S	SEA 0363	L 22 E.E.R. K	
				_	· · · · · · · · · · · · · · · · · · ·								11111	unu.	

February 6,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A27	Roof Special	1	1	Job Reference (optional)	163425453

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:31 ID:MEJxOYuldbHvW1DZ?Pr4E7yhfBV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.9

Plate Offsets ((X, Y): [1:0-	2-0,0-1-8],	[1:0-0-8,0-11-5], [6	6:0-4-0,0-2	-3], [9:0-2-0,0-	1-8], [9:0-0-8,0-11	-5]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	14	(psf) 20.0 4.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.95 0.99 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.60 0.04	(loc) 13-15 13-15 9	l/defl >906 >442 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 198 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x6 S Right: 2x6 Structural 3-10-5 oc 2-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	0.2 *Excep 0.2 0.3 SP No.2 SP No.2 wood she purlins, expourlins (2-2 ng directly midpt 1=0-3-8, § 13=0-3-8 1=-118 (L 13=-599 (L 13=891 (LC 11=59 (LC	t* 2-4,4-6:2x4 SP N athing directly appli ccept -0 max.): 2-6. applied or 2-2-0 oc 3-13, 6-13 9=0-3-8, 11=0-3-8, C 21) C 16), 9=-200 (LC LC 16) C 41), 9=-746 (LC 22 C 23), 13=2454 (LC 23	2 No.1 ied or ³ ; 4 17), 6 3), 7 3, 8	 Wind: ASC Vasd=119r Cat. II; Exp zone and C exposed; e members a Lumber DC ** TCLL: A DOL=1.15 snow); Ps= DOL=1.15 Exp B; Full surface Roof design slope. Unbalanced design. Provide add All plates a This truss f 	E 7-10; Vult=150m nph; TCDL=6.0psf B; Enclosed; MWI -C Exterior (2) zor nd vertical left and nd forces & MWFf DL=1.60 plate grip SCE 7-10; Pr=20.0 Plate DOL=1.00); Varies (min. roof s Plate DOL=1.00) s y Exp.; Ct=1.10; U n snow load has be d snow loads have equate drainage to re MT20 plates un nas been designed	pph (3-sec ; BCDL=6 FRS (env re; cantile d right exp RS for rea DOL=1.3: psf (roof Pf=20.0 p now=14.: eee load c nobstruct been reduc been col prevent less other for a 10.	cond gust) .0psf; h=30ft elope) exterior ver left and r ossed;C-C for ctions showr live load: Lur sf (flat roof 5 psf Lumber ases; Catego ed slippery ed to accour hisidered for the water ponding wise indicate 0 psf bottom	; or ight r ; mber ory II; his g. ed.	1) De In Ur	ead + Sn crease= hiform Lc Vert: 1-2	aow (ba 1.00 bads (ll 2=-49,	alanced): Lumber b/ft) 2-6=-60, 6-7=-49	Increase=1.	15, Plate
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	ı g) * This truss	has been designe	ed for a liv	e load of 20.0	opsf				, unin	1111	
TOP CHORD	1-2=-1143 3-5=-189/ 7-8=-600/	3/387, 2-3= 824, 5-6=- 255, 8-9=-	1103/326, 274/1044, 6-7=-507 1006/397	7/276,	3-06-00 tall chord and a	by 2-00-00 wide v any other members	vill fit betv 3.	veen the bott	om			ALL	OR FESS	ROIN	in and
BOT CHORD	1-15=-309 11-13=-10 9-10=-244	9/987, 13-1 0/362, 10-1 1/855	5=-277/1027, 1=-10/362,	1	 capacity of 1) Provide me bearing pla 	565 psi. chanical connections of with	on (by oth	ers) of truss t	to		4	Ì		100	1.11
WEBS	2-15=0/24 5-13=-793 6-10=-11/	48, 3-15=0/ 3/313, 6-13 273, 7-10=	/356, 3-13=-2033/6 =-1227/568, :-45/282, 8-10=-480	05, 1 0/292	joint 13, 25 2) This truss in Internation	9 lb uplift at joint 1 s designed in acco al Residential Code	and 200 ordance w e sections	b uplift at joir ith the 2015 R502.11.1 a	nt 9. and				0363	L 22	
NOTES 1) Unbalance this design	ed roof live I n.	oads have	been considered fo	or 1 L	R802.10.2 3) Graphical p or the orien bottom cho .OAD CASE(S	and referenced sta ourlin representatio tation of the purlin rd.) Standard	andard AN in does no along the	ISI/TPI 1. of depict the s of top and/or	size			in the second se	A. G	ER	A. C.

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	A28	Roof Special	1	1	Job Reference (optional)	163425454

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:32 ID:mBqWcihCxBpy8p8Xi7ZsjFyhfD2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.8

Plate Offsets	(X, Y): [1:0-	-0-8,0-11-5], [6:0-4-12,0-2-0], [9	:0-2-0,0-1	-8], [9:0-0-8,0-	11-5], [11:0-2-12,0)-3-0], [1	3:0-3-12,0-3-	0]					
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	1.	(psf) 20.0 4.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.85 0.82 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.22 0.03	(loc) 13-14 13-14 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 198 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	 2) Winc 2x4 SP No.2 *Except* 2-4:2x4 SP No.1, 4-6:2x4 SP SS 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Structural wood sheathing directly applied or 4-0-6 oc purlins, except 2-0-0 oc purlins (2-11-15 max.): 2-6. D Rigid ceiling directly applied or 6-0-0 oc Surversion 				Wind: ASCE Vasd=119m Cat. II; Exp E zone and C-1 exposed ; en members an Lumber DOL ** TCLL: ASC DOL=1.15 P snow); Ps= v	Wind: ASCE 7-10; Vult=150mph (3-second gust) 1) Dead + Snow (balanced): Lumber Increase=1.15, Increase=1.00 Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; 1) Dead + Snow (balanced): Lumber Increase=1.15, Increase=1.00 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Uniform Loads (lb/ft) Vert: 1-2=-49, 2-6=-60, 6-7=-49, 7-9=-49, 15-20 Lumber DOL=1.60 plate grip DOL=1.33 ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=14.5 psf Lumber Set 4 Set 4								
BOT CHORD	2-0-0 oc p Rigid ceili	ourlins (2-1 ing directly	1-15 max.): 2-6. applied or 6-0-0 oc		DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface									
REACTIONS	bracing. (size) 1=0-3-8, 9=0-3-0, 12=0-3-8 Max Horiz 1=118 (LC 16) Max Uplift 1=-252 (LC 16), 9=-206 (LC 17), 12=-608 (LC 16) Max Grav 1=836 (LC 40), 9=748 (LC 23), 12=2450 (LC 40) 8 JTh				 4) Root design snow load has been reduced to account for slope. 5) Unbalanced snow loads have been considered for this design. 6) Provide adequate drainage to prevent water ponding. 7) All plates are MT20 plates unless otherwise indicated. 									
FORCES	(lb) - Max	imum Com	pression/Maximum	8)	This truss ha chord live loa	as been designed f ad nonconcurrent v	for a 10.0 with any) psf bottom other live loa	ds.					
TOP CHORD	1-2=-133- 3-5=-131 6-7=-398/	4/394, 2-3= 5/322, 5-6= /333, 7-8=-`	1368/369, 540/1848, 797/346, 8-9=-970/34	9) 48	* This truss f on the bottor 3-06-00 tall t chord and ar	nas been designed n chord in all areas by 2-00-00 wide wi ny other members	d for a liv s where ill fit betv	e load of 20.0 a rectangle veen the botto)psf om				TH CA	ROLIN
BOT CHORD	1-14=-353 10-12=-62	3/1162, 12- 20/382, 9-1	-14=-448/1734, 0=-202/805	10) All bearings	are assumed to be	e SP No.	2 crushing			L	ix	FES	No star
WEBS NOTES 1) Unbalanc this desig	/EBS 2-14=-14/329, 3-14=-418/219, 3-13=-713/309, 5-13=-347/1628, 5-12=-2270/679, 6-12=-1528/683, 6-11=-62/641, 7-11=-474/142, 7-10=-131/440, 8-10=-350/243 iOTES R802.) Unbalanced roof live loads have been considered for this design. LOAD CA				 Provide mec bearing plate joint 9, 608 ll This truss is International R802.10.2 ai Graphical pu or the orientat bottom chore DAD CASE(S) 	Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 206 lb uplift at joint 9, 608 lb uplift at joint 12 and 252 lb uplift at joint 1. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. AD CASE(S) Standard								

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	C01	Roof Special	1	1	Job Reference (optional)	163425455

BOT CHORD

REACTIONS

WEBS

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

bracing.

Tension

2-8=-1323/687

Lumber DOL=1.60 plate grip DOL=1.33

(size)

1 Row at midpt

Max Horiz 8=-133 (LC 14)

3-4=-829/396, 4-5=-1059/498

6-8=-332/859, 5-6=-323/871

Unbalanced roof live loads have been considered for

Vasd=119mph: TCDL=6.0psf: BCDL=6.0psf: h=30ft:

Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior

members and forces & MWFRS for reactions shown;

zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for

Wind: ASCE 7-10; Vult=150mph (3-second gust)

Rigid ceiling directly applied or 9-11-1 oc

5=0-3-0.8=0-3-8

Max Uplift 5=-220 (LC 17), 8=-188 (LC 16)

Max Grav 5=837 (LC 2), 8=832 (LC 38)

(Ib) - Maximum Compression/Maximum

1-8=-190/296, 1-2=-120/0, 2-3=-960/368,

2-6=-156/234, 3-6=-11/408, 4-6=-244/241,

2-6

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:33 ID:IwJ42uUYyygMbCLGC2ItXgyhfDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-

- design.6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint 8 and 220 lb uplift at joint 5.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-2=-60, 2-3=-49, 3-5=-49, 8-9=-20

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	C01G	Common Supported Gable	1	1	Job Reference (optional)	163425456

10-7-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:33 ID:IfnfU4HtykXm3bY?i_yuL4yhfDa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-2-0

Page: 1

Scale	= '	1.47	7

Loading		(psf)	Spacing	2-0-0		CSI TC	0 17	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP	
Spour (Do/Df)	1	4 5/20.0		1.00		RC RC	0.17	Vert(LL)	n/a	-	n/a	000	101120	244/190	
	1.	4.5/20.0	Lumber DOL Don Stroop Inor	1.15 VES			0.14		11/a	- 10	n/a	999			
DOLL		10.0	Code	I E O			0.14	HOHZ(TL)	0.00	12	n/a	n/a			
BOLL		0.0	Code	IRC201	0/1912014	Matrix-MS								FT 000/	
BCDL	-	10.0											weight: 106 b	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP N 2x4 SP N 2x4 SP N Structure	0.2 0.2 0.3	thing directly applied	1) 2)	Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right						 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 				
TOP CHORD			atting directly applied	u 01	exposed ; en	d vertical left and r	ight exp	osed;C-C for	5						
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc		members and Lumber DOL	d forces & MWFRS =1.60 plate grip D0	S for rea OL=1.3	ctions shown; 3							
REACTIONS	bracing. Lum (size) 12=18-8-0, 13=18-8-0, 14=18-8-0, 15=18-8-0, 15=18-8-0, 15=18-8-0, 15=18-8-0, 18=18-8-0, 20=18-8-0, 21=18-8-0, 18=18-8-0, 20=18-8-0, 21=18-8-0, 18=18-8-0, 20=18-8-0, 21=18-8-0, 18=18-8-0, 20=18-8-0, 21=18-8-0, 18=18-8-0, 20=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-8-0, 18=18-8-0, 21=18-18-8-0, 21=18-18-18-18-1			Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Ps=14 DOL=1.00); (Unobstructed Roof design s slope. Unbalanced s design.	Iss designed for wind loads in the plane of the truss Jss designed for wind loads in the plane of the truss y. For studs exposed to wind (normal to the face), Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. LL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 'L=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof w); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate 'L=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; obstructed slippery surface of design snow load has been reduced to account for pe. balanced snow loads have been considered for this sign										
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	7) 8)	This truss ha	s been designed fo	,. or a 10.0) psf bottom					UNIT CA	111111	
TOP CHORD	1-2=-90/1 4-5=0/209 8-9=0/188	93, 2-3=-3 5, 5-6=0/20 3, 9-10=-31	5/178, 3-4=0/191, 7, 6-7=0/205, 7-8=0/ /174, 10-11=-86/193	9) 201,	* This truss h on the botton	a nonconcurrent w as been designed n chord in all areas v 2-00-00 wide wil	vith any for a liv s where Il fit bety	other live load e load of 20.0 a rectangle	as. Ipsf		4	, il	ORTH CA	NO VILLE	
BOT CHORD	8-9=0/188, 9-10=-31/174, 10-11=-86/193 1-21=-139/116, 20-21=-138/111, 18-20=-138/111, 17-18=-138/111, 16-17=-138/111, 15-16=-138/111, 14-15=-138/111, 13-14=-138/111, 12-13=-138/111, 11-12=-138/111			10 11	chord and an) All bearings a capacity of 50) Provide mech	y other members. are assumed to be 55 psi. nanical connection	SP No.	2 crushing ers) of truss to	D				SEA 0363	L 22	
WEBS	12-13=-138/111, 11-12=-138/111 6-16=-241/0, 5-17=-152/118, 4-18=-125/121, 3-20=-101/117, 2-21=-185/137, 7-15=-152/118, 8-14=-125/121, 9-13=-101/115, 10-12=-185/137 12,				 bearing plate capable of withstanding 85 lb uplift at joint 17, 74 lb uplift at joint 18, 108 lb uplift at joint 20, 77 lb uplift at joint 21, 84 lb uplift at joint 15, 75 lb uplift at joint 14, 104 lb uplift at joint 13 and 71 lb uplift at joint 12. 12) Non Standard bearing condition. Review required. 						A C A GIN	ERENTIN			
													A. G	IL	

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	C02	Roof Special	1	1	Job Reference (optional)	163425457

9-3-8

Builders FirstSource (Apex, NC), Apex, NC - 27523,

5

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

WEDGE

3-2-0

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Sun Feb.04.12:44:34 ID:PQSLsY047zmuQCsnQMZkSRyhfDw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-4-0

Page: 1

19-10-8

- Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 1-2=-60, 2-3=-49, 3-5=-49, 8-9=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	D02	Half Hip Girder	1	1	Job Reference (optional)	163425458

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Sun Feb.04 12:44:35 ID:HwAQ86swB_7kMCNH97qhQiyhfE7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.7

Plate Offsets ()	iale Unsets (A, T): [1:0-4-0,0-0-1], [1:0-1-4,1-0-3], [2:0-0-0,0-1-12], [0:0-3-6,0-1-6], [0:Edge,0-1-8], [7:Edge,0-4-0], [9:0-3-6,0-1-8]												
Loading	(psf)	Spacing	2-0-0	CSI	0.82	DEFL	in 0.16	(loc)	l/defl	L/d	PLATES	GRIP	
Snow (Ps/Pf)	14.5/20.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.25	8-9	>999	180	WI120	244/130	
TCDL	10.0	Rep Stress Incr	NO	WB	0.75	Horz(CT)	0.05	7	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS									
BCDL	10.0										Weight: 125 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 *Except 2x6 SP DSS *Except 2x4 SP No.3 Left: 2x4 SP No.3	t* 2-4:2x4 SP SS t* 10-7:2x6 SP No.2	3) ** TCLL: AS(DOL=1.15 P snow); Ps= \ DOL=1.15 P Exp B; Fully	CE 7-10; Pr=20 late DOL=1.00 varies (min. roo late DOL=1.00 Exp.; Ct=1.10;).0 psf (roof); Pf=20.0 p if snow=14.5) see load c Unobstructe	live load: Lu sf (flat roof 5 psf Lumber ases; Catego ed slippery	mber ory II;	13) Har pro dow 5-8- 76 I	nger(s) o vided su vn and 2 -0, 58 lb b up at	or other fficient 0 lb up down 9-8-0,	r connection devi to support conce at 3-8-0, 53 lb c and 76 lb up at 7 58 lb down and 7	ce(s) shall be ntrated load(s) 52 lown and 76 lb up -8-0, 58 lb down a 6 lb up at 11-8-0,	lb at Ind 58

BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-7-14 oc purlins, except end verticals, and
	2-0-0 oc purlins (2-11-4 max.): 2-6.
BOT CHORD	Rigid ceiling directly applied or 6-2-0 oc
	bracing.
WEBS	1 Row at midpt 5-7
REACTIONS	(size) 1=0-3-8, 7=0-3-8
	Max Horiz 1=129 (LC 9)
	Max Uplift 1=-612 (LC 12), 7=-634 (LC 9)
	Max Grav 1=1427 (LC 30), 7=1541 (LC 30)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-2171/910, 2-3=-3360/1388,
	3-5=-2687/1117, 5-6=-89/72, 6-7=-300/192
BOT CHORD	1-11=-852/1906, 9-11=-848/1906,
	8-9=-1436/3360, 7-8=-1137/2687
WEBS	2-11=0/151, 5-7=-2830/1165, 3-9=-398/274,
	2-9=-673/1578, 3-8=-734/367, 5-8=-108/495

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33

- Πh surface
- 4) Roof design snow load has been reduced to account for slope
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 1 SP DSS crushing 9) capacity of 660 psi, Joint 7 SP No.2 crushing capacity of 565 psi
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 634 lb uplift at joint 7 and 612 lb uplift at joint 1.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Ib down and 71 lb up at 13-8-0, 58 lb down and 76 lb up at 15-8-0, 58 lb down and 76 lb up at 17-8-0, and 58 lb down and 76 lb up at 19-8-0, and 66 lb down and 86 lb up at 21-8-0 on top chord, and 162 lb down and 97 lb up at 3-8-0, 30 lb down and 16 lb up at 5-8-0, 30 lb down and 16 lb up at 7-8-0, 30 lb down and 16 lb up at 9-8-0, 30 lb down and 16 lb up at 11-8-0, 30 lb down and 16 lb up at 13-8-0, 30 lb down and 16 lb up at 15-8-0, 30 lb down and 16 lb up at 17-8-0, and 30 lb down and 16 lb up at 19-8-0, and 44 lb down at 21-8-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00 MILLIN

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	D02	Half Hip Girder	1	1	Job Reference (optional)	163425458

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:35 ID:HwAQ86swB_7kMCNH97qhQiyhfE7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Uniform Loads (lb/ft) Vert: 1-2=-49, 2-6=-60, 1-7=-20 Concentrated Loads (lb)

Vert: 16=-23 (B), 17=-31 (B), 19=-30 (B), 20=-30 (B),

21=-30 (B), 22=-30 (B), 23=-30 (B), 24=-30 (B),

25=-30 (B), 26=-46 (B), 27=-162 (B), 28=-27 (B), 29=-27 (B), 30=-27 (B), 31=-27 (B), 32=-27 (B), 33=-27 (B), 34=-27 (B), 35=-27 (B), 36=-30 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J01	Jack-Open	15	1	Job Reference (optional)	163425459

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:35 ID:euDXIDDMaMAkG7Y26iyssiyhioB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.7

Plate	Offsets	(X,	Y):	[1:0-1-0,Edge], [1:0-0-4,0-11-13]	
-------	---------	-----	-----	-----------------------------------	--

2-9-15

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.01	(loc) 3-8 3-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=119 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS DOL=1.15 snow); Ps DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Left: 2x6 SP No.2 Structural wood shea 4-11-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 2 Mechanic Max Horiz 1=125 (LC (LC 16) Max Grav 1=239 (LC (LC 7) (lb) - Maximum Com Tension 1-2=-91/40 1-3=-170/68 CE 7-10; Vult=150mph mph; TCDL=6.0psf; BG p B; Enclosed; MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (i 5 Plate DOL=1.00); Pf= =14.5 psf (roof snow: L b); Category II; Exp B; F ied slippery surface gn snow loads have be	athing directly applie applied or 10-0-0 oc 2= Mechanical, 3= al C 16) C 16), 2=-87 (LC 16), C 2), 2=100 (LC 2), 3 pression/Maximum (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; U=1.33 S (envelope) exterior cof live load: Lumbe 20.0 psf (flat roof _umber DOL=1.15 PI Fully Exp.; Ct=1.10; n reduced to account een considered for thi	5) This truss chord live 6) * This trus on the bo 3-06-00 t chord an 7) Bearings (apacity 8) Refer to 9) Provide r bearing p 2, 4 lb up 3=-4 10) This truss Internatic R802.10. LOAD CASE	s has been designed load nonconcurrent ss has been designe ttom chord in all area all by 2-00-00 wide w d any other members are assumed to be: , of 565 psi. girder(s) for truss to 1 nechanical connectio late capable of withs lift at joint 3 and 42 ll s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	for a 10.0 with any d for a liv as where vill fit betv s. , Joint 1 \$ truss con nn (by oth tanding & b uplift at rdance w e sections indard AN	D psf bottom other live loa e load of 20. a rectangle veen the bott SP No.2 crus nections. ers) of truss : joint 1. ith the 2015 ir R502.11.1 a ISI/TPI 1.	ads. Opsf om hing to joint and				SEA 0363	L 22 IL BER IL BER IL IL IL IL IL IL IL I I I I I I I I I	
A												STORE ALL	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J01GRT	Half Hip Girder	1	1	Job Reference (optional)	163425460

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:36 ID:m7z0vs9sW7gJnVEHttuwisyhioF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.7

Plate Offsets (X, Y): [1:0-3-0,0-1-0],	[3:0-2-0,0-2-8]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MR	0.28 0.47 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 7 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=119 Cat. II; Ext zone; cant and right e DOL=1.33	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 4-11-0 oc purlins; e: 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Mechanic Max Horiz 1=82 (LC Max Uplift 1=-99 (LC (LC 12) Max Grav 1=388 (LC 5=115 (LC (lb) - Maximum Com Tension 1-2=-243/94, 2-3=-12 4-5=0/0 1-7=-89/160, 6-7=-82 5-6=-68/127 ed roof live loads have b CE 7-10; Vult=150mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR3 illever left and right exp exposed; Lumber DOL=	t* 1-7:2x6 SP No.2 athing directly applied xcept end verticals, and applied or 10-0-0 oc l= Mechanical, 5= al 49) 12), 4=-54 (LC 9), 5= 2 31), 4=-111 (LC 30), 2 31) pression/Maximum 24/57, 3-4=-127/77, 3/133, 2-6=-29/80, been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior posed ; end vertical le =1.60 plate grip	3) d or 4) nd 5) 6) 7) 8) =-42 9) 10 11 12 13 14 oft 15 16	** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI Exp B; Fully surface Roof design slope. Unbalanced design. Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an Bearings are capacity of 5 Refer to gird(Provide mecl bearing plate 4, 42 lb uplift This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc) Gap betweer diagonal or v) Hanger(s) or provided suff Ib down and design/seleci responsibility) In the LOAD of the truss a	CE 7-10; Pr=20.0 p late DOL=1.00); Pl aries (min. roof sn late DOL=1.00) se Exp.; Ct=1.10; Und snow load has bee snow load has bee snow loads have b quate drainage to p s been designed f ad nonconcurrent v has been designed f n chord in all areas y 2-00-00 wide wi by other members. assumed to be: , 65 psi. er(s) for truss to tru- hanical connection capable of withsta at joint 5 and 99 ll designed in accord Residential Code and referenced stan rlin representation ation of the purlin a b in side of top chon- retical web shall n other connection of others. CASE(S) section, ire noted as front (post (roof f=20.0 p ow=14.1 e load c obstruct en reduc been cor or a 10.0 with any for a liv s where Il fit betw Joint 1 S uss conr h (by oth anding 5 b uplift a dance w sections dance w device(s oncentra c on bott c ton de loads a F) or ba	live load: Lui si (flat roof 5 psf Lumber ases; Catego ed slippery ed to accour sidered for the water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott SP No.2 crush ections. ers) of truss f 4 lb uplift at j t joint 1. ith the 2015 rsf502.11.1 a USI/TPI 1. of depict the se e top and/or m chord. TI vice(s) is the oplied to the i ck (B).	mber ry II; it for nis g. ds. opsf om ning ro oint und size 06 ne	LOAD (1) De Ind Ur Cc	CASE(S) aad + Srr crease= hiform Lo Vert: 1-3 oncentra Vert: 7=) Stan ow (ba Dads (II 3=-49, ted Lo. -106 (f	ndard alanced): Lumber o/ft) 3-4=-60, 1-7=-20 ads (lb) 3) H CA OFESS SEA 0363 WGINI A. G Februal	Increase=1.15, Plate , 5-6=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITOR ATTILIATO

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J01T	Jack-Open	4	1	Job Reference (optional)	163425461

Run: 8,63 E Feb 9 2023 Print: 8,630 E Feb 9 2023 MiTek Industries, Inc. Tue Feb 06 18:10:28 ID:6pFUOI0KLR90LfJzALg6CKyhioR-?YYIo3FgW2EkXZdgnDVWcOE?GaAla_KKGz_sDqznynQ

3-0-12	4-11-0
3-0-12	1-10-4

Page: 1

0-11-0 3-2-8 4-11-0 0-11-0 2-3-8 1-8-8

Scale = 1:29.4

Plate Offsets ((X, Y): [1:0-1-0,Ed	gej, [1:0-0-4,0-11-13]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 0.0 0.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.01	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Ex. Left: 2x6 SP No.2 Structural wood s 4-11-0 oc purlins Rigid ceiling dire- bracing. (Ib/size) 1=206 4=59/ Max Horiz 1=125 Max Uplift 1=-42 4=-28 Max Grav 1=239 (Ib) - Max Compo	2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	6) 7) ed or 8) c LC ;al, , =68 250	* This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3, 28 lb uplift DAD CASE(S)	has been designed in n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection capable of withsta at joint 4 and 42 lb Standard	for a liv where fit betv iss con (by oth nding 6 uplift a	e load of 20.0 a rectangle veen the bottc nections. ers) of truss to 3 lb uplift at jo t joint 1.	ppsf om o bint						
NOTES 1) Wind: AS(Vasd=119 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS DOL=1.15 snow; Ps DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalancc design.	(Ib) or less excep (Ib) or less	Amax. Ferr An indices t when shown. ph (3-second gust) ; BCDL=6.0psf; h=30ft FRS (envelope) exterior he; cantilever left and r dright exposed;C-C for RS for reactions showr DOL=1.33 sf (roof live load: Lumb Pf=20.0 psf (flat roof w: Lumber DOL=1.15 F B; Fully Exp.; Ct=1.10; een reduced to account t been considered for th	; or gght ; er Plate t for nis							A tritter		SEA 0363		Mannung

- snow); Ps=14.5 psf (roof snow: Lumber DC Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 111111111

February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J02	Jack-Open	5	1	Job Reference (optional)	163425462

4-0-0

-0-11-0

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:36 ID:pBoPMYkH?38QSzUMmJFUEGyhiop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.3

											_			
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 14.5/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.18 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 20 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=110	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 4-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-3-0 Max Horiz $5=110$ (LC Max Uplift $3=-93$ (LC Max Uplift $3=-93$ (LC Max Grav $3=105$ (LC (LC 2) (lb) - Maximum Com Tension 2-5=-186/158, 1-2=0 4-5=-199/78 2-4=-79/202 CE 7-10; Vult=150mph Imph: TCDI = 6 0ref: Br	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 2 16), 5=-50 (LC 16) 2 2), 4=77 (LC 7), 5=: pression/Maximum)/48, 2-3=-87/44 (3-second gust) CDI =6 0psf; b=30ff;	5) 6) d or 7) 9) 10) 225 11) LO	This truss ha load of 12.0 g overhangs no This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 50 Refer to girde 9 Provide med bearing plate 5 and 93 lb u 1 This truss is of International R802.10.2 ar	s been designed for sef or 2.00 times fla on-concurrent with s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be:, J 55 psi. er(s) for truss to tru- nanical connection capable of withsta plift at joint 3. designed in accord Residential Code s and referenced stand Standard	or greate at roof k other liv or a 10.0 vith any for a liv swhere I fit betv Joint 5 S uss con (by oth unding 5 lance w sections dard AN	er of min roo pad of 20.0 p re loads.) psf bottom other live loa e load of 20. a rectangle veen the bott SP No.2 crus nections. ers) of truss 0 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1.	f live psf on ads. Opsf tom to joint and					1117.	
 vasu=11% Cat. II; Ex zone and exposed ; members: Lumber D 2) TCLL: AS DOL=1.15 snow); Ps DOL=1.00 Unobstruct 3) Roof desig slope. 4) Unbalance design. 	http://tobles.objain.bit/ Bit/Sterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (i Plate DOL=1.00); Pf= =14.5 psf (roof snow: L b); Category II; Exp B; F ted slippery surface gn snow load has been ed snow loads have be	S (envelope) exterior S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 Pk Fully Exp.; Ct=1.10; reduced to account wen considered for thi	ht r ate for s							N. OPTIMAN.	E. A.	SEA OJGE SEA OJGGINI CA. G		and an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J02GR	Half Hip Girder	1	1	Job Reference (optional)	163425463

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:37 ID:Au4trRalpNd707Z23o1glkyhip?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.2

Plate Offsets (X, Y): [4:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	14	(psf) 20.0 .5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC20	015/TPI2014	CSI TC BC WB Matrix-MR	0.23 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-11 6-11 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No 2x6 SP No 2x4 SP No Left 2x4 SI Structural 4-0-0 oc p 2-0-0 oc p Rigid ceilir	0.2 0.3 P No.3 2 wood shea urlins, exa urlins: 4-5. ng directly	2-5-0 athing directly applie cept end verticals, ar applied or 10-0-0 oc	d or nd	 Roof design slope. Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec This truss ha chord live loz * This truss has 	snow load has bee snow loads have b s been designed fo osf or 2.00 times fla on-concurrent with juate drainage to p s been designed fo d nonconcurrent w jas been designed	n reduc een cor or greate at roof le other liv revent v or a 10.0 rith any for a liv	ed to account isidered for the er of min roof pad of 20.0 ps re loads. water ponding 0 psf bottom other live load c 20.0	t for iis live of on j. ds.	Ur Cc	iform Lc Vert: 1-4 ncentra Vert: 14	bads (lk l=-49, ted Loa =-89 (F			
REACTIONS	Max Horiz Max Uplift Max Grav	2=0-3-0, 5 Mechanica 2=105 (LC 2=-114 (LC 6=-30 (LC 2=379 (LC (LC 32)	5= Mechanical, 6= al C 11) C 12), 5=-57 (LC 9), 9) C 32), 5=99 (LC 31),	6=92	 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi. 11) Refer to girder(s) for truss to truss connections. 12) Provide mechanical connection (by others) of truss to 										
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=119 Cat. II; Exp Zone; cant and right e DOL=1.33 3) ** TCLL: A DOL=1.15 snow); Ps: DOL=1.15 Exp B; Ful surface	(lb) - Maxii Tension 1-2=0/41, ; 2-6=-81/62 ed roof live lc CE 7-10; Vult imph; TCDL= p B; Enclose tilever left an exposed; Lun 3 ASCE 7-10; F 5 Plate DOL= = varies (min 5 Plate DOL= Ily Exp.; Ct=1	wum Com 2-4=-75/87 2 bads have 1=150mph :6.0psf; BC d; MWFRS d right exp nber DOL= 2r=20.0 ps 1.00); Pf=1 . roof snoo 1.00) see 1.10; Unob	pression/Maximum 7, 4-5=-55/55, 5-6=0, been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior bosed ; end vertical li =1.60 plate grip f (roof live load: Lum 20.0 psf (flat roof w=14.5 psf Lumber load cases; Categor pstructed slippery	/0 eft ber y II;	 bearing plate 5, 30 lb uplift 13) This truss is International R802.10.2 ai 14) Graphical pu or the orienta bottom chorc 15) Gap betweer diagonal or v 16) Hanger(s) or provided suff down and 67 design/selec responsibility 17) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Sno Increase=1 	capable of withsta at joint 6 and 114 I designed in accord Residential Code s ad referenced stand ritin representation of tition of the purlin al l. inside of top chord ertical web shall no other connection d icient to support co Ib up at 2-0-12 on ion of such connect of others. CASE(S) section, I re noted as front (F Standard w (balanced): Lum 00	haing to be uplift ance we sections dard AN does no ong the d bearin to excee levice(s incentra bottom tion de oads a F) or ba	/ Ib uplift at jc at joint 2. it the 2015 R502.11.1 at ISI/TPI 1. of depict the s to p and/or ag and first ad 0.500in.) shall be thed load(s) 88 o chord. The vice(s) is the oplied to the fa ck (B). rease=1.15, F	ont nd ize 9 lb ace Plate		A Contraction of the Contraction		SEA 03632	22 ER. F.	Monning

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J03	Half Hip	1	1	Job Reference (optional)	163425464

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:37 ID:aBEavfPz64s6LzVMErnOBnyhipD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.9

Plate Offsets (X, Y): [1:0-1-0,Edge], [1:0-0-4,0-11-13], [2:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.06 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Unbalago	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Structural wood shea 2-11-0 oc purlins; e:3 Rigid ceiling directly bracing. (size) 1=0-3-0, 4 Max Horiz 1=52 (LC Max Uplift 1=-55 (LC Max Grav 1=247 (LC (lb) - Maximum Com Tension 1-2=-33/102, 2-3=-15 1-4=-66/46	athing directly applie xcept end verticals, a applied or 6-0-0 oc 4= Mechanical 15) 16), 4=-32 (LC 13) 2 35), 4=71 (LC 34) pression/Maximum 9/32, 3-4=-58/52	5) 6) 7) 8) d or and 9) 10) 11) 12] 13)	Unbalanced design. Provide adec This truss ha chord live loa * This truss ha chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 4 and 55 lb u This truss is International R802.10.2 ar Graphical pu or the orientat bottom chorc	snow loads have I juate drainage to s been designed i as been designed n chord in all area by 2-00-00 wide w by other members assumed to be: J 65 psi. er(s) for truss to tr hanical connection capable of withst plift at joint 1. designed in accor Residential Code and referenced star rlin representation tion of the purlin a J. Standard	been cor prevent v for a 10.0 with any d for a liv is where ill fit betw Joint 1 SF uss conr n (by oth tanding 3 dance wi sections ndard AN n does no along the	sidered for the vater ponding opsf bottom other live loa e load of 20.1 a rectangle veen the botth P No.2 crushin ections. ers) of truss t 2 lb uplift at j th the 2015 R502.11.1 a ISI/TPI 1. ot depict the sitop and/or	his g. ads. Opsf om to joint and size						
this design 2) Wind: AS Vasd=119 Cat. II; Ex zone and exposed a members	n. CE 7-10; Vult=150mph Omph; TCDL=6.0psf; BC p B; Enclosed; MWFR? C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	1) r ght	Dead + Sno Increase=1 Uniform Loa Vert: 1-2	w (balanced): Lui 00 ads (lb/ft) =-49, 2-3=-60, 4-5	mber Inci 5=-20	rease=1.15, I	Plate		1	Z	SEA	ROUN	Num

 Roof design snow load has been reduced to account for slope.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J03GR	Half Hip Girder	1	1	Job Reference (optional)	163425465

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:37 ID:aBEavfPz64s6LzVMErnOBnyhipD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

Scale = 1:28.2

Plate Offsets (X, Y): [1:0-3-0,0-1-0], [2:0-2-0,0-2-8]

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.09	Vert(LL)	0.00	1	>999	240	MT20	244/190
Snow (Ps/Pf)	14.5/20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	1	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 18 lb	FT = 20%
			5)	Unbalanced	snow loads have be	een cor	sidered for th	is					
TOP CHORD	2x4 SP No 2		0)	design.									
BOT CHORD	2x6 SP No 2		6)	Provide adec	uate drainage to p	revent v	water ponding						
WEBS	2x4 SP No.3		7)	This truss ha	s been designed fo	or a 10.0) psf bottom						
WEDGE	Left: 2x4 SP No.3			chord live loa	d nonconcurrent w	ith any	other live load	ds.					
BRACING			8)	* This truss h	as been designed	for a liv	e load of 20.0	psf					
TOP CHORD	Structural wood shea	athing directly applied	d or	on the botton	n chord in all areas	where	a rectangle						
	3-10-4 oc purlins, ex	cept end verticals, a	ind	3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	m					
	2-0-0 oc purlins: 2-3.		•	chord and an	y other members.								
BOT CHORD	Rigid ceiling directly bracing	applied or 10-0-0 oc	9)	capacity of 5	assumed to be: Jo 65 psi.	int 1 Si	P No.2 crushi	ng					
REACTIONS	(size) 1-0-3-0 4	l– Mechanical	10)	Refer to girde	er(s) for truss to tru	ss conr	ections.						
REACTIONS	Max Horiz 1-77 (I C	g)	11)	Provide mech	nanical connection	(by oth	ers) of truss to	C					
	Max 1 Inlift 1=-95 (I C	(12) 4=-55 (IC 9)		bearing plate	capable of withsta	nding 5	5 lb uplift at jo	pint					
	Max Grav 1=347 (LC	(100, 100, 100, 100, 100, 100, 100, 100,	10)	4 and 95 lb u	plift at joint 1.		all the 0045						
FORCES	(lb) - Maximum Com	pression/Maximum	12)	I NIS TRUSS IS	Designed in accord	ance w	Ith the 2015	م ما					
TORCES	Tension	pression/maximum		R802 10 2 ar	Residential Code s	ard AN	1902.11.1 a	na					
TOP CHORD	1-2=-69/100. 2-3=-23	3/35. 3-4=-76/41	13	Graphical pu	rlin representation	does no	t denict the s	170					
BOT CHORD	1-4=-82/33	,	10,	or the orienta	tion of the purlin al	ona the	top and/or	120					
NOTES				bottom chord									
1) Unbalance	d roof live loads have	been considered for	14)	Hanger(s) or	other connection d	levice(s) shall be						UTT
this design				provided suff	icient to support co	ncentra	ted load(s) 5	5 lb				White CA	Dalle
2) Wind: ASC	E 7-10; Vult=150mph	(3-second gust)		down and 42	Ib up at 1-11-0 on	bottom	h chord. The				1	"aTH UN	TO
Vasd=119r	mph; TCDL=6.0psf; BC	CDL=6.0psf; h=30ft;		design/select	ion of such connec	tion de	vice(s) is the				1	OFFS	And I a
Cat. II; Exp	B; Enclosed; MWFRS	S (envelope) exterior	4.5	responsibility	of others.						UR,	in	
zone; canti	ilever left and right exp	oosed ; end vertical le	eft 15)	In the LOAD	CASE(S) section, I	oads a	oplied to the f	ace				:0	4
and right e	xposed; Lumber DOL=	=1.60 plate grip		of the truss a	re noted as front (F	-) or ba	ск (В).			-			
DOL=1.33				AD CASE(S)	Standard			N - 4 -				SEA	L : =
3) ^ TOLL: A	SCE 7-10; Pr=20.0 ps	f (roof live load: Lum	ber 1)	Dead + Sho	w (balanced): Lum	ber Inc	rease=1.15, F	late		=		0363	22 E
DOL=1.15	- varios (min_roof snov	20.0 psr (liat 100)			ou ade (lb/ft)							. 0505	: E
DOI -1 15	Plate DOI -1 00) see	load cases: Category	/ II·	Vort: 1-2-	40 2-360 1-4-	-20				-		N	: E
Exp B: Full	v Exp.: Ct=1.10: Unoh	structed slipperv	,,	Concentrate	ed Loads (lb)	20					2.	N. En	Rik S
surface	,, , ete, enes			Vert: 10=	-55 (B)						25	GIN	EFRAN
4) Roof desig	n snow load has been	reduced to account	for	10.1.10-	(-)						1	C .	IL BE IN
slope.												11, A. G	ILLIN
												111111	UTT

February 6,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J04	Half Hip	2	1	Job Reference (optional)	163425466

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:38 ID:6ScMZh_0MKS4ebJdh?fBGPyhipm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

12 6 Г

Scale = 1:26

Plate Offsets (X, Y): [1:0-1-0,Edge], [1:0-0-4,0-11-13], [2:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 14.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.05 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Structural wood she: 2-11-0 oc purlins, e: 2-0-0 oc purlins: 2-3	athing directly applie xcept end verticals, a	5) 6) 7) 8) d or and	Unbalanced design. Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Pooringe app	snow loads have b quate drainage to p s been designed for d nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will y other members.	or event or or a 10.1 with any l for a liv s where ll fit betw	water ponding 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto 2 No 2 crushi	his g. ads. Opsf om						
BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=52 (LC Max Uplift 1=-48 (LC Max Grav 1=219 (LC (lb) - Maximum Com Tension 1-2=-36/76, 2-3=-30/ 1-4=-67/38	applied or 10-0-0 oc 4= Mechanical 15) : 16), 4=-33 (LC 13) : 35), 4=86 (LC 34) pression/Maximum /40, 3-4=-65/57	9) 10 11 12 13	 Bearings are capacity of 5 Refer to gird Provide mec bearing plate 4 and 48 lb u This truss is International R802.10.2 ar Graphical pu or the orienta 	assumed to be: of 65 psi. er(s) for truss to tru- hanical connection capable of withsta plift at joint 1. designed in accord Residential Code of referenced stan rlin representation titon of the purlin a	uss conr (by oth anding 3 dance w sections idard AN does no along the	No.2 crushi nections. ers) of truss i 33 lb uplift at j ith the 2015 5 R502.11.1 a ISI/TPI 1. ot depict the s o top and/or	to joint and size						
NOTES 1) Unbalanci this design 2) Wind: ASK Vasd=119 Cat. II; Ex zone and exposed; members Lumber D 3) ** TCLL: A DOL=1.15 snow); Ps DOL=1.5 Exp B; Fu surface	ed roof live loads have n. CE 7-10; Vult=150mph pmph; TCDL=6.0psf; B(p B; Enclosed; MWFRS C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO ASCE 7-10; Pr=20.0 ps 5 Plate DOL=1.00); Pf= = varies (min. roof sno 5 Plate DOL=1.00) see Ily Exp.; Ct=1.10; Unot	been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; L=1.33 f (roof live load: Lum 20.0 psf (flat roof w=14.5 psf Lumber load cases; Categor ostructed slippery	LC 1) .ber y II;	DAD CASE(S) Dead + Snc Increase=1 Uniform Loa Vert: 1-2	l. Standard ww (balanced): Lun 00 ads (lb/ft) =-49, 2-3=-60, 4-5=	nber Inc	rease=1.15,	Plate		Chanter and a second se		SEA 0363	L 22 BERLIN	Maximum

4) Roof design snow load has been reduced to account for slope.

GI

February 6,2024

Thuman .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J04GR	Half Hip Girder	2	1	Job Reference (optional)	163425467

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:38 ID:afAkm1?e7eaxGluqFiAQpcyhipI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-0 3-10-4 2-11-0 0-11-4

Scale = 1:26.3

Plate Offsets (X, Y): [1:0-3-0,0-1-0], [2:0-2-0,0-2-8]

		-												
Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
ICLL (root)	20.0	Plate Grip DOL	1.00			0.10	Vert(LL)	0.00	1	>999	240	MT20	244/190	
	14.5/20.0	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.00	1	>999 n/a	100 n/a			
BCU	0.0*	Code	IRC2015	/TPI2014	Matrix-MP	0.00	11012(01)	0.00	-	n/a	n/a			
BCDL	10.0	Code	11(02010	/11/2014	WIGUIX-IVIIX							Weight: 18 lb	FT = 20%	
	Over CD No. 0		5)	Unbalanced	snow loads have b	een cor	isidered for th	IIS						
BOT CHORD	2x4 SP No.2 2x6 SP No.2		6)	Provide adec	uate drainage to p	revent v	vater ponding	1						
WEBS	2x4 SP No 3		7)	This truss ha	s been designed fo	or a 10.0) psf bottom	,.						
WEDGE	Left: 2x4 SP No.3		,	chord live loa	ad nonconcurrent w	ith any	other live loa	ds.						
BRACING			8)	* This truss h	as been designed	for a liv	e load of 20.0)psf						
TOP CHORD	Structural wood shea	athing directly applie	d or	on the botton	n chord in all areas	where	a rectangle							
	3-10-4 oc purlins, ex	xcept end verticals, a	and	3-06-00 tall b	y 2-00-00 wide will	fit betv	een the botto	om						
	2-0-0 oc purlins: 2-3		0)	chord and an	ly other members.	int 1 C		ad						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3)	capacity of 5	65 psi.	nni i Sr		iy						
REACTIONS	(size) 1=0-3-8, 4	1= Mechanical	10)	Refer to girde	er(s) for truss to tru	ss conr	ections.							
	Max Horiz 1=77 (LC	49)	11	Provide meci	nanical connection	(by oth	ers) of truss to	0 oint						
	Max Uplift 1=-90 (LC	(LC 9), 4=-58		4 and 90 lb u	nlift at joint 1	inuing a	o in upilit at j	JIII						
	Max Grav 1=331 (LC	C 31), 4=126 (LC 30)	12	This truss is	designed in accord	ance w	ith the 2015							
FORCES	(lb) - Maximum Com	pression/Maximum	,	International	Residential Code s	sections	R502.11.1 a	nd						
	1-2=-80/75 2-3=-34	/39 3-4=-78/42	12	R802.10.2 ar	run renerenced stand	doos no	151/1P11.	izo						
BOT CHORD	1-4=-67/34		10	or the orienta	ation of the purlin al	lona the	top and/or	126						
NOTES				bottom chord	l.									
1) Unbalance	d roof live loads have	been considered for	14)) Hanger(s) or	other connection d	levice(s) shall be					minin	1111	
this design				provided suff	icient to support co	ncentra	ited load(s) 6	8 10			1.0	WH CA	ROUL	
2) Wind: ASC	E 7-10; Vult=150mph	(3-second gust)		down and 44	tion of such connect	tion de	vice(s) is the				S	R	3 City	
Vasd=119r	mph; TCDL=6.0psf; B0	CDL=6.0pst; h=30ft;		responsibility	of others					/	5.5	Un con	Di	1
zone: canti	D, ENCIUSED, MWFR	osed · end vertical l	off 15) In the LOAD	CASE(S) section, I	loads a	oplied to the f	ace		4		10 10	Va.V	-/
and right e	xposed: Lumber DOI :	=1 60 plate grip	511 - 2	of the truss a	re noted as front (F) or ba	ck (B).			1		. . .	· · · ·	-
DOL=1.33		noo piato grip	LO	AD CASE(S)	Standard					-	:	SEA	L 1	1
3) ** TCLL: A	SCE 7-10; Pr=20.0 ps	f (roof live load: Lum	ber 1)	Dead + Sno	w (balanced): Lum	ber Inc	rease=1.15, F	Plate		=		0000		Ξ
DOL=1.15	Plate DOL=1.00); Pf=	20.0 psf (flat roof		Increase=1.	.00							0363	22 :	-
snow); Ps=	 varies (min. roof sno 	w=14.5 psf Lumber		Uniform Loa	ads (lb/ft)						- 8			2
DOL=1.15	Plate DOL=1.00) see	Ioad cases; Categor	y II;	Vert: 1-2:	=-49, 2-3=-60, 1-4=	-20					3	·	air	3
EXP B; Full	y = xp.; Ct = 1.10; Unot	ostructed suppery		Concentrate							1.5	A NGINI	EFIA	5
 A) Roof design 	n snow load has been	reduced to account	for	vert: 10=	-00 (F)						11	710	BEN	
slope.												11, A. G	ILDIN	
												(IIIIIII)	m	

February 6,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J07GR	Half Hip Girder	1	1	Job Reference (optional)	163425468

3-7-4

3-7-4

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Sun Feb 04 12:44:38 ID:KGWF8cd?g8kRalQdYe_D9hyhfEQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-0

1-3-12

Page: 1

Scale = 1:24.8

Plate Offsets (X, Y): [1:0-2-0,0-1-8], [1:0-0-4,0-10-13], [2:0-2-0,0-2-8]

				_											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	1.	(psf) 20.0 4.5/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC20	5/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.09 0.20	(loc) 4-9 4-9 3	l/defl >767 >631 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP S 2x4 SP S Left: 2x6 Structura 4-11-0 oc 2-0-0 oc Rigid ceil bracing.	S *Except* S SP No.2 I wood she: purlins, ex purlins: 2-3 ing directly	2-3:2x4 SP No.2 athing directly applie cept applied or 10-0-0 oc	4 5 d or 7 8	 Roof design slope. Unbalanced design. Provide adee This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b 	snow load has be snow loads have quate drainage to us been designed ad nonconcurrent has been designee n chord in all area by 2-00-00 wide w	een reduct been cor prevent v for a 10.4 with any d for a liv as where rill fit betv	ed to accour nsidered for t water pondin. D psf bottom other live loa e load of 20. a rectangle veen the bott	nt for his g. ads. Opsf om						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=0-3-8, 3 Mechanic 1=94 (LC 1=-92 (LC (LC 12) 1=375 (LC 4=182 (LC	He Mechanical, 4= al 12) 12), 3=-25 (LC 8), 4 2 31), 3=65 (LC 30), 3 31) pression/Maximum	9 != -85 1 1	 chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 3, 85 lb uplift This truss is 	y other members assumed to be: , 65 psi. er(s) for truss to t hanical connectio e capable of withs t at joint 4 and 92 designed in accor	Joint 1 S russ con n (by oth tanding 2 Ib uplift a rdance w	SP SS crushi nections. ers) of truss 5 lb uplift at j t joint 1. ith the 2015	ng to joint						
	(ID) - Max Tension 1-2=-216/	'300, 2-3=0	/0	1	International R802.10.2 a 3) Graphical pu	Residential Code nd referenced stat Irlin representation	sections ndard AN n does no	R502.11.1 a ISI/TPI 1. ot depict the s	and size						
NOTES	1-4=-100/	177			or the orienta	ation of the purlin	along the	e top and/or					minin	11111	
 Unbalance this design 2) Wind: AS Vasd=119 Cat. II; E> zone; car and right 	ed roof live l n. CE 7-10; Vu 9mph; TCDL (p B; Enclose tilever left a exposed; Lu 2	oads have It=150mph =6.0psf; B0 ed; MWFR nd right exp mber DOL:	been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior posed ; end vertical li =1.60 plate grip	r 1 eft 1	 4) Hanger(s) or provided suff b down and design/selec responsibility 5) In the LOAD of the truss a 	c other connection ficient to support of 70 lb up at 2-11- tion of such conne of others. CASE(S) section are noted as front	device(s concentra 12 on bo ection de , loads a (F) or ba) shall be ated load(s) 1 ttom chord. ⁻ vice(s) is the oplied to the ck (B).	06 The face		Contraction of the second seco	ALL ALL	SEA		Marin
DOL=1.33 3) ** TCLL:	3 ASCE 7-10; E Diata DOI	Pr=20.0 ps	f (roof live load: Lum	ber 1	OAD CASE(S) Dead + Sno	Standard ow (balanced): Lu	mber Inc	rease=1.15,	Plate		1111		0363	22	UII.

DOL=1.15 Plate DOL=1.00): Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=14.5 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

- Increase=1.00
 - Uniform Loads (lb/ft) Vert: 1-2=-49, 2-3=-60, 4-5=-20 Concentrated Loads (lb)
 - Vert: 11=-106 (F)

818 Soundside Road Edenton, NC 27932

GI

The Channer February 6,2024

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof F	
ELV F Roof	J09	Jack-Open	1	1	Job Reference (optional)	163425469

4-0-0

12

Builders FirstSource (Apex, NC), Apex, NC - 27523,

Scale = 1:22.8 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

2)

3) slope. 4)

5)

design.

TOP CHORD

BOT CHORD

BRACING

Snow (Ps/Pf)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Sun Feb.04.12:44:39 ID:hEJ7BJh8UgMjg3lbKBaPslyhfEL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

11111111111

