

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0224-1121 Lot 2 Docs Road

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I63945327 thru I63945338

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 4,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945327 J0224-1121 A1-GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:03 2024 Page 1

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

12-11-8 12-11-8

Scale = 1:54.5

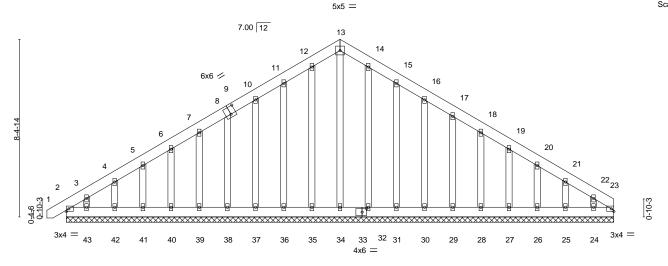


Plate Offsets (X,Y)--[9:0-3-0,0-4-4], [33:0-2-8,0-2-0] **GRIP** LOADING (psf) SPACING-CSI DEFL. in (loc) I/defI L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.15 TC 0.04 Vert(LL) -0.00 120 244/190 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) -0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.12 Horz(CT) 23 0.00 n/a n/a

25-11-0

LUMBER-**BRACING-**

2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD BOT CHORD 2x6 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 25-11-0.

10.0

(lb) -Max Horz 2=239(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 23, 2, 35, 36, 37, 38, 39, 40, 41, 42, 32, 31, 30, 29, 28, 27,

Matrix-S

26, 25 except 43=-105(LC 12), 24=-101(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 23, 2, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 32, 31, 30,

29, 28, 27, 26, 25, 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

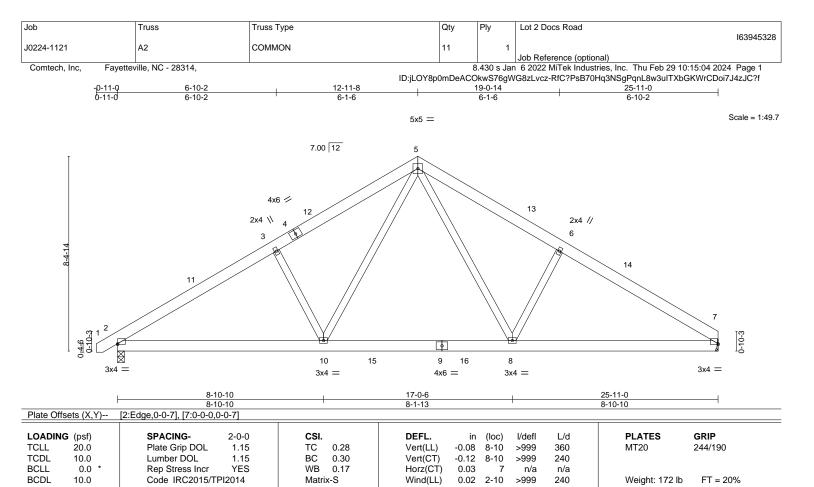
Code IRC2015/TPI2014

TOP CHORD 2-3=-261/201

NOTES-

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 2, 35, 36, 37, 38, 39, 40, 41, 42, 32, 31, 30, 29, 28, 27, 26, 25 except (jt=lb) 43=105, 24=101.



Weight: 242 lb

FT = 20%

March 4,2024

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

> (size) 7=Mechanical, 2=0-3-8 Max Horz 2=191(LC 11)

Max Uplift 7=-58(LC 13), 2=-70(LC 12) Max Grav 7=1050(LC 20), 2=1103(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1584/325, 3-5=-1435/383, 5-6=-1446/395, 6-7=-1578/336 TOP CHORD

BOT CHORD 2-10=-176/1385, 8-10=-14/932, 7-8=-179/1259

5-8=-126/681, 6-8=-390/243, 5-10=-123/663, 3-10=-379/236 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 25-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 4,2024

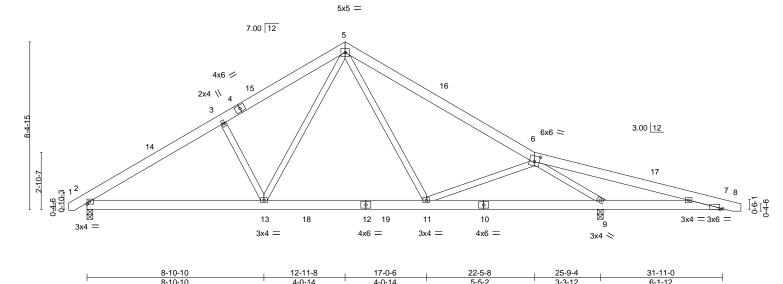
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 2 Docs Road 163945329 J0224-1121 **A3** Roof Special 10 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:05 2024 Page 1

Comtech, Inc, Fayetteville, NC - 28314,


Structural wood sheathing directly applied or 5-11-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 7-9.

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 19-0-14 31-11-0 32-10-0 0-11-0 22-5-8 -0-11-0 0-11-0 6-10-2 6-1-6 6-1-6 3-4-10 9-5-8

Scale = 1:57.8

	0-10-10	T-U-1T	 0-1-	J-J-Z	J-J-12	0-1-12	
Plate Offsets (X,Y)	[6:0-3-0,0-3-8], [7:0-1-12,Edge]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) I/de	fl L/d	PLATES G	RIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.45	Vert(LL)	-0.09 11-13 >99	9 360	MT20 24	44/190
TCDL 10.0	Lumber DOL 1.15	BC 0.30	Vert(CT)	-0.13 11-13 >99	9 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.75	Horz(CT)	0.02 9 n/	/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.03 11-13 >99	9 240	Weight: 210 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** WEBS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 9=0-3-8 Max Horz 2=-193(LC 10)

Max Uplift 2=-72(LC 12), 9=-127(LC 13) Max Grav 2=1062(LC 19), 9=1609(LC 1)

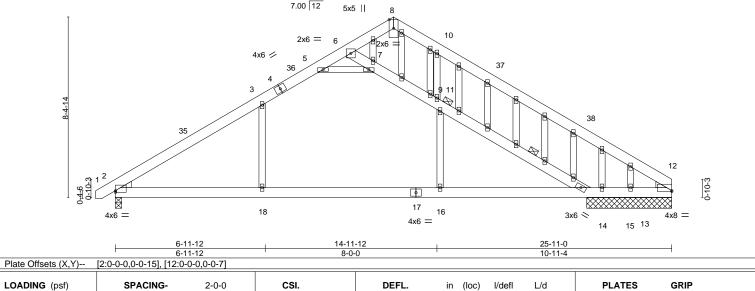
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1510/250, 3-5=-1359/306, 5-6=-1256/135, 6-7=-1101/1250 TOP CHORD **BOT CHORD** 2-13=-103/1323, 11-13=0/875, 9-11=-62/1146, 7-9=-1144/1119 WFBS 5-11=0/370, 6-9=-2430/1052, 5-13=-123/663, 3-13=-349/225

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 32-7-7 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 9=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Lot 2 Docs Road 163945330 J0224-1121 A4-GE **GABLE** Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:06 2024 Page 1

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f 14-11-12 6-11-12 5-11-12 2-0-4 10-11-4

> 5x10 M18AHS || Scale = 1:53.7

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.78	Vert(LL) -0.21 16-18 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.45	Vert(CT) -0.32 16-18 >845 240	M18AHS 186/179
BCLL 0.0 *	Rep Stress Incr YES	WB 0.27	Horz(CT) 0.03 12 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.14 18 >999 240	Weight: 214 lb FT = 20%

LUMBER-BRACING-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2

OTHERS 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

TOP CHORD Structural wood sheathing directly applied or 5-5-9 oc purlins.

BOT CHORD

JOINTS

1 Row at midpt 11-15

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 14-15. 1 Brace at Jt(s): 11

REACTIONS. All bearings 3-11-8 except (jt=length) 2=0-3-8.

Max Horz 2=239(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 2=-217(LC 12), 15=-173(LC 9),

13=-326(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 15 except 12=390(LC 20), 2=1169(LC

19), 14=302(LC 3), 13=644(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1602/242, 3-5=-1223/303, 5-6=-246/574, 6-8=-574/179, 8-10=-633/291,

10-12=-842/104, 6-7=-461/1220, 7-9=-798/342, 9-11=-797/441, 11-15=-997/394

2-18=-194/1354, 16-18=-194/1354, 15-16=-194/1354, 14-15=-540/0, 13-14=0/540,

12-13=0/540

WEBS 5-7=-1966/596, 3-18=0/442, 11-16=0/457, 9-10=-288/334

NOTES-

BOT CHORD

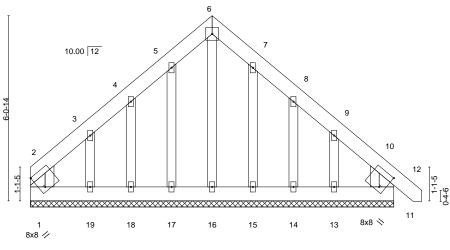
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 12-11-8, Exterior(2) 12-11-8 to 17-4-5, Interior(1) 17-4-5 to 25-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 2, 173 lb uplift at joint 15 and 326 lb uplift at joint 13.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945331 J0224-1121 B1GE **GABLE** 2

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:08 2024 Page 1

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 11-11-0 5-11-8 5-11-8 0-11-0

> Scale = 1:37.8 5x5 =

11-11-0

Plate Off	fsets (X,Y)	[1:Edge,0-6-5], [11:0-2-3	,0-6-5]									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	0.00	`11	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.03	Vert(CT)	0.00	11	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matr	ix-S	'					Weight: 106 lb	FT = 20%

LUMBER-BRACING-

TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x6 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 11-11-0.

Max Horz 1=-170(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 17, 18, 15, 14 except 19=-186(LC 12), 13=-141(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 11, 16, 17, 18, 19, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Left 2x4 SP No.2 0-7-14, Right 2x4 SP No.2 0-7-14

SLIDER

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-4-10 to 4-7-8, Exterior(2) 4-7-8 to 5-11-8, Corner(3) 5-11-8 to 10-4-5, Exterior(2) 10-4-5 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 17, 18, 15, 14 except (jt=lb) 19=186, 13=141.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945332 COMMON J0224-1121 B2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:09 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 11-11-0 12-10-0 5-11-8 5-11-8 0-11-0

> 5x5 = 3 10.00 12 10 4x4 // 4x4 📏 4x4 / 4x4 🛇 3x6 || 3x6 2x4 || 11-11-0

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL)	-0.01	1-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.12	Vert(CT)	-0.02	1-7	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.01	5-7	>999	240	Weight: 87 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

SLIDER Left 2x4 SP No.2 3-9-13, Right 2x4 SP No.2 3-9-13

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-134(LC 8)

Max Uplift 1=-18(LC 12), 5=-29(LC 13) Max Grav 1=475(LC 1), 5=525(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-491/155, 3-5=-518/155 **BOT CHORD** 1-7=0/307, 5-7=0/307

WFBS 3-7=0/278

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

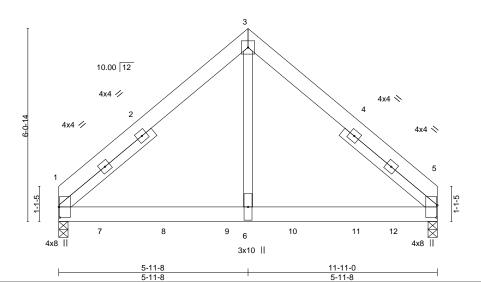
Scale = 1:36.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945333 J0224-1121 B3-GR **COMMON GIRDER**


Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional)
8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:10 2024 Page 1

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 5-11-8 5-11-8

> Scale = 1:36.3 5x5 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		0 11 0	0 1.0	
Plate Offsets (X,Y)	[1:0-4-0,0-0-5], [5:0-4-10,0-0-5]			
LOADING (not)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
LOADING (psf)	SPACING- 2-0-0	Col.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0.06 5-6 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.97	Vert(CT) -0.13 5-6 >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.46	Horz(CT) 0.01 5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 5-6 >999 240	Weight: 169 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 3-9-13, Right 2x4 SP No.2 3-9-13

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-133(LC 6)

Max Uplift 1=-216(LC 8), 5=-237(LC 9) Max Grav 1=3347(LC 1), 5=3650(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-3232/258, 3-5=-3212/257 BOT CHORD 1-6=-131/2326, 5-6=-131/2326

WEBS 3-6=-187/3753

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-8-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=216, 5=237.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1007 lb down and 78 lb up at 1-4-12, 1007 lb down and 78 lb up at 3-4-12, 1007 lb down and 78 lb up at 5-4-12, 1007 lb down and 78 lb up at 7-4-12, and 1007 lb down and 78 lb up at 9-4-12, and 1007 lb down and 78 lb up at 10-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

March 4,2024

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945333 **COMMON GIRDER** J0224-1121 B3-GR

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional)

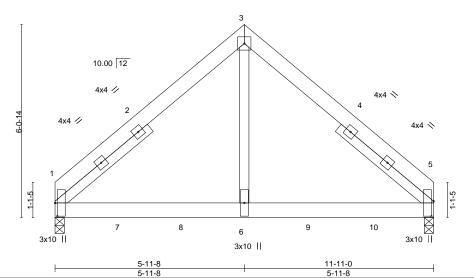
8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:10 2024 Page 2
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 7=-1007(B) 8=-1007(B) 9=-1007(B) 10=-1007(B) 11=-1007(B) 12=-1007(B)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945334 J0224-1121 B4-GR **COMMON GIRDER**

5-11-8


Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional)
8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:11 2024 Page 1

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 5-11-8

Scale = 1:36.3 5x5 =

Plate Offsets (X,Y)	[1:0-5-0,0-0-13], [5:0-5-10,0-0-13]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (I	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL)	-0.05	1-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.80	Vert(CT)	-0.09	1-6	>999	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.43	Horz(CT)	0.01	5	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.03	1-6	>999	240	Weight: 169 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 3-9-13, Right 2x4 SP No.2 3-9-13

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=-133(LC 25)

Max Uplift 1=-189(LC 8), 5=-194(LC 9)

Max Grav 1=2960(LC 1), 5=3030(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-3035/244, 3-5=-3034/244 **BOT CHORD** 1-6=-121/2176. 5-6=-121/2176

WEBS 3-6=-171/3520

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=189, 5=194.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1007 lb down and 78 lb up at 2-0-12, 1007 lb down and 78 lb up at 4-0-12, 1007 lb down and 78 lb up at 6-0-12, and 1007 lb down and 78 lb up at 8-0-12, and 1007 lb down and 78 lb up at 10-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

March 4,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945334 J0224-1121 **COMMON GIRDER** B4-GR

Comtech, Inc, Fayetteville, NC - 28314, Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:12 2024 Page 2
ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 6=-1007(B) 7=-1007(B) 8=-1007(B) 9=-1007(B) 10=-1007(B)

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945335 J0224-1121 D01GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:13 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314,

5x5 =

ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 10-11-8 10-11-8

Scale = 1:47.4

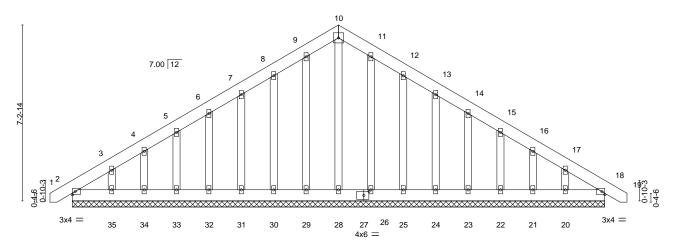


Plate Offsets (X,Y)--[27:0-2-8,0-2-0] **GRIP** LOADING (psf) SPACING-CSI DEFL. in (loc) I/defl L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) -0.00 18 120 244/190 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) -0.00 18 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 18 n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Weight: 193 lb Matrix-S

LUMBER-**BRACING-**

TOP CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x6 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 21-11-0.

2x4 SP No.2

(lb) -Max Horz 2=-205(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 18, 26, 25, 24, 23, 22, 21, 20 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 34, 35, 18, 26, 25, 24, 23, 22,

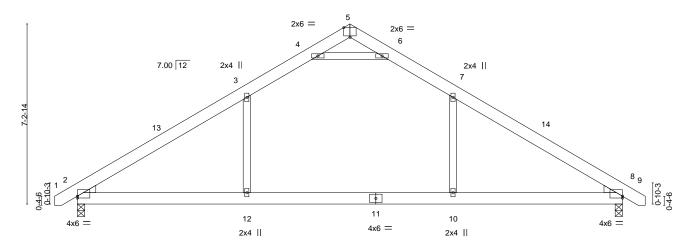
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-5 to 3-7-8, Exterior(2) 3-7-8 to 10-11-8, Corner(3) 10-11-8 to 15-4-5, Exterior(2) 15-4-5 to 22-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 35, 18, 26, 25, 24, 23, 22, 21, 20.

Job Truss Truss Type Qty Ply Lot 2 Docs Road 163945336 J0224-1121 D02 COMMON 6 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:14 2024 Page 1

Comtech, Inc, Fayetteville, NC - 28314,


ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 21-11-0 14-11-8 22-10-0 0-11-0 16-0-14 5-10-2 1-1-6 4-0-0 4-0-0 1-1-6 5-10-2

> 4x6 = Scale = 1:46.3

> > 21-11-0

Structural wood sheathing directly applied or 5-10-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6-11-8 6-11-8 Plate Offsets (X,Y)--[2:0-0-0,0-0-15], [5:0-3-0,Edge], [8:0-0-0,0-0-15] **PLATES GRIP** LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) -0.18 10-12 >999 360 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.42 Vert(CT) -0.28 10-12 >939 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.32 Horz(CT) 0.02 8 n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) 2-12 >999 240 Weight: 134 lb FT = 20%Matrix-S 0.11

BRACING-

TOP CHORD

BOT CHORD

14-11-8

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=-164(LC 10)

Max Uplift 2=-61(LC 12), 8=-61(LC 13) Max Grav 2=1046(LC 19), 8=1046(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1463/222, 3-4=-1059/287, 4-5=-149/755, 5-6=-149/756, 6-7=-1059/287,

7-8=-1463/222

2-12=-68/1131, 10-12=-68/1131, 8-10=-68/1131 **BOT CHORD** WEBS 7-10=0/463, 3-12=0/463, 4-6=-1935/490

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 10-11-8, Exterior(2) 10-11-8 to 15-1-4, Interior(1) 15-1-4 to 22-8-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 2 Docs Road 163945337 J0224-1121 V1 Valley 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Feb 29 10:15:15 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:jLOY8p0mDeACOkwS76gWG8zLvcz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 4-11-15 4-11-15 Scale = 1:27.8 4x4 = 2 10.00 12 3 2x4 // 2x4 🚿 2x4 | 9-11-14 9-11-14 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 **TCLL** 0.22 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.16 Vert(CT) n/a n/a 999 **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 3 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 38 lb FT = 20%

BRACING-

TOP CHORD

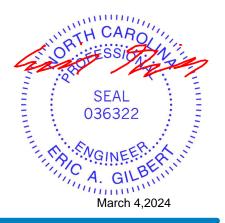
BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.


1=9-11-14, 3=9-11-14, 4=9-11-14 (size) Max Horz 1=-92(LC 8) Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=196(LC 1), 3=196(LC 1), 4=342(LC 1)

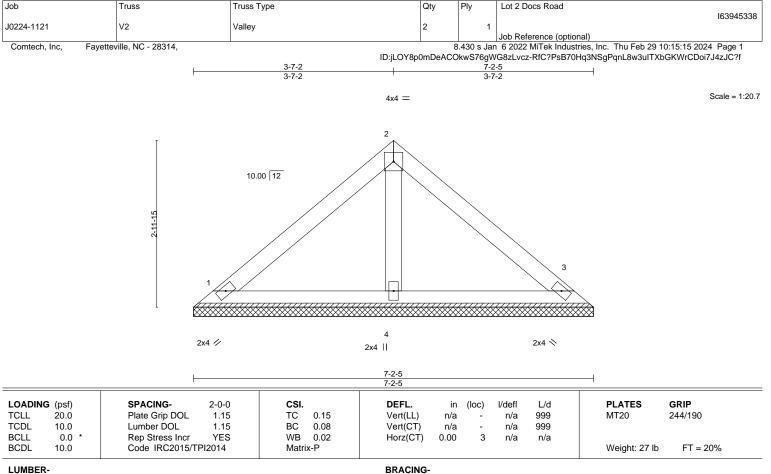
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

> 1=7-2-5, 3=7-2-5, 4=7-2-5 (size) Max Horz 1=64(LC 9)

Max Uplift 1=-22(LC 13), 3=-28(LC 13)

Max Grav 1=148(LC 1), 3=148(LC 1), 4=215(LC 1)

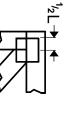
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

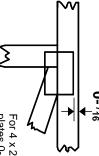
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

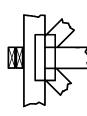
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

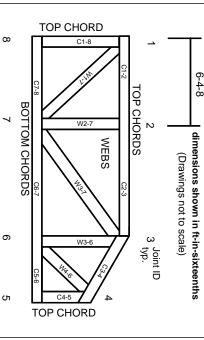

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.