

Trenco 818 Soundside Rd Edenton, NC 27932

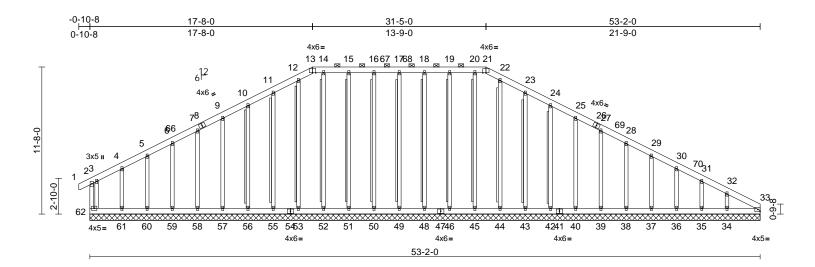
Re: 24010134 DAVID WEEKLEY - 129 SERENITY

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63437129 thru I63437168

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


February 6,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

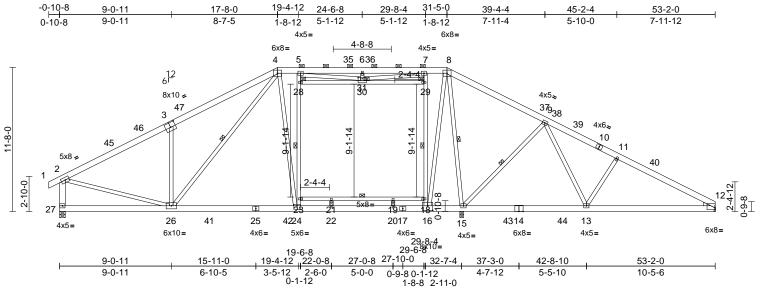
Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163437129

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:28 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.4

Scale = 1:91.4															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.05 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 545 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	52-14,53-12:2x4 SP	45-20,44-22,50-16,51 No.2, D-0,0-0,0-0,0-0,0-0,0-0,0-	,	Max Uplift	33=-36 (LC 14), 35=-28 (LC 15), 37=-43 (LC 15), 39=-44 (LC 15), 42=-46 (LC 15), 46=-29 (LC 11), 49=-25 (LC 10), 51=-28 (LC 10), 56=-46 (LC 14),	36=-47 (LC 38=-44 (LC 40=-43 (LC 43=-51 (LC 48=-28 (LC 50=-28 (LC 55=-53 (LC 57=-43 (LC	15), 15), 15), 15), 15), 11), 11), 14), 14),	TOP CH	IORD	3-4=-7 6-7=-9 10-11: 12-13: 14-15: 16-17: 18-19: 20-21:	=-145/332, 11-12 =-161/380, 13-14 =-151/376, 15-16 =-151/376, 17-18 =-151/376, 19-20 =-151/376, 21-22), 5-6=-81/150, /240, 9-10=-129/285, =-162/381, =-151/376, =-151/376, ==-151/376, ==-151/376, ==-161/380,			
BRACING TOP CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0		nd	Max Grav	58=-44 (LC 14), 60=-27 (LC 14), 62=-33 (LC 15), 33=134 (LC 27), 25=142 (LC 1),	61=-116 (LC 63=-36 (LC 34=217 (LC	; 14), 14) 55),			24-25 27-28 29-30	=-162/381, 23-24 =-129/285, 25-27 =-97/199, 28-29= =-106/152, 30-31 140/107, 32-33	/=-113/240, 93/176, =-119/129,			
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS T-Brace: 2x4 SPF No.2 - 17-49, 18-48, 19-46, 20-45, 22-44, 23-43, 24-42, 16-50, 15-51, 14-52, 12-53, 11-55, 10-56 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.					$\begin{array}{c} 35 = 143 \ (LC \ 1), \ 36 = 164 \ (LC \ 43), \\ 37 = 159 \ (LC \ 1), \ 38 = 172 \ (LC \ 43), \\ 39 = 221 \ (LC \ 43), \ 40 = 230 \ (LC \ 43), \\ 42 = 229 \ (LC \ 43), \ 43 = 231 \ (LC \ 43), \\ 44 = 211 \ (LC \ 43), \ 45 = 192 \ (LC \ 38), \\ 46 = 220 \ (LC \ 38), \ 48 = 218 \ (LC \ 38), \\ 49 = 216 \ (LC \ 38), \ 50 = 218 \ (LC \ 38), \\ 51 = 220 \ (LC \ 38), \ 50 = 218 \ (LC \ 38), \\ 53 = 214 \ (LC \ 41), \ 55 = 235 \ (LC \ 41), \\ 56 = 233 \ (LC \ 41), \ 57 = 233 \ (LC \ 41), \\ 58 = 232 \ (LC \ 41), \ 59 = 188 \ (LC \ 41), \\ \end{array}$						31-32=-140/107, 32-33=-184/114				
REACTIONS	36=53-2- 39=53-2- 43=53-2- 46=53-2- 50=53-2- 53=53-2- 57=53-2-		2-0, 2-0, FORCES 2-0, 2-0, 2-0, 2-0, 2-0, 2-0,	(lb) - Ma: Tension	60=159 (LC 1), 62=172 (LC 1), ximum Compressi	63=134 (LC 2	27)				SEA 0363	L L L B E E E R R R R R R R R R R R R R R R R			

February 6,2024


Job		Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	163437129
24010134		A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	
Carter Compone	nts (Sanford, NC	C), Sanford, NC - 27332,				2023 MiTek Industries, Inc. Mon Feb 05 10:49:28 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
DT CHORD	59-60=-87/1 57-58=-87/1 52-53=-87/1 52-53=-87/1 52-53=-87/1 48-49=-87/1 43-44=-87/1 43-44=-87/1 40-42=-87/1 38-39=-87/1 36-37=-87/1 17-49=-176/ 19-46=-180/ 22-44=-171/	81, 60-61=-87/181, 81, 58-59=-87/181, 81, 55-55=-87/181, 81, 53-55=-87/181, 81, 49-50=-87/181, 81, 46-48=-87/181, 81, 46-48=-87/181, 81, 42-43=-87/181, 81, 33-40=-87/181, 81, 35-36=-87/181, 81, 33-34=-87/181, 81, 33-34=-87/181, 81, 33-34=-87/181, 81, 33-34=-87/181, 81, 33-34=-87/181, 81, 33-34=-178/62, 60, 20-45=-152/14, 10, 23-43=-191/88, 81, 25-40=-190/77,	 15) Graphical purlin representation d or the orientation of the purlin alc bottom chord. 16) Warning: Additional permanent a truss system (not part of this con always required. LOAD CASE(S) Standard 	ces not depion ng the top ar nd stability b	ct the size nd/or racing for	Er ingenogr gillowour Abortwiczbur 34230 if	
	29-37=-120/ 31-35=-113/ 16-50=-178/ 14-52=-152/ 10-56=-193/	77, 28-38=-132/77, 77, 30-36=-121/80, 103, 32-34=-149/155, 62, 15-51=-180/60, 8, 12-53=-174/0, 11-55=-195 81, 9-57=-193/77, 7-58=-192 7, 5-60=-122/90, 4-61=-120/ 9	/77,				
IOTES	0.02						
) Unbalance this design		ds have been considered for					
Vasd=103r Cat. II; Exp zone and C 4-6-8 to 12 (2N) 22-11 Exterior(2N 53-2-0 zon vertical left forces & M	nph; TCDL=6 B; Enclosed; C-C Corner(3E -4-3, Corner(3E -13 to 26-1-3, I) 36-6-8 to 47 e; cantilever lo and right exp	130mph (3-second gust) .0psf; BCDL=6.0psf; h=25ft; MWFRS (envelope) exterior E) -0-9-14 to 4-6-8, Exterior(2 38) 12-4-3 to 22-11-13, Exter Corner(3R) 26-1-3 to 36-6-8 7-10-3, Corner(3E) 47-10-3 to eft and right exposed ; end osed;C-C for members and ctions shown; Lumber L=1 60	N) ior				
Truss desi only. For s	gned for wind tuds exposed	l loads in the plane of the trus to wind (normal to the face), able End Details as applicab					
or consult TCLL: ASC Plate DOL:	qualified build E 7-16; Pr=20 =1.15); Pf=20 ; Is=1.0; Roug	ing designer as per ANSI/TP 0.0 psf (roof LL: Lum DOL=1 .0 psf (Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.9;	1. 15				
		have been considered for thi	s				
load of 12.	0 psf or 1.00 t	gned for greater of min roof I imes flat roof load of 20.0 pst					
		nt with other live loads. ge to prevent water ponding.					
All plates a	re 2x4 MT20	unless otherwise indicated.					
0) Gable stud	s spaced at 2						
chord live I 2) * This truss on the bott 3-06-00 tal	oad nonconcu s has been de om chord in a	Irrent with any other live load signed for a live load of 20.0p Il areas where a rectangle vide will fit between the botton	osf				
 Provide me bearing pla 62, 25 lb u uplift at joir 42, 43 lb u uplift at joir 36, 28 lb u uplift at joir 55, 46 lb u uplift at joir 	echanical coni tte capable of ollift at joint 49 tt 46, 51 lb up ollift at joint 40 nt 38, 43 lb up ollift at joint 35 tt 50, 28 lb up ollift at joint 56 tt 58, 45 lb up uplift at joint 6	nuers. nection (by others) of truss to withstanding 33 lb uplift at jo , 28 lb uplift at joint 48, 29 lb lift at joint 43, 46 lb uplift at joint , 44 lb uplift at joint 39, 44 lb lift at joint 37, 47 lb uplift at joint , 96 lb uplift at joint 34, 28 lb lift at joint 51, 53 lb uplift at joint , 43 lb uplift at joint 57, 44 lb lift at joint 59, 27 lb uplift at joint 1, 36 lb uplift at joint 33 and 3	int int int int				
4) This truss i	s designed in	accordance with the 2018					
		Code sections R502.11.1 an ed standard ANSI/TPI 1.	d				
R802.10.2	and relefence						

Design values for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A03	Piggyback Base	5	1	Job Reference (optional)	163437130

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:35 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:93.4

		r		1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.35	24-26	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.62	21	>624	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.12	12	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 470 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Excep 17-25,14-17:2x6 SP 2x4 SP No.3 *Excep 2-26,5-24,7-16,4-24 No.2	t* 23-18:2x4 SP No.2, 2400F 2.0E t* 27-2:2x6 SP No.2, .8-16,8-15,26-4:2x4 SF	BOT CHORD	26-27=-130/283, 24 22-24=0/2788, 20-2 15-16=0/2468, 13-1 12-13=-73/3288, 21 19-21=-85/35, 18-1 19-20=-261/0, 21-2 23-24=-430/334, 22	22=0/27 15=-49/ 1-23=-8 9=-85/3 2=-205 3-28=-3	88, 16-20=0/2 2928, 5/35, 35 /0, 2-26=-29/2 81/410,	,	8) All 9) Thi cho 10) * Tl on 3-0	plates ar s truss h ord live lo his truss the botto 6-00 tall	e 2x4 as bee bad noi has be m cho by 2-0	MT20 unless oth on designed for a nconcurrent with een designed for rd in all areas wh 0-00 wide will fit	any other live loads. a live load of 20.0psf here a rectangle between the bottom	
WEDGE	Right: 2x4 SP No.3			5-28=-366/417, 16- 18-29=-952/205, 7-			065					n BCDL = 10.0psf.	
BRACING	Other strengt was a line	a dhù an dùna a dhu ann 1971 b		28-30=-4/92, 29-30							for truss to truss		
TOP CHORD	3-1-0 oc purlins, ex 2-0-0 oc purlins (3-2		or	6-31=-229/82, 5-31 7-31=-281/911, 8-1 9-15=-969/274, 9-1	534, 23, 8-15=-741		 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 12. 13) One H2.5A Simpson Strong-Tie connectors 						
BOT CHORD	bracing. Except: 6-0-0 oc bracing: 18			11-13=-311/210, 3-26=-804/325, 4-26=-281/457					recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27 and 15. This connection is for uplift only and does not consider lateral forces.				
WEBS		24-28, 16-29, 8-15, 9-									ned in accordance		
		4-26	 Unbalance this design 	d roof live loads have	e been	considered for	r					tions R502.11.1 and	
JOINTS	1 Brace at Jt(s): 28, 29, 30		0	E 7-16; Vult=130mpl	h (3-se	cond aust)					erenced standar		
REACTIONS	,	anical, 15=0-3-8,		nph; TCDL=6.0psf; E				15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.					
REACTIONS	27=0-5-8	lanical, 10=0 0 0,	Cat. II; Exp	B; Enclosed; MWFF	RS (env	elope) exterio	r		he orient	tation o	of the purlin along	g the top and/or	
	Max Horiz 27=-187 (LC 12)		C-C Exterior(2E) -0-1			(1)	bot	tom chor	d.	minin	unin.	
	Max Uplift 12=-32 (L	C 14), 15=-199 (LC 15		-1-12, Exterior(2R) 1							W'TH CA	Rollin	
	27=-144 (50.0.0	38-11-4 to 47-10-3, l e; end vertical left ex						1	RI	in the last	
		(LC 45), 15=1306 (LC 3		& MWFRS for reacti			619			22	CEESS	ION ST	
500050	27=2600	· /		plate grip DOL=1.60		, 20			Z	2		Mill	
FORCES	(lb) - Maximum Corr Tension	pression/Maximum		E 7-16; Pr=20.0 psf		.: Lum DOL=1	1.15		-	0			
TOP CHORD	4-5=-2757/178, 5-6=			=1.15); Pf=20.0 psf (I					Ξ		SEA	LE	
	6-7=-3183/348, 7-8=			; Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9);		=	:	0363		
	8-9=-2775/245, 9-11		Cs=1.00; C						1		0303	22 <u>:</u> :	
		-27=-2458/194, 1-2=0/3	30, 4) Unbalance design.	d snow loads have b	een co	isidered for th	IIS		-	8	•	1 - E -	
	2-4=-3367/364			nas been designed fo	n areat	er of min roof	live		S	1	·	Airs	
			load of 12.) psf or 1.00 times fla	at roof l	bad of 20.0 ps				15		EFER	
				non-concurrent with						1	C A. G	BEIN	
				unit load placed on			-6-8				1111.6		
			irom iett er	d, supported at two	points,	5-0-0 apart.					Echrug	n/ 6 2024	

February 6,2024

Page: 1

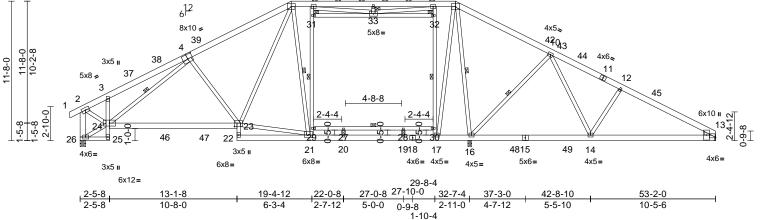
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	100.407.400		
24010134	A03	Piggyback Base	5	1	Job Reference (optional)	l63437130		
Carter Components (Sanford, NO	Run: 8.63 S Nov 1 2	Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:35						

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:35 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A03T	Piggyback Base	3	1	Job Reference (optional)	163437131

2-3-12 -0-10-8 0-10-8

2-3-12

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:39 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

19-4-12 31-5-0 24-6-8 29-8-4 39-4-4 45-2-5 53-2-0 1-8-12 5-1-12 5-1-12 1-8-12 7-11-4 5-10-1 7-11-11 6x8= 4x5= 4x5= 6x8= 5 6 40 741 8 9 Ë.

Scale = 1:96.4

Plate Offsets (X, Y):	[4:0-5-0,0-4-8]	, [13:Edge,0-0-11]	, [21:0-4-0,0-2-4],	[23:0-6-0,0-3-8]
-----------------------	-----------------	--------------------	---------------------	------------------

9-1-10 0-4-1

17-8-0

8-6-6

8-9-9

6-5-13

- 1000 0 110010	(,,, ,), [[:0:2090;0 0 ::];[2		-], [1 0:0 0 0	,0 0 0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-MSH	0.77 1.00 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.56 0.16	(loc) 23-24 23-24 13	>999 >690	L/d 240 180 n/a	PLATES MT20 Weight: 485 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x6 SP No.2 *Excep 25-3,23-22:2x4 SP N 2400F 2.0E 2x4 SP No.3 *Excep 23-5,6-21,8-17,17-9 26-2:2x6 SP No.2 Right: 2x4 SP No.3 9 Structural wood she 2-10-0 oc purlins, e 2-0-0 oc purlins,	No.3, 18-15:2x6 SP tt* 16-9,21-5:2x4 SP No athing directly applie xcept end verticals, a i-15 max.): 5-9. applied or 10-0-0 oc -26,21-22 3-24. 21-31, 17-32, 9-16, 10-16, 5-21, 4-24, 2 manical, 16=0-3-8, LC 12) C 14), 16=-220 (LC - LC 45), 16=-1211 (LC 240 (LC 35)	2, o.2, WEE ed or and 2 9-30 NOT 1) 1 2) 1 15), 2 15), 2 15	ES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp I zone and C- 4-5-15 to 10 Interior (1) 3 53-2-0 zone.	25-26=-159/0, 24-2 23-24=-291/2701, 2 21-22=-123/73, 20- 19-20=-62/2133, 17 16-17=-63/1908, 14 13-14=-129/2793 5-23=-162/994, 24- 2-24=-208/2155, 21 29-31=-403/324, 6- 17-30=-935/207, 3 8-32=-914/211, 9-1 10-16=-974/274, 10 12-14=-314/201, 5- 21-23=0/2192, 4-23 4-24=-1208/103, 20 21-23=0/2192, 4-23 4-24=-1208/103, 20 21-23=0/2192, 4-23 4-24=-1208/103, 20 27-29=-70/45, 27-2 31-33=-307/1, 32-33 6-33=-305/680, 8-3 roof live loads have 7-16; Vult=130mpl ph; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-9 -1-12, Exterior(2R) 8-11-4 to 47-10-3, 1 ; end vertical left ex. MWFRS for reacti	22-23=- 21=-62 7-19=-6 I-16=-1 26=-63 I-29=-4 31=-39 D-32=-9 7=0/14 D-14=-6 21=-34 D-14=-6 21=-34 D-14=-6 21=-34 D-14=-6 21=-34 D-14=-6 21=-34 D-27=0/1 S=-70/2 S=-70/	11/113, (2133, (2133, (2133, (2133, (22408, (310, (36/295, (1/324, (37/214, (34, 9-16-54; (3/672, (8/290, (258, (5, 28-30, (5, 28-30, (7, 3), (5, 28-30, (7, 3), (864) (20, 95; h=25ft elope) exterio (5-15, Interio (21, 47-10-3, (225, 47-10, (225, 47-10, (3/0, 6/12, 0/45, 7/82, or ; or r (1) to	loa ov 6) 20 fro 7) Pr 8) All 9) Th ch 10) * T on 3-(ch 11) Re 12) Pr be 13 13) Or re UF	ad of 12.0 erhangs 0.0lb AC m left en ovide add plates an is truss h ord live lo hord live lo hord tive lo hord tive lo hord tive lo hord tive lo hord add ord and a fer to gir ovide me aring pla he H2.5A commence PLIFT at j ly and do	b) psf or non-cco unit lo d, suppl equate re 2x4 has bee poad no has b born chcc bay 2-c any oth dedr(s) schanic te caps Simps ded to 0 it(s) 26 bes not	r 1.00 times flat rc nncurrent with oth ad placed on the ported at two poir drainage to preve MT20 unless othe an designed for a nconcurrent with een designed for ord in all areas wh 00-00 wide will fit i eer members, with for truss to truss o cal connection (by able of withstandi son Strong-Tie co connect truss to b and 16. This con consider lateral f	bottom chord, 24-6- tts, 5-0-0 apart. ent water ponding. erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0ps ere a rectangle between the bottom BCDL = 10.0psf. connections. others) of truss to ng 72 lb uplift at join nectors bearing walls due to nection is for uplift orces.
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/28, 2-3=-203(5-6=-2111/277, 6-7- 7-8=-2588/434, 8-9= 9-10=-2181/333, 10 12-13=-3213/224, 2)/201, 3-5=-2992/345 2588/434, 2082/274, -12=-3039/244,	5, 3) ⁻	 DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 					E A MONTER				

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oblage with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A03T	Piggyback Base	3	1	Job Reference (optional)	163437131

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:39 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

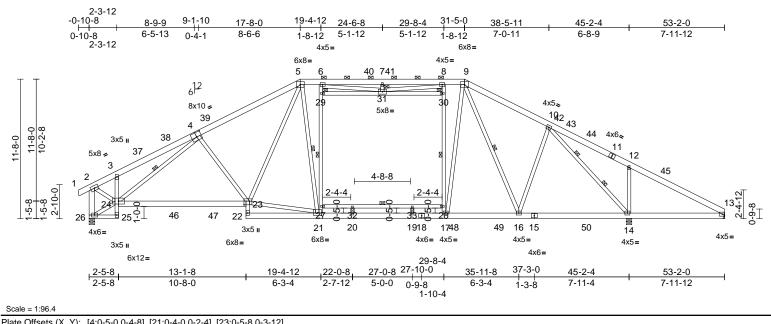
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A04	Piggyback Base	1	1	Job Reference (optional)	163437132

Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:41 Page: 1 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 19-4-12 31-5-0 <u>29-8-4</u> 9-0-11 17-8-0 38-5-11 24-6-8 45-2-4 53-2-0 0-10-8 8-7-5 5-1-12 5-1-12 7-11-12 9-0-11 1-8-12 1-8-12 7-0-11 6-8-9 6x8= 4x5= 4-8-8 6x8= 4x5 =4 34 635 7 8 5 6¹² 2-4-4 30 2 4x5👟 8x10 🞜 ⁹36 37 47 3 38 4x6👟 46 11-8-0 9-1-14 1-1-1 9-1-14 10 45 11 5x10 🦼 39 2 2-10-0 2-4-4 α 5x8= 1900 27 Ð iģ ⊠ 13 8 È 2017 15 14 26 40 25 1642 44 4124 22 43 4x5= 6x10= 4x6= 6x8= 4x6= 6x8= 4x5= 4x5= 29-8-4 4x6= 29-6-8 19-6-8 45-5-0 || 0-2-12 27-0-8 27-10-0 <u>19-4-12 22-0-8</u> 37-3-0 53-2-0 9-0-11 15-11-0 35-11-8 45-2-4 2-6-0 9-0-11 6-10-5 3-5-12 5-0-0 6-3-4 7-11-4 7-9-0 0-9-8 0-1-12 1-3-8 0-1-12 1-8-8 Scale = 1:91.4 Plate Offsets (X, Y): [2:0-4-14,0-2-8], [3:0-5-0,0-4-8], [16:0-2-12,0-4-8], [24:0-4-0,0-3-12] 2-0-0 CSI DEFL L/d PLATES GRIP Loading (psf) Spacing in (loc) l/defl тс 244/190 TCLL (roof) 20.0 Plate Grip DOL 1.15 0.71 Vert(LL) -0.38 24-26 >999 240 MT20

Snow (Pf)	20.0 20.0	Lumber DOL	1.15 1.15		BC	0.71	Vert(LL) Vert(CT)		19-21	1 >906	240 180	M120	244/190	
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES	8/TPI2014	WB Matrix-MSH	1.00	Horz(CT)	0.10	12	2 n/a	n/a			
BCDL	10.0	Code	11(0201	0/11/2014		-						Weight: 470 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS JOINTS REACTIONS	2x6 SP No.2 2x6 SP No.2 *Excep 2400F 2.0E, 23-18:2 2x4 SP No.3 *Excep 2-26,8-15,5-24,7-16, No.2 Structural wood she 3-0-14 oc purlins, e 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 18 1 Row at midpt 2 Rows at 1/3 pts 1 Brace at Jt(s): 28, 29, 30 (size) 12= Mech 27=0-5-8 Max Horiz 27=-187 (Max Uplift 12=-182 (27=-97 (L Max Grav 12=960 (I 27=2615 (lb) - Maximum Com Tension 4-5=-2892/126, 5-6= 6-7=-3234/339, 7-8= 8-9=-2931/182, 9-11 11.12=-1624/413, 2: 2-4=-3392/301 26-27=-126/287, 24-	x4 SP No.2 ** 27-2:2x6 SP No.2, 4-24,8-16,26-4:2x4 S athing directly applied xcept end verticals, a -13 max.): 4-8. applied or 10-0-0 oc -23 8-15, 24-28, 16-29, 4 9-13 anical, 13=0-5-8, LC 12) LC 14), 13=-304 (LC C 14) .C 35), 13=2645 (LC (LC 35) pression/Maximum -3234/339, -2866/125, =-1615/488, -27=-2472/161, 1-2=0 -26=0/2759, 2=0/2917, 16-20=0/27	P I or nd 10 -26 15), 37), 3) (28, 6)	DTES Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 4-5-15 to 10- Interior (1) 3t 53-2-0 zone; vertical left a forces & MW DOL=1.60 M TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 [overhangs n 200.0lb AC u from left end	21-22=-217/0, 19 8-15=-483/0, 23- 23-28=-482/333, 16-18=-892/227, 7-29=-848/246, 4 29-30=-194/41, 6 5-30=-324/677, 7 9-15=0/664, 9-13 11-13=-496/274, 4-26=-317/472 roof live loads have 7-16; Vult=130m ob; TCDL=6.0psf 3; Enclosed; MWC C Exterior(2E) -0. 1-12, Exterior(2E) -0. 1-15, PT=20.0 ps Is=1.0; Rough Ci =1.10 snow loads have s been designed ps for 1.00 times on-concurrent wi unit load placed to , supported at tw yuate drainage to	24=-525/2 5-28=-46 18-29=-8 -24=0/11! -30=-230, -30=-297	261, 7/337, 70/249, 97, 28-30=-44 /82, (804, 8-16=0/ 52, 5/326, considered fc considered fc cond gust) 5.0psf; h=25ft elope) exterior -5-15, Interio 2 to 38-11-4, (2E) 47-10-3 posed; end nembers and Lumber :: Lum DOL= EXP.; Ce=0.9 nsidered for the er of min roof pad of 20.0 p ve loads. 50-0 apart.	6/93, /1768, or or or (1) to to t 1.15 e 9; his f live sf on 4-6-8	or 3. ct 11) R 12) P br jo 13) O re U 01 13) O re 14) Ti In R 15) G or br	n the bott -06-00 tal hord and i efer to gir rovide me earing pla int 12. Die H2.5A accommen- PLIFT at nly and de his truss i iternation. 802.10.2 iraphical p	om cho I by 2-0 any oth rder(s) f echanic te capa Simps ded to o jt(s) 27 pes not s desig al Resi ourlin re- tration o ord. S Sta	een designed for ord in all areas wh 00-00 wide will fit her members, with for truss to truss all connection (b) able of withstandi son Strong-Tie co connect truss to H and 13. This cor is consider lateral inned in accordand dential Code sec ferenced standar apresentation doo of the purlin along indard	a live load of 2 here a rectangle between the bc h BCDL = 10.0p connections. v others) of trus ing 182 lb uplift innectors bearing walls du innection is for uf forces. ce with the 2011 tions R502.11.1 d ANSI/TPI 1. es not depict the g the top and/or	e ottom psf. s to at ue to uplift 8 1 and e size
	15-16=0/2619, 13-19 12-13=-305/1404, 2 19-21=-70/40, 18-19	1-23=-70/40,	8) 9)	All plates are This truss ha	2x4 MT20 unles as been designed ad nonconcurren	s otherwi for a 10.0	se indicated. O psf bottom				11	CA. G	ILBE	
						,							ry 6,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



12₈₀ 6-⊥

4x5=

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A04T	Piggyback Base	2	1	Job Reference (optional)	163437133

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:45 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Laadina	1	() Creating	2.0.0	0.01		DEFL		(10.0)	l/d of	1.74		GRIP	
Loading TCLL (roof)	(ps 20		2-0-0 1.15	CSI TC	0.75	Vert(LL)	in 0.21	(loc) 21-22	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf)	20		1.15	BC	0.75	Vert(CT)		20-21	>999	180	101120	244/190	
TCDL	10		YES	WB	0.98	Horz(CT)	0.49	13	>999 n/a	n/a			
BCLL		.0* Code	IRC2018/TPI2014	Matrix-MSH	0.34		0.14	15	n/a	n/a			
BCDL	10			Matrix-Mort							Weight: 485	lb FT = 20%	
LUMBER			BOT CHORD	25-26=-150/0, 24	-25=0/27	, 3-24=-250/1	41,	5) Thi	s truss h	as bee	en designed fo	r greater of min	roof live
TOP CHORD	2x6 SP No.2			23-24=-226/2726								t roof load of 20	
BOT CHORD	2x6 SP No.2 *E	xcept* 26-25:2x4 SP No	.2,	21-22=-100/104,		,						other live loads.	
		SP No.3, 24-23:2x6 SP		19-20=0/2270, 1			2044,					he bottom chore	
	2400F 2.0E			14-16=-85/1941,								oints, 5-0-0 apa	
WEBS	2x4 SP No.3 *E		WEBS	4-23=-409/268, 2 5-23=-174/978, 2		,						event water por otherwise indica	
	23-5,6-21,17-8, 26-2:2x6 SP No	17-9,5-21,9-16:2x4 SP N	10.2,	27-29=-494/275,				,				r a 10.0 psf bott	
	20-2.2X0 SF INU	0.2		17-28=-881/239,								th any other live	
BRACING TOP CHORD	Structural wood	I sheathing directly appli	od or	8-30=-854/249, 2		,	8/45,					or a live load of	
TOF CHORD		is, except end verticals,		28-33=-68/45, 9-			,					where a rectan	
		s (3-10-0 max.): 5-9.	and	5-21=-421/509, 4	-24=-119	5/99,		3-0	6-00 tall	by 2-0	00-00 wide will	fit between the	bottom
BOT CHORD		ectly applied or 2-2-0 oc		24-26=-65/302, 2				chc	ord and a	any oth	ner members, v	vith BCDL = 10.	.0psf.
	bracing.			9-16=-313/42, 29			36/46,					s connections.	
WEBS	1 Row at midpt	21-29, 17-30, 27-2	3,	7-31=-231/81, 6-		,	10.4					(by others) of tr	
		5-21, 4-24, 9-16		8-31=-289/809, 2 10-14=-2127/236		,	24,			te capa	able of withstar	nding 194 lb upl	lift at
WEBS	2 Rows at 1/3 p			10-14=-2127/230), 1 2- 14=-	491/214,			nt 13.	Simpo	on Strong-Tie	aannaatara	
JOINTS	1 Brace at Jt(s)	: 29,	NOTES	10 10=0/041								o bearing walls	due to
	30, 31			ed roof live loads ha		oonoidorod fo			I IFT at i	t(s) 26	and 14 This c	connection is for	
REACTIONS	(size) 13= 1 26=0	Mechanical, 14=0-5-8,	, this desig	ın.			1		y and do	es not	consider later	al forces.	. apint
	Max Horiz 26=-?	189 (LC 12)		CE 7-16; Vult=130n							mini		
	Max Uplift 13=-7	194 (LC 14), 14=-368 (L		3mph; TCDL=6.0psf							"TH C	ARO	
		156 (LC 14)		kp B; Enclosed; MW						N	R		1
		94 (LC 41), 14=2425 (L	J J J J J	C-C Exterior(2E) -0 10-1-12, Exterior(2E)		,	r (1)			5.	OFES	Do V	in
		260 (LC 35)	Interior (1) 38-11-4 to 47-10-3			to						1
FORCES	(Ib) - Maximum Tension	Compression/Maximum		ne; cantilever left ar							:4		-
TOP CHORD		2045/161, 3-5=-3023/26	e vertical le	ft and right exposed	l;C-C for r	nembers and			-		SE	AL	
TOF CHORD	,	6-7=-2688/431,	forces &	MWFRS for reaction		Lumber					000	200	
		8-9=-2224/227,		0 plate grip DOL=1.					=	9	036	322 :	-
	,	4, 10-12=-1534/512,		CE 7-16; Pr=20.0 p									-
	12-13=-1548/43	38, 2-26=-2277/189		L=1.15); Pf=20.0 ps						5	·	air	3
			DOL=1.1 Cs=1.00:	5); ls=1.0; Rough C	at B; Fully	/ Exp.; Ce=0.	9;			2.5	NGI	NEE	5
				ed snow loads have	heen co	nsidered for t	his			11	710	aF	The second second
			design.								SE 036 NGI	GILD	
			assign								in the	innin.	
											Echr	10m/ 6 2024	

February 6,2024

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

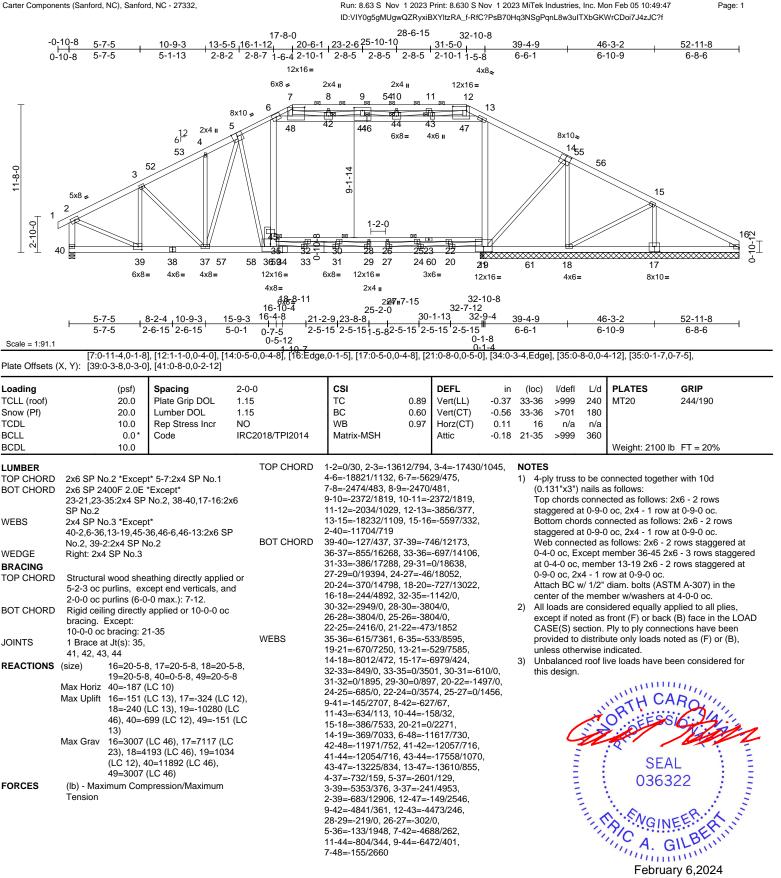
Job	Truss	Truss Type		Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A04T	Piggyback Base		2	1	Job Reference (optional)	163437133
Carter Components (Sanford, NO	C), Sanford, NC - 27332,		Run: 8.63 S Nov 12	023 Print: 8.6	530 S Nov 1	2023 MiTek Industries, Inc. Mon Feb 05 10:49:45	Page: 2

ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A05	Attic Girder	1	4	Job Reference (optional)	163437134

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	russ Type Qty Ply DAVID WEEKLEY - 129 SEREN		DAVID WEEKLEY - 129 SERENITY		
24010134	A05	Attic Girder	1	4	Job Reference (optional)	163437134

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 05 10:49:47

ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

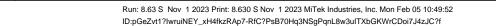
Carter Components (Sanford, NC), Sanford, NC - 27332,

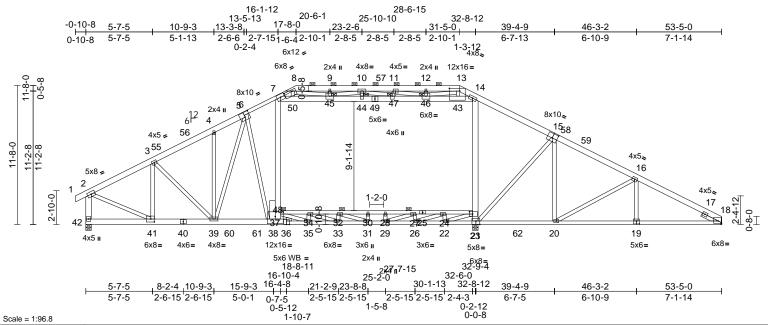
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 4x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- a This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 6-48, 42-48, 41-42, 41-44, 43-44, 43-47, 13-47; Wall dead load (5.0psf) on member(s).6-35, 13-21
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-35, 30-32, 28-30, 26-28, 25-26, 22-25, 21-22
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10280 lb uplift at joint 19.
- 15) n/a

16) n/a

- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) n/a
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-7-12, and 9100 lb down and 774 lb up at 16-0-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-16=-60, 40-49=-20, 21-35=-30, 6-48=-10, 42-48=-10, 41-42=-10, 41-46=-10, 44-46=-10, 43-44=-10, 43-47=-10, 13-47=-10 Drag: 35-45=-10, 6-45=-10, 13-21=-10 Concentrated Loads (lb)
 - Vert: 36=-4881 (F), 60=-326 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A06	Attic Girder	1	4	Job Reference (optional)	163437135

Continued on page 2

-	[5:0-5-0,0-5-0], [8:0-9-4,0-1-12], [13:0-10-8,0-2-12], [15:0-5-0,0-4-8], [18:Edge,0-2-4], [19:0-3-0,0-3-0], [21:0-4-0,Edge], [23:0-3-4,0-2-8], [37:0-8-0,0-4-12],
Plate Offsets (X, Y):	[41:0-3-8,0-3-0]

	(,, ,). [+1.0 0 0,0 0 0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.71 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.73 0.21	(loc) 35-38 35-38 18 23-37	l/defl >804 >532 n/a >838	L/d 240 180 n/a 360	PLATES MT20 Weight: 2009	GRIP 244/190 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD	2.0E 2x4 SP 2400F 2.0E 25-23,25-37:2x4 SP No.2, 40-36:2x6 SP	*Except* No.2, 40-42:2x6 SF 2400F 2.0E		41-42=-127/434, 3 38-39=-806/16069 33-35=-337/16866 29-31=0/18038, 26 22-26=-211/13855 18-20=-718/15525	, 35-38= , 31-33= 5-29=0/1 , 20-22= , 34-37=	-784/13849, 0/17863, 6338, -756/16053, -1157/0,		(0.1 Top stag Bot stag	(31"x3") chords ggered a tom cho ggered a	nails a conne at 0-9-0 rds cor at 0-9-0) oc, 2x4 - 1 rov	: 2x6 - 2 rows v at 0-9-0 oc. ws: 2x6 - 2 rows v at 0-9-0 oc.	
WEBS OTHERS SLIDER BRACING TOP CHORD	42-2,7-38,48-38,49 ⁻ 7,49-14:2x6 SP No.2, 14-21:2x6 SP 2400F 2.0E, 41-2:2x4 SP No.2 HERS 2x4 SP No.3 WEBS IDER Right 2x4 SP No.3 1-6-0				32-34=-2709/0, 30-32=-3125/0, Web connected as follows: 2x6 - 2 rows stagg 28-30=-3125/0, 27-28=-3125/0, 0-4-0 oc, Except member 38-48 2x6 - 3 rows stagg 24-27=-1458/723, 23-24=-590/2368 at 0-4-0 oc, Except member 14-21 2x6 - 2 rows stagg 37-38=-690/7934, 7-37=-533/8793, 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. 21-23=-707/6501, 14-23=-503/7222, Attach BC w/ 1/2" diam. bolts (ASTM A-307) ir center of the member w/washers at 4-0-0 oc. 30-31=-160/10, 28-29=-381/0, 34-35=-848/0, 35-37=0/3509, 32-33=-482/0, 33-34=0/1645,								igered d at e s, LOAD
BOT CHORD JOINTS REACTIONS	Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 2 1 Brace at Jt(s): 37, 44, 45, 46, 47 (size) 18= Mech	c	 31-32=-94/441, 22-24=-1354/0, 26-27=-821/0, 24-26=0/2910, 27-29=0/1803, 13-43=-192/3352, 10-44=-123/2381, 9-45=-491/57, 12-46=-351/67, 11-47=0/150, 16-20=-133/748, 22-23=0/2778, 15-21=-653/214, 7-50=-9711/621, 45-50=-9334/598, 44-45=-10702/622, 44-47=-10628/617, 46-47=-15316(892, 						noted as (F) or (E	3),			
FORCES	42=0-5-8 Max Horiz 42=-184 (Max Uplift 18=-407 (45), 42=-6 Max Grav 18=8868 42=11746 (lb) - Maximum Corr	LC 12), 21=-5346 (L 671 (LC 12) (LC 46), 21=778 (LC 8 (LC 46)		43-46=-12562/763 5-39=-2558/130, 4 3-39=-235/4941, 3 2-41=-653/12740, 10-45=-4582/341, 13-46=-5478/306, 8-50=-137/2045, 6	, 14-43= -39=-58 -41=-53 8-45=-5 10-47=- 11-46=-	-13142/795, 2/164, 43/364, 641/303, 4771/280, 2964/283,			4	Z	OR TH C	ARO, M	.m. Ann
TOP CHORD	Tension	40/761, 3-4=-17245/ -7=-18557/1088, 3060/520, -11=-3686/695, 12-13=-1499/1776, 4-16=-17885/1059,	_{1003,} NOTES	0-30=-137/2043, 6	-50=-12	9/1400			THE STREET	A A A A A A A A A A A A A A A A A A A	SE 036	322	IIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIII

February 6,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		DAVID WEEKLEY - 129 SERENITY	
24010134	A06	Attic Girder	1	4	Job Reference (optional)	163437135

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon Feb 05 10:49:52

ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

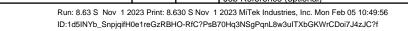
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 7-50, 45-50, 44-45, 44-47, 46-47, 43-46, 14-43; Wall dead load (5.0psf) on member(s).7-37, 14-23
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-37, 32-34, 30-32, 28-30, 27-28, 24-27, 23-24
- 14) Refer to girder(s) for truss to truss connections.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 407 lb uplift at joint 18 and 5346 lb uplift at joint 21.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 42. This connection is for uplift only and does not consider lateral forces.
- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 15-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-2=-60, 2-8=-60, 8-13=-60, 13-18=-60,
- 42-51=-20, 23-37=-30, 7-50=-10, 45-50=-10,
- 44-45=-10, 44-49=-10, 47-49=-10, 46-47=-10, 43-46=-10, 14-43=-10


43-46=-10, 14-43=-10 Drag: 37-48=-10, 7-48=-10, 14-23=-10

Concentrated Loads (lb) Vert: 38=-4881 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A07	Attic	1	1	Job Reference (optional)	163437136

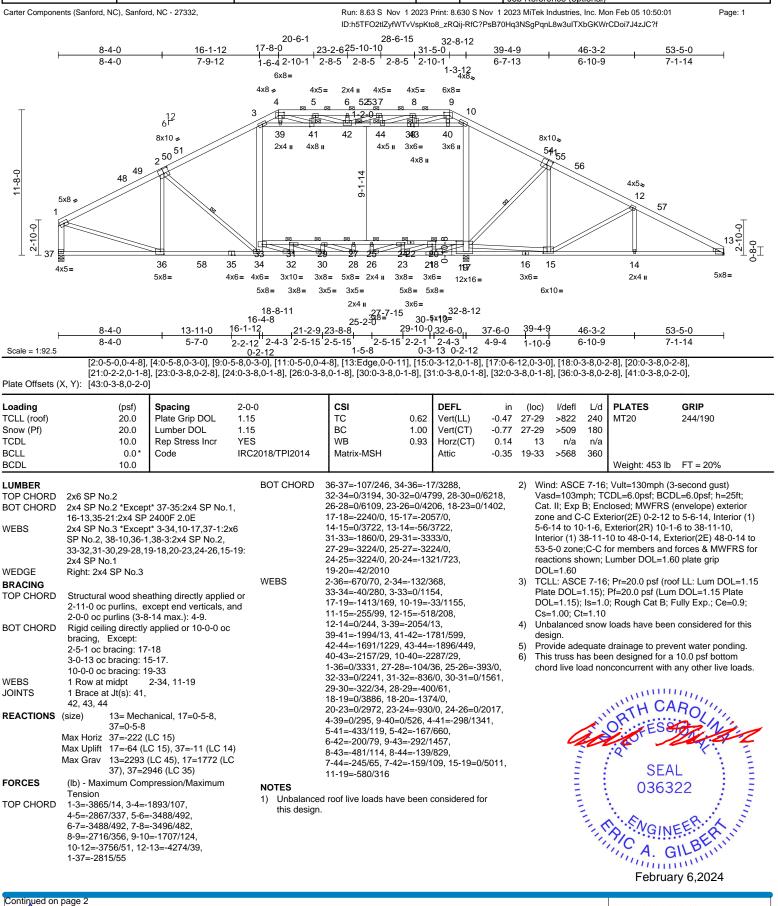
-0-	10-8	8-4-0	16-1-12	20-6- 2 17-8-0	1 2 23-2-625-10-10	28-6-15 32-8 31-5-0	3-12 39-4	1-9	46-3-2		53-5-0	
0-1	10-8	8-4-0	7-9-12			2-8-5 2-10-1 1-3	6-7- -12 4x8	13	6-10-9		7-1-14	
				6x8= 4x8 ≠	4x5= 2x4 u 4x5							
_				5	6 7 54558	9 10						
			6 ¹²	4			11					
			8x10 =	42 2x4 II	44 43 46 4x8 II 4x	5 4405 41 5 3x6= 3x6		8x10				
			3 ^{52⁵³}			4x8 II		56257	50			
11-&-0		51 50			9-1-14				58	4x5		
	5x8 ≠	30			9-1		A			13		
₋ 1	2			.							59	
2-10-0						<u>a, a</u> o,						14-4
	9 🚽 🔤			36 34	32 30 29 27		<u>1) (</u>			8		
MT	18HS 3x10	=	38 60 5x8=	37 35 33 4x6= 4x6= 3x10=	31 28 26 3x8= 5x8= 2x4 II	24 2129 ^O 3x8= 3x6=	2108	17 16 3x6=		15 2x4 I I		5x8=
			0.00	5x8= 3x8:		5x8= 5x8=	2x16=	6x10=		2.4.1		
				18-8-11	3x6= 3x8= 27-	7-15 32	-8-12					
		8-4-0	13-11-0	16-4-8 16-1-12, .21	25-2-0 -2-9,23-8-8	30- 5×13= 29-10-0 ₁ 32-6-	0, 37-6-0	39-4-9	46-3-2		53-5-0	
		8-4-0	5-7-0	2-2-12 2-4-3 2-4 0-2-12		5-15 ² -2-1 ¹ 2-4-3 0-3-13 0	3 4-9-4	1-10-9	6-10-9		7-1-14	
cale = 1:93.8], [3:0-5-0,0-4-8], [5:0	-5-8,0-3-0], [10:0-5-	8,0-3-0], [12:0-5-0,0	-4-8], [14:Edge,0-	0-11], [16:0-4					
ate Offsets (2], [22:0-2-2,0-1-8], [24], [45:0-3-8,0-2-0]	4:0-3-8,0-2-8], [25:0	-3-8,0-1-8], [26:0-3-8	3,0-1-8], [31:0-3-8	0-1-8], [33:0-	3-8,0-1-8], [34	1:0-3-8,0-1	1-8], [38:0-3-	-8,0-2-8],	
				2.0.0	0.01	DEFL	in	(10.0) 1/d		PLATES		
ading LL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.97 Vert(L		. ,		MT20	GRIP 244/1	
ow (Pf) DL		20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.99 Vert(0 0.93 Horz(,	29-32 >50 14 n)6 180 /a n/a	MT18HS	244/1	90
LL		0.0*	Code	IRC2018/TPI2014	Matrix-MSH	Attic	-0.35					
DL		10.0		,						Weight: 45	53 lb FT = 3	20%
MBER P CHORD	2x6 SP N	02		BOT CHORI	0 34-36=-1865/0, 29-32=-3215/0,			 Wind: AS Vasd=10 			ph (3-second BCDL=6.0p	
OT CHORD	2x4 SP N	o.2 *Except	t* 14-17,37-22:2x4 SI	P	25-27=-3215/0,	21-25=-1305/739, , 38-39=-108/219,		Cat. II; E	xp B; End	losed; MWF	RS (envelop 9-14 to 4-6-4	be) exterior
EBS	2x4 SP N	o.3 *Except	x4 SP No.1 t* 4-35,11-18:2x6 SP		35-38=-16/3320	, 33-35=0/3214,		4-6-4 to	10-1-6, E	kterior(2R) 1	0-1-6 to 38-	11-10, Interi
			·4:2x4 SP No.2, 1-24,25-26,20-19,16-	20:	31-33=0/4818, 2 24-26=0/4203, 1	28-31=0/6229, 26- 9-24=0/1393,	28=0/6113,				ior(2E) 48-0- exposed ; en	
EDGE	2x4 SP N	0.1	, , ,		18-19=-2254/0, 15-16=0/3733, 1						mbers and fo Lumber DOL	
ACING	Right. 234	4 SP No.3		WEBS	3-38=-653/76, 3	5-36=-42/292, 4-3		grip DOL	_=1.60			•
P CHORD			athing directly applied except end verticals,			7, 11-20=-32/1161 13-15=0/244, 4-42	,	,		, I	sf (roof LL: Lu (Lum DOL=	
TOUGDD	2-0-0 oc	purlins (3-8-	-13 max.): 5-10.			, 43-44=-1792/595 22, 45-46=-1911/4	·		15); ls=1.0 ; Ct=1.10	; Rough Ca	t B; Fully Ex	p.; Ce=0.9;
OT CHORD	Rigid ceil bracing,		applied or 10-0-0 oc		41-45=-2170/28	, 11-41=-2301/28,		4) Unbalan	,	loads have	been consid	ered for this
		bracing: 35- bracing: 18				8-29=-102/37, 26-2 3-36=0/2241, 31-3		design. 5) This trus	s has bee	en designed	for greater o	f min roof liv
	3-0-9 oc	bracing: 16-	-18.		31-34=0/1554, 2 19-21=-1376/0.	28-32=-407/60, 24-25=-932/0, 21-	24=0/2977.				flat roof load h other live lo	
EBS	10-0-0 00 1 Row at	bracing: 20 midpt	3-35, 12-20		,	0-41=0/529, 5-42	,			drainage to	prevent wate	
INTS	1 Brace a 44, 45, 40	at Jt(s): 43, 6			9-45=-481/114,	10-45=-292/1458,		6) Provide		TH	CARO	11 m
ACTIONS		14= Mech	anical, 18=0-5-8,		8-46=-245/65, 9 8-43=-158/110,	,			-	O	Sel	Niz
	Max Horiz	39=0-5-8 39=-189 (l	LC 12)		3-35=-148/350, 16-20=0/5036, 1	19-20=0/3892,		4	40	interior	100	a l
			C 15), 39=-30 (LC 14 (LC 46), 18=1776 (LC		5-44=-297/1339				Ξ.	C	FAL	1 1
		38), 39=29	998 (LC 36)	NOTES	ced roof live loads h	ave been conside	red for			03	6322	
RCES	(lb) - Max Tension	imum Com	pression/Maximum	this desi					1	. 00	0022	1
P CHORD	1-2=0/26		/11, 4-5=-1900/104,						THE REAL PROPERTY OF STREET, ST	N. En-	EAL 6322 MEER GILB	123
	7-8=-349	2/339, 6-7= 1/494, 8-9=	-3499/484,						11	ALC YG	INEE	Par
			11=-1709/127, 14=-4287/33,							In A.	GILB	111
	2-39=-28										mm	
										Feh	ruarv 6.2	024

Design valid for use only with MTeke connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A07	Attic	1	1	Job Reference (optional)	163437136

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 10) Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 43-44, 43-46, 45-46, 41-45, 11-41; Wall dead load (5.0psf) on member(s).4-36, 11-20
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-36, 32-34, 29-32, 27-29, 25-27, 21-25, 20-21
- 12) Refer to girder(s) for truss to truss connections.
 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 39 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:49:56 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A08	Attic	6	1	Job Reference (optional)	163437137

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A08	Attic	6	1	Job Reference (optional)	163437137

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 3-39, 39-41, 41-42, 42-44, 43-44, 40-43, 10-40; Wall dead load (5.0psf) on member(s).3-33, 10-19
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 31-33, 29-31, 27-29, 25-27, 24-25, 20-24, 19-20
- 10) Refer to girder(s) for truss to truss connections.11) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 37 and 17. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:01 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A09	Attic Supported Gable	1	1	Job Reference (optional)	163437138

24010134	A09	Attic Supported G		· Jo	bb Reference (optional)	
Carter Compone	ents (Sanford, NC), Sanford, NC - 27332,				23 MiTek Industries, Inc. Mon g3NSgPgnL8w3uITXbGKWrCI	•
			28-6-15	32-8-12		50110420011
	16-1-12	17-8-0 ₂₀₋₆₋₁	23-2-625-10-10	31-5-0	53-5-0)
	16-1-12	1-6-4 2-10-1 6x8=	2-8-5 2-8-5 2-8-5	2-10-1 1-3-12 ^{4x8}	20-8-4	1
			4x5= 4x5= 4x5			
-	6 ¹²		1 12 787913 14	× 10		
	- 8x10 ≽	8 9		10		
	7		9 68 71 6760 (6 II 5x8 = 4x5 II 3x6)	65	18 4x6	
	577 6		(6 ∎ 5x8= 4x5 ∎ 3x6= 5x0 5x0		18208151	
	3 75 476				19208 19208 19208 19208 1921 82 22	
11-8-0	3 75					_23
- 3	3x5 u 2 P					824
1						825 8 26
2-10-0			M M			
3	кххххххххххххххххххххххххххххх _{3x5 II} 63 62 61 60 59 58		50 49 46 4843	4 420 39 37	36 35 34 33 32	31 30 29 28
		3x6= 5x8 u 3x5=	3x5= 3x5= 3x5= 3x5= 3x5= 3x5=	3x6= 5x8 II 3x5=	3x6=	4x5=
		3x5= 16-4-8	27-7-15 3x64	-θ×θ332-8-12 0-0 22 6 0 27 6 0		
	13-11-0	16-1-1218-8-1121-2	-9 23-0-0	<u> </u>		53-5-0
Scale = 1:90.8	13-11-0	2-2-12 2-4-3 2-5-1 0-2-12	5 2-5-151-5-82-5-15 2-2	-1 2-4-3 4-9-4 0-3-13 0-2-12		15-11-0
	(X, Y): [6:0-5-0,0-4-8], [10:0-5-8,0-3-0], [15:0-5-8,0-3-0], [39:0-4-0),0-2-4], [54:0-4-0,0-2-4], [6	6:0-2-11,0-1-8]		
Loading	(psf) Spacing	2-0-0	CSI	DEFL in	(loc) l/defl L/d F	PLATES GRIP
TCLL (roof)	20.0 Plate Grip DOL	1.15	TC 0.43	Vert(LL) n/a	- n/a 999 M	/T20 244/190
Snow (Pf) TCDL	20.0 Lumber DOL 10.0 Rep Stress Incr	1.15 YES	BC 0.12 WB 0.62	. ,	- n/a 999 27 n/a n/a	
BCLL	0.0* Code	IRC2018/TPI2014	Matrix-MSH	11012(12) 0.02	27 100 100	
BCDL	10.0				N	Veight: 504 lb FT = 20%
			Max Uplift 28=-89 (LC 14)			79/168, 62-63=-79/168,
TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 *Except* 35-27,57-42:2x4	1 SP		ı, 31=-49 (LC 15), ı, 33=-44 (LC 15),		79/168, 60-61=-79/168, 79/168, 58-59=-79/168,
NEDO	2400F 2.0E, 57-64:2x4 SP No.1			, 36=-46 (LC 15), 3), 38=-1 (LC 10),		79/168, 55-56=-79/168, 35/183, 51-53=-63/129,
WEBS	2x4 SP No.3 *Except* 9-55,16-38,64-1 SP No.2, 16-66,66-9:2x4 SP No.2	.2X0	56=-115 (LC 38	3), 58=-45 (LC 14),	49-51=-	57/117, 47-49=-68/129,
OTHERS	2x4 SP No.3 *Except* 0-0,0-0,0-0,0-0,0-0,0-0:2x4 SPF No.2(flat)	, , ,	, 60=-37 (LC 14), , 62=-28 (LC 14),		58/112, 41-44=-64/115, 30/140, 37-38=-78/164,
BRACING	0-0,0-0,0-0,0-0,0-0,0-0.2x4 3FF N0.2(63=-119 (LC 14	4), 64=-109 (LC 15)	36-37=-	78/164, 34-36=-78/164,
TOP CHORD	Structural wood sheathing directly app 6-0-0 oc purlins, except end verticals,		Max Grav 28=538 (LC 24 30=215 (LC 6),), 29=71 (LC 18), 31=164 (LC 49),		78/164, 32-33=-78/164, 78/164, 30-31=-78/164,
	2-0-0 oc purlins (4-2-4 max.): 10-15.), 33=216 (LC 43),), 36=217 (LC 43),		78/164, 28-29=-78/164, 78/164, 52-54=-16/38, 50-52=-21/50,
BOT CHORD	Rigid ceiling directly applied or 6-0-0 o bracing. Except:	C), 38=1161 (LC 38),		14/38, 46-48=-14/38, 45-46=-14/38,
	10-0-0 oc bracing: 39-54), 44=301 (LC 20),), 49=231 (LC 20),	40-45=-2	22/54, 39-40=-19/51
NEBS	T-Brace: 2x4 SPF No.2 - 9- 16-39, 17-37, 18-3	,	51=301 (LC 20), 53=330 (LC 20),		
	8-56, 7-58			8), 56=144 (LC 47),), 59=239 (LC 41),		
	Fasten (2X) T and I braces to narrow of web with 10d (0.131"x3") nails, 6in	eage	60=223 (LC 41), 61=191 (LC 35),		
	o.c., with 3in minimum end distance.		62=164 (LC 56 64=100 (LC 50), 63=286 (LC 47),)		SAMULTING STREET
JOINTS	Brace must cover 90% of web length 1 Brace at Jt(s): 68,	FORCES	(lb) - Maximum Compress	,	N	"H CARO'
REACTIONS	69, 70, 71 (size) 27=53-5-0, 28=53-5-0, 29=5	TOP CHORD	Tension 1-2=-53/118, 2-3=-37/99,	3-4=-52/127,	ALC .	RESSIE
ACTIONS	30=53-5-0, 31=53-5-0, 32=5	53-5-0,	4-5=-70/149, 5-7=-107/21	1, 7-8=-122/250,	an	
	33=53-5-0, 34=53-5-0, 36=5 37=53-5-0, 38=53-5-0, 41=5	,	8-9=-105/267, 9-10=-926/ 10-11=-2068/439, 11-12=	,	3 1	2"
	44=53-5-0, 47=53-5-0, 49=5	53-5-0,	12-13=-2800/569, 13-14=	-2724/564,	E 1	SEAL : E
	51=53-5-0, 53=53-5-0, 55=5 56=53-5-0, 58=53-5-0, 59=5		14-15=-1991/436, 15-16= 16-17=-104/278, 17-18=-		E 1	036322
	60=53-5-0, 61=53-5-0, 62=5		18-19=-109/246, 19-21=-			1 3
	63=53-5-0, 64=53-5-0 Max Horiz 64=-222 (LC 15)		21-22=-70/199, 22-23=-52 23-24=-48/153, 24-25=-69		E.A.	· ENGLERIA S
	MUX 1012 07-222 (LO 10)		25-26=-156/123, 26-27=- 1-64=-66/91	142/144,	Contraction of the second	GINEF
					11	SEAL 036322 A. GILBER February 6,2024
						rebluary 6,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	A09	Attic Supported Gable	1	1	Job Reference (optional)	163437138

ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon Feb 05 10:50:05

Page: 2

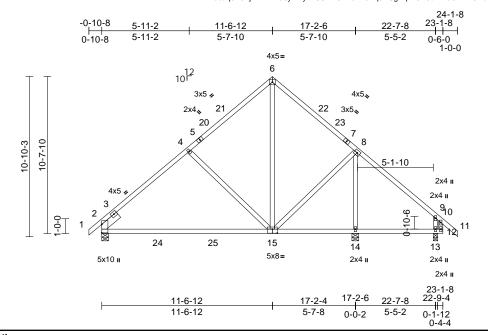
			ID:8kdnaN
WE	$\begin{array}{llllllllllllllllllllllllllllllllllll$	LOAD CASE(S)	Standard
	TES		
1)	Unbalanced roof live loads have been considered for this design.		
2)	Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 to 10-1-6, Exterior(2R) 10-1-6 to 38-11-10, Interior (1) 38-11-10 to 48-0-14, Exterior(2E) 48-0-14 to		

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable.

53-5-0 zone;C-C for members and forces & MWFRS for

- or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 12) Ceiling dead load (5.0 psf) on member(s). 9-67, 67-69,
- (a) Centrid dead total (3:0 ps) of member(3): 3-07, 07-05, 68-69, 68-71, 70-71, 65-70, 16-65; Wall dead load (5.0psf) on member(s).9-54, 16-39
 (b) Dead total dead load (5:0 ps) of the set total dead load (5:0 ps) of tota
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 64, 1 lb uplift at joint 38, 124 lb uplift at joint 37, 46 lb uplift at joint 36, 45 lb uplift at joint 34, 44 lb uplift at joint 33, 43 lb uplift at joint 32, 49 lb uplift at joint 31, 17 lb uplift at joint 30, 189 lb uplift at joint 29, 89 lb uplift at joint 28, 115 lb uplift at joint 56, 45 lb uplift at joint 58, 50 lb uplift at joint 59, 37 lb uplift at joint 60, 47 lb uplift at joint 63.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 17) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	B01	Common	1	1	Job Reference (optional)	163437139

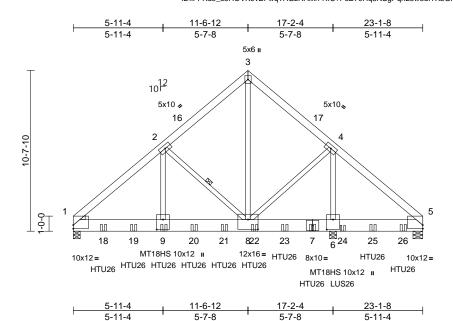
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:10 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.1

Plate Offsets (X, Y): [15:0-4-0,0-3-4]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)	-0.47	15-18	>442	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.76	15-18	>272	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0					-						Weight: 134 lb	FT = 20%
LUMBER			3)		E 7-16; Pr=20.0 ps								
TOP CHORD					1.15); Pf=20.0 psf								
BOT CHORD					Is=1.0; Rough Ca	at B; Fully	' Exp.; Ce=0.	9;					
WEBS	2x4 SP No.3			Cs=1.00; Ct									
SLIDER	Left 2x6 SP No.2 1	1-6-0	4)		snow loads have	been co	nsidered for t	nis					
BRACING			E.	design.	a haan daalanad	for great	or of min roo	flive					
TOP CHORD			ed or 5		as been designed psf or 1.00 times								
	5-6-15 oc purlins, e				on-concurrent wit								
BOT CHORD	0 0 ,	applied or 10-0-0 o	с 6		as been designed								
	bracing.		0,		ad nonconcurrent			ads.					
REACTIONS		13=0-3-8, 14=0-5-8	7		has been designe								
	Max Horiz 2=264 (LC	,		on the botto	m chord in all area	as where	a rectangle	•					
	Max Uplift 2=-75 (LC		15),	3-06-00 tall	by 2-00-00 wide w	vill fit betv	veen the bott	tom					
	14=-24 (L Max Grav 2=892 (L0		.)		ny other members			f.					
	14=901 (L		9, 8		Simpson Strong-T								
FORCES	(lb) - Maximum Corr	,			ed to connect trus								
FUNCES	Tension	pression/maximum			(s) 2, 13, and 14.			uplift					
TOP CHORD		1/150 4-6=-639/184	0		es not consider lat designed in acco								
	6-8=-597/176, 8-9=-				Residential Code			and					
	10-11=0/44, 10-12=		,		nd referenced sta			anu					CONTRACT OF A DECISION OF A DECISIONO OF A D
BOT CHORD	2-14=-251/721, 13-1	4=0/167, 12-13=0/1	67	DAD CASE(S)			101/1111						in the second se
WEBS	6-15=-97/412, 4-15=	-368/237, 8-15=-45	/421,		Standard							IN TH UA	ROUL
	9-13=-269/293, 8-14	l=-827/75									N	A STOO	in the
NOTES										/	52	FEE	Pi sin
1) Unbalanc	ced roof live loads have	been considered fo	r								V		1211
this desig											<u>е</u> в	.4	
	SCE 7-16; Vult=130mph											SEA	L <u>i</u> E
	3mph; TCDL=6.0psf; B									=		0202	• -
	xp B; Enclosed; MWFR									1		0363	22 : :
	C-C Exterior(2E) -0-10										2 C		1 2
	3-6-12, Exterior(2R) 8-6 12 to 21-1-8, Exterior(2		101								-	·	all S
	ntilever left and right ex		loft								2.5	NGIN	FERMAN
	exposed;C-C for memb		ion								11	710	OF N
	for reactions shown; Lu		ate							1114 Providence		Echrup	ILD
grip DOL												"Innu	in in in its second sec
3.4 202												Echrug	n/ 6 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 6,2024

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	B02	Common Girder	1	2	Job Reference (optional)	163437140

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:11 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:76.2	5-11-4	5-7-8
Plate Offsets (X, Y): [1:Edge,0-2-13], [5:Edge,0-2-13], [6:0-8	3-0,0-5-0], [8:0-8-0,0-7-12]	, [9:0-8-0,0-5-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.28	DEFL Vert(LL)	in 0.08-	(loc) 8-9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.15	8-9	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.74	Horz(CT)	0.02	6	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2018	2018/TPI2014 Matrix-MSH								Weight: 425 lb	FT = 20%
BOT CHORD 2 WEBS 2 WEDGE L BRACING TOP CHORD 5 BOT CHORD 6 WEBS 1 REACTIONS (si: Ma Ma FORCES ((T TOP CHORD 1 BOT CHORD 1 5 WEBS 2 MEBS 2 MEBS 2 MEBS 2 MEBS 3 4 NOTES 1) 2-ply truss to (0.131"x3") na Top chords c staggered at 1 Bottom chord staggered at 1	-0-10 oc purlins. Ligid ceiling directly racing. Row at midpt ze) 1=0-5-8, 4 ix Horiz 1=226 (L6 6=-771 (L 6=-771 (L 0 6=-11346 b) - Maximum Corr ension -2=-9095/284, 2-3= -4=-4512/270, 4-5= -9=-261/6935, 8-9= -6=-270/79 -9=-86/5970, 2-8=- -8=-211/5312, 4-8= -6=-6611/247 be connected toge ails as follows: onnected as follows: 0-9-0 oc. s connected as follows: 0-9-0 oc.	athing directly applie applied or 6-0-0 oc 2-8 5=0-7-12, 6=0-5-8 C 36) C 12), 5=-223 (LC 1 C 13) -C 5), 5=-726 (LC 19) (LC 6) -pression/Maximum =-4507/261, =-121/379 =-261/6935, 6-8=-270 4855/308, =-112/4954, ther with 10d	3) ed or 4) 3), 5)), 6) 7) 8) 0/79, 9) 10 11	except if note CASE(S) see provided to c unless othen Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); 1 CS=1.00; Ct= Unbalanced design. All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar) One H2.5A S recommende UPLIFT at jt(and does noi) LGT2 Simps connect truss This connect lateral forcess) This truss is International	snow loads have MT20 plates unliss been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members Simpson Strong-T ed to connect trus s) 1 and 5. This c t consider lateral i on Strong-Tie cor s to bearing walls ion is for uplift on	back (B) onnection ds noted we been of BCDL=6 RS (env) exposed DL=1.60 p of (roof LL (Lum DC t B; Fully been cor ess other for a 10.0 with any d for a liv as where ill fit betv is connector forces. nectors due to U ly and dc rdance w	face in the LC s have been as (F) or (B), considered for cond gust) .opsf; h=25ft elope) exterior ; end vertical olate grip .: Lum DOL= 0L=1.15 Plate Exp.; Ce=0.9 asidered for the wise indicate 0 psf bottom other live load e load of 20.0 a rectangle veen the bott ctors ing walls due n is for uplift recommende PLIFT at jt(s) es not consid ith the 2018 a R502.11.1 a	DAD r for left 1.15 d. ds. Dpsf dd. ds. Dpsf com to ponly d to 6. ler	11- ma cor 14) Use 11- spa enc bot 15) Use Tru cor 16) Fill 17) LG the LOAD (1) De In Un	10dx1 1. x. startin inect true e Simpso 10dx1 1. iced at 4 i to 21-1 toom choo e Simpso ss) or ec nect true all nail h T2 Hurris CASE(S ead + Sr crease= niform Lo Vert: 1-1 oncentra	/2 Trus g at 2- ss(es) no Stroo /2 Trus i-0-0 or 0-0 to on Stroo on Stroo quivale ss(es) noles w cane ti) Sta now (bz 1.15 cads (I 3=-60, tted Lo	Ing-Tie HTU26 (2 ss) or equivalent : 0-0 from the left to back face of b ong-Tie HTU26 (2 ss, Single Ply Gir c max. starting at connect truss(es ong-Tie LUS26 (4 what at 17-10-0 froi to back face of b where hanger is ir es must have two ndard alanced): Lumber b/ft) 3-5=-60, 10-13= ads (Ib)	20-10d Girder, spaced at 2-0-0 oc end to 10-0-0 to ottom chord. 20-10d Girder, der) or equivalent : 12-0-0 from the left) to back face of -10d Girder, 3-10d m the left end to ottom chord. o contact with lumbe o studs in line below

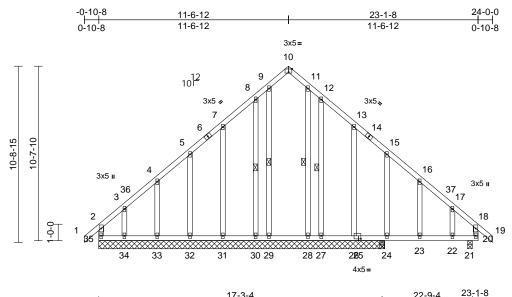
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	B02	Common Girder	1	2	Job Reference (optional)	l63437140
Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc.				2023 MiTek Industries, Inc. Mon Feb 05 10:50:11	Page: 2	

(B), 26=-886 (B)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:11 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 7=-1693 (B), 9=-1769 (B), 18=-1769 (B), 19=-1769 (B), 20=-1769 (B), 21=-1769 (B), 22=-1693 (B), 23=-1693 (B), 24=-874 (B), 25=-874


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	B03	Common Structural Gable	1	1	Job Reference (optional)	163437141

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:13 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ł	17-3-4	22-9-4 $23-1-05-6-0 0-4-4$
Scale = 1:70.2	17-0-4	5-6-0 0-4-4
Plate Offsets (X, Y): [10:0-2-8,Edge], [25:0-1-12,0-1-4]		

	(X, T). [10.0-2-0,Ed	jej, [25.0-1-12,0-1-4]									-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.24 0.22 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.04 0.00	(loc) 22-23 22-23 21	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 188 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood sl 6-0-0 oc purlins, e Rigid ceiling direct bracing. 1 Row at midpt (size) 21=0-3- 27=17-4 30=17-4 33=17-4 Max Horiz 35=-262 Max Uplift 24=-244 27=-16i 29=55 31=-84 33=-54 	neathing directly applied except end verticals. ly applied or 10-0-0 oc 9-29, 11-28, 8-30, 12 8, 24=17-5-0, 26=17-5- 5-0, 31=17-5-0, 32=17-5 2, 0, 31=17-5-0, 32=17-5 2, 0, 31=17-5-0, 32=17-5 2, 0, 31=17-5-0, 35=17-5 2, 0, 20, 20, 20, 20, 20, 20, 20, 20, 20	BOT CHORD -27 0, 5-0, 5-0, 5-0, WEBS), 3), 4), NOTES	1-2=0/38, 2-3=-289 4-5=-218/164, 5-7= 8-9=-230/342, 9-10 10-11=-144/196, 11 12-13=-169/231, 12 15-16=-88/59, 16-1 17-18=-172/26, 18- 18-20=-187/35 34-35=-59/167, 33- 32-33=-59/167, 23- 28-29=-59/167, 29- 28-29=-59/167, 29- 28-29=-59/167, 29- 28-29=-59/167, 29- 21-22=-59/167, 29- 21-22=-59/167, 29- 21-22=-59/167, 20- 35-32=-129/96, 4-33 12-27=-166/163, 12 15-24=-252/165, 16 ed roof live loads have	-199/19 =-143/1 -12=-2 3-15=-1 7=-137 19=0/3 34=-59 30=-59 23=-59 28=-59 28=-59 28=-59 28=-59 28=-24 1=-169 =-130/9 3-26=-5	11, 7-8=-188/24 96, 33/343, 48/167, '31, 8, 2-35=-272/1 '167, '167, '167, '167, '167, 3/123, '112, 94, 3-34=-131/' 32/80, 0/70, 17-22=-6	43, 42, 154, 57/62	Pla DC Cs 5) Un de: 6) Th loa ove 7) All 8) Tru bra 9) Ga 10) Th chu 11) * T on 3-0	ate DOL= DL=1.15): =1.00; C balancec sign. is truss h id of 12.0 erhangs i plates al uss to be aced aga uss to be aced aga ble studs is truss h ord live k his truss the bott 0.6-00 tall	1.15); Is=1.0 t=1.10 Isnow as bee psf or hon-co re 2x4 fully sh inst late s space as bee bad nor has be bom cho by 2-0	Pf=20.0 psf (Lur); Rough Cat B; loads have bee en designed for g 1.00 times flat r ncurrent with oth MT20 unless oth meathed from on eral movement (ed at 2-0-0 oc. en designed for a nconcurrent with been designed for r din all areas w 0-00 wide will fit	of LL: Lum DOL= n DOL=1.15 Plat Fully Exp.; Ce=0. In considered for the preater of min root oof load of 20.0 p her live loads. Herwise indicated the face or securel i.e. diagonal web a 10.0 psf bottom any other live load a live load of 20. here a rectangle between the both h BCDL = 10.0ps	e .9; this of live osf on l. y y). ads. .0psf tom
FORCES	Max Grav 21=321 26=112 28=247 30=174 32=196 34=221 (Ib) - Maximum Co Tension	 b. E 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; b B; Enclosed; MWFRS (envelope) exterior C-C corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 6-12, Corner(3R) 8-6-12 to 14-6-12, Exterior 12 to 21-0-0, Corner(3E) 21-0-0 to 24-0-0 ilever left and right exposed; end vertical left xposed;C-C for members and forces & or reactions shown; Lumber DOL=1.60 plate 					* SEAL 036322				Manun		

grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

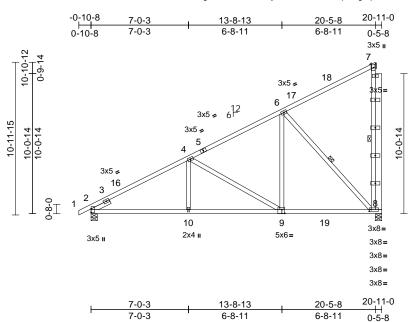
Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	B03	Common Structural Gable	1	1	Job Reference (optional)	163437141
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Mon Feb 05 10:50:13	Page: 2

ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	C01	Half Hip	4	1	Job Reference (optional)	163437142

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:14 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9	
Plate Offsets (X, Y):	[2:0-3-1,0-0-1], [8:0-1-12,0-1-8], [9:0-2-8,0-3-4]

	(A, T). [2.0-3-1,0-0-1],	[0.0-1-12,0-1-0], [9.0	-2-0,0-3-4]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.68 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and 2-1-8 to 1 end vertic MWFRS fi grip DOL= 2) TCLL: AS Plate DOL	2x4 SP No.2 2x4 SP No.3 *Excep 11.8:2x6 SP No.2 Left 2x4 SP No.3 Structural wood she 4-9-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=386 (LC Max Uplift 2=-48 (LC Max Grav 2=948 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-4=-1361 6-7=-164/105, 7-8= 2-10=-397/1163, 8-1 4-10=0/264, 4-9=-58 6-8=-953/226 CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bf p B; Enclosed; MWFR: C-C Exterior(2E) -0-10 p B; Enclosed; MWFR: C-C Exterior(2E) -0-10 al left exposed; C-C for or reactions shown; Lu -1.60 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	I-6-0 athing directly applied cept end verticals. applied or 10-0-0 oc 7-8, 6-8 3-0-5-8 2 14) 14), 8=-343 (LC 14) 2 5), 8=1731 (LC 21) pression/Maximum /28, 4-6=-813/0, 271/93 0=-317/1163 8/185, 6-9=0/584, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1 -3-12 to 20-3-12 zon- members and forces mber DOL=1.60 plate	4) 5) 1 or 6) 7) 8) 9) LO 1) () e; & *	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord ne loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International R802.10.2 at Hanger(s) or provided suff Ib down and design/selec responsibility AD CASE(5) Dead + Smc Increase=1 Uniform Loc Vert: 1-7	Standard ow (balanced): Lun 15 ads (lb/ft) =-60, 8-12=-20 ed Loads (lb)	or great at roof I other II or a 10. with any for a liv s where II fit betty with BC e conne to bear onnectio prces. dance w sections dard AN device(s oncentra 8 on bo ction de	er of min roo bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the bott CDL = 10.0ps ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a SI/TPI 1. b) shall be ated load(s) 7 ttom chord. vice(s) is the	f live bosf on ads. Opsf aom f. e to only and 747 The				SEA 0363	ER RUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

minim February 6,2024

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	C02	Half Hip	1	1	Job Reference (optional)	163437143

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:15 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.8				6-11-11		6-8-3	I	7	-1-11		I			
Plate Offsets (X, Y):	[1:0-4-1,0-0-5]	, [7:0-1-12,0-1-8]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.92	Vert(LL)	-0.10	7-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.17	7-8	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.64	Horz(CT)	0.03	7	n/a	n/a			

Matrix-MSH

BCDL	10.0					
LUMBER TOP CHORD BOT CHORD			4)	design. Provide adeo	snow loads have been cor quate drainage to prevent	water ponding.
WEBS	2x4 SP No.3 *Except* 6-7:2x4 SP No.2	11-7:2x6 SP No.2,	5) 6)	This truss ha	3x5 MT20 unless otherwi s been designed for a 10.0	0 psf bottom
SLIDER BRACING TOP CHORD	Left 2x4 SP No.3 1- Structural wood sheat 2-2-0 oc purlins.	6-0 hing directly applied or	7)	* This truss h on the botton	ad nonconcurrent with any has been designed for a liv n chord in all areas where by 2-00-00 wide will fit betw	e load of 20.0psf a rectangle
BOT CHORD	Rigid ceiling directly a bracing.		8)	One H2.5A S	y other members, with BC Simpson Strong-Tie connect to connect truss to bear	ctors
	1 Row at midpt 6 (size) 1=0-4-0, 7= Max Horiz 1=370 (LC Max Uplift 1=-29 (LC Max Grav 1=896 (LC	14) 14), 7=-343 (LC 14)	9)	UPLIFT at jt(and does not This truss is International	s) 7 and 1. This connection t consider lateral forces. designed in accordance w Residential Code sections and referenced standard AD	n is for uplift only ith the 2018 s R502.11.1 and
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	10)) Hanger(s) or	other connection device(s	s) shall be
TOP CHORD BOT CHORD	1-3=-1328/28, 3-5=-8(1-10=-409/1130, 8-10 7-8=-157/661			b down and	129 lb up at 20-9-12 on b tion of such connection de	ottom chord. The
WEBS	6-7=-251/89, 3-10=0/2 5-7=-972/229, 3-8=-56	, ,	LO 1)	Dead + Sno	ow (balanced): Lumber Inc	rease=1.15, Plat

Code

0.0*

NOTES

BCLL

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-8 to 3-1-8, Interior (1) 3-1-8 to 17-3-12. Exterior(2E) 17-3-12 to 20-3-12 zone:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

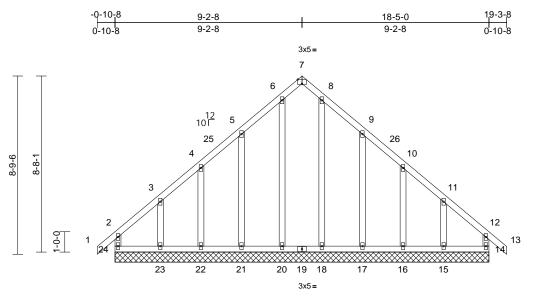
- nonconcurrent with any other live loads. s been designed for a live load of 20.0psf chord in all areas where a rectangle 2-00-00 wide will fit between the bottom other members, with BCDL = 10.0psf.
- npson Strong-Tie connectors to connect truss to bearing walls due to 7 and 1. This connection is for uplift only consider lateral forces.
- esigned in accordance with the 2018 esidential Code sections R502.11.1 and referenced standard ANSI/TPI 1. other connection device(s) shall be
- ient to support concentrated load(s) 747 29 lb up at 20-9-12 on bottom chord. The on of such connection device(s) is the of others.

Standard

IRC2018/TPI2014

- (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-6=-60, 7-12=-20 Concentrated Loads (lb)
 - Vert: 7=-747

Weight: 146 lb FT = 20%


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	D01	Common Supported Gable	1	1	Job Reference (optional)	l63437144

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:16 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

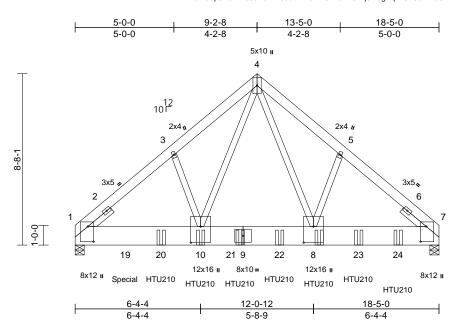
18-5-0

Scale = 1:56.8

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15 ES	/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-5-(21=18-5-(24=18-5-(24=18-5-(Max Horiz 24=224 (I Max Uplift 14=-50 (L 16=-47 (L 21=-114 (23=-168 (applied or 6-0-0 oc), 15=18-5-0, 16=18-5-0,), 18=18-5-0, 20=18-5-0,), 22=18-5-0, 23=18-5-0,)	1) 2)	4 9 1 TES Unbalanced in this design. Wind: ASCE Vasd=103mp Zone and C-C (2N) 2-2-12 to Exterior(2N) 19-3-8 zone; vertical left an forces & MW DOL=1.60 pl Truss design only. For stu see Standarc	-20=-185/8, 8-18= -22=-133/94, 3-23 -17=-213/162, 10- 1-15=-155/167 roof live loads have 7-16; Vult=130mpf h; TCDL=6.0psf; B ; Enclosed; MWFR Corner(3E) -0-10 b 6-2-8, Corner(3E) 12-2-4 to 16-2-4, C cantilever left and nd right exposed; C FRS for reactions s ate grip DOL=1.60 ned for wind loads i ds exposed to wind Industry Gable En	=-159/1 16=-13 been (3-sec CDL=6 CDL=6 S (env -8 to 2-) 6-2-8 orner(3 right ex -C for r shown; n the p d (norm of Deta	59, 3/92, considered for 0.0psf; h=25ft; elope) exterio 2-12, Exterior to 12-2-4, IE) 16-2-4 to posed ; end nembers and Lumber lane of the tru al to the face) ils as applicat	r or iss), ole,	on 1 3-00 cho 13) Pro bea 24, upli join 15. 14) This Inte R80	the botto 6-00 tall rd and a vide med ring plat 50 lb up ft at joint t 17, 47 s truss is rnationa	m choi by 2-0 ny oth chanica e capa lift at jo 22, 16 lb uplif desig I Resic and refe	rd in all areas wh 0-00 wide will fit l er members. al connection (by biole of withstandi bint 14, 114 lb up 58 lb uplift at joint t at joint 16 and 1 ned in accordance dential Code sect erenced standard	between the bottom r others) of truss to ng 69 lb uplift at joint lift at joint 21, 47 lb t 23, 116 lb uplift at 163 lb uplift at joint se with the 2018 ions R502.11.1 and
FORCES TOP CHORD BOT CHORD	16=173 (L 18=225 (L 21=253 (L 23=226 (L (Ib) - Maximum Com Tension 2-24=-167/63, 1-2=(3-4=-104/90, 4-5=-9 6-7=-91/169, 7-8=-9	LC 22), 17=253 (LC 22), LC 22), 20=225 (LC 21), LC 21), 22=173 (LC 21), LC 24), 24=204 (LC 25) pression/Maximum 0/39, 2-3=-165/140, 2/115, 5-6=-114/233, 1/169, 8-9=-114/233, 1/169, 8-9=-114/233, =-89/71, 11-12=-153/116 -154/47 -23=-106/187, -18=-106/187,	5) 6) 6, 7) 8) 9) 10)	TCLL: ASCE Plate DOL=1 DOL=1.15); 1 Cs=1.00; Ct= Unbalanced s design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be ft braced again Gable studs s This truss ha	alified building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat B 1.10; Rough Cat B 1.10 snow loads have be sof or 1.00 times fla on-concurrent with 2x4 MT20 unless of es continuous botto Illy sheathed from spaced at 2-0-0 oc. s been designed fo d nonconcurrent w	(roof LI Lum DC 3; Fully een cor or great tr roof lo other lip other win chor one fac one fac one fac one fac	: Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps ve loads. se indicated. d bearing. te or securely liagonal web). D psf bottom	1.15); live sf on		My manner		in the second se	EER. KIN

February 6,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	D02	Common Girder	1	3	Job Reference (optional)	163437145

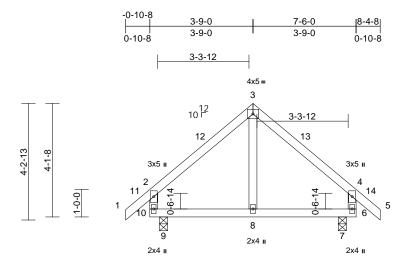
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:16 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.3 Plate Offsets (X, Y): [1:0-9-3,0-3-8], [7:0-9-3,0-3-8], [8:0-9-12,0-6-0], [10:0-9-12,0-6-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	-0-0 .15 .15 IO RC2018/TPI201	CSI TC BC WB Matrix-MSH	0.36 0.47 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.03	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 BOT CHORD 2x7 WEBS 2x4 SLIDER Lef 1 BRACING TOP CHORD Stt BRACING CHORD Stt BRACING CHORD Stt BOT CHORD Stt BOT CHORD Stt BOT CHORD Str BOT CHORD 1-1 WEBS 3-1 S-2 BOT CHORD 1-1 WEBS 3-1 5-5 NOTES 1) 3-ply truss to b Top chords cor follows: 2x6 - 2 Bottom chords screws as follo Web chords co follows: 2x4 - 1 2) All loads are co except if noted CASE(S) sectic provided to dis unless otherwis	6 SP No.2 12 SP 2400F 2.0E 4 SP No.3 *Excep ft 2x4 SP No.3 - 1 1-6-0 ructural wood she 0-0 oc purlins. gid ceiling directly acing. e) 1=0-5-8, 7 (Grav 1=-176 (L (Grav 1=-176 (L (Grav 1=-14941 () - Maximum Com- nsion 5=-11620/0, 5-7=- 4=-13070/0 10=0/10024, 8-10= 10=-53/312, 4-10= 3=0/360 e connected with 10d (Prows staggered a connected with 10d row at 0-9-0 oc. onsidered equally as front (F) or bar on. Ply to ply conr tribute only loads se indicated.	t* 10-4,8-4:2x4 SP No.2 1-6-0, Right 2x4 SP No.2 athing directly applied of applied or 10-0-0 oc 7=0-5-8 C 10) (LC 21), 7=10763 (LC 6 pression/Maximum 11795/0, 1-3=-13203/0, =0/6737, 7-8=0/8879 =0/9733, 4-8=0/6473, ther as follows: (0.131*x3") nails as at 0-9-0 oc. impson SDS 1/4 x 4-1/2 staggered at 0-4-0 oc. (0.131*x3") nails as	Vasd= Cat. II; zone; DOL=' 5) TCLL: Plate I DOL=' Cs=1.0 6) Unbala design 7) This tri chord I 0) 8) * This on the 3-06-0 chord i 9) This tri Interna R802. 10) Use Si 14-100 spaced end to bottom 11) Fill all 12) Hange provid Ib dow design respor LOAD CA3 1) Dead Increi Unifo	ASCE 7-16; Pr=20.0 psi OL=1.15); Pf=20.0 psf (1.15); Is=1.0; Rough Cat 0; Ct=1.10 nced snow loads have I uss has been designed by load nonconcurrent v russ has been designed bottom chord in all area 0 tall by 2-00-00 wide wi and any other members, sis is designed in accom- tional Residential Code 0.2 and referenced star mpson Strong-Tie HTU2 x1 1/2 Truss, Single Ply x1 2-0-00 cmax. startir 16-4-4 to connect truss(BCDL=6 RS (env exposed pL=1.60 f (roof Ll (Lum DC e B; Fully been col for a 10. with any f for a lin s where ill fit bett, with BC dance w sections ndard At 210 (32- c) Girder) ng at 4-4 (es) to b is in condervice device(s concentr. 3 on bott ection de	6.0psf; h=25ft elope) exteric ; end vertical plate grip .: Lum DOL= DL=1.15 Plate • Exp.; Ce=0.9 nsidered for th 0 psf bottom other live load re load of 20.1 a rectangle ween the bott DL = 10.0psj bith the 2018 a R502.11.1 a SSI/TPI 1. 10d Girder, or equivalent -4 from the le ack face of ntact with lum s) shall be ated load(s) 8 om chord. Ti vice(s) is the	or left 1.15 2- 3; his dds. Opsf om f. and t ft ber. 833 he		19=-548 23=-190	87 (B), 20 (B),	(B), 10=-1900 (B) 20=-1904 (B), 22 24=-1900 (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	ROLU 22 F.F.P. T. L.

February 6,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

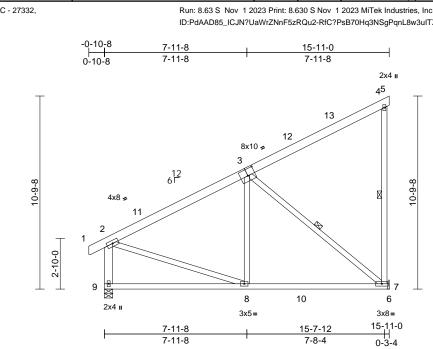


Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	E01	Common	1	1	Job Reference (optional)	163437146

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:17 ID:5YjLyPhGJKHB5AEdSp6x7Qy7LK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.9


Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	-0.01	8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.02	8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR		. ,						
BCDL	10.0										Weight: 37 lb	FT = 20%
	bracing. (size) 7=0-3-8, 9 Max Horiz 9=-114 (L Max Uplift 7=-38 (LC	cept end verticals. applied or 10-0-0 oc 9=0-3-8 C 12) C 15), 9=-38 (LC 14)	d or d or d or d or d or d or d or d or		flat roof le h other li for a 10. with any d for a liv as where vill fit betw a nnectors due to U plift only	bad of 20.0 ps ve loads. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto recommender IPLIFT at jt(s) and does not	sf on ds.)psf om d to 9					
FORCES	Max Grav 7=460 (Lo (lb) - Maximum Com	,. ,	3) 1113 11033 13	designed in accor Residential Code			nd					
TOP CHORD	Tension 1-2=0/49, 2-3=-269/	03 3-1260/01		ind referenced star	ndard AN	ISI/TPI 1.						
	4-5=0/49, 2-10=-375		LOAD CASE(S)	Standard								
BOT CHORD	9-10=-11/120, 8-9=- 6-7=-11/120	11/120, 7-8=-11/120	,									
WEBS	3-8=-26/84											
NOTES												
1) Unbalance	ed roof live loads have	been considered for										11.
Vasd=103 Cat. II; Exp zone and 0 2-1-8 to 5- cantilever right expos	CE 7-16; Vult=130mph smph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 4-8, Exterior(2E) 5-4-4 left and right exposed sed;C-C for members ns shown; Lumber DC	CDL=6.0psf; h=25ft; S (envelope) exterior b-8 to 2-1-8, Exterior(3 to 8-4-8 zone; ; end vertical left and and forces & MWFR	2R)						N. C. LININ	in it	SEA 0363	
3) TCLL: AS0 Plate DOL DOL=1.15 Cs=1.00; 0	CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	;									EER. ALBERT

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	G01	Monopitch	5	1	Job Reference (optional)	163437147

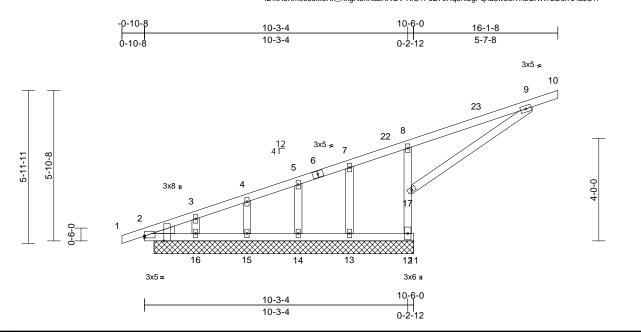
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:18 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [3:0-5-0,0-4-8]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYESCodeIRC	5 5	CSI TC BC WB Matrix-MSH	0.49 0.66 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >909 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly stracting. WEBS 1 Row at midpt	athing directly applied or rept end verticals. applied or 10-0-0 oc 4-7, $3-7nical, 9=0-5-8(14)(2, 14)$	 load of 12.0 overhangs n 5) This truss ha chord live loa 6) * This truss f on the bottor 3-06-00 tall t chord and ar 7) Refer to gird 8) Provide mec bearing plate joint 7. 9) This truss is International 	s been designed for opsf or 1.00 times flat on-concurrent with c s been designed for ad nonconcurrent wi has been designed fa n chord in all areas by 2-00-00 wide will by other members, w er(s) for truss to trus hanical connection (e capable of withstar designed in accorda Residential Code so had referenced stand Standard	t roof lo other liv r a 10.0 th any or a liv where fit betw vith BC ss conr (by oth hoding 2 ance w ections	bad of 20.0 p re loads. 0 psf bottom other live loa e load of 20.1 a rectangle reen the bott DL = 10.0psi lections. ers) of truss t 19 lb uplift at ith the 2018 R502.11.1 a	sf on ads. Opsf om f. to t		2	Į	SEA 0363	ROLL L 22 BERIN

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


minim February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	163437148

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:18 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

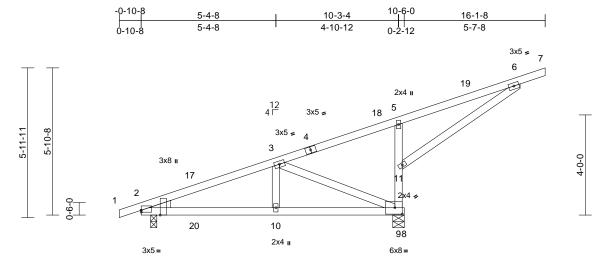
Page: 1

Scale = 1:44.9

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge]

	.,		_										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp	0.75 0.21 0.69 h (3-sec		in n/a n/a -0.01	(loc) - - 2 12) This	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb ned in accordance	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E No.3 2x4 SP No.3 Left: 2x4 SP No.3		d or 2)	Vasd=103mp Cat. II; Exp E zone and C-(2-0-0 to 13-1 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu	shown; Lunberger, Ed. b); TCDL=6.0psf; E b); TCDL=6.0psf; E c); Exterior(2E) 13 t and right exposed d); C-C for members shown; Lumber Di hed for wind loads ids exposed to wind lindustry Gable Er ialified building des 7-16; Pr=20.0 psf Pr=20.0 psf	CDL=6 RS (env 0-8 to 2 -1-8 to d; end v and for OL=1.60 in the p d (norm nd Deta signer as	.0psf; h=25ft elope) exterior -0-0, Interior 16-1-8 zone; retrical left ar cces & MWFF) plate grip ane of the trr al to the face is as applica s per ANSI/TI	nd (1) RS uss e), ble, PI 1.	Inte	rnationa 2.10.2 a	I Resid	dential Code sect erenced standard	ions R502.11.1 and
	14=10-1-6 21=10-1-6 Max Horiz 2=210 (LC Max Uplift 2=-3 (LC 13=-115 (L Max Grav 2=1 (LC 2 13=98 (LC	C 10), 21=210 (LC 10) 14), 12=-264 (LC 14), C 21), 14=-26 (LC 10) LC 14), 21=-3 (LC 14) 1), 12=893 (LC 21), C 7), 14=202 (LC 21), LC 21), 16=253 (LC 1	1-8,) 4)), 5)), 6)), 7)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs no All plates are Gable studs	.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b us been designed for psf or 1.00 times fi on-concurrent with 2 2x4 MT20 unless spaced at 2-0-0 oc	Lum DC B; Fully been cor or great at roof k other liv otherwi	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 p /e loads. se indicated.	e 9; his f live sf on				NITH CA	RO
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-535/3	pression/Maximum 377, 3-4=-531/378, 435/359, 7-8=-437/43	8) 9) 32,	chord live loa * This truss h on the botton 3-06-00 tall b	is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil	vith any for a liv s where	other live loa e load of 20.0 a rectangle	0psf		4	25	110 1	
BOT CHORD	2-16=-339/244, 15-1 14-15=-339/244, 13- 12-13=-339/244, 11-	6=-339/244, 14=-339/244, 12=0/0	10	 Provide mecl bearing plate 	ny other members. hanical connection capable of withsta ift at joint 12, 155 lb	anding 3	lb uplift at jo	oint		1111V		0363	
WEBS NOTES	12-17=-870/552, 8-1 9-17=-810/584, 3-16 5-14=-167/99, 7-13=	=-153/3, 4-15=-120/1		joint 2.	14, 11 lb uplift at jo		·	at		CONTRACTOR OF CONTRACTOR		AIC A. G	EER. KINN
												E change	m (C 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


RENCO

818 Soundside Road Edenton, NC 27932

February 6,2024

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	H02	Monopitch	6	1	Job Reference (optional)	l63437149

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:19 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	0-4-8	5-4-8	10-3-4	10-6-0
	0-4-8	5-0-0	4-10-12	0-2-12
Scale = 1:46				

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [9:0-3-8,0-3-0]

	,, i). [2.Euge,0 0 14	j, [2.0-2-3,Eugej, [9.9		<u>[</u>	· · · · ·								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	0.04	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.27	Vert(CT)	-0.04	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.71	Horz(CT)	-0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 67 lb	FT = 20%
	2x4 SP No.3 *Excep 2.0E Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins.	athing directly applie applied or 8-5-13 oc 9=0-5-8 C 10) : 10), 9=-379 (LC 10	6) d or ; 7)) 8)	load of 12.0 overhangs n This truss ha chord live loa * This truss I on the bottor 3-06-00 tall I chord and au One H2.5A S recommende UPLIFT at jtu and does no This truss is International	as been designed f psf or 1.00 times f on-concurrent with s been designed f ad nonconcurrent in has been designed in chord in all area by 2-00-00 wide wi by other members. Simpson Strong-Ti ed to connect truss (s) 9 and 2. This co t consider lateral for designed in accorr Residential Code nd referenced star	lat roof lin o ther lin for a 10. with any d for a liv s where ill fit betw e conne s to bear onnectio orces. dance w sections	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	ads. Opsf rom e to only					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)									
TOP CHORD	1-2=0/17, 2-3=-368/2 5-6=-594/757, 6-7=-2	, ,											
BOT CHORD	2-10=-447/338, 9-10	=-447/338, 8-9=0/0											
WEBS	9-11=-840/532, 5-11	=-358/182,											Un.
	3-10=-315/219, 3-9=	-563/753, 6-11=-825	5/599									IN CA	DUL
NOTES											1	"aTH UP	TON'
Vasd=103 Cat. II; Exp zone and 0 2-1-8 to 13 cantilever C for mem shown; Lu	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br p B; Enclosed; MWFR: C-C Exterior(2E) -0-10 3-1-8, Exterior(2E) 13- left exposed ; porch le bbers and forces & MW imber DCL=1.60 plate CE 7-16: Pr=20 0 psf (CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1-8 to 16-1-8 zone; ft and right exposed; /FRS for reactions grip DOL=1.60	r 1) :C-							Van 1111	AND	SEA 0363	• -

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

G

February 6,2024

minum

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	J01	Common	5	1	Job Reference (optional)	163437150

Loading

TCDL

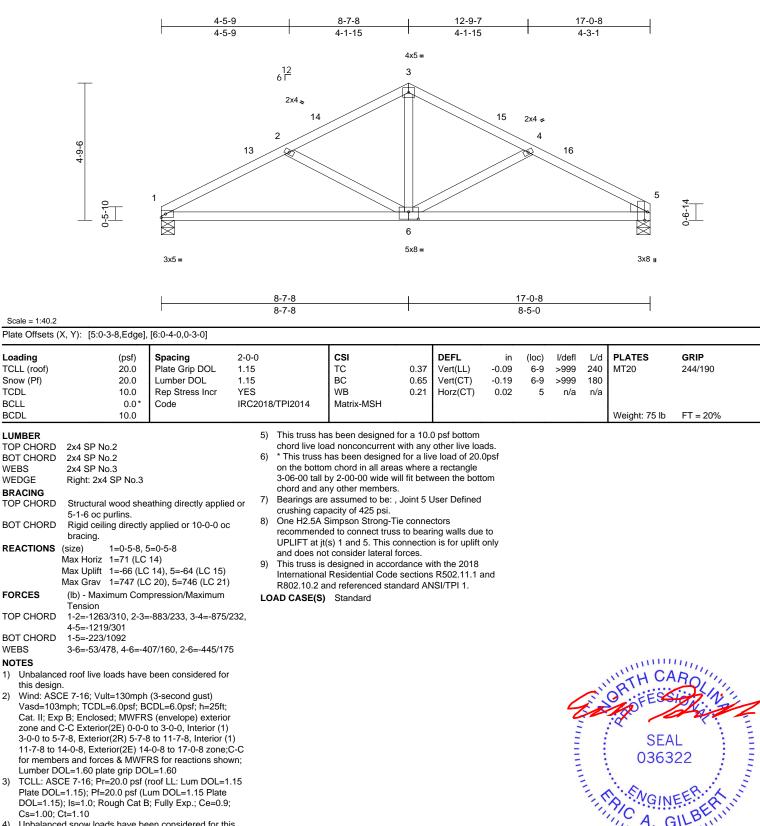
BCLL

BCDL

WEBS

WEBS

NOTES


2)

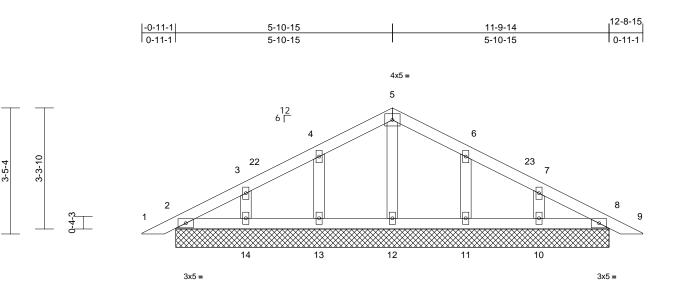
3)

WEDGE

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:19 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Unbalanced snow loads have been considered for this 4) design.


(1111111)

February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	PBA	Piggyback	2	1	Job Reference (optional)	163437151

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Mon Feb 05 10:50:20 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-9-14

Scale = 1:31.4												I	
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.08 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 52 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	11=11-9-1	0 7 11	C	Vasd=103m Cat. II; Exp I zone and C- 3-4-3 to 3-10 (2N) 9-10-8 zone; cantile and right exp MWFRS for grip DOL=1. Truss desig	7-16; Vult=130m oh; TCDL=6.0psf 3; Enclosed; MW C Corner(3E) 0-4 -b8, Corner(3R) 3 to 10-4-13, Corner ver left and right posed;C-C for me reactions shown; 60 need for wind loac uds exposed to w	; BCDL=6 FRS (env I-3 to 3-4- -10-8 to 9 er(3E) 10- exposed embers ar Lumber I	Desf; h=25ft; elope) exterior 3, Exterior(2N -10-8, Exterior 4-13 to 13-4- ; end vertical d forces & DOL=1.60 pla	r I) or 13 Ieft te Iss	Inte R80 14) See Deta	rnationa 2.10.2 a Standa ail for C sult qua	al Resid and ref ard Indu onnect ilified b	ferenced standar ustry Piggyback tion to base truss building designer.	tions R502.11.1 and d ANSI/TPI 1. Truss Connection as applicable, or

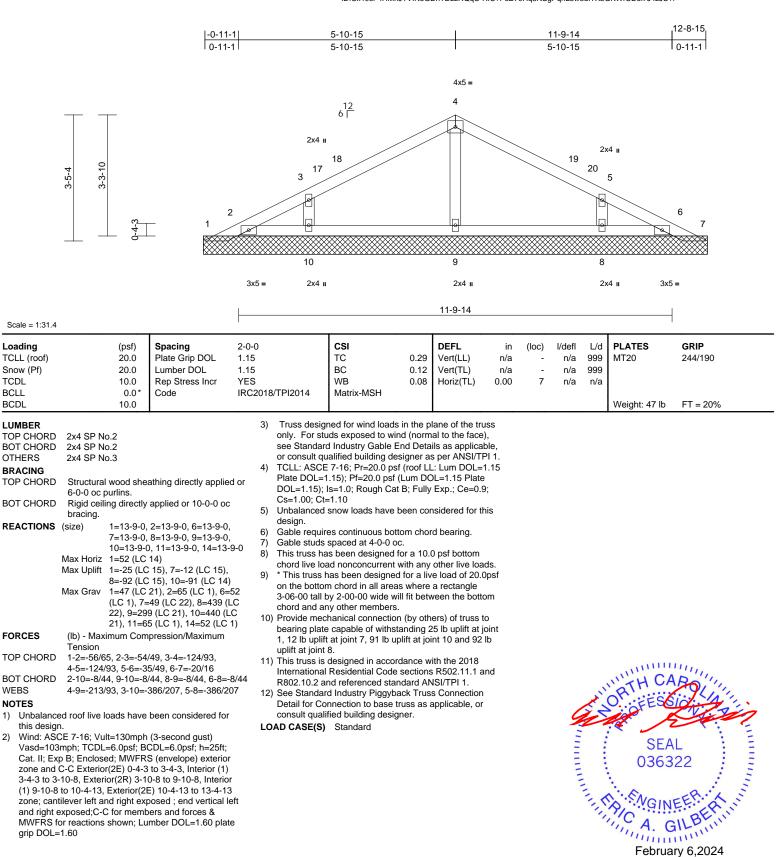
		13=11-9-14, 14=11-9-14,
		15=11-9-14, 19=11-9-14
	Max Horiz	2=52 (LC 18), 15=52 (LC 18)
	Max Uplift	2=-9 (LC 15), 8=-11 (LC 15),
		10=-45 (LC 15), 11=-47 (LC 15),
		13=-47 (LC 14), 14=-45 (LC 14),
		15=-9 (LC 15), 19=-11 (LC 15)
	Max Grav	2=123 (LC 21), 8=123 (LC 22),
		10=237 (LC 22), 11=244 (LC 22),
		12=143 (LC 21), 13=244 (LC 21),
		14=237 (LC 21), 15=123 (LC 21),
		19=123 (LC 22)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/17,	2-3=-46/33, 3-4=-56/49,
	4-5=-63/1	16 5-6=-63/116 6-7=-56/49

- то 16, 6-7=-7-8=-29/25, 8-9=0/17 2-14=-9/67, 13-14=-9/67, 12-13=-9/67, BOT CHORD 11-12=-9/67, 10-11=-9/67, 8-10=-9/67 WEBS 5-12=-102/0, 4-13=-208/125, 3-14=-181/113, 6-11=-208/125, 7-10=-181/113
- NOTES
- Unbalanced roof live loads have been considered for 1) this design.

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 2, 11 lb uplift at joint 8, 47 lb uplift at joint 13, 45 lb uplift at joint 14, 47 lb uplift at joint 11, 45 lb uplift at joint 10, 9 Ib uplift at joint 2 and 11 lb uplift at joint 8.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



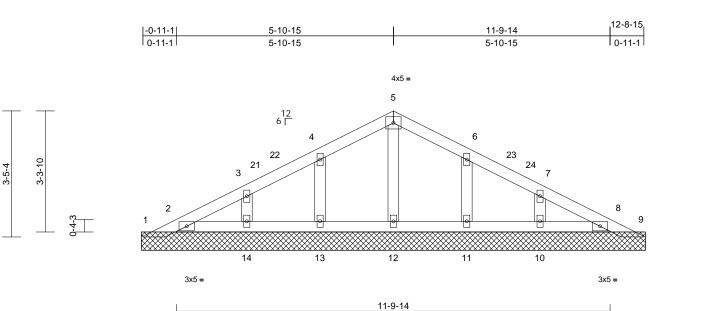
Job	Truss	Truss Type	Qty	Ply		
24010134	PBA1	Piggyback	18	1	Job Reference (optional)	163437152

1)

2)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 05 10:50:20 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	PBA2	Piggyback	2	4	Job Reference (optional)	163437153

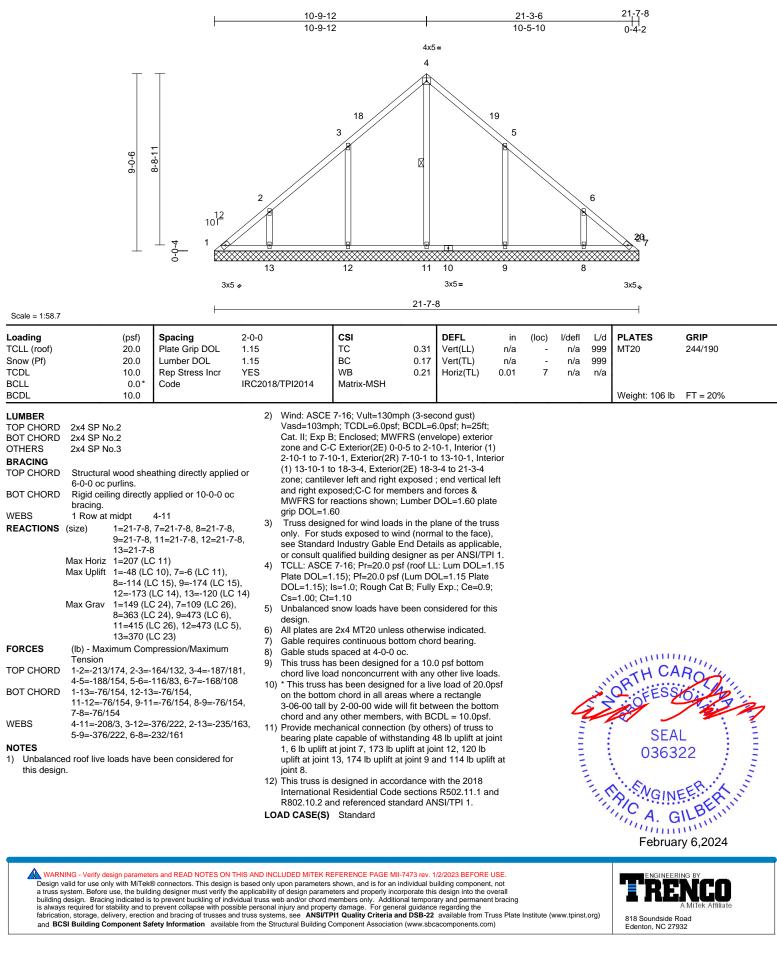
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:23 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.4

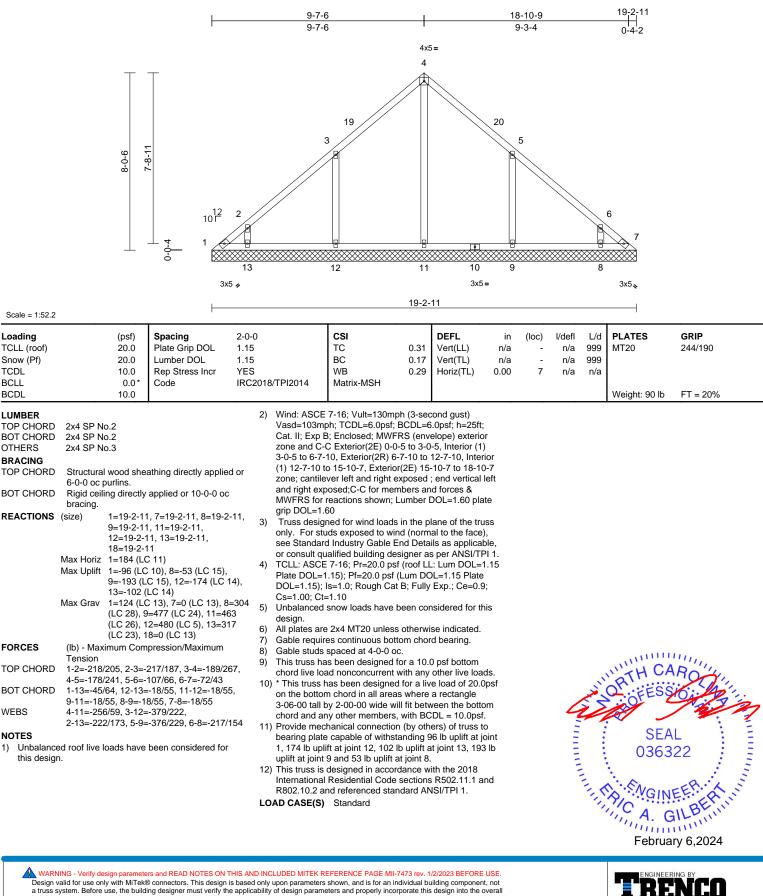
Scale = 1:31.4													
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.02 0.01 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 207 lb	FT = 20%
	9=13-9-0, 12=13-9-0, 15=13-9-0 15=13-9-0 Max Horiz 1=52 (LC Max Uplift 1=-25 (LC (LC 15), 9 15), 11=-4 14), 14=-1 14), 18=-1 Max Grav 1=24 (LC 8=142 (LC (LC 22), 1 (LC 21), 1	r applied or 10-0-0 oc , 2=13-9-0, 8=13-9-0 , 10=13-9-0, 11=13-6 0, 13=13-9-0, 14=13- 0, 18=13-9-0 14) 215), 2=-14 (LC 14), 2=-2 (LC 22), 10=-45 47 (LC 15), 13=-48 (I 44 (LC 14), 15=-14 (I 7 (LC 15) 18), 2=154 (LC 21), 12= 13=244 (LC 21), 14=: 15=154 (LC 21), 18= 15=154 (LC 21), 18= 15=154 (LC 21), 18=154 (LC 21), 18= 15=154 (LC 21), 18=154 (LC 2	ed or 2) -0, 3) -0, -0, 4) -0, 2, 4) -0, 4) -0, 2, 4) -0, 4) -0, 2, 4) -0, 4) -0, 2, 4) -0, 2, 4) -0, 2, 4) -0, 2, 4) -0, 4) -0, 4) -0, 2, 4) -0, 2, 4) -0, 4) -0, 4) -0, 2, 4) -0, 4)	Top chords of follows: 2x4 Bottom chorr follows: 2x4 All loads are except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103my Cat. II; Exp E zone and C-1 3-4-3 to 3-10 (1) 9-10-8 to zone; cantille and right exp MWFRS for grip DOL=1.1 Truss design only. For stu see Standard or consult qu TCLL: ASCE	ned for wind loads uds exposed to wir d Industry Gable E alified building des 7-16; Pr=20.0 psi	d (0.131 10d (0.1 y applie ack (B) nnection s noted th (3-sec BCDL=6 RS (env -3 to 3-4 10-8 to 2E) 10 xposed nbers ar -umber l in the p in (norm in d Deta signer a f (roof LL	x3") nails as 31"x3") nails as 31"x3") nails as d to all plies, face in the LO s have been as (F) or (B), considered for cond gust) .0psf, h=25ft; elope) exteriol -13 to 13-4-13; end vertical I d forces & DOL=1.60 plat lane of the true al to the face) ils as applicab s per ANS/ITP .: Lum DOL=1	AD r aeft te ss , ble, , 11. .15	on 1 3-0 cho 13) Pro bea 2, 7 join upli 2 a 14) Thi: Inte R8(15) See Det	the bott 6-00 tall ord and a vide me aring pla ' Ib uplif if at join nd 7 Ib u s truss i ernationa 02.10.2 e Standa call for C usult qua	om cho I by 2-C any oth echanic te capa t at joir b uplift at 11, 4 uplift at s desig al Resi and ref ard Ind Connect alified b	ord in all areas wh y0-00 wide will fit here members. al connection (by able of withstand ht 8, 25 lb uplift al at joint 13, 44 lb 5 lb uplift at joint joint 8. ned in accordand dential Code sec ferenced standar ustry Piggyback ' tion to base truss building designer.	between the bottom of others) of truss to ng 14 lb uplift at joint joint 1, 2 lb uplift at uplift at joint 14, 47 ll 10, 14 lb uplift at join ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. Fruss Connection as applicable, or
TOP CHORD	1-2=-56/69, 2-3=-48 4-5=-62/105, 5-6=-6 7-8=-29/26, 8-9=0/2 2-14=-15/54, 13-14=	2/105, 6-7=-55/40, 4	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 7) Unbalanced snow loads have been considered for this design. 54 8) All plates are 2x4 MT20 unless otherwise indicated. 9) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.									L	
WEBS	11-12=-15/54, 10-11 5-12=-103/0, 4-13=- 6-11=-208/121, 7-10	208/121, 3-14=-181/	'90, <u>9</u>)	 a) All plates are 2x4 MT20 unless otherwise indicated. b) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 									
NOTES	, .) This truss ha	as been designed f ad nonconcurrent v	or a 10.		ds.			in the second second	A. C	EER. HILL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

February 6,2024


Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLB1	Valley	1	1	Job Reference (optional)	163437154

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:24 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLB2	Valley	1	1	Job Reference (optional)	163437155

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:24 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

tpinst.org) 818 Soundside Road

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLB3	Valley	1	1	Job Reference (optional)	163437156

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

FORCES

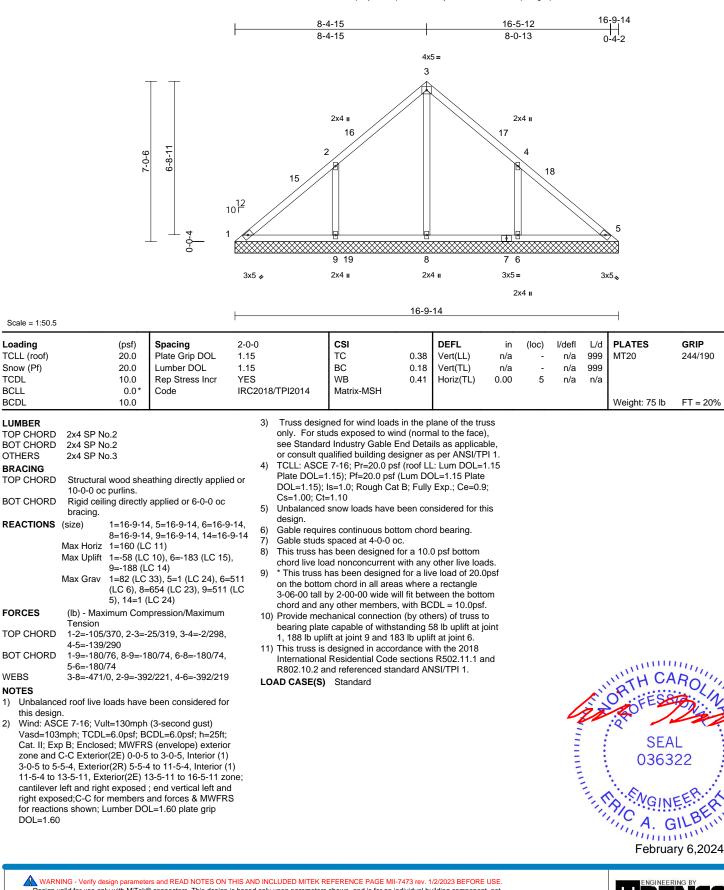
WEBS

NOTES

1)

2)

BRACING


TCDL

BCLL

BCDL

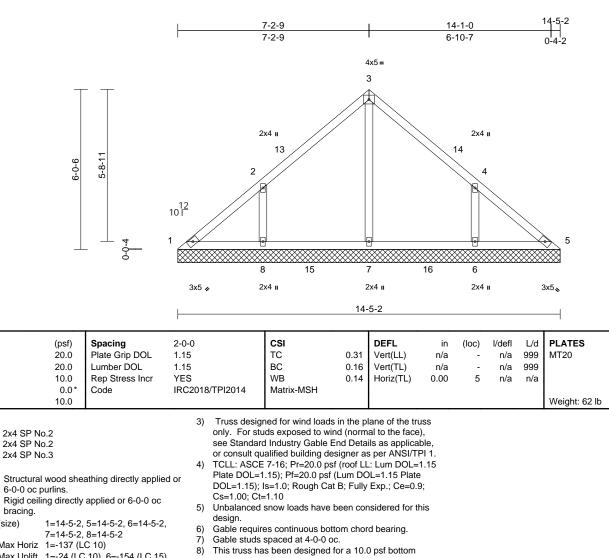
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:24 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type Q		Ply	DAVID WEEKLEY - 129 SERENITY		
24010134	VLB4	Valley	1	1	Job Reference (optional)	l63437157	


Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 05 10:50:25 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

Max Horiz Max Uplift 1=-24 (LC 10), 6=-154 (LC 15), 8=-157 (LC 14) Max Grav 1=124 (LC 24), 5=99 (LC 23), 6=454 (LC 21), 7=403 (LC 23), 8=454 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-152/141, 2-3=-176/118, 3-4=-176/112, 4-5=-121/106 BOT CHORD 1-8=-59/126, 7-8=-59/100, 6-7=-59/100,

bracing.

- 5-6=-59/100 WEBS 3-7=-224/0. 2-8=-375/196. 4-6=-375/195
- NOTES

Scale = 1:43.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

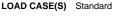
TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)


TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-14, Interior (1) 3-2-14 to 4-2-14, Exterior(2R) 4-2-14 to 10-2-14, Interior (1) 10-2-14 to 11-2-14, Exterior(2E) 11-2-14 to 14-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

- chord live load nonconcurrent with any other live loads. 9)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 24 lb uplift at joint 1, 157 lb uplift at joint 8 and 154 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

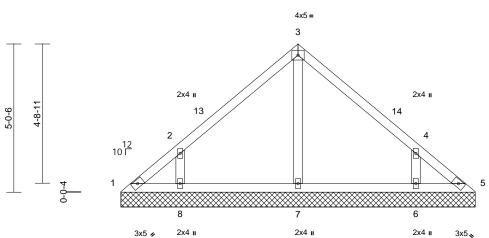
Edenton, NC 27932

Job	Truss	Truss Type Qty Ply DAVID WEEKLEY - 129 SE		DAVID WEEKLEY - 129 SERENITY		
24010134	VLB5	Valley	1	1	Job Reference (optional)	163437158

6-0-2

6-0-2

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:26 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-8-3

5-8-0

12-0-5 0-4-2

Page: 1

12-0-5

Scale = 1:39.1

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.31	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 50 lb	FT = 20%
LUMBER				3	Truss desia	ned for wind loads	in the p	lane of the tru	JSS					
TOP CHORD	2x4 SP N	lo.2		- /		ids exposed to wi								
BOT CHORD	2x4 SP N				see Standar	d Industry Gable B	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	lo.3				alified building de								
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD			athing directly applie	d or		.15); Pf=20.0 psf ls=1.0; Rough Ca	·							
	6-0-0 oc				Cs=1.00; Ct=	, 0	U, Tully	Lxp., 0e=0.	<i>,</i>					
BOT CHORD	bracing.	ling directly	applied or 10-0-0 oc	5	,	snow loads have	been cor	nsidered for t	nis					
REACTIONS	(size)	1-12-0-5	5=12-0-5, 6=12-0-5		design.									
REAGINGING	(3120)	7=12-0-5,	,	6		es continuous bot		d bearing.						
	Max Horiz	1=-114 (L		7)		spaced at 4-0-0 o								
		(10), 5=-6 (LC 11),	8)		is been designed								
			C 15), 8=-139 (LC 1-	⁴⁾ 9		ad nonconcurrent								
	Max Grav	1=91 (LC	24), 5=70 (LC 23), 6	=434 9		nas been designe n chord in all area			Jpsi					
			=260 (LC 20), 8=434	4 (LC		by 2-00-00 wide w			h					
		20)				y other members			0111					
FORCES		kimum Com	pression/Maximum	10		hanical connectio		ers) of truss t	0					
	Tension				,	capable of withs		,						
TOP CHORD		,	218/115, 3-4=-218/1	15,	1, 6 lb uplift	at joint 5, 139 lb u	plift at joi	int 8 and 136	lb					
DOTOUDDD	4-5=-88/6				uplift at joint	6.								
BOT CHORD		,	/73, 6-7=-31/73,	1		designed in accor								111
WEBS	5-6=-31/7 3-7=-172		1/220, 4-6=-401/220			Residential Code			ind				TH CA	5''''
	57-172	, 0, 2 0- 40	1/220, 7 0= 701/220			nd referenced sta	ndard AN	NSI/TPL1.					"ATH UF	NON!
NOTES				L	DAD CASE(S)	Standard						1.	n	12. VA.

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-10, Exterior(2E) 9-0-10 to 12-0-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

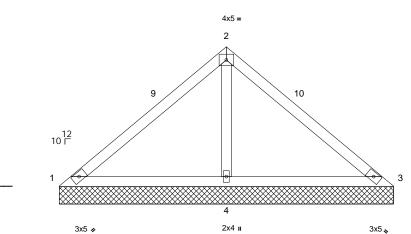
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLB6	Valley	1	1	Job Reference (optional)	163437159

4-9-12

4-9-12

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:26 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-3-6

4-5-10

9-7-8

Scal	e =	1:33.2	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20 20 10 (20.0 Pla 20.0 Lu 0.0 Re	Dacing ate Grip DOL Imber DOL ep Stress Incr Dde	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
	9-7-8 oc purlins Rigid ceiling di bracing. (size) 1=9- Max Horiz 1=90 Max Uplift 1=-4 4=-1 Max Grav 1=96 (LC	ns. lirectly app 9-7-8, 3=9- 00 (LC 11) 49 (LC 21) 108 (LC 14 95 (LC 20), 20)), 3=-49 (LC 20), 4) , 3=95 (LC 21), 4	6 7 8 9	Plate DOL=1 DOL=1.15); Cs=1.00; Ct- Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar 0) Provide mec	57-16; Pr=20.0 ps 15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w hanical connectio e capable of withs?	(Lum DC t B; Fully been cor tom chor c. for a 10. with any d for a liv a for a liv s where ill fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	o; ds. opsf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Tension 1-2=-115/373, 1-4=-214/172, 2-4=-595/271	2-3=-115/			1, 49 lb uplifi 1) This truss is International	t at joint 3 and 108 designed in accor Residential Code nd referenced stat	B lb uplift dance w sections	at joint 4. ith the 2018 8 R502.11.1 a						
1) Unbalance this design	ed roof live loads n. CE 7-16; Vult=130			r									THCA	Ro

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-7-13, Exterior(2E) 6-7-13 to 9-7-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

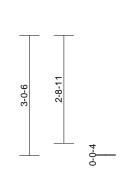
Mannin 11 CHILLING CONTRACT SEAL 036322 G 11111111 February 6,2024

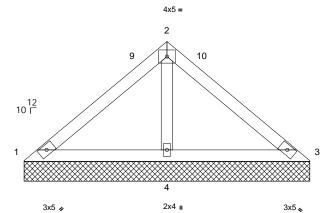
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	s Truss Type Qty Ply DAVID WEEKLEY - 129 SERENITY		DAVID WEEKLEY - 129 SERENITY		
24010134	VLB7	Valley	1	1	Job Reference (optional)	163437160

3-7-6

3-7-6


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:27 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-9

3-3-4 10

7-2-11

Scale = 1:29.1

00010 = 1.23.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-2-11 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-11, Max Horiz 1=67 (LC Max Uplift 1=-17 (LC 4=-73 (LC Max Grav 1=105 (LC 4=531 (LC (lb) - Maximum Com Tension 1-2=-88/228, 2-3=-8	applied or 6-0-0 oc , 3=7-2-11, 4=7-2-11 11) 2 21), 3=-17 (LC 20), 2 14) C 20), 3=105 (LC 21 C 20) apression/Maximum 18/228	6) 7) 8) 9)), 10 11	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss ha chord live lo: * This truss ha chord live lo: * This truss ha chord and ai) Provide mee bearing plate to trus s is International	snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide of y other member chanical connectii e capable of with t at joint 3 and 73 designed in acco Residential Cod nd referenced sta	f (Lum DC at B; Fully been con- bottom chor oc. f for a 10. t with any ed for a liv as where will fit betv s. on (by oth standing 1 b lb uplift a ordance w e sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the botth ers) of truss t it joint 4. ith the 2018 \$ R502.11.1 a	e 9; his dds. 0psf om to joint					
1) Unbalance this design	ed roof live loads have n.		r									UNITH CA	ROUL

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-3-0, Exterior(2E) 4-3-0 to 7-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

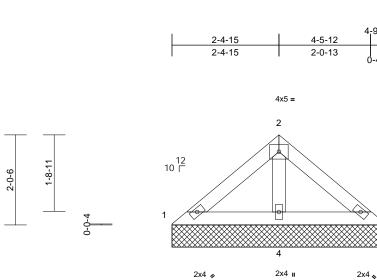
GI

SEAL

036322

CHARLEN WINDOW

C


Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLB8	Valley	1	1	Job Reference (optional)	163437161

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:27 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-14

3

Page: 1

2x4 🍬 2x4 🛛

4-9-14

Scale = 1:26 _

Scale = 1.20		i			i								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 17 lb	FT = 20%
LUMBER			5)	Unbalanced	snow loads have	been cor	nsidered for th	his					
TOP CHORD				design.									
BOT CHORD			6)		es continuous bo		d bearing.						
OTHERS	2x4 SP No.3		7)		spaced at 4-0-0 c								
BRACING			8)		as been designed			de					
TOP CHORD	 Structural wood she 4-9-14 oc purlins. 	athing directly appli	ed or 9)	* This truss I	ad nonconcurrent	d for a liv	e load of 20.						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 6-0-0 oc		3-06-00 tall I	m chord in all area by 2-00-00 wide w	vill fit betv		om					
REACTIONS	(size) 1=4-9-14,	3=4-9-14, 4=4-9-14	4		ny other members								
	Max Horiz 1=43 (LC	,	10		hanical connectio								
	Max Uplift 3=-7 (LC	,			e capable of withs	standing i	Ib uplift at jo	int 3					
	Max Grav 1=88 (LC	20), 3=88 (LC 21),	4=293 11	and 33 lb up	designed in acco	rdance w	ith the 2018						
	(LC 20)		1		Residential Code			and					
FORCES	(lb) - Maximum Corr	pression/Maximum			nd referenced sta								
	Tension		L	DAD CASE(S)									
TOP CHORD	,			(-)									
BOT CHORD		/87											
WEBS	2-4=-180/95												
NOTES													
,	ed roof live loads have	been considered for	or									NITH CA	
this desig		(2 accord such)										minin	1111
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B											WAH CA	ROUL
	xp B; Enclosed; MWFR											· R · · · · ·	- City
	C-C Exterior(2E) zone									/	5.	2 The	12 pm
	; end vertical left and right										2 A		
	and forces & MWFRS									-		12	K : 3
	OOL=1.60 plate grip DC									-		SEA	n 1 E
	signed for wind loads in										:		• -
	studs exposed to wind									=		0363	22 ; =
see Stand	dard Industry Gable En	d Details as applica	ble,							-			

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD1	Valley	1	1	Job Reference (optional)	163437162

Scale = 1:50.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

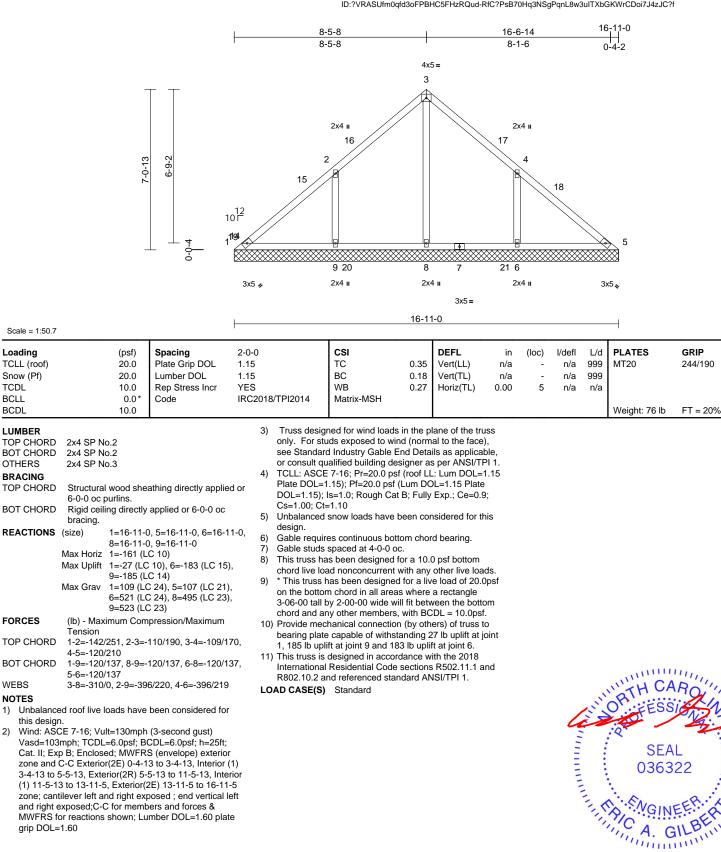
WEBS

NOTES

1)

2)

TOP CHORD


BOT CHORD

TCDL

BCLL

BCDL

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 05 10:50:28 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

February 6,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD2	Valley	1	1	Job Reference (optional)	163437163

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:28 ID:Th_ZgqfOm8nUgyqbk?jKoVzRQuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	· _ ·	1:43.6	

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 63 lb	FT = 20%
LUMBER	·			3)	Truss desia	ned for wind loads	in the p	lane of the tru	JSS		-			
TOP CHORD	2x4 SP N	0.2		- /		ids exposed to wir								
BOT CHORD	2x4 SP N				see Standard	d Industry Gable E	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	0.3			or consult qu	alified building de	signer as	s per ANSI/TI	PI 1.					
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD	Structura	l wood shea	athing directly applie	d or		.15); Pf=20.0 psf								
	6-0-0 oc		3 ,			s=1.0; Rough Cat	t B; Fully	Exp.; Ce=0.9	Э;					
BOT CHORD	Rigid ceil	ing directly	applied or 6-0-0 oc		Cs=1.00; Ct=									
	bracing.			5)		snow loads have	been cor	nsidered for th	าเร					
REACTIONS	(size)	1=14-6-13	, 5=14-6-13, 6=14-6	-13,	design.	aa aantinusuu hat								
		7=14-6-13	8, 8=14-6-13	10, 6) 7)		es continuous bot spaced at 4-0-0 o		d bearing.						
	Max Horiz	1=-137 (L	C 10)	8)		s been designed) nef hottom						
	Max Uplift		10), 6=-155 (LC 15)	, 0)		ad nonconcurrent			de					
		8=-156 (L	,	9)		as been designed								
	Max Grav	``	24), 5=99 (LC 23),	-,		n chord in all area								
			21), 7=409 (LC 23)	,		y 2-00-00 wide w			om					
		8=455 (LC	- /			y other members								
FORCES		kimum Com	pression/Maximum	10) Provide mec	hanical connection	n (by oth	ers) of truss t	0					
TODOUODD	Tension				bearing plate	capable of withst	anding 2	9 lb uplift at j	oint					
TOP CHORD		,	173/122, 3-4=-172/1	12,	1, 156 lb upli	ft at joint 8 and 15	55 lb upli	ft at joint 6.						
BOT CHORD	4-5=-123		2/101, 6-7=-62/101,	11		e or shim required		de full bearing	g					
BOICHORD	5-6=-62/1	,	2/101, 0-7=-02/101,			truss chord at join							WITH CA	111.
WEBS			4/196, 4-6=-375/195	12		designed in accor							N''LL CA	D'''
	5 1 223	, 2 0 <u>–</u> -07-	-, 100, - 0=-070/190			Residential Code			ind				TH UA	NON,
NOTES					R802.10.2 a	nd referenced star	iuara AN	NSI/TPL1.				5	ON SEGO	1. h

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-3-6, Interior (1) 3-3-6 to 4-3-6, Exterior(2R) 4-3-6 to 10-3-6, Interior (1) 10-3-6 to 11-3-6, Exterior(2E) 11-3-6 to 14-6-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD3	Valley	1	1	Job Reference (optional)	163437164

6-0-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:39.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

TOP CHORD BOT CHORD

TCDL

BCLL

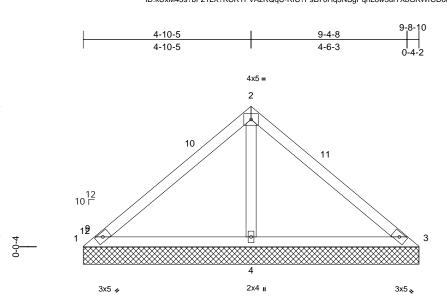
BCDL

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon Feb 05 10:50:29 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-9-4

12-1-6 6-0-11 5-8-9 4x5 = 3 2x4 II 2x4 II 14 5-0-13 15 2 4 10 168 5 8 6 2x4 🛛 2x4 🛛 2x4 u 3x5 🖌 3x5. 12-1-6 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 BC Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 80.0 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 50 lb FT = 20%Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc purlins. Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) bracing. desian. REACTIONS (size) 1=12-2-0, 5=12-2-0, 6=12-2-0, 6) Gable requires continuous bottom chord bearing. 7=12-2-0, 8=12-2-0 7) Gable studs spaced at 4-0-0 oc. Max Horiz 1=-114 (LC 10) This truss has been designed for a 10.0 psf bottom 8) 1=-37 (LC 10), 5=-4 (LC 11), Max Uplift chord live load nonconcurrent with any other live loads. 6=-136 (LC 15), 8=-137 (LC 14) 1=78 (LC 24), 5=73 (LC 23), 6=435 * This truss has been designed for a live load of 20.0psf 9) Max Grav on the bottom chord in all areas where a rectangle (LC 21), 7=260 (LC 21), 8=432 (LC 3-06-00 tall by 2-00-00 wide will fit between the bottom 20) chord and any other members. (Ib) - Maximum Compression/Maximum 10) Provide mechanical connection (by others) of truss to Tension bearing plate capable of withstanding 37 lb uplift at joint 1-2=-113/100, 2-3=-217/117, 3-4=-217/117, 1, 4 lb uplift at joint 5, 137 lb uplift at joint 8 and 136 lb 4-5=-92/63 uplift at joint 6. 1-8=-32/74, 7-8=-32/73, 6-7=-32/73, 11) Beveled plate or shim required to provide full bearing 5-6=-32/73 surface with truss chord at joint(s) 1, 5. 3-7=-173/0. 2-8=-397/213. 4-6=-398/218 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and \cap Unbalanced roof live loads have been considered for R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; SEAL Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior 036322 (2R) 3-4-13 to 9-2-0, Exterior(2E) 9-2-0 to 12-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip G mmm February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD4	Valley	1	1	Job Reference (optional)	163437165

3-9-2

4-0-13

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:29 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-8-10

Scale = 1:33.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) Spacing 2-0 20.0 Plate Grip DOL 1.1 20.0 Lumber DOL 1.1 10.0 Rep Stress Incr YE 0.0* Code IR0	5 5	CSI TC BC WB Matrix-MSH	0.46 0.43 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood sheathing directly applied or 9-8-10 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.	 Plate DOL=² DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live los * This truss los on the botton 3-06-00 tall li chord and an Provide mec bearing plate 5 0 lb uplif 	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 of as been designed ad nonconcurrent nas been designed m chord in all area by 2-00-00 wide v hy other members chanical connection e capable of withs at joint 3 and 10 designed in acco	(Lum DC at B; Fully been cor ttom chor oc. for a 10.0 with any df or a liv df or a liv as where vill fit betw s. on (by oth standing 6 8 lb uplift	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 50 lb uplift at j at joint 4.	ds. Dpsf om o					
TOP CHORD BOT CHORD WEBS	1-2=-113/377, 2-3=-114/374 1-4=-216/172, 3-4=-216/172 2-4=-602/269	Ínternational	Residential Code nd referenced sta	e sections	R502.11.1 a	nd					
this desig	ed roof live loads have been considered for n.									WHY CA	Poly

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior (2R) 3-4-13 to 6-8-14, Exterior(2E) 6-8-14 to 9-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 February 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD5	Valley	1	1	Job Reference (optional)	163437166

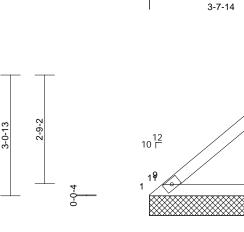
3-7-14

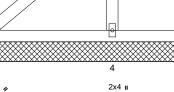
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:30 ID:CgVkHRtdMZAuzhaXm9_U10zRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10

6-11-11


3-3-12


3

3x5 💊

7J4zJC?f

7-3-13

4x5 =

Scale = 1:29.3

Ocale = 1.23.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.27 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-3-13 oc purlins. Rigid ceiling directly bracing. (size) 1=7-3-13, Max Horiz 1=-67 (LC Max Uplift 1=-28 (LC 4=-73 (LC Max Grav 1=72 (LC 4=535 (LC (lb) - Maximum Com Tension 1-2=-86/230, 2-3=-9	applied or 6-0-0 oc 3=7-3-13, 4=7-3-13 10) 21), 3=-16 (LC 20) 14) 20), 3=103 (LC 21) C 20) npression/Maximum 0/229	6 7 8 9 , , 1	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requin Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plat 1, 16 lb uplif This truss is International	snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members chanical connection e capable of withs it at joint 3 and 73 designed in accord I Residential Codu and referenced sta	f (Lum DC at B; Fully been con- bitom choi oc. I for a 10. t with any ed for a 10. t with any ed for a liv as where will fit betv s. on (by oth standing 2 b lb uplift a ordance w e sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botth ers) of truss i 28 lb uplift at j ti, bott 4. ith the 2018 s R502.11.1 a	e 9; his 0psf om to joint					
1) Unbalance this design	ed roof live loads have n. CF 7-16: Vult=130mph		or									WITH CA	BO

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-8-3, Exterior(2R) 3-8-3 to 4-4-2, Exterior(2E) 4-4-2 to 7-4-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

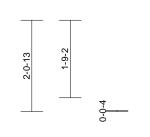
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

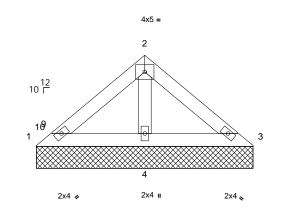
Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD6	Valley	1	1	Job Reference (optional)	163437167

2-5-8

2-5-8

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:30 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-6-14

2-1-6

4-11-0

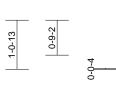
4-11-0

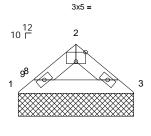
Scale = 1:26.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
1	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-0 cc purlins. Rigid ceiling directly bracing. (size) 1=4-11-0, Max Horiz 1=-44 (LC Max Uplift 3=-7 (LC Max Grav 1=59 (LC (LC 20) (lb) - Maximum Com Tension	applied or 6-0-0 oc 3=4-11-0, 4=4-11-0 10) 15), 4=-31 (LC 14) 20), 3=87 (LC 21), 4	9)	design. Gable requir Gable studs This truss ha chord live loo * This truss I on the bottoo 3-06-00 tall I chord and ar D) Provide mee bearing plate and 31 lb up I) This truss is International	snow loads have es continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent nas been designe n chord in all are: yy 2-00-00 wide v ny other members hanical connection e capable of withs lift at joint 4. designed in accoo Residential Code nd referenced sta	ttom choi bc. for a 10. with any d for a liv as where vill fit betv s. on (by oth standing 7 vrdance w e sections	d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss i ' lb uplift at jc ith the 2018 s R502.11.1 a	ads. Opsf om to vint 3					
TOP CHORD BOT CHORD WEBS	1-2=-62/102, 2-3=-8 1-4=-80/88, 3-4=-80 2-4=-182/97		Lo	DAD CASE(S)	Standard								
NOTES	d roof live loads have	been considered for	r									1	
 Wind: ASC Vasd=103n Cat. II; Exp zone and C exposed; e members a Lumber DC Truss desi only. For s 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in ttuds exposed to wind ard Industry Gable En	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown vL=1.60 n the plane of the tru (normal to the face)	r right ; iss							Jan 199		SEA 0363	L

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

A. A. GI Man Ginn


February 6,2024



Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 129 SERENITY	
24010134	VLD7	Valley	1	1	Job Reference (optional)	163437168

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Feb 05 10:50:31 ID:CgVkHRtdMZAuzhaXm9_U10zRQqT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

2-6-3 1-3-2 2-2-1 1-3-2 0-11-0 0-4-2

2-6-3

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

 LUMBER TOP CHORD 2x4 SP No.2 BRACING BTACING TOP CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 2.6-3 oc purins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=2-6-3, 3=2-6-3 Max Horiz 1==-20 (LC 10) Max Upit 1=-1 (LC 15), 3==2 (LC 15) Max Grav 1=85 (LC 20), 3=109 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-117/5/4, 2-3=-132/58 BOT CHORD 1-2=-117/5/4, 2-3=-132/58 BOT CHORD 1-3=-31/95 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Winct: ASCE 7-16; Vult=130mph (3-second gust) vasd=103mph; TCDL=6.0pst; BcDL=6.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%	
 zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) Gable requires continuous bottom chord bearing. 	LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 3) Truss des only. For see Stand or consult 4) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 5) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-6-3 oc purlins. Rigid ceiling directly bracing. (size) 1=2-6-3, : Max Horiz 1=-20 (LC Max Uplift 1=-1 (LC Max Grav 1=85 (LC (lb) - Maximum Corr Tension 1-2=-117/54, 2-3=-1 1-3=-31/95 ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	 applied or 10-0-0 oc 3=2-6-3 (10) 15), 3=-8 (LC 15) 20), 3=109 (LC 21) apression/Maximum 32/58 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right exposed; C-C for for reactions specification of the trust (normal to the face) d Details as applicab gner as per ANSI/TP (roof L1: Lum DOL=1.15 Plate Fully Exp.; Ce=0.9; 	 8) This truss I chord live I 9) * This truss on the bott 3-06-00 tal chord and 10) Provide me bearing pla and 8 lb up 11) This truss i Internation R802.10.2 LOAD CASE(\$ r r r<	has been designed oad nonconcurrent is has been designed om chord in all area by 2-00-00 wide w any other members achanical connection te capable of withst lift at joint 3. s designed in accora al Residential Code and referenced star	for a 10.4 with any d for a liv as where rill fit betw n (by oth tanding 1 rdance w e sections	other live loa e load of 20.0 a rectangle veen the both ers) of truss t lb uplift at jo ith the 2018 \$ R502.11.1 a	Opsf om to vint 1				SEA 0363	EER.	Nava and a state of the state o

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

