

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3843084 WILLIAM ROBERT BAREFOOT - JAKE SMITH RESIDENCE

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T33208521 thru T33208567

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 13,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	A1	Common Supported Gable	1	1	T33208521 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:46 ChMV

Page: 1

818 Soundside Road Edenton, NC 27932

		-Q-10-8	9-0.	-0		18-0-0	18-	-10-8
		0-10-8	9-0-	-0		9-0-0	0-	
					4x6 = 9			
	7-9-4		91- e 5 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					6 18 17
		3x8		3x4=			40.0	
0		0-4-0			<u>17-10-10</u> 17-6-10			-0 6
oading CLL (roof) CDL (Ps/Pf) CDL CLL	(psf) 20.0 11.0/20.0 10.0 0.0*	Spacing2-0-Plate Grip DOL1.00Lumber DOL1.11Rep Stress IncrYESCodeIRC	0) ; ; 2015/TPI2014	CSI TC BC WB Matrix-AS	0.12 Vert(LL) 0.09 Vert(CT) 0.17 Horz(CT)	in (loc) 0.00 31-32 0.00 31-32 0.00 18	l/defi L/d PLA >999 240 MT2 >999 180 n/a n/a Weir	TES GRIP 0 244/190 pht: 139 lb ET = 20%
UMBER OP CHORD OT CHORD (ESS THERS RACING OP CHORD OT CHORD EACTIONS ORCES OP CHORD	$\begin{array}{l} 2x4 \ {\rm SP} \ {\rm No.2} \\ 2x4 \ {\rm SP} \ {\rm No.2} \\ 2x4 \ {\rm SP} \ {\rm No.3} \\ 2x4 \ {\rm SP} \ {\rm No.3} \\ 3x4 \ {\rm SP} \ $	athing directly applied, applied. 2, 19=17-4-0, 20=17-4-0, 0, 22=17-4-0, 23=17-4-0, 0, 22=17-4-0, 23=17-4-0, 0, 29=17-4-0, 30=17-4-0, 0, 32=17-4-0 LC 13) [LC 11), 19=-101 (LC 10), C 15), 21=-33 (LC 15), C 15), 23=-38 (LC 14), C 14), 29=-33 (LC 14), C 14), 29=-33 (LC 14), C 14), 29=-33 (LC 14), C 14), 29=-33 (LC 27), LC 31), 21=112 (LC 27), LC 30), 27=110 (LC 26), LC 26), 30=121 (LC 30), LC 12), 32=200 (LC 30) npression/Maximum 61, 2-3=-54/97, /93, 5-6=-63/91, 27/156, 8-9=-143/177, 13=-65/171, 15=-95/131, -17=0/61, 16-18=-112/90	BOT CHORD 3: 22 22 22 22 22 22 22 22 22 2	2-33–79/67, 31-5 -2-33–79/67, 31-5 -231–17/113, 21 -729–117/113, 21 -729–117/113, 21 -729–117/113, 22 -729–117/113, 22 -729–117/113, 22 -729–107/89, 8-26 -29=-84/47, 5-30= -32=-100/28, 10-2 -29=-84/47, 5-30= -32=-100/28, 10-2 -29=-84/47, 5-30= -32=-100/28, 10-2 -29=-84/47, 5-30= -32=-100/28, 10-2 -29=-84/46, 13-2 -5-19=-88/69 boof live loads hav 7-10; Vult=115mp TCDL=6.0psf; Bi losed; MWFRS (6 rior (2) zone; canti y ertical left and 1 forces & MWFRS (5 rior (2) zone; canti y ertical left and 1 forces & MWFRS (5 -1.60 plate grip D ed for wind loads is exposed to win Industry Gable E Lified building des 7-10; Pr=20.0 psf tet DOL=1.00; Pt .0 psf (roof snow: ategory II; Exp B; silipery surface now load has bee - been designed fn sf or 2.00 times fil n-concurrent with 2x4 MT20 unless Ily sheathed from st lateral moveme	32=-117/113, 9-30=-117/113, 6-27=-117/113, 4-25=-117/113, 2-23=-117/113, 2-23=-117/113, 8-19=-117/11	9) Gat 10) This cho 11) * Th on 1 3-0 cho 11) * Th on 1 3-0 cho 2-0 (55, 12) Pro 83/54, 13) Pro 85/46, bea join upli 21, 21, 14) This cone R8 for 15) This wn; cho truss the ce), cable, TTPI 1. nber 5 Plate 0; unt for psf on d. sly b).	ble studs spaced at 1 s truss has been des rd live load nonconci- his truss has been des 6-00 tall by 2-00-00 v rd and any other me vide mechanical con ring plate at joint(s) vide mechanical con ring plate capable of t 18, 8 lb uplift at joint 32 ft at joint 29, 18 lb upl 13 lb uplift at joint 32 ft at joint 23, 30 lb up 22 lb uplift at joint 20 s truss is designed in irrational Residential 22.10.2 and reference s truss design require ctural wood sheathin rd and 1/2" gypsum bottom chord.	-4-0 oc. igned for a 10.0 psf bottom urrent with any other live loads. isigned for a live load of 20.0psf Il areas where a rectangle vide will fit between the bottom mbers. nection (by others) of truss to withstanding 125 lb uplift at t 26, 39 lb uplift at joint 27, 33 lb uplift at joint 30, 85 lb uplift at joint 2, 13 lb uplift at joint 24, 38 lb lift at joint 22, 33 lb uplift at joint 2, and 101 lb uplift at joint 19. accordance with the 2015 Code sections R502.11.1 and ed standard ANSI/TPI 1. es that a minimum of 7/16" Ig be applied directly to the top sheetrock be applied directly to the VARABLE ANSI/SALE VGINEER CALL 043325 VGINEER CALL 043325

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) ing

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	A2	Common	6	1	T33208522 Job Reference (optional)

Scale = 1:52.1

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

slope

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:48 ID:iSS9k6dKUUJUG7LQ3jBCvXzs8Qm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	B1	Piggyback Base Structural Gable	1	1	T33208523 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:49 ID:xla0n64ZoMQENUYqGJGLh8zs6ah-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-0	10-8	075	40.00			04.0.0				00.4.0	30-2-8
	-0	-10-8	<u> </u>	3-11-3	$\frac{3}{3} + \frac{17}{4}$	-11-12	<u>24-9-8</u> 6-9-12				<u>38-4-0</u> 13-6-8	0-10-8
TO	P CHORD ML	JST BE BRA	CED BY END JACKS,		3×6 4							
PUI	RLINS AS SP	ECIFIED.	OPERLY CONNECTED		11 13 1	4 16 18 2	0 21 22 23	24				
ТТ				3x6 🍫 🤤				25				
9	2		12	5x6= 7	1				26	316.		
7	5		91	4 ⁶				`	R :	27		
			_ 6							28	9	
				8 8						- YR	30	
-2-2					10						B 31	
	ကု ဂု		-0-2		1 2				⊠			32
	٥					15 6x12💊					R R	33
		/				17						34
φ0	[∞] ^N 1		×			19						35
	- 51 .	57 N			[†]							××××××××××××××××××××××××××××××××××××××
	-	10x12	*	56	55	543 5	2 51 5 0 9 48	47 46	45 44	43	42 41 40	39 38 _{3x8 II}
		a a -		4x8=	3x6=		5x6=					
		0-0-8	<u>9-1-12</u> 9-1-4		<u>17-9-1</u> 8-7-5				<u>38-4-0</u> 20-6-15			
Scale = 1:72.6	(X X), [2.0	0 0 0 0		4 40 0 0 01 104.0	400001	[50:0 0 4 0 0 4]						
	(X, Y): [3:0-	-2-13,Edge], [11:0-3-0,0-0-1], [19:0 [0-4-12,0-3-0], [24:0	-4-0,0-2-0], [[50:0-2-4,0-0-4],	[57:0-5-0,0-2-8]					
Loading		(psf) 20.0	Spacing 2 Plate Grip DOI 1	2-0-0	CSI TC	0.63	DEFL ii	n (loc)	l/defl ∖aaa	L/d 240	PLATES	GRIP 244/190
Snow (Ps/Pf)	1	1.0/20.0	Lumber DOL 1	.15	BC	0.66	Vert(CT) -0.24	56-57	>872	180		211/100
TCDL		10.0	Rep Stress Incr	(ES RC2015/TPI2014	WB Matrix-	0.17 49	Horz(CT) 0.02	2 37	n/a	n/a		
BCDL		10.0		102013/11/2014	Width /						Weight: 398 I	b FT = 20%
LUMBER					Max Grav	37=442 (LC 29), 38=145 (LC 13),	WEBS		3-56=	0/347, 2-56=-2	86/316, 19-56=-106/445,
TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	o.2 o.2				39=147 (LC 2), 41=111 (LC 27	40=108 (LC 27),), 42=110 (LC 27),			24-47 21-51	=-43/71, 23-48 =-75/25, 20-52	=-62/18, 22-50=-90/28, =-15/26,
WEBS	2x4 SP N	o.3 *Excep	t* 57-2:2x6 SP No.2			43=110 (LC 27), 44=110 (LC 27),			19-53	=-642/128, 18-	19=-279/77,
BRACING	2x4 SP N	0.3				45=115 (LC 27 47=51 (LC 11),	48=88 (LC 32),			9-10=	=-5/13, 14-15= -20/14, 7-8=-52	2/31, 5-6=-6/3,
TOP CHORD	Structura	l wood she	athing directly applied,			50=118 (LC 31 52=85 (LC 5).), 51=97 (LC 32), 53=300 (LC 2).			25-46 29-43	=-73/41, 26-45 =-84/47, 30-42	=-88/50, 27-44=-84/47, =-84/47, 31-41=-84/47,
	except er (6-0-0 ma	nd verticals ax.): 11-24,	, and 2-0-0 oc purlins 3-19.			54=843 (LC 5),	57=892 (LC 31)			32-40	=-83/50, 33-39	=-99/33, 34-38=-109/124
BOT CHORD	Rigid ceil	ing directly	applied.	FORCES	(lb) - Max Tension	imum Compress	sion/Maximum	NOTES	; halanco/	d roof li	vo loade havo	been considered for
WEB5	I Row at	mapt	21-51, 20-52, 18-53,	TOP CHORD	1-2=0/66,	2-3=-948/80, 3-	·6=-346/91,	this	design.		ve loaus nave	
	1 Brace a	at.lt(s)∙ 17	25-46, 26-45		6-7=-313/	/102, 7-9=-296/1 06/129, 13-14=-:	31, 9-11=-251/133, 206/129,	2) Wir Vas	nd: ASC sd=91mi	E 7-10; oh: TCI	; Vult=115mph DL=6.0psf: BCl	(3-second gust) DL=6.0psf: h=30ft: Cat.
001110	12, 8				14-16=-20	06/129, 16-18=-	206/129,	II; E	Exp B; E	nclose	d; MWFRS (en	velope) exterior zone
REACTIONS	(size)	37=20-7-8	3, 38=20-7-8, 39=20-7-8 3 41=20-7-8 42=20-7-8	3, 3	21-22=-20	06/130, 22-23=-	206/130,	exp	osed ; e	end ver	tical left and rig	ht exposed;C-C for
		43=20-7-8	3, 44=20-7-8, 45=20-7-8	3,	23-24=-20 25-26=-28	07/130, 24-25=-: 85/113, 26-27=-:	269/144, 281/88.	me	mbers a	nd forc 1 = 1.60	es & MWFRS t) plate grip DO	for reactions shown;
		46=20-7-8	3, 47=20-7-8, 48=20-7-8 3, 51=20-7-8, 52=20-7-8	3, 3,	27-29=-28	81/91, 29-30=-2	81/94,	Edi		2-1.00	plate grip De	2-1.00
	Max Horiz	53=20-7-8	3, 54=0-3-8, 57=0-3-8		30-31=-20	25/102, 33-34=-3	332/101,				min	1111
	Max Uplift	37=-88 (L	C 11), 38=-192 (LC 15)	,	34-35=-4	16/132, 35-36=0 46/72 3-5516	/61, 2-57=-809/121,				"TH C	ABO
		40=-40 (L 42=-31 (l	C 15), 41=-29 (LC 15), C 15) 43=-31 (I C 15)		8-10=-55	1/148, 10-12=-5	61/152,			1	OHIEFS	S. Mill
		44=-31 (L	C 15), 45=-34 (LC 15),		12-15=-58 17-19=-56	56/144, 15-17=- 64/151	570/147,			24	100	NA A I
		46=-25 (L 48=-2 (LC	5 10), 50=-11 (LC 31), 5 10), 50=-11 (LC 11),	BOT CHORD	56-57=-32	20/794, 54-56=-	101/283,		-		21/	
		51=-11 (L	C 10), 53=-301 (LC 14)	3	ວ3-54=-10 51-52=-11	01/283, 52-53=- 12/289, 50-51=-	112/289, 112/289,		Ξ	:	SE	AL E
		57 - 20 (L	с · т)		48-50=-1 ²	12/289, 47-48=-	112/289, 112/289		E		043	325
					44-45=-1	12/289, 43-44=-	112/289,				·	1 1 × E
					42-43=-1 40-41=-1	12/289, 41-42=- 12/289, 39-40=-	112/289, 112/289,			11	S. SNGI	VEEP
					38-39=-1	12/289, 37-38=-	112/289			11	KIP ;	O'RE
											in the second	minin

March 13,2024

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Association) (www shearcomponent Association) (wow shearco and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	B1	Piggyback Base Structural Gable	1	1	T33208523 Job Reference (optional)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=11.0 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 1-4-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 57, 88 lb uplift at joint 37, 44 lb uplift at joint 47, 2 lb uplift at joint 48, 11 lb uplift at joint 50, 11 lb uplift at joint 51, 301 lb uplift at joint 53, 25 lb uplift at joint 46, 34 lb uplift at joint 45, 31 lb uplift at joint 44, 31 lb uplift at joint 43, 31 lb uplift at joint 42, 29 lb uplift at joint 41, 40 lb uplift at joint 40 and 192 lb uplift at joint 38.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Uniform Loads (lb/ft) Vert: 1-2=-42, 2-3=-42, 3-11=-42, 11-24=-60, 24-35=-42, 35-36=-42, 37-57=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:49 ID:xla0n64ZoMQENUYqGJGLh8zs6ah-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	B2	Piggyback Base	5	1	T33208524 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:50 ID:3zJuwS5oISEyR7pwsPOL_lzs8Q9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-5-12,Edge], [6:0-6-0,0-2-0], [8:0-6-0,0-2-0], [12:0-6-2,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.77 0.84 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.11	(loc) 14-16 13-14 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 261 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood shea except	2-6-0, Right 2x6 SP athing directly applie	2) No.2 ed, 3)	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Exte exposed ; en members an Lumber DOL ** TCLL: ASC DOL=1.15 P	7-10; Vult=115m 1; TCDL=6.0psf; f closed; MWFRS erior (2) zone; can d vertical left and d forces & MWFF =1.60 plate grip I CE 7-10; Pr=20.0 late DQL=1.00); F	ph (3-sed BCDL=6. (envelopentilever le right exp RS for rea DOL=1.3 psf (roof Pf=20.0 p	cond gust) Opsf; h=30ft; e) exterior zo fft and right posed;C-C fo actions showr 3 live load: Lu sf (flat roof	Cat. ne r n; mber	LOAD (1) De In Ur	CASE(S) ead + Sn crease= niform Lo Vert: 1-6) Sta low (ba 1.00 bads (ll 5=-42,	ndard alanced): Lumber b/ft) 6-8=-60, 8-12=-4	Increase=1.15, Plate
BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (4-8 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=206 (LC Max Uplift 2=-50 (LC Max Gray, 2=1630 (J	-1 max.): 6-8. applied. 4-18, 7-16, 10-14 (2=0-3-8 C 11) : 14), 12=-37 (LC 15 C 3) 12=1586 (LC	4) 5) 5)	snow); PS= V DOL=1.15 Pl Exp B; Fully surface Roof design slope. This truss ha	varies (min. root s late DOL=1.00) s Exp.; Ct=1.10; Ur snow load has be	now=11. ee load o nobstruct een reduc for great	o pst Lumber ases; Catego ed slippery ced to accour er of min roo	ory II; nt for f live					
FORCES	(lb) - Maximum Com	pression/Maximum	5)	overhangs n	pst or 2.00 times on-concurrent wit	flat roof I h other li	oad of 20.0 p ve loads.	ist on					
TOP CHORD	1-2=0/53, 2-4=-2143 6-7=-1455/253, 7-8= 8-10=-1766/245 10-	/184, 4-6=-1768/24 1455/253, -12=-2136/183	5, 7)	This truss ha	quate drainage to is been designed ad nonconcurrent	for a 10. with any	water pondin 0 psf bottom other live loa	g. ads. Opef					1.00
BOT CHORD	2-19=-203/1704, 18- 16-18=-4/1340, 14-1 13-14=-54/1632, 12-	19=-105/1704, 6=0/1339, 13=-113/1632	0)	on the bottor 3-06-00 tall b	n chord in all area by 2-00-00 wide w	as where /ill fit betv with BC	a rectangle veen the bott	opsi om f			11	TH CA	POLI
WEBS	4-19=0/265, 4-18=-4 6-16=-122/362, 7-16 8-16=-122/364, 8-14 10-14=-489/161 10-	95/161, 6-18=-24/5 =-351/121, =-24/531, 13=0/262	33, 9)	Provide mec bearing plate 2 and 37 lb u	hanical connection capable of withs uplift at joint 12.	tanding t	ers) of truss	to joint		111.	i e	A A	NA
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered fo	r 11	 International R802.10.2 ai This truss de structural wo chord and 1/ the bottom Graphical pu 	Residential Code nd referenced sta sign requires tha od sheathing be 2" gypsum sheeti hord. Irlin representation	a sections ndard Al t a minim applied d rock be a n does n	s R502.11.1 a VSI/TPI 1. um of 7/16" irectly to the pplied directl	and top y to size		111111	Part	O433	EER. ANUL

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

bottom chord.

818 Soundside Road Edenton, NC 27932

O

mmm March 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss			Truss Typ	e		Qty	/	Ply	WILLIAM ROBERT BAR	EFOOT - JAKE	SMITH
3843084		C1			Piggyba	ck Base		1		1	Ioh Reference (ontional)		T33208525
Builders FirstSou	urce (Middlesex,	NC), Mide	dlesex, NC - 275	57,			Run: 8.63 S N	lov 1 2023 l	Print: 8.6	30 S Nov 1	2023 MiTek Industries, Inc. Tu	e Mar 12 07:32:5	0 Page: 1
							ID:oAqQnmoB	4ij3L_Snv08	?XSzrtC	0r-RfC?PsB7	0Hq3NSgPqnL8w3uITXbGKW 32-0-12 29-2-11 31-4-12	/rCDoi7J4zJC?f	38-8-12
	-0-1	0-8	6-11-0		13-6	-8	19-2-0		26-8	8-12 2	28-0-12 30-8-12 33-4 26-10-8 29-4-1231-7-11	-12 36-0-12 34-8-12 37-4	38-7-0 41-0-0 -12 40-0-12
	⊢ 0-1	0-8	6-11-0		6-7-	8	5-7-8		7-6-	-12	0-1-12 0-2-1 0-8-0 1-4	-0 1-4-0	1-2-4 0-11-4
						5	x8=			5x8、	1-2-4 1-4-0 0-5-1 1-1-15 0-2-15 5x6=	1-4-0 1-4	1-4-0
- 9- 6	ထို					6	x x	7 50	ব চ	⊲ α 8 ⊲ ¤	10 3x6 _∿	1-0-81-0-8	
	ლ -0			12 91	3x6 🍫		$\overline{\mathbb{N}}$	8			12 3x6 €	4	
				3x6 🖌	. /							-81 -60	
	-			:	5					/	N 19 N 21	⊥ 1-0	-8 1-0-8 T
0-8-6				4	/							22 ⊢ 22 ⊢	1-0-8
	Ø				\backslash			×				24 4×0	⁸ ×10 _≈ ₽
		4x	6 4			>						25	29 6
	0	3						$\parallel //$			2-6 2-6	6-12	28 31 30 B 22
<u>-6-7</u>	$ \frac{\alpha_{1}}{2} = 1 $							\mathbb{W}				3- 2-6	35 337
; L; L;		8	51	42	52	4	1 40 53	39 5	4	38	37 55 36	56	
		4x12 🛛				3>	(4= 3x6=	3x8=		3x4=	3x6=		6x8= 3x6=
	0	-0-8	6-11-0		13-8	-4	19-2-0	2	4-7-13		31-4-12	38-1-12	38-8-1241-0-0
Scale = 1:78.1	0)-0-8	6-10-8		6-9-	-4	5-5-12	;	5-5-13		6-8-15	6-9-0	0-7-0 0-11-4 1-4-0
Plate Offsets (2	X, Y): [2:0-5-	12,Edge], [6:0-6-0,0-2-	•0], [8:0-4	-9,0-1-12], [10:0-4-0,	0-2-0], [13:0-1-8,	0-1-8], [30	0-5-0,0)-1-4], [33:(0-2-0,Edge], [35:0-3-12,0-2	2-4]	
Loading		(psf)	Spacing		2-0-0		CSI	0.75	DEFL		in (loc) l/defl L/d	PLATES	GRIP
Snow (Ps/Pf)	11.0	20.0)/20.0	Plate Grip D Lumber DOL	- OL	1.00 1.15		BC	0.75 0.83	Vert(L Vert(C	.L) -0. CT) -0.	1139-41>9992402341-42>999180	M120	244/190
TCDL BCU		10.0 0.0*	Rep Stress I Code	ncr `	YES IRC2015/	TPI2014	WB Matrix-AS	0.34	Horz(CT) 0.	10 33 n/a n/a		
BCDL		10.0	0000									Weight: 317 I	b FT = 20%
		`			BOT	CHORD	2-42=-196/1721,	41-42=-9	7/1721,		9) * This truss has be	een designed fo	or a live load of 20.0psf
BOT CHORD	2x4 SP No.2 2x4 SP No.2	2					36-38=0/1620, 3	5-36=0/16	20, 34-	35=0/445,	3-06-00 tall by 2-0	0-00 wide will f	fit between the bottom
WEBS SLIDER	2x4 SP No.3 Left 2x6 SP	3 No.2 2	2-6-0, Right 2x	6 SP No	.2 WEE	BS	33-34=0/445 4-42=0/264, 4-4	1=-495/16 ⁻	, 6-41=	=-24/532,	10) Provide mechanic	er members, w al connection (by others) of truss to $\frac{1000}{100}$
BRACING	2-6-0						6-39=-123/383, 7 8-39=-94/324, 8-	7-39=-368/ -38=0/476,	121, 18-38=	=-417/104,	bearing plate capa 2, 231 lb uplift at j	able of withstan pint 35 and 19	iding 50 lb uplift at joint lb uplift at joint 34.
TOP CHORD	Structural w	ood shea	athing directly	applied,			18-36=0/285, 9-1 14-15=-33/13, 16	10=-30/14(6-17=-119/), 11-12 84,	2=-35/23,	 This truss is desig International Resid 	ned in accorda dential Code se	nce with the 2015 ections R502.11.1 and
	2-0-0 oc pu	rlins (4-6	-5 max.): 6-10	, 8-35.			20-21=-119/85, 2	22-23=-31/ 29-30=-83/	12, 24-	25=-23/22	, R802.10.2 and ref	erenced standa	ard ANSI/TPI 1. minimum of 7/16"
WEBS	Rigid ceiling 1 Row at mi	directly	applied. 4-41, 7-39, 18	8-38		_	32-34=-85/28	20 00- 00,	00, 01	00-01/00	structural wood sh	eathing be app	blied directly to the top
JOINTS	1 Brace at J 9, 15, 23, 27	lt(s): 18, 7			NOT 1)	" ES Unbalanced	I roof live loads h	ave been o	onside	red for	the bottom chord.	Sum Sneetroor	k be applied directly to
REACTIONS	(size) 2	=0-3-8, 3	33=2-11-8, 34=	=2-11-8,	2)	this design. Wind: ASCI	E 7-10; Vult=115r	nph (3-sec	ond qu	st)	13) Graphical purlin re or the orientation of	presentation d	oes not depict the size ing the top and/or
	Max Horiz 2	=210 (LC	2 13)		, ,	Vasd=91mp II [.] Exp B [.] Fi	oh; TCDL=6.0psf;	BCDL=6.)psf; h=	=30ft; Cat.	bottom chord. LOAD CASE(S) Sta	ndard	
	Max Uplift 2:	=-50 (LC 5=-231 (l	LC 15)	LC 11),		and C-C Ex	terior (2) zone; ca	antilever le	ft and r	ight	1) Dead + Snow (ba	alanced): Lumb	er Increase=1.15, Plate
	Max Grav 2: 34	=1648 (L 4=146 (L	.C 3), 33=360 .C 32), 35=13!	(LC 29), 51 (LC 27	7),	members a	nd forces & MWF	RS for rea	ctions s	shown;	Uniform Loads (I	b/ft)	1.000
FORCES	4: (lb) - Mavim	3=360 (L	.C 29)	imum	3)	Lumber DO	L=1.60 plate grip SCE 7-10; Pr=20.0	DOL=1.33 0 psf (roof	s live loa	d: Lumber		WH C	ARO
	Tension	4 0470		05/004	:	DOL=1.15 F snow); Ps=	Plate DOL=1.00); varies (min. roof	Pf=20.0 p snow=11.0	sf (flat r) psf Lu	roof Imber	and and	OR	A INTE
TOP CHORD	1-2=0/53, 2- 6-7=-1488/2	-4=-2170 238, 7-8=	-1488/238,	95/231,		DOL=1.15 F	Plate DOL=1.00) : (Exp.: Ct=1.10: L	see load c Jnobstruct	ases; C ed slipp	ategory II;			Ny: Y ==
	8-10=-399/1 12-14=-482/	20, 10-1 /99, 14-1	2=-460/121, 6=-509/83,		4)	surface	snow load has h		od to o	coount for			
	16-21=-494/ 24-26=-544/	/28, 21-2 /0, 26-29	2=-484/0, 22-3 =-484/0, 29-3	24=-507/ 1=-522/0	0, ^{-,}	slope.				n roef !	E	O13	325
	31-32=-568/ 9-11=-1192/	/0, 32-33 /116 11-	=-554/0, 8-9= 15=-1207/128	-1267/13	1, ⁵⁾	load of 12.0	psf or 2.00 times	a for greate s flat roof le	ad of 2	n roof live 20.0 psf on		. 045	323 <u>:</u> E
	15-17=-122	5/136, 17	7-18=-1275/18	., 81,	6)	overhangs ı Provide ade	non-concurrent w equate drainage to	ith other liv o prevent v	ve loads vater po	s. onding.	in A	.ENO.	-ERIZ S
	23-25=-156	3/203, 25	5-27=-1570/21	4,	7) 8)	All plates ar	e 2x4 MT20 unle as been designed	ss otherwi d for a 10 (se indic) psf bo	ated.		KID	VEREGUIN
	27-30=-1693	3/252, 30	J-35=-1715/29	97	5)	chord live lo	ad nonconcurren	nt with any	other li	ve loads.		Thing.	Onin
						TOP CHORI ROOF DIAP	D MUST BE BRACE HRAGM, OR PROF	ED BY END PERLY CON	JACKS, INECTE	D		Mar	ch 13,2024
Continued on	page 2					PURLINS AS	S SPECIFIED.		0.0000				

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

RE

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SM	ITH
3843084	C1	Piggyback Base	1	1	Job Reference (optional)	T33208525
Builders FirstSource (Middlesex,	NC), Middlesex, NC - 27557,	Run: 8.63 S Nov	1 2023 Print: 8.	630 S Nov 1	2023 MiTek Industries, Inc. Tue Mar 12 07:32:50	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:50 ID:oAqQnmoB4ij3L_Snv08?XSzrtOr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-6=-42, 6-8=-60, 8-10=-60, 10-33=-42, 43-46=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	C2	Piggyback Base	9	1	T33208526 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:51 ID:KQ8mmbEDRnrnjzoBptVWBZzrtcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.7

|--|

				•									
Loading TCLL (roof) Snow (Ps/Pf)	(psf) 20.0 11.0/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.57 0.60	DEFL Vert(LL) Vert(CT)	in -0.12 -0.26	(loc) 13-25 13-25	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	10.0 0.0* 10.0	Code	IRC2015	5/TPI2014	Matrix-AS	0.91	Horz(CT)	0.09	12	n/a	n/a	Weight: 271 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 Structural wood sheat except 2-0-0 oc purlins (6-0 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=210 (LC Max Uplift 2=-78 (LC Max Grav 2=312 (LC Max Grav 2=312 (LC	t* 6-8:2x6 SP No.2 2-6-0 athing directly applied -0 max.): 6-8. applied. 6-17, 7-16 (2=0-3-8, 17=0-3-8 2 13) 14), 12=-79 (LC 15) 2 30), 12=984 (LC 2),	2) i, 3) 4) 5)	Wind: ASCE Vasd=91mph II; Exp B; En- and C-C Exte exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 Pl snow); Ps= v DOL=1.15 Pl Exp B; Fully surface Roof design slope. This truss ha	7-10; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (erior (2) zone; can d vertical left and d forces & MWFR =1.60 plate grip D CE 7-10; Pr=20.0 0 late DOL=1.00); P varies (min. roof sr late DOL=1.00) se Exp.; Ct=1.10; Un snow load has be	bh (3-sec iCDL=6. envelope tilever le right exp S for rea iOL=1.3: psf (roof f=20.0 p now=11. ee load c obstruct en reduc	cond gust) Opsf; h=30ft; (i) and right posed;C-C for ctions shown and live load: Lur sf (flat roof D psf Lumber ases; Catego ed slippery red to accoun er of min roof	Cat. ne ; nber ry II; t for live	LOAD (1) Do In Ui	CASE(S) ead + Sr crease= niform Lc Vert: 1-f 15-17=-) Star low (ba 1.00 bads (II 5=-42, 20, 13	ndard Ilanced): Lumber oft) 6-8=-60, 8-12=-4 15=-20, 13-23=-;	Increase=1.15, Plate 2, 17-19=-20, 20
FORCES	(lb) - Maximum Com	pression/Maximum	C)	overhangs non-concurrent with other live loads.									
TOP CHORD	1-2=0/53, 2-4=-254/3 6-7=-309/195, 7-8=-3 8-10=-1093/196, 10- 11-12=-1360/177	330, 4-6=0/637, 766/144, 11=-1179/183,	6) 7) 8)	This truss has been designed for a live load of 20.0psf and the load of a live load of 20.0psf									11111
BOT CHORD	2-18=-217/231, 17-1 16-17=-381/185, 15- 14-15=0/900, 13-14= 12-13=-77/1058	8=-217/231, 16=-127/370, 26/1015,	9)	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.) Provide mechanical connection (by others) of truss to 							ON NAT		
WEBS	bearing plate capable of withstanding 78 ib uplift at joint 10-13=-171/48, 11-13=-222/94, 4-18=0/279, 4-17=-527/156, 6-17=-1533/1, 8-15=-146/162, 8-14=-81/308, 10-14=-218/152, 7-15=0/802, 7-16=-1114/63, 6-16=0/1098 bearing plate capable of withstanding 78 ib uplift at joint 2 and 79 lb uplift at joint 12. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss design requires that a minimum of 7/16" 11) This truss design requires that a minimum of 7/16"										L 25		
 Unbalanced roof live loads have been considered for this design. 1 				chord and 1/2" gypsum sheetrock be applied directly to the top the bottom chord.) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 13,2024

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	С3	Piggyback Base	6	1	T33208527 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:52 ID:NvtLq7lyIJ6XebBCgYrP?rzruHj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.7

Plate Offsets (X, Y): [2:0-5-0,0-0-6], [6:0-3-0,0-2-2], [8:0-5-12,0-1-12], [11:0-6-0,0-0-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.58	Vert(LL)	-0.12	15-17	>999	240	MT20	244/190
Snow (Ps/Pf)	11.0/20.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.18	15-17	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.70	Horz(CT)	0.04	11	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-AS								
BCDL	10.0											Weight: 263 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=115mph	(3-sec	cond gust)		LOAD	CASE(S)	Star	ndard	
TOP CHORD	2x4 SP No.2			Vasd=91mph	; TCDL=6.0psf; BC	DL=6.	0psf; h=30ft; (Cat.	1) De	ead + Sn	ow (ba	alanced): Lumbe	r Increase=1.15, Plate
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (er	nvelope	e) exterior zor	ne	In	crease=1	1.00		
WEBS	2x4 SP No.3 *Except	t* 15-6,15-8:2x4 SP	No.2	and C-C Exte	erior (2) zone; canti	ever le	ft and right		Ur	hiform Lo	ads (II	o/ft)	
SLIDER	Left 2x6 SP No.2 2	2-6-0		exposed; en	d vertical left and fi	gnt exp	osed;C-C for			Vert: 1-6	ó=-42,	6-8=-60, 8-11=-4	12, 19-22=-20
BRACING				Internoers and	1 FO ploto grip DC		Cuons snown	,					
TOP CHORD	Structural wood shea	athing directly applie	d, 3)		= 1.00 plate grip DC	L=1.3	live load: Lur	nhor					
	except		3)	DOI =1 15 PI	ate DOI =1 00): Pf=	=20.0 n	sf (flat roof	libei					
	2-0-0 oc purlins (6-0	-0 max.): 6-8.		snow): Ps= v	aries (min. roof sno	w=11.0) psf Lumber						
BOICHORD	A Daw at midat		10	DOL=1.15 PI	ate DOL=1.00) see	load c	ases; Catego	ry II;					
WEBS		0-17, 7-15, 8-15, 10-	-13	Exp B; Fully	Exp.; Ct=1.10; Uno	bstruct	ed slippery						
REACTIONS	(SIZE) 2=0-3-8, 1	1=0-4-0, 17=0-3-8		surface									
	Max Horiz 2=210 (LC	- 13) - 14) - 14 - 60 (LC 15)	4)	Roof design	snow load has beer	n reduc	ed to accoun	t for					
	Max Opint 2=-69 (LC	14), 11=-09 (LC 15))	slope.									
	17-1715 /	2 30), 11=1127 (LC 2	<u>2),</u> 5)	This truss ha	s been designed fo	r great	er of min roof	live					
FORCES	(lb) Maximum Com	proposion/Movimum		load of 12.0	ost or 2.00 times fla	t roof le	bad of 20.0 ps	st on					
FURCES	(ID) - Maximum Com	pression/maximum	0	overnangs no	on-concurrent with (other II	/e loads.	~					
	1-2=0/52 2-4=-414/	133 4-6=-168/195	(0) (7)	This trues ha	puale drainage to pr	r o 10	valer ponding	J.					
	6-7=-617/231.7-8=-6	617/231.	7)	chord live los	d nonconcurrent w	ith anv	other live loa	de					
	8-10=-1098/228, 10-	11=-1575/170	8)	* This truss h	as been designed f	for a liv	e load of 20 (nsf					115
BOT CHORD	2-18=-212/448, 17-1	8=-133/448,	0)	on the botton	n chord in all areas	where	a rectangle	-poi				1111100	
	15-17=-113/180, 13-	15=0/772,		3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om			-	THU	ROUL
	12-13=-43/1178, 11-	12=-57/1178		chord and an	y other members, v	vith BC	DL = 10.0psf				N	Nº AL	in the
WEBS	4-18=0/249, 4-17=-5	37/164, 6-17=-1206/	/48, 9)	Provide mecl	nanical connection	(by oth	ers) of truss t	0			52		ONICAL
	7-15=-441/142, 6-15	=-47/1029,		bearing plate	capable of withsta	nding 6	9 lb uplift at j	oint			: `	:2	7: -
	8-15=-367/56, 8-13=	-21/580, 10-12=0/29	97,	11 and 69 lb	uplift at joint 2.					-			1 : 2
	10-13=-597/166		10) This truss is	designed in accorda	ance w	ith the 2015			- E		SEA	1. 🚯 E
NOTES				International	Residential Code s	ections	R502.11.1 a	ind		Ξ.		0400	
1) Unbalance	ed roof live loads have	been considered for		R802.10.2 ar	nd referenced stand	lard AN	ISI/TPI 1.			1	:	0433	25 : :
this desigr	۱.		11	ctructural wa	sign requires that a	niinim niiod d	uni 01 //10"	on		-	8		1 2
				chord and 1/	ou sneathing be ap	hiieu a k he a	nectly to the t	/ to		-	- 1	·	a: > 3
				the bottom cl	sord	n ue a	ppiled directly	, 10			1,1	S. SNGIN	FERRAS
			12) Graphical pu	rlin representation of	does no	ot depict the s	size			11	1	
				, c.ap.nourpu							- C.	NP I	VAL

- R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

O mmm March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	C4	Piggyback Base Structural Gable	1	1	T33208528

Continued on page 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:52 ID:z5gCD_6uRwNvIQOIU0GIKmzru9V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:0-5-8,0-0-2], [5:0-6-0,0-2-0], [11:0-4-0,0-0-10], [25:0-4-0,0-2-0], [26:0-4-0,0-2-4], [37:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	11	(psf) 20.0 .0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.85 0.90 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.43 0.05	(loc) 48-50 48-50 55	l/defl >999 >793 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 360 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Left 2x6 S Structural except 2-0-0 oc p	0.2 0.3 *Except 0.3 *P No.2 2 wood shea wurlins (3-6-	t* 50-5:2x4 SP No.2 2-6-0 athing directly appliec -3 max.): 5-25, 6-61.	TOP CHORD	1-3=-1453/147, 3-5= 5-6=-1138/202, 6-7= 9-12=-274/146, 12- 14-16=-274/146, 16 18-20=-274/146, 20 22-25=-274/146, 25 27-28=-300/143, 28 29-31=-307/61, 31- 32-33=-323/24, 33- 34-35=-34/30, 35- 36-37394/40, 6-8	243, 46, 7-9=-274/ ⁻ 4/146, 74/146, 74/146, 20/149, 01/96, 5/32, 1/27, 5/30, 60	146,	 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; II; Exp B; Enclosed; MWFRS (envelope) exterior zo and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C fo members and forces & MWFRS for reactions showr Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the tr only. For studs exposed to wind (normal to the face see Standard Industry Gable End Details as applice or consult qualified building designer as per ANSI/T 						
BOT CHORD WEBS JOINTS	Rigid ceili 1 Row at r 1 Brace at 21, 17, 11	ng directly midpt t Jt(s): 24, , 8	applied. 22-23, 26-27, 28-45		8-10=-1133/66, 10-' 13-15=-1218/100, 1 17-19=-1252/114, 1	1123/ 13=-11/ 5-17=- 9-21=-	35/78, 1165/76, 1263/118,		4) ** ⁻ DC sno	TCLL: AS DL=1.15 F DW); Ps=	CE 7- Plate D varies	10; Pr=20.0 psf (0CL=1.00); Pf=2((min. roof snow:	roof live load).0 psf (flat ro =11.0 psf Lun	: Lumber of nber
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=0-4-0, 3 39=12-11- 41=12-11- 43=12-11- 1=-205 (LC 39=-19 (LC 41=-31 (LC 43=-37 (LC 43=-37 (LC 45=-142 (I 1=1246 (L	7=12-11-8, 38=12-11 8, 40=12-11-8, 8, 42=12-11-8, 8, 44=12-11-8, 8, 47=0-3-8, 55=12-1 C 10) 14), 38=-65 (LC 15), C 15), 40=-34 (LC 15 C 15), 42=-30 (LC 15), LC 15), 37=285 (LC 2) C 25), 37=285 (LC 2)	-8, BOT CHORD 1-8), WEBS 3),	21-23=-1282/125, 2 24-26=-1271/135, 2 1-50=-210/1327, 48 47-48=-120/1260, 4 44-45=-27/309, 43 42-43=-27/309, 39 38-39=-27/309, 37 24-25=-18/81, 22-22 18-19=-22/6, 16-17- 11-12=-16/4, 9-10=- 26-27=-168/18, 28 31-43=-85/46, 32-42	11, $31-32=-315/32$, 14, $33-34=-331/27$, 10, $35-36=-365/30$, 10, $6-8=-1125/60$, 16, $10-13=-1185/78$, 1100, $15-17=-1165/76$, 1114, $19-21=-1263/118$, 1125, $23-24=-1301/130$, 1135, $26-47=-132/1348$ 127, $48-50=-80/931$, 260, $45-47=-27/309$, 19, $43-44=-27/309$, 19, $43-44=-27/309$, 19, $39-40=-27/309$, 19, $37-38=-27/309$, 10, $27-21=-37/12$, 16-17=-202/78, $13-14=-97/49$, 9-10=-75/15, $7-8=-29/17$, 8, $28-45=-66/75$, $29-44=-86/46$,		12, 49, 5/46, 47,	DC Ex sur 5) Ro slo 6) Pro 7) All 8) Ga	Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for slope. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 1-410 oc.111111111111111111111111111111111111				
FORCES	(lb) - Maxi Tension	38=170 (L 40=115 (L 42=112 (L 44=140 (L 47=1104 (mum Com	C 26), 39=90 (LC 26) C 26), 41=109 (LC 2) C 26), 43=104 (LC 2) C 26), 45=-13 (LC 12 C 26), 45=-13 (LC 12 LC 3), 55=285 (LC 2) pression/Maximum	, 5), 5), 3) NOTES 3) 1) Unbalance this design TOP CHOI ROOF DIA PURLINS	34-40=-85/48, 35-39=-74/41, 36-38=-116/67, 3-50=-379/216, 5-50=-105/757, 15-48=-331/133, 5-48=-14/626 Dalanced roof live loads have been considered for design. DP CHORD MUST BE BRACED BY END JACKS, DOF DIAPHRAGM, OR PROPERLY CONNECTED JRLINS AS SPECIFIED.							L 25 EEFREGR	ANNULLIUN DE LA COMPANY	

March 13,2024

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH				
3843084	C4	Piggyback Base Structural Gable	1	1	T33208528 Job Reference (optional)				

9) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 142 lb uplift at joint 45, 6 lb uplift at joint 44, 37 lb uplift at joint 43, 30 lb uplift at joint 42, 31 lb uplift at joint 41, 34 lb uplift at joint 40, 19 lb uplift at joint 39 and 65 lb uplift at joint 38.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1)

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 1-5=-42, 5-6=-60, 6-25=-60, 25-37=-42,

51-55=-20

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Mar. 12.07:32:52 ID:z5gCD_6uRwNvIQOIU0GIKmzru9V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	D1	Common Supported Gable	1	1	T33208529 Job Reference (optional)

4x6= 12

14-1-8 14-1-8

_12 9Г

6

5

Δ

3

44 43 42 41 40 39 38

3x4 🍫

9

8 7

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

11-5-10

0-10-8

45

3x8 II

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:53 ID:0p9EL7UyEJ9dwS?JdOsnxpzs6Ys-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28-0-0

13-10-8

11 13 10 14 3x4、 ¹⁵16 17 18 19 X R 20 X 21 22 23 ₽ 24.... ****** 3736 35 34 33 32 31 30 29 28 27 26 25 3x4= 28-0-0

Plate Offsets (X, Y):	[45:0-4-12,0-1-8]

Scale = 1:69.5

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, -	- 1											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	11 2x4 SP No 2x4 SP No 2x4 SP No	(psf) 20.0 1.0/20.0 10.0 0.0* 10.0 0.2 0.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix	0.1 0.1 0.1 -AS 24=138 (LC 2 26=100 (LC 2 28=109 (LC 2 30=110 (LC 2	DEFL Vert(LL) Vert(TL) Horiz(TL) 8), 25=190 (L0 27=115 (LC 3), 29=111 (L0 3), 31=110 (L0	in n/a n/a 0.00 C 26), 26), C 26), C 26), C 26),	(loc) - 24 WEBS	l/defl n/a n/a n/a	L/d 999 999 n/a 12-34 10-37 6-40= 3-43=	PLATES MT20 Weight: 270 lb =-235/169, 11-3 =-88/58, 9-38=-6 -84/47, 5-41=-83 -71/33, 2-44=-14	GRIP 244/190 FT = 20% 5=-85/14, 3/47, 7-39=-84/47, 3/47, 4-42=-87/50, 5/104. 13-33=-80/6	
WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	IORD 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 IG IORD Structural wood sheathing directly applied, except end verticals. IORD Rigid ceiling directly applied. 1 1.7.33, 14-32 IONS (size) 24=28-0-0, 25=28-0-0, 28=28-0-0, 28=28-0-0. FORCES					32=113 (LC 2) 34=225 (LC 1) 37=111 (LC 2) 39=110 (LC 2) 41=109 (LC 2), 45=181 (LC 1)	5), 33=106 (L(5), 35=112 (L(5), 35=112 (L(5), 38=110 (L(5), 40=111 (L(5), 42=118 (L(44=221 (LC 2 8)	2 20), C 30), C 25), C 25), C 25), C 25), C 25), P 25), m	NOTES 1) Un this 2) Wi	5 balanced s design. nd: ASC	14-32=-88/59, 15-31=-84/47, 17-30=-84/ 18-29=-84/47, 19-28=-84/47, 20-27=-85/ 21-26=-75/34, 22-25=-127/100 ed roof live loads have been considered for 1. CE 7-10; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; C			
REACTIONS	13-33, 14-32 IS (size) 24=28-0-0, 25=28-0-0, 26=28-0-0, 27=28-0-0, 28=28-0-0, 29=28-0-0, 30=28-0-0, 31=28-0-0, 35=28-0-0, 37=28-0-0, 41=28-0-0, 35=28-0-0, 40=28-0-0, 41=28-0-0, 42=28-0-0, 43=28-0-0, 44=28-0-0, 42=28-0-0, 43=28-0-0, 44=28-0-0, 45=28-0-0 Max Horiz 45=223 (LC 13) Max Uplift 24=-57 (LC 13), 25=-130 (LC 15), 26=-1 (LC 14), 27=-38 (LC 15), 30=-31 (LC 15), 39=-31 (LC 15), 32=-43 (LC 15), 37=-42 (LC 14), 40=-31 (LC 14), 41=-30 (LC 14), 40=-31 (LC 14), 43=-7 (LC 15), 44=-132 (LC 14), 45=-105 (LC 10)				$\begin{array}{r} 45{=}181 \ (LC \ 13) \\ (lb) - Maximum Compression/Maximum Tension \\ 1{-}45{=}{-}138/88, 1{-}2{=}{-}197/173, 2{-}3{=}{-}149/125, \\ 3{-}4{=}{-}145/131, 4{-}5{=}{-}133/127, 5{-}6{=}{-}123/139, \\ 6{-}7{=}{-}127/160, 7{-}9{=}{-}157/181, 9{-}10{=}{-}186/204, \\ 10{-}11{=}{-}223/247, 11{-}12{=}{-}227/255, \\ 12{-}13{=}{-}227/255, 13{-}14{=}{-}223/247, \\ 14{-}15{=}{-}186/204, 15{-}17{=}{-}157/168, \\ 17{-}18{=}{-}127/133, 18{-}19{=}{-}97/104, \\ 19{-}20{=}{-}75/82, 20{-}21{=}{-}83/64, 21{-}22{=}{-}89/62, \\ 22{-}23{=}{-}139/101, 23{-}24{=}{-}100/44 \\ 44{+}45{=}{-}85/107, 43{-}44{=}{-}85/107, \\ 42{-}43{=}{-}85/107, 34{-}34{=}{-}85/107, \\ 38{-}39{=}{-}85/107, 37{-}38{-}85/107, \\ 33{-}34{=}{-}85/107, 32{-}3{=}{-}85/107, \\ 31{-}32{=}{-}85/107, 32{-}3{=}{-}85/107, \\ 31{-}32{=}{-}85/107, 28{-}29{=}{-}85/107, \\ 27{-}28{=}{-}85/107, 24{-}25{=}{-}85/107, \\ 25{-}26{=}{-}85/107, 24{-}25{=}{-}85/107. \\ \end{array}$				3) Tr sec	Exp 8; Ex	sh, r Giran Constant nclose tterior (nd verr of land tuds e) rd Indu qualifier	(1) MWFRS (envi (2) zone; cantilev tical left and righ uses & MWFRS fo o plate grip DOL- or wind loads in t oposed to wind (r istry Gable End 1 d building design (1) H CA O 4 33 SEA 04 33	elope) exterior zone rer left and right t exposed;C-C for r reactions shown; =1.33 he plane of the trus normal to the face), Details as applicabl er as per ANSI/TPI	

Thuman and J. O' March 13,2024

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH				
3843084	D1	Common Supported Gable	1	1	T33208529 Job Reference (optional)				

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 45, 57 lb uplift at joint 24, 42 lb uplift at joint 37, 31 Ib uplift at joint 38, 31 lb uplift at joint 39, 31 lb uplift at joint 40, 30 lb uplift at joint 41, 38 lb uplift at joint 42, 7 lb uplift at joint 43, 132 lb uplift at joint 44, 43 lb uplift at joint 32, 31 lb uplift at joint 31, 31 lb uplift at joint 30, 31 Ib uplift at joint 29, 30 lb uplift at joint 28, 38 lb uplift at joint 27, 1 lb uplift at joint 26 and 130 lb uplift at joint 25.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Mar. 12.07:32:53 ID:0p9EL7UyEJ9dwS?JdOsnxpzs6Ys-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	D2	Common	6	1	T33208530 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:53 ID:zHVi95_DgXEBPXTiTpkM0bzs9?k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.7

Plate Offsets (X, Y): [1:0-5-10,0-0-2], [9:0-8-6,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	FPI2014	CSI TC BC WB Matrix-AS	0.53 0.89 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.40 0.06	(loc) 10-12 10-12 9	l/defl >999 >836 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2400F 2.0E or DSS - Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 9 Max Horiz 1=205 (LC Max Uplift 1=-14 (LC Max Grav 1=1206 (L (lb) - Maximum Com Tension 1-3=-1487/138, 3-5= 5-7=-1391/238, 7-9= 1-12=-218/1270, 10- 5-10=-114/695, 7-10 5-12=-114/750, 3-12	2-6-0, Right 2x8 SP 2-6-0 athing directly applied applied. 2-11) 14), 9=-12 (LC 15) C 25), 9=1207 (LC 2 pression/Maximum -1422/240, -1465/137 12=0/850, 9-10=-97/ =-328/223, =-360/226	5) - 6) - 7) - d. 8) - 9) - - 86) 10) - 5 5 5 5 5 5 5 5 5 5 5 5 6 7 7 1 8 7 7 8 9 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	This truss have this truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 1 and 12 lb uu This truss is or International R802.10.2 an This truss des structural woo chord and 1/2 the bottom ch D CASE(S)	s been designed fo d nonconcurrent w as been designed a chord in all areas y 2-00-00 wide will y other members, v (r(s) for truss to tru nanical connection capable of withsta Diff at joint 9. lesigned in accord Residential Code s d referenced stand sign requires that a d sheathing be ap " gypsum sheetrod ord. Standard	or a 10.0 rith any for a liv where fit betw with BC ss conr (by oth- nding 1 ance wi sections dard AN a minimi- oplied di ck be ap	D) psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf ers) of truss t 4 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t oplied directly	ds.)psf om o oint nd op (to					
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber DO 3) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruct 4) Roof desig slope.	ed roof live loads have 2E 7-10; Vult=115mph iph; TCDL=6.0psf; BCI Enclosed; MWFRS (en xterior (2) zone; cantile end vertical left and rig and forces & MWFRS 0 DL=1.60 plate grip D0 DL=1.60 plate grip D0 CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =11.0 psf (roof snow: L); Category II; Exp B; F ted slippery surface in snow load has been	been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ever left and right that exposed;C-C for for reactions shown; L=1.33 coof live load: Lumbe 20.0 psf (flat roof umber DOL=1.15 Pl: Fully Exp.; Ct=1.10; reduced to account	at. e r ate for								And And And And	SEA 0433	L 25 EE CAU

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	D3	Common	1	1	T33208531 Job Reference (optional)

Scale = 1:80.2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:54 ID:dZk1MSWPkn0BfoQx92ZKp1zruNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:0-5-10,0-0-2], [9:0-5-12,Edge], [11:0-5-0,0-3-4], [14:0-5-0,0-3-4]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.46 0.81 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.03	(loc) 14-17 11-21 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 188 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood shea Rigid ceiling directly (size) 1=0-3-8, 9 Max Horiz 1=-214 (Li Max Uplift 1=-13 (LC Max Uplift 1=-13 (LC Max Grav 1=1210 (Li (lb) - Maximum Com Tension 1-3=-1487/141, 3-5= 5-7=-1428/243, 7-9= 1-9=-212/1279 3-14=-365/225, 5-14 5-11=-116/742, 7-11	t* 14-11,13-12:2x6 S 2-6-0, Right 2x6 SP I athing directly applie applied. 9=0-3-8 C 10) : 14), 9=-26 (LC 15) .C 26), 9=1259 (LC 2 pression/Maximum -1423/242, 1491/141, 9-10=0/5 =-116/737, =-368/225	4) SP 5) No.2 6) 7) .d. 8) 27) 9) 52 LC	Roof design slope. This truss ha load of 12.0 1 overhangs ni This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide meci bearing plate 1 and 26 lb u This truss is International R802.10.2 ar) This truss de structural wo chord and 1// the bottom cl	snow load has been s been designed for part or 2.00 times fla on-concurrent with is been designed for ad nonconcurrent with is been designed in chord in all areas by 2-00-00 wide will yo other members, hanical connection a capable of withsta polificat joint 9. designed in accord Residential Codes and referenced stand sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	n reduc or great at roof li other li or a 10.1 vith any for a liv with BCC (by oth unding 1 lance w sections dard AN a minim oplied d ck be a	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 3 lb uplift at ith the 2015 5 R502.11.1 a JSI/TPI 1. um of 7/16" irectly to the pplied directl	nt for f live sof on ads. Opsf to joint and top y to						
NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r II; Exp B; and C-CE exposed ; members Lumber D 3) TCLL: AS DOL=1.0(SDU=1.0(ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (5 Plate DOL=1.00); Pf= =11.0 psf (roof snow: L b); Category II; Exp B; F	been considered for (3-second gust) DL=6.0psf; h=30ft; C welope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.33 roof live load: Lumbe 20.0 psf (filat roof .umber DOL=1.15 P Fully Exp.; Ct=1.10;	Cat. e er late							and the second s	Print Print	SEA 0433	L 25 EFR CALL	

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

O'

mmm March 13,2024

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	D4	Common	5	1	T33208532 Job Reference (optional)

Scale = 1:80.2

Run: 8.63 E Feb 9 2023 Print: 8.630 E Feb 9 2023 MiTek Industries, Inc. Wed Mar 13 13:51:51 ID:dZk1MSWPkn0BfoQx92ZKp1zruNB-89XNOPCWIeQ78rOalhmzOuqszsugS5Tq2770SvzbV?s

Page: 1

	λ, 1). [1.0-3-10,0-0-2], [9.0-5-0,0-0-2], [10	.0-3-0,0-0	J-4], [13.0-J-0,0	/-5-4]								
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-AS	0.46 0.82 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.03	(loc) 13-16 10-20 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood she Rigid ceiling directly (lb/size) 1=878/0-3 Max Horiz 1=-206 (L Max Uplift 1=-13 (LC Max Grav 1=1210 (L	t* 13-10,12-11:2x6 S 2-6-0, Right 2x6 SP N athing directly applie applied. 3-8, 9=878/0-3-8 C 10) 2 14), 9=-14 (LC 15) . C 25), 9=1210 (LC 2	3 P No.2 4 d. 6 26) 7	 TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe Roof design slope. This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and ar Provide mec bearing plate 	7-10; Pr=20.0 p. late DOL=1.00); 1.0 psf (roof snov Category II; Exp i d slippery surface snow load has but as been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide w hanical connection hanical connection	sf (roof liv Pf=20.0 p w: Lumbe B; Fully E een reduc t with any d for a liv as where will fit betw s, with BC on (by oth standing.	re load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ced to accoun 0 psf bottom other live loa re load of 20.1 a rectangle veen the botti CDL = 10.0psf ers) of truss t 3 b uplift at	Plate Plate It for Ids. Dpsf f. co oint					
FORCES	(lb) - Max. Comp./Mi (lb) or less except w 1-2=-750/0, 2-3=-14 4-5=-1313/243, 5-6=	ax. Ten All forces 2 hen shown. 88/141, 3-4=-1424/1 1320/243,	250 8 97,	1 and 14 lb u 1 and 14 lb u This truss de structural wo chord and 1/	uplift at joint 9. esign requires that ood sheathing be 2" gypsum sheet	at a minim applied d rock be a	um of 7/16" irectly to the t pplied directly	top y to					
BOT CHORD	1-22=-220/1274, 22= 13-23=-86/1274, 12- 24-25=0/857, 11-25= 10-26=-16/1154, 26- 9-27=-16/1154	-1493/142, 8-9=-742 -23=-86/1274, -13=0/824, 12-24=0/8 =0/857, 10-11=0/827 -27=-16/1154,	L 357, ,	OAD CASE(S)	Standard							HTH CA	Rolling
WEBS	3-13=-365/225, 5-13 5-10=-117/746, 7-10	8=-116/737, 9=-370/225									i e		Ny . Y
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; I and C-CE exposed; members Lumber De	ed roof live loads have 2E 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) DL=6.0psf; h=30ft; C welope) exterior zone ever left and right ght exposed;C-C for for reactions shown; uL=1.33	cat. e								Partie	SEA 0433	L 25 EER. A.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 13,2024

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	F1	Common Supported Gable	1	1	T33208533 Job Reference (optional)

Run: 8.63 E Feb 9 2023 Print: 8.630 E Feb 9 2023 MiTek Industries, Inc. Wed Mar 13 13:52:50 ID:zwsaK1yvhPWFiTTM_TjQ4fzs913-vWbhmawWOmsljvPwiaKoHLm1KeC9mpGWcowe0_zbV_x

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.07 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 111 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. All bearings 13-3-0. Max Horiz 24=171 (I Max Uplift All uplift 1 14, 16, 17 15=-121 (24=-102 (Max Gray, All reaction	athing directly applie cept end verticals. applied or 6-0-0 oc LC 13) 00 (lb) or less at join 7, 18, 20, 21, 22 exce LC 15), 23=-126 (LC LC 10) ns 250 (lb) or less at	4) 5) td or 6) 7) 8) tt(s) 9) 5 14), 10 5 14), 11	TCLL: ASCE DOL=1.15 Pl snow); Ps=8. DOL=1.00); (Unobstructed Roof design slope. This truss ha load of 12.0 p overhangs nd All plates are Truss to be fi braced again Gable studs 0) This truss ha chord live loa	7-10; Pr=20.0 psf ate DOL=1.00); Pl 3 psf (roof snow: I Category II; Exp B; d slippery surface snow load has been s been designed fi pon-concurrent with 2x4 MT20 unless ully sheathed from st lateral moveme spaced at 1-4-0 oc s been designed find d nonconcurrent with as been designed	(roof liv =20.0 p _umber ; Fully E en reduc or greate at roof k other liv other wi one fac nt (i.e. d 2. or a 10.0 vith any for a liv	e load: Lumbo sf (flat roof DOL=1.15 Pla xp.; Ct=1.10; ed to account er of min roof pad of 20.0 ps re loads. se indicated. e or securely iagonal web). 0 psf bottom other live load e load of 20.0	er ate : for live if on ds. psf					
FORCES NOTES 1) Unbalanc	(s) 14, 15 22, 23, 24 (lb) - Max. Comp./M (lb) or less except w ed roof live loads have	, 16, 17, 18, 19, 20, 3 4 ax. Ten All forces 3 hen shown.	21, 250 12	on the bottom 3-06-00 tall b chord and an ?) Provide mech bearing plate joint(s) 14, 20 23=126, 15=	by 2-00-00 wide wil by other members. hanical connection capable of withsta 0, 21, 22, 18, 17, 1 120.	ll fit betw (by oth anding 1 6 excep	ers) of truss to 00 lb uplift at t (jt=lb) 24=10	om D D2,				mmm	1111.

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	F2	Common	1	1	T33208534 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:55 ID:cEa6r76Rt51Y9JNgh_xEZBzs90t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.7

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Loading FCLL (roof) Snow (Ps/Pf) FCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.76 0.38 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 6-7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 50RCES FOP CHORD 30T CHORD 30T CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, £ Max Horiz 8=171 (LC Max Uplift 6=-7 (LC Max Grav 6=583 (LC (lb) - Maximum Com Tension 1-2=0/72, 2-3=-507/ 4-5=0/72, 2-8=-525/ 7-8=-241/408, 6-7=- 3-7=0/281, 2-7=-170	athing directly appli cept end verticals. applied or 10-0-0 o 3=0-3-8 C 13) 15), 8=-7 (LC 14) C 2), 8=583 (LC 2) pression/Maximum 84, 3-4=-507/84, 105, 4-6=-525/105 167/332 J/293, 4-7=-173/296	5) ed or 7) ic 8) 9) LC	This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar Provide mec bearing plate and 7 lb uplif This truss is International R802.10.2 ar	as been designed for psf or 2.00 times fla on-concurrent with as been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil hy other members. hanical connection a capable of withsta t at joint 6. designed in accord Residential Code s nd referenced stan Standard	or great at roof lo other lin or a 10.0 vith any for a liv s where I fit betw (by oth anding 7 dance w sections dard AN	er of min roof pad of 20.0 p: re loads.) psf bottom other live loa e load of 20.0 a rectangle reen the bott ers) of truss t ' Ib uplift at jo ith the 2015 ; R502.11.1 a ISI/TPI 1.	f live ads. Opsf com bint 8						
NOTES I) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C I exposed	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and ric	been considered fo (3-second gust) DL=6.0psf; h=30ft; ivelope) exterior zor ever left and right aht exposed:C-C for	or Cat. ne								A.M.	ORTH CA		

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=8.3 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;
- Unobstructed slippery surfaceRoof design snow load has been reduced to account for slope.

SEAL 043325 MGINEERCATION March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	F3	Common Girder	1	2	T33208535 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:55 ID:zHVi95_DgXEBPXTiTpkM0bzs9?k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7-8 13-3-0 6-7-8 6-7-8 4x6 II 3 12 12 Г 7-9-2 4x6、 4x6 2 Δ 5 1-1-10 ⊠ X 15 16 17 6 18 19 20 21 4x12 🛚 4x12 u 4x12 u 6-7-8 13-3-0 6-7-8 6-7-8

Scale = 1:51.7

Plate Offsets (X, Y): [6:0-6-4,0-2-0]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.39 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.01	(loc) 6-9 6-9 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord CASE(S) : provided t unless oth 3) Unbalance this design	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 Left 2x6 SP No.2 2 No.2 2-4-13 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, § Max Horiz 1=-128 (L Max Uplift 1=-79 (LC Max Grav 1=4327 (I (lb) - Maximum Com Tension 1-3=-3394/224, 3-5= 1-6=-94/2424, 5-6=- 3-6=-102/4487 s to be connected toge ') nails as follows: ls connected as follows: ls connected as follows: ls connected as follows: ls connected as follows: lat 0-7-0 oc. lected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply com o distribute only loads not conflive loads have n.	or 2x8 SP DSS 2-4-13, Right 2x6 SP athing directly applie applied or 10-0-0 oc 5=0-3-8 C 6) 11), 5=-70 (LC 10) C 22), 5=3854 (LC 2 pression/Maximum 3393/222 37/2424 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, nections have been noted as (F) or (B), been considered for	4) 5) d or 6) 7) 21) 8) 9) 10) 0 11) 0 11) AD LC 1)	Wind: ASCE Vasd=91mpH II; Exp B; Enc cantilever leff right exposed TCLL: ASCE DOL=1.00); 0 Unobstructed Roof design slope. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord dive loa * This truss ha chord dive loa * This truss ha chord dive loa * This truss ha chord and an Provide med bearing plate 1 and 70 lb u) This truss is (International R802.10.2 ar Hanger(s) or provided suff lb down and 1 bup at 3-2-4, lb down and 2 bup at 3-2-4, lb down and 3 bup at 3-2-4, lb down at 3-2-4, lb d	7-10; Vult=115mph 7-10; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (et and right exposed ; Lumber DOL=1.6 7-10; Pr=20.0 psf ate DOL=1.00; Pf- 3 psf (roof snow: L Category II; Exp B; 1 slippery surface snow load has been s been designed fo d nonconcurrent w as been designed fo d nonconcurrent w as been designed in a chord in all areas y 2-00-00 wide will y other members, y anical connection capable of withsta plift at joint 5. designed in accord: Residential Code s d referenced stand other connection d icient to support co 24 lb up at 1-2-4, 1 1157 lb down and 2 24 lb up at 7-2-4, a 4, and 1187 lb dow ord. The design/se evice(s) is the resp Standard w (balanced): Lum 00 ds (lb/ft) 27.0 5, 27.44	(3-secc DL=6.1 velope ; end v 0 plate (roof liv :20.0 p umber 1 Fully E r a n reduc r a 10.0 ith any or a liv where fit betw with BC (by oth nding 7 ance wi ections lard AN verice(s ncentra 175 lb verice(s ncentra 175 lb b n and 2 election onsibilit ber Inci	ond gust) opsf; h=30ft; () exterior zor ertical left an grip DOL=1. e load: Lumb f(flat roof DOL=1.15 Pl: xp.; Ct=1.10; ed to accoun) psf bottom other live load e load of 20.0; a rectangle reen the botto DL = 10.0psf eres) of truss t 9 lb uplift at j th the 2015 R502.11.1 a shall be ted load(s) 1 down and 24 • at 5-2-4, 11 of such y of others. rease=1.15, F	Cat. ne; id 33 er ate t for ds. Dpsf om o oint 187		Vert: 15. 18=-849	=-849 0 (B), 1	(B), 16=-849 (B), 9=-849 (B), 21=- 9=-849 (B), 21=- Control (B), 2	17=-849 (B), 349 (B) L 25 FEREGRININ	
				Concentrate	ed Loads (lb)							in min	ann.	

March 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	G1	Common Supported Gable	1	1	T33208536 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:56 ID:F6ZpFwO_4mGYke6axtvALSzs934-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	G1	Common Supported Gable	1	1	T33208536 Job Reference (optional)

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 43, 43 lb uplift at joint 24, 3 lb uplift at joint 34, 40 lb uplift at joint 36, 31 lb uplift at joint 37, 31 lb uplift at joint 38, 30 lb uplift at joint 39, 36 lb uplift at joint 40, 6 lb uplift at joint 41, 120 lb uplift at joint 42, 41 lb uplift at joint 31, 31 lb uplift at joint 30, 31 lb uplift at joint 29, 30 lb uplift at joint 28, 36 lb uplift at joint 27, 10 lb uplift at joint 26 and 106 lb uplift at joint 25.

13) n/a

- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:56 ID:F6ZpFwO_4mGYke6axtvALSzs934-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	G2	Common	14	1	T33208537 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:56 ID:0B5h3HvKBgZbm5JeOhf12Jzs92Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-5-12,Edge], [10:0-5-12,Edge]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.34	DEFL Vert(LL)	in -0.16	(loc) 12-14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Ps/Pf)	11.0/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.64 0.23	Vert(CT)	-0.25 0.03	12-14 10	>999 n/a	180 n/a	MT20HS	187/143
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-AS	0.20	11012(01)	0.00	10	n/a	n/u	Weight: 145 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood shea Rigid ceiling directly (size) 2=0-3-8, 1 Max Horiz 2=-192 (LC Max Uplift 2=-24 (LC Max Grav 2=1081 (L	2-6-0, Right 2x6 SP I athing directly applie applied. 0=0-3-8 C 12) 14), 10=-24 (LC 15 C 26), 10=1081 (LC	4) 5) No.2 6) 7) ed. 8)) 9) 27) 9)	Roof design a slope. This truss ha load of 12.0 p overhangs nu All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate	snow load has been s been designed fo osf or 2.00 times fla on-concurrent with or MT20 plates unles s been designed fo of nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members, w anical connection capable of withsta	r great t roof le other lin s other r a 10.4 for a liv where fit betw with BC (by oth nding 2	ted to account er of min roof pad of 20.0 p: ve loads. wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psf ers) of truss t 24 lb uplift at j	nt for f live sf on ed. dds. Opsf om f. to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	2 and 24 lb u) This truss is	plift at joint 10. designed in accorda	ance w	ith the 2015						
TOP CHORD	1-2=0/52, 2-4=-1262 6-8=-1209/210, 8-10	/121, 4-6=-1209/210 =-1262/121, 10-11=), 0/53	International R802 10 2 ar	Residential Code s	ections	R502.11.1 a	and					
BOT CHORD	2-14=-168/1087, 12- 10-12=-82/978	14=0/739,	11	11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top									
WEBS	6-12=-100/619, 8-12	=-305/196,		chord and 1/2	2" gypsum sheetroo	k be a	pplied directly	y to					

NOTES

Scale = 1:68

1) Unbalanced roof live loads have been considered for this design.

6-14=-100/620, 4-14=-305/196

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H1	Roof Special	11	1	T33208538 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:57

			-		0								
Scale = 1:25.6			I										
Plate Offsets (X, Y	'): [3:0-3-4,Edge]	, [4:Edge,0-3-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.71	Vert(LL)	0.21	4-7	>461	240	MT20	244/190	
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.25	4-7	>388	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a			

BCDL		10.0	
LUMBER			
TOP CHORD	2x4 SP N	o.2	
BOT CHORD	2x4 SP N	0.2	
WEBS	2x4 SP N	0.2	
BRACING			
TOP CHORD	Structura	l wood shea	athing directly applied,
	except er	nd verticals.	
BOT CHORD	Rigid ceil	ing directly	applied.
REACTIONS	(size)	2=0-3-8, 4	=0-3-8
	Max Horiz	2=69 (LC	15)
	Max Uplift	2=-107 (L0	C 12), 4=-87 (LC 12)
	Max Grav	2=383 (LC	2), 4=353 (LC 23)
FORCES	(lb) - Max	imum Com	pression/Maximum
	Tension		
TOP CHORD	1-2=0/21,	2-3=-247/1	71, 3-4=-232/119
BOT CHORD	2-4=-202/	/226	

0.0*

Code

NOTES

BCLL

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom

Matrix-AS

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 4 SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 2 and 87 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

IRC2015/TPI2014

Weight: 29 lb

FT = 20%

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H2	Monopitch	2	1	T33208539 Job Reference (optional)

TCDL

BCLL

BCDL

WFBS

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

grip DOL=1.33

Unobstructed slippery surface

WEBS

NOTES 1)

2)

3)

slope. 4)

design.

REACTIONS (size)

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 6-0-0 oc

2=0-3-8, 6=0-3-8

Max Uplift 2=-78 (LC 12), 6=-175 (LC 12)

Max Grav 2=320 (LC 2), 6=691 (LC 23)

(lb) - Maximum Compression/Maximum

1-2=0/21, 2-3=-178/234, 3-4=-74/209,

3-6=-489/288, 4-6=-304/68

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate

DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;

Roof design snow load has been reduced to account for

Unbalanced snow loads have been considered for this

Wind: ASCE 7-10; Vult=115mph (3-second gust)

6-0-0 oc purlins.

Max Horiz 2=97 (LC 12)

bracing.

Tension

4-5=-39/0

2-6=-203/156

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Mar 12.07:32:57 Page: 1 ID:J_ojlquZi2rY8P3_qF8Cltzs8UI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 8-1-4 11-10-7 0-10-8 8-1-4 3-6-7 2x4 🎣 5 2x4 ı 4 12 3 3 10 0 3-3-12 3-5-14 2 K 6 3x6 = 5x6 = 8-4-0 Scale = 1:29.9 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.82 Vert(LL) 0.30 6-9 >326 240 MT20 244/190 Snow (Ps/Pf) BC 0.64 Vert(CT) 18 7/20 0 Lumber DOL 1 15 -0.34 6-9 >281 180 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 2 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 41 lb FT = 20%LUMBER 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 2x6 SP No.2 *Except* 6-4:2x4 SP No.3 6) chord live load nonconcurrent with any other live loads. BRACING

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 175 lb uplift at joint 6 and 78 lb uplift at joint 2.
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

-5-2 Å

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	НЗ	Monopitch	2	1	T33208540 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:57 ID:JRIs9CTEibZN3ASSr6XDNizs8Uq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-5-2

-0-10-8 8-4-0 10-4-4 0-10-8 8-4-0 2-0-4 4 5x6 II 12 3 3 9 2-11-3 3-1-5 2 0-4-2 _ 5 \bigotimes 4x6 u 3x6 = 8-4-0 Scale = 1:27.6

Plate Offsets (2	X, Y): [3:0-3-4,Edge],	[5:Edge,0-3-8]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-AS	0.96 0.52 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.20 -0.23 0.00	(loc) 5-8 5-8 2	l/defl >495 >427 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed ; and right e MWFRS fr grip DOL= 2) TCLL: ASC DOL=1.15 snow); Ps- DOL=1.00 Unobstruc 3) Roof desig slope. 4) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly (size) 2=0-3-8,5 Max Horiz 2=85 (LC Max Grav 2=366 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-226/1 3-5=-417/219 2-5=-197/207 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en end vertical left and rig exposed; C-C for memb or reactions shown; Lui 1.33 CE 7-10; Pr=20.0 psf (r Plate DOL=1.00); Pf=: =18.7 psf (roof snow: L); Category II; Exp B; F ted slippery surface in snow loads have be	athing directly applied applied. =0-3-8 13) 12), 5=-125 (LC 12) 2), 5=530 (LC 23) pression/Maximum 149, 3-4=-53/0, (3-second gust) DL=6.0psf, h=30ft; C velope) exterior zone ever left and right pht exposed; porch le ters and forces & mber DOL=1.60 plate roof live load: Lumbe 20.0 psf (flat roof .umber DOL=1.15 Pla Fully Exp.; Ct=1.10; reduced to account en considered for this	5) Th loa ovv 6) Th ch ch d, 7) * T on 3- ch be joi 9) Th Int R8 10) Th str ch te joi 9) Th str ch be joi 10 1 Th str ch te be joi 10 1 Th str ch th te th th th th th th th th th th th th th	his truss hai ad of 12.0 p erhangs no iis truss hai ord live loa This truss h the bottom 06-00 tall b ord and an ovide mech aring plate nt 5 and 99 iis truss is of 302.10.2 an iis truss dei ructural woo ord and 1/2 b bottom ch CASE(S)	s been designed fo osf or 2.00 times fla on-concurrent with s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta 0 b uplift at joint 2. designed in accord Residential Code s and referenced stand sign requires that a od sheathing be ap?" gypsum sheetron ord. Standard	or greate at roof lo other lito or a 10.0 vith any for a livo where fit betw (by oth- nding 1 ance wi sections dard AN a minim- oplied di ck be ap	er of min roof pad of 20.0 ps (e loads.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 25 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t oplied directly	i live sf on ds. Opsf om to and top y to			Part Parts	SEA 0433	L 25 REGAN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 13,2024

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H4	Monopitch	2	1	T33208541 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:57 ID:QP_wl1D3f8wL2yMQ6Cel0Gzs8V9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

					0-4-0							
Scale = 1:25.6			I							I		
Plate Offsets (X, Y):	[3:0-3-4,Edge],	[4:Edge,0-3-8]										
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.70 0.61 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.21 -0.25 0.01	(loc) 4-7 4-7 2	l/defl >465 >389 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-8, 4 Max Horiz 2=69 (LC Max Uplift 2=-107 (L Max Grav 2=383 (LC	athing directly applie applied. 4=0-3-8 15) C 12), 4=-87 (LC 12 C 2), 4=353 (LC 23)	 6) This trus chord liv 7) * This trus on the b 3-06-00 chord ar 8) Provide bearing 4 and 10 9) This trus Internati R802.10 10) This trus 	s has been designer e load nonconcurrer iss has been design ttom chord in all are all by 2-00-00 wide d any other member mechanical connect blate capable of with 7 lb uplift at joint 2. s is designed in acc onal Residential Coc 2 and referenced st s design requires th	d for a 10.0 nt with any led for a live eas where will fit betw rs. ion (by othe standing 8 cordance wide sections tandard AN at a minimum) psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss 7 lb uplift at th the 2015 R502.11.1 sl)/TPI 1. um of 7/16"	ads. Opsf com to joint and					
FORCES	(lb) - Maximum Com Tension 1-2=0/21, 2-3=-248/	pression/Maximum	structura chord ar	I wood sheathing be d 1/2" gypsum shee m chord	e applied di etrock be ap	rectly to the pplied directly	top y to					
BOT CHORD	2-4=-200/226		LOAD CASE	(S) Standard								
NOTES												
 Wind: ASC Vasd=91m II; Exp B; E and C-C E exposed; and right e MWFRS fc grip DOL= 	E 7-10; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en xterior (2) zone; cantil end vertical left and rig exposed;C-C for memb or reactions shown; Lu 1.33	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed; porch le bers and forces & mber DOL=1.60 plat	Cat. e eft							and a	ORTH CA	BOL NILL
2) TCLL: ASO DOL=1.15 snow); Ps= DOL=1.00 Unobstruct	CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =18.7 psf (roof snow: L); Category II; Exp B; I ted slippery surface	roof live load: Lumbe 20.0 psf (flat roof Lumber DOL=1.15 P Fully Exp.; Ct=1.10;	er late						. THILL		SEA 0433	L 25
3) Roof desig	n snow load has been	reduced to account	for						-	3		1 3
slope. 4) Unbalance	ed snow loads have be	en considered for th	is							P	ENGINI	FERIA
design.5) This truss load of 12.	has been designed for 0 psf or 2.00 times flat	r greater of min roof t roof load of 20.0 ps	live f on							111	KIP J. C	D'REGUIN

- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

minimum March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H5	Half Hip	2	1	T33208542 Job Reference (optional)

6-2-12

6-2-12

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557.

-0-10-8

0-10-8

3x6 =

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:57 ID:4ltc5J_5OPUeDZKOoTu?WAzs8bv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚

8-4-0

2-1-4

1-6-0

Page: 1

4x8 = 3x6 = 12 3 Г 3 10 3 Ϋ́ 6

Scale = 1:30.8

Plate Offsets (X, Y): [3:0-4-0,0-2-8], [4:Edge,0-1-8], [5:Edge,0-4-0]

1-10-13

)-4-2

2-0-15

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.69 0.79 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.14 -0.23 0.01	(loc) 6-9 6-9 2	l/defl >686 >425 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 *Excep Structural wood she except end verticals	t* 3-6:2x4 SP No.3 athing directly applie , and 2-0-0 oc purlin	4) 5) 6) ed, s 7)	Roof design slope. Unbalanced design. This truss ha load of 12.0 overhangs n Provide adeo	snow load has be snow loads have s been designed psf or 2.00 times on-concurrent wit quate drainage to	een reduc been cor for greate flat roof lo h other liv prevent v	ed to accoun nsidered for th er of min roof pad of 20.0 p ve loads. water ponding	it for his i live sf on g.		Vert: 1-3	3=-57,	3-4=-60, 5-7=-20	
BOT CHORD REACTIONS	Rigid ceiling directly (size) 2=0-3-8, 5 Max Horiz 2=54 (LC Max Uplift 2=-108 (L Max Grav 2=507 (LC	applied. 5=0-1-8 15) C 12), 5=-84 (LC 12 C 36), 5=341 (LC 36)	8) 9))	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	s been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide v hy other members	for a 10.0 with any d for a liv as where vill fit betw s.) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ids. Opsf om					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/21, 2-3=-425/2 4-5184/122	pression/Maximum 232, 3-4=-374/250,	10) 11)	 Bearings are capacity of 5 Bearing at jo 	assumed to be: 65 psi. int(s) 5 considers	, Joint 5 S parallel t	SP No.2 crush o grain value	hing					
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2-6=-249/374, 5-6=- 3-6=-69/73 ed roof live loads have 1.	249/374 been considered for	12) 13)	 bearing AINSI/I designer sho Provide mec bearing plate Provide mec bearing plate point 2 and 84 	angle to gra uld verify capacit hanical connectio at joint(s) 5. hanical connectio capable of withs 4 lb uplift at joint 5	or formula y of beari on (by oth tanding 1 5.	a. Building ng surface. ers) of truss t ers) of truss t 08 lb uplift at	to to				THCA	Borte

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

- 14) This truss is designed in accordance with the 2015
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00
 - Uniform Loads (lb/ft)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H6	Half Hip Girder	2	1	T33208543 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:58 ID:22YUHZW7RknblCkBrdE9F9zs8f5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.9

Plate Offsets (X, Y): [2:0-3-4,0-0-6], [3:0-4-0,0-2-8], [5:0-7-11,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.66 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.01	(loc) 6-8 6-8 5	l/defl >999 >735 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x8 SP 2400F 2.0E 3-6:2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	or 2x8 SP DSS *Exc athing directly applie cept end verticals, a -0 max.): 3-4. applied or 10-0-0 or	4) 5) cept* 6) ed or nd 7) 8) c 9)	Roof design slope. Unbalanced design. This truss ha load of 12.0 j overhangs n Provide adeo This truss ha chord live loa * This truss t	snow load has been snow loads have be s been designed for osf or 2.00 times flat on-concurrent with c juate drainage to pr s been designed for id nonconcurrent wi has been designed for a chard in oll arroo.	en reduc een cor r greate t roof lo other liv event v r a 10.0 th any or a liv	ed to accoun asidered for the er of min roof aad of 20.0 ps ve loads. water ponding opsf bottom other live loa e load of 20.0.0 a rootnardo	t for his live sf on g. ds. Dpsf	16) Han prov lb de lb u top 36 ll 18 ll of si othe 17) In th of tr	ger(s) o vided suf own and p at 6-3 chord, a b down a b down a b up at b up at b up at chord, a b down a b up at b up at chord, a b down a b up at b up at b up at b up at b up at b up at b up at b up at b u	r other fficient 176 lb -8, and 8, and 23 8-0-6 c nection 0 CASE are not	connection devia to support conce up at 4-2-12, and d 92 lb down and 55 lt lb up at 6-3-8, a on bottom chord. o device(s) is the E(S) section, load ted as front (F) or	ce(s) shall be entrated load(s) 165 d 77 lb down and 29 35 lb up at 8-0-6 on o up at 4-2-12, and ind 53 lb down and The design/selection responsibility of ls applied to the face r back (B).	<u> </u>
FORCES TOP CHORD BOT CHORD WEBS NOTES	(size) 2=0-3-8, 5 Max Horiz 2=37 (LC Max Uplift 2=-143 (L Max Grav 2=600 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-757/ 4-5=-304/85 2-6=-166/708, 5-6=- 3-6=-158/58	5=0-1-8 9) C 8), 5=-168 (LC 8) C 32), 5=636 (LC 31) pression/Maximum 171, 3-4=-651/174, 166/651) 10 11 12 13	on the bottor 3-06-00 tall b chord and ar DSS crushin) Bearing at jo using ANSI/1 designer sho 2) Provide mec bearing plate 8) Provide mec bearing plate	n chord in all areas in y 2-00-00 wide will y other members. Just g capacity of 660 ps int(s) 5 considers pa TPI 1 angle to grain f uld verify capacity of hanical connection (r at joint(s) 5. hanical connection (capable of withstar S lb uplift to joint 6	where fit betw bint 5 S si. arallel t formula of beari (by oth (by oth nding 1	a rectangle veen the botto SP 2400F 2.0 o grain value a. Building ng surface. ers) of truss t 43 lb uplift at	om E or co	LOAD C 1) De Inc Un Co	CASE(S) wad + Sn prease=1 iform Lo Vert: 1-3 nocentrat Vert: 4= 10=-49 (Star ow (ba l.00 bads (lt 3=-57, 3 ted Loa -80 (F) (F), 12	ndard llanced): Lumber 5/ft) 3-4=-60, 2-5=-20 ads (lb) , 3=-133 (F), 6=-1 =-35 (F)	Increase=1.15, Plate	;
 Unbalance this design 	ed roof live loads have	been considered for	r 14) This truss is	designed in accorda	ance w	ith the 2015				J.	SP AM	in Init	

 Wind: AŠCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33

3) ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=18.7 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

ed for joint 2 and 168 lb uplift at joint 5. 14) This truss is designed in accordance with the 2015 14) This truss is designed in accordance with the 2015 14) International Residential Code sections R502.11.1 and 15) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or bottom chord.

March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H7	Jack-Open	6	1	T33208544 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:58 ID:O6fOLa8dHiQm3h0HAhBQd6zs8gt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-2-12

Page: 1

3x4 =

Scale	- 1	.22	7

Plate Offsets (X, Y): [2:0-3-4.Edge]

	(X, T): [2:0 0 4,Edge]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 3 Mechanic Max Horiz 2=40 (LC Max Uplift 2=-66 (LC Max Grav 2=225 (LC (LC 7)	athing directly applie applied. 3= Mechanical, 4= al 12) 2 12), 3=-33 (LC 12), 2 12) 2 2), 3=109 (LC 23),	5, ed. 7, , 8, 9, , 4=73	 This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss lo on the bottoi 3-06-00 tall chord and ai Refer to gird Provide mec bearing platt 3, 66 lb uplif This truss is 	Is been designed psf or 2.00 times on-concurrent wit is been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members ler(s) for truss to chanical connectic e capable of withs t at joint 2 and 11 designed in acco	I for great flat roof Ic th other livit of or a 10.0 th with any d for a livit as where will fit betw s. truss con on (by oth standing 3 Ib uplift a rrdance w	er of min roo pad of 20.0 p /e loads. D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 3 lb uplift at t joint 4. tib the 2015	f live ads. Opsf rom to joint					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=911 II: Exp B:	(lb) - Maximum Com Tension 0 -1-2=0/21, 2-3=-96/6 2-4=-83/82 CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed: MWERS (ar	pression/Maximum 9 (3-second gust) DL=6.0psf; h=30ft; (avelope) exterior zor	1 Cat. L	International R802.10.2 a 1) This truss de structural wo chord and 1/ the bottom c OAD CASE(S)	Residential Code nd referenced sta sign requires that od sheathing be a (2" gypsum sheet hord. Standard	e sections andard AN at a minim applied di rock be ap	R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the pplied directl	and top y to					
 and C-C I exposed exposed; reactions DOL=1.3; TCLL: AS DOL=1.1; snow); Pe DOL=1.0; Unobstru; 	Elicitosed, invited (and right for the state of (2) zone; cantil ; end vertical left and rig C-C for members and for shown; Lumber DOL=' 3 3CE 7-10; Pr=20.0 psf (5 Plate DOL=1.00); Pf= s=18.7 psf (roof snow: L 0); Category II; Exp S; H cted sliboery surface	vever left and right ght exposed; porch I orces & MWFRS for 1.60 plate grip roof live load: Lumb :20.0 psf (flat roof _umber DOL=1.15 P Fully Exp.; Ct=1.10;	left er Plate								A. A.	SEA 0433	L 25

- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.

PHILIP J. J. O' in J. Com March 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	H8	Monopitch Girder	2	1	Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:58 ID:uEvA7JCNRKKGz1xHBZ8ccZzs8WT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.9

Plate Offsets (X, Y): [2:0-3-4,0-0-2]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.25	Vert(LL)	0.04	6-8	>999	240	MT20	244/190
Snow (Ps/Pf)	18.7/20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.07	6-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.44	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 42 lb	FT = 20%
LUMBER			5) This truss ha	as been designed fo	or areat	er of min roo	flive					
TOP CHORD	2x4 SP No.2			load of 12.0	psf or 2.00 times fla	at roof l	oad of 20.0 p	osf on					
BOT CHORD	2x6 SP No.2			overhangs n	on-concurrent with	other liv	ve loads.						
WEBS	2x4 SP No.3 *Except	ot* 4-5:2x6 SP No.2	6) This truss ha	as been designed for	or a 10.	0 psf bottom						
BRACING				chord live loa	ad nonconcurrent v	vith any	other live loa	ads.					
TOP CHORD	Structural wood she	athing directly applie	dor ⁷) * This truss I	has been designed	for a liv	e load of 20.	.0psf					
	4-2-13 oc purlins, e	except end verticals.		on the botto	n chord in all areas	s where	a rectangle						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		3-06-00 tall 1	by 2-00-00 wide wil	l fit betw	veen the bott	tom					
	bracing.		0	Chord and al	ny other members.	loint E		hina					
REACTIONS	(size) 2=0-3-8,	5=0-1-8	o	capacity of 5	65 nsi	Joint 5 3	SP NO.2 Clus	aning					
	Max Horiz 2=65 (LC	9)	g	Bearing at ic	int(s) 5 considers r	parallel	o grain value	e.					
	Max Uplift 2=-196 (L	-C 8), 5=-237 (LC 8)	-	using ANSI/	FPI 1 angle to grain	formul	a. Building	-					
	Max Grav 2=704 (L	C 19), 5=926 (LC 19)		designer sho	ould verify capacity	of bear	ing surface.						
FORCES	(lb) - Maximum Con	npression/Maximum	1	0) Provide med	hanical connection	(by oth	ers) of truss	to					
	Tension			bearing plate	e at joint(s) 5.								
TOP CHORD	1-2=0/25, 2-3=-1772	2/451, 3-4=-112/29,	1	 Provide med 	hanical connection	(by oth	ers) of truss	to					
	4-5=-91/23	444/4740		bearing plate	e capable of withsta	anding 1	96 lb uplift a	ıt					
BUT CHURD	2-0=-442/1700, 5-0	=-444/1719 1705/455	4	joint 2 and 2	37 lb uplift at joint 5). Janaa w							
WEDS	3-0=-100/134, 3-3=-	1705/455	1	2) This truss is	Designed in accord	ance w		and					
NOTES		(a		R802 10 2 a	nd referenced stan	dard AN	191/TDI 1	anu					
1) Wind: ASC	CE 7-10; Vult=115mpr	(3-second gust)	. 1	3) Hanger(s) or	other connection		shall he						
Vasu=911	npn; TCDL=6.0psi; BC	DL=6.0psi; n=30it; C	al. '	provided suf	ficient to support co	oncentra	ated load(s) 6	616			2	WITH UA	Rollin
п, схр в, cantilever	left and right exposed	· end vertical left and	е, 1	lb down and	180 lb up at 4-3-8	, and 32	21 lb down ar	nd 96			N	A	2. 11/1
right expo	sed porch left and rid	ht exposed: Lumber		lb up at 6-3-	8 on bottom chord	. The d	esign/selection	on of			32		ON: DE
DOL=1.60) plate grip DOL=1.33			such connec	tion device(s) is the	e respo	nsibility of oth	hers.			:)	:2/	7: -
2) TCLL: AS	CE 7-10; Pr=20.0 psf	roof live load: Lumbe	er L	OAD CASE(S)	Standard					-		:4/	· · · =
DOL=1.15	5 Plate DOL=1.00); Pf=	20.0 psf (flat roof	1) Dead + Sno	ow (balanced): Lun	nber Inc	rease=1.15,	Plate		=		SEA	1 1 E
snow); Ps	=18.7 psf (roof snow:	Lumber DOL=1.15 PI	ate	Increase=1	.00						- 1	0400	
DOL=1.00); Category II; Exp B;	Fully Exp.; Ct=1.10;		Uniform Lo	ads (lb/ft)					1		. 0433	25 : 2
Unobstruc	cted slippery surface			Vert: 1-4	=-57, 2-5=-20						3		1 2
 Roof designation 	gn snow load has beer	n reduced to account	tor	Concentrat	ed Loads (lb)						- 1		a123
siope.	ad anow loads have h	on oppidered for this	ie	Vert: 10=	-616, 11=-321						2,1	S. S.NGINI	EENAN
4) Unbaiance	eu shuw luaus have be		12								11	KIN MIN	ECIN
uesiyi1.												ILP J C)'HY
												111.	

- Roof design snow load has been reduced to account for 3) slope.
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 13,2024

818 Soundside Road Edenton, NC 27932

in J. Com

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	Н9	Monopitch	7	1	T33208546 Job Reference (optional)

-1-0-0

1-0-0

3x6 =

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:59 ID:5VCJJNsZxKPAB?Bgmemof2zs8hF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5x6 II 12 3 Г 3 8 2 4

8-0-0

8-0-0

MT20HS 3x10 ॥

Scale = 1:28

Plate Offsets (X, Y): [3:0-3-4,Edge], [4:0-3-8,Edge]

2-6-10

9-4-2

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T 7) T	PI2014	CSI TC BC WB Matrix-AS s been designed	0.64 0.56 0.00 for a 10.0	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.21 0.00	(loc) 4-7 4-7 2	I/defl >999 >440 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 28 lb	GRIP 244/190 187/143 FT = 20%
TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals 	athing directly applied	c 8) * o 3 d, c 9) E	thord live load This truss h on the bottor 0-06-00 tall b thord and an 0-06-00 tall b thord and an	ad nonconcurrent has been designe in chord in all area by 2-00-00 wide w y other members assumed to be:	with any ed for a liv as where vill fit betw s. , Joint 4 S	other live loa e load of 20. a rectangle veen the bott SP No.2 crus	ads. Opsf com hing					
BOT CHORE REACTIONS	 Rigid ceiling directly (size) 2=0-3-8, 4 Max Horiz 2=67 (LC Max Uplift 2=-51 (LC Max Grav 2=378 (LC 	applied. 4=0-1-8 15) 2 12), 4=-28 (LC 16) 2 2), 4=337 (LC 23)	c 10) B u d 11) F b	Bearing at jo Ising ANSI/T lesigner sho Provide mechaning plate	int(s) 4 considers PI 1 angle to gra uld verify capacit hanical connectic at joint(s) 4.	s parallel t ain formula by of beari on (by oth	o grain value a. Building ng surface. ers) of truss	e to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	12) P	Provide mec	hanical connection	on (by oth	ers) of truss	to					
TOP CHORE) 1-2=0/24, 2-3=-237/	49, 3-4=-221/105	2	and 28 lb u	plift at joint 4.	stanuing b	i ib upilit at	joint					
BOT CHORE	2-4=-66/206		13) T	his truss is	designed in acco	rdance w	ith the 2015	ام مد ما					
1) Wind: AS Vasd=91 II; Exp B; and C-C exposed members Lumber I 2) TCLL: AS	SCE 7-10; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and ri, s and forces & MWFRS OL=1.60 plate grip DC SCE 7-10; Pr=20.0 psf ((3-second gust) DL=6.0psf; h=30ft; Ca velope) exterior zone lever left and right ght exposed;C-C for for reactions shown; VL=1.33 roof live load: Lumbei	at. 14) T s s c tf LOAI	8802.10.2 ar This truss de tructural wo chord and 1/ he bottom cl D CASE(S)	nd referenced sta sign requires tha od sheathing be 2" gypsum sheet nord. Standard	indard AN t a minim applied di rock be a	ISI/TPI 1. um of 7/16" rectly to the oplied directl	top y to			and a second	OP.	POLINI -
DOL=1.1 snow); P DOL=1.0 Unobstru	5 Plate DOL=1.00); Pf= s=18.7 psf (roof snow: I)0); Category II; Exp B; licted slippery surface	20.0 psf (flat roof Lumber DOL=1.15 Pla Fully Exp.; Ct=1.10;	ate									SEA	
3) Roof des	ign snow load has beer	n reduced to account f	for							-		0433	20 : 3
4) Unbaland design.	ced snow loads have be	een considered for this	S								N. P	·. ···································	ER Z
5) This trus load of 1	s has been designed fo 2.0 psf or 2.00 times fla	r greater of min roof li t roof load of 20.0 psf	ve on								14	KID	REGUIN

- snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are MT20 plates unless otherwise indicated.

O'F

March 13,2024

minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	J1	Jack-Open	2	1	T33208547 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:59 ID:pEON6EbqZ44W0NLOryM5dvzs8gI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

5-10-4

Scale = 1:22.6

Plate Offsets (X, Y): [2:0-3-1,Edge]

			_										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-AS	0.46 0.41 0.00 or great	DEFL Vert(LL) Vert(CT) Horz(CT) er of min root	in 0.09 -0.11 0.00 f live	(loc) 4-7 4-7 2	l/defl >791 >618 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	JMBER JP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 RACING Structural wood sheathing directly applied. DT CHORD Rigid ceiling directly applied. EACTIONS (size) 2=0-4-9, 3= Mechanical, 4= Mechanical Max Horiz 2=40 (LC 12) Max Uplift 2=-96 (LC 12), 3=-44 (LC 12), 4=-15 (LC 12) Max Grav 2=323 (LC 23), 3=165 (LC 23), 4=100 (LC 7) MPCES (lb) Maximum Compression/Maximum			load of 12.0 j overhangs ni This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are crushing cap Refer to gird Provide mec	psf or 2.00 times fl on-concurrent with is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi by other members. active of 565 psi. er(s) for truss to the hanical connectior a canable of withst:	at roof lo other lin or a 10.0 with any l for a liv s where ll fit betw Joint 2 L russ con n (by oth anding 4	ad of 20.0 p re loads. 0 psf bottom other live loz e load of 20.1 a rectangle veen the bott Jser Defined nections. ers) of truss i	isf on ads. Opsf rom to					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=91n II; Exp B; and C-C E exposed; reactions : DOL=1.33	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-188/ 2-4=-154/174 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig C-C for members and fi shown; Lumber DOL=1	pression/Maximum 141 (3-second gust) DL=6.0psf; h=30ft; Ca ivelope) exterior zone ever left and right ght exposed; porch lef orces & MWFRS for 1.60 plate grip	11) 12) at. t	3, 96 lb uplift This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom cl AD CASE(S)	at joint 2 and 15 I designed in accord Residential Code nd referenced star sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	b uplift a dance w sections idard AN a minim pplied d pck be a	t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the oplied directly	and top y to			A.L.	ORTH CA	POLINI III

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=20.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITEK Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	P1	Piggyback	2	1	T33208548 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:32:59 ID:6oicp1dr86Ce3oCGBQIAIzzs944-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

SCale = 1.41	Scale	= '	1:41
--------------	-------	-----	------

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.03 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=11-11-1 12=11-11- 14=11-11- 14=11-11- 23=11-11 Max Horiz 2=-93 (LC Max Uplift 2=-7 (LC 13=-28 (L 16=-28 (L) 18=-49 (L 18=-49 (L) 12=164 (L 14=115 (L) 18=165 (L) 23=106 (L)	athing directly applied applied. 10, 10=11-11-10, -10, 13=11-11-10, -10, 15=11-11-10, -10, 15=11-11-10, -10, 19=11-11-10, -10, 19=-93 (LC 12) 10), 12=-48 (LC 15), C 15), 14=-26 (LC 15), C 14), 19=-7 (LC 10) C 27), 10=106 (LC 2), C 27), 13=93 (LC 27, C 27), 13=93 (LC 26, C 26), 17=92 (LC 26, C 26), 19=109 (LC 2), C 27), 19=109 (LC 2), C 26, 19=109 (LC 2), C 20), 19=109 (LC 2), C 2), 10=109 (LC	1) 2) d. 3) 4) 5), (), 5) (), 6) (), 7), 7) 8)	Unbalanced n this design. Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte exposed ; en members and Lumber DOL: Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI snow); Ps=11 DOL=1.00); O Unobstructed Roof design 3 slope. This truss ha load of 12.0 p overhangs no Gable require Gable stude 3	roof live loads hav 7-10; Vult=115mp ; TCDL=6.0psf; Bi closed; MWFRS (erior (2) zone; cant d vertical left and i d forces & MWFRS =1.60 plate grip D ned for wind loads ds exposed to win I Industry Gable E alified building des 7-10; Pr=20.0 psf ate DOL=1.00); Pf 1.0; pf (roof snow: Category II; Exp B; I slippery surface snow load has bee s been designed for post or 2.00 times ff on-concurrent with as continuous bott spaced at 1-4-0 or	e been of h (3-sec CDL=6.0 envelope illever le sight exp S for rea OL=1.33 in the pi d (norm nd Deta signer as (roof liv =20.0 p Lumbel ; Fully E en reduct or greate at roof lo other lin om chor	considered fo considered fo Dpsf; h=30ft; () exterior zor ff and right oosed;C-C for ctions shown alane of the tru, al to the face ils as applical s per ANSI/TF e load: Lumb f (flat roof r DDL=1.15 F xp.; Ct=1.10; ced to accoun er of min roof bad of 20.0 ps // loads. d bearing.	r Cat. he Jss), ble, PI 1. er Plate t for live sf on	13) This struc chor the I 14) See Deta cons LOAD C	truss d ctural w d and 1 pottom o Standa ail for Co sult qua ASE(S)	esign ood st /2" gyj chord. rd Indd onnect lified b) Sta	requires that a m leathing be applit osum sheetrock to ustry Piggyback ⁷ ion to base truss uilding designer. ndard	nimum of 7/16" d directly to the be applied directl Truss Connection as applicable, or	top y to 1 r
FORCES	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-77/69 4-5=-62/61, 5-6=-81/ 7-8=-54/51, 8-9=-50/ 10-11=0/25	pression/Maximum 9, 3-4=-72/47, /84, 6-7=-81/84, /18, 9-10=-58/41,	9) 10	This truss has chord live loa) * This truss h on the bottom 3-06-00 tall b	s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil	or a 10.0 vith any for a liv s where Il fit betv	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds. Opsf om			N.V.	OR SEA	Nation 1	
BOT CHORD	2-18=-43/74, 17-18= 15-16=-43/74, 14-15 12-13=-43/74, 10-12 6-15=-74/24, 5-16=-1	-43/74, 16-17=-43/74 =-43/74, 13-14=-43/7 !=-43/74 88/43, 4-17=-75/47,	4, 11 <u>.</u> 74,) Provide mech bearing plate 2, 28 lb uplift	anical connection capable of withsta at joint 16, 27 lb u	(by oth anding 7 plift at jo	ers) of truss t Ib uplift at joi pint 17, 49 lb	o int		THE PARTY		0433	25	unnun.
NOTES	3-18=-111/58, 7-14= 9-12=-110/58	-86/41, 8-13=-76/47,	12	13, 48 lb uplit 13, 48 lb uplit This truss is o International R802.10.2 ar	t at joint 12 and 7 designed in accord Residential Code ad referenced stan	lb uplift dance w sections dard AN	at joint 2. ith the 2015 R502.11.1 a ISI/TPI 1.	ind				SILIP J. C	PREGATI	2

March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	P2	Piggyback	15	1	T33208549 Job Reference (optional)

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

1)

2)

NOTES

TCLL (roof)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Mar 12.07:33:00 ID:etffAVptN1DMzGRL7n2wOKzs93q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Marine Contraction of the Contra

5-11-13 11-11-10 5-11-13 5-11-13 4x6 =Δ 12 9 Г 4-10-8 2x4 II 2x4 u 5-0-0 3 5 6 7 10 9 8 2x4 II 3x4 = 2x4 II 2x4 II 3x4 = 11-11-10 Scale = 1:38.3 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.00 TC 0.16 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Ps/Pf) BC 11 0/20 0 Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 7 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-AS 10.0 Weight: 53 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof Structural wood sheathing directly applied. TOP CHORD snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied. DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; **REACTIONS** (size) 1=13-4-0, 2=13-4-0, 6=13-4-0, Unobstructed slipperv surface 7=13-4-0, 8=13-4-0, 9=13-4-0, Roof design snow load has been reduced to account for 5) 10=13-4-0, 11=13-4-0, 14=13-4-0 slope. Max Horiz 1=-93 (LC 10) 6) Gable requires continuous bottom chord bearing. Max Uplift 1=-51 (LC 10), 6=-2 (LC 11), 7=-5 Gable studs spaced at 4-0-0 oc. 7) (LC 15), 8=-92 (LC 15), 10=-92 (LC 8) This truss has been designed for a 10.0 psf bottom 14), 14=-2 (LC 11) chord live load nonconcurrent with any other live loads. 1=66 (LC 13), 2=91 (LC 26), 6=84 Max Grav 9) * This truss has been designed for a live load of 20.0psf (LC 26), 7=31 (LC 31), 8=299 (LC on the bottom chord in all areas where a rectangle 27), 9=262 (LC 2), 10=299 (LC 26), 3-06-00 tall by 2-00-00 wide will fit between the bottom 11=91 (LC 26), 14=84 (LC 26) chord and any other members. (lb) - Maximum Compression/Maximum 10) Provide mechanical connection (by others) of truss to Tension bearing plate capable of withstanding 2 lb uplift at joint TOP CHORD 1-2=-113/112, 2-3=-91/72, 3-4=-128/80, 6, 51 lb uplift at joint 1, 5 lb uplift at joint 7, 92 lb uplift at 4-5=-124/75, 5-6=-71/42, 6-7=-16/9 The Part of the Pa joint 10, 92 lb uplift at joint 8 and 2 lb uplift at joint 6. BOT CHORD 2-10=-23/68, 9-10=-23/68, 8-9=-23/68, 11) This truss is designed in accordance with the 2015 NORT 6-8=-23/68International Residential Code sections R502.11.1 and 4-9=-177/4. 3-10=-233/133. 5-8=-233/133 R802.10.2 and referenced standard ANSI/TPI 1. 12) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top Unbalanced roof live loads have been considered for this design. chord and 1/2" gypsum sheetrock be applied directly to Wind: ASCE 7-10; Vult=115mph (3-second gust) the bottom chord. SEAL Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. 13) See Standard Industry Piggyback Truss Connection II; Exp B; Enclosed; MWFRS (envelope) exterior zone Detail for Connection to base truss as applicable, or 043325 and C-C Exterior (2) zone; cantilever left and right consult qualified building designer. exposed ; end vertical left and right exposed;C-C for LOAD CASE(S) Standard members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 O mmm March 13,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	P3	Piggyback	1	1	T33208550 Job Reference (optional)

4-2-10

(psf)

20.0

10.0

0.0

10.0

11 0/20 0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Max Grav

Tension

Scale = 1:34.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

Snow (Ps/Pf)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Mar 12.07:33:00 ID:INpw_ALPZ2luoGyrK5rnJ6zs94R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-6-4-11-5 9-10-10 4-11-5 4-11-5 4x6 = 5 12 9 Г 2x4 II 2x4 I 4 6 2x4 ı 2x4 II 3 7 4-1-2 2 8 ç 14 13 12 11 10 2x4 🛛 2x4 = 2x4 u 2x4 u 2x4 u 2x4 u 2x4 = 9-10-10 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Spacing in (loc) Plate Grip DOL 1.00 TC 0.04 Vert(LL) n/a 999 MT20 244/190 n/a BC Lumber DOL 1 15 0.04 Vert(CT) n/a n/a 999 Rep Stress Incr YES WB 0.02 Horz(CT) 0.00 8 n/a n/a Code IRC2015/TPI2014 Matrix-AS Weight: 53 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof Structural wood sheathing directly applied. snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate Rigid ceiling directly applied. DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 2=9-10-10, 8=9-10-10, 10=9-10-10, Unobstructed slipperv surface 11=9-10-10, 12=9-10-10, 5) Roof design snow load has been reduced to account for 13=9-10-10, 14=9-10-10, slope. 15=9-10-10, 19=9-10-10 6) This truss has been designed for greater of min roof live Max Horiz 2=-78 (LC 12), 15=-78 (LC 12) load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on Max Uplift 10=-56 (LC 15), 11=-19 (LC 15), overhangs non-concurrent with other live loads. 13=-20 (LC 14), 14=-56 (LC 14) Gable requires continuous bottom chord bearing 2=117 (LC 2), 8=117 (LC 2), 8) Gable studs spaced at 1-4-0 oc. 10=187 (LC 27), 11=83 (LC 27), This truss has been designed for a 10.0 psf bottom 9) 12=98 (LC 29), 13=84 (LC 26), chord live load nonconcurrent with any other live loads. 14=187 (LC 26), 15=117 (LC 2), 10) * This truss has been designed for a live load of 20.0psf 19=117 (LC 2) on the bottom chord in all areas where a rectangle (Ib) - Maximum Compression/Maximum 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. The Print Pr 1-2=0/25, 2-3=-71/54, 3-4=-68/48, 11) Provide mechanical connection (by others) of truss to 4-5=-73/72. 5-6=-73/72. 6-7=-53/40. bearing plate capable of withstanding 20 lb uplift at joint NORT 7-8=-53/32, 8-9=0/25 13, 56 lb uplift at joint 14, 19 lb uplift at joint 11 and 56 lb 2-14=-32/61, 13-14=-32/61, 12-13=-32/61, uplift at joint 10. 11-12=-32/61, 10-11=-32/61, 8-10=-32/61 12) This truss is designed in accordance with the 2015 5-12=-66/12, 4-13=-73/39, 3-14=-125/69, International Residential Code sections R502.11.1 and Martin Hall 6-11=-71/37, 7-10=-125/69 R802.10.2 and referenced standard ANSI/TPI 1. 13) This truss design requires that a minimum of 7/16" SEAL Unbalanced roof live loads have been considered for structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to 043325 Wind: ASCE 7-10; Vult=115mph (3-second gust) the bottom chord. Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right consult qualified building designer. exposed ; end vertical left and right exposed;C-C for LOAD CASE(S) Standard members and forces & MWFRS for reactions shown; O Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

mmm March 13,2024

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	P4	Piggyback	5	1	T33208551 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:00 ID:3vlxgvRRgVJmIVZOon_feozs94J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9-10-10

Scolo	_	1.24 0
Scale	=	1:34.9

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2	2014	CSI TC BC WB Matrix-AS	0.24 0.23 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 2=9-10-10 7=9-10-11 Max Horiz 2=78 (LC Max Uplift 2=-24 (LC 7=-24 (LC Max Grav 2=260 (LC (LC 2), 7= 2)	athing directly applied. • applied. 0, 4=9-10-10, 6=9-10-1 0, 11=9-10-10 13), 7=78 (LC 13) • 14), 4=-34 (LC 15), • 14), 11=-34 (LC 15), • 2), 4=260 (LC 2), 6=3 =260 (LC 2), 11=260 (L	4) TCL DOI snov DOI Uno 5) Roo slop 50 (a 7) Gab 8) Gab 8) Gab 821 C 10) * Th	L: ASCE L=1.15 Pi W); Ps=11 L=1.00); C obstructed of design s e. s truss has d of 12.0 p thangs nc oble require oble studs s s truss has russ has d of 12.0 p	7-10; Pr=20.0 ps ate DOL=1.00); F I.0 psf (roof snow 2ategory II; Exp E I slippery surface snow load has be s been designed bsf or 2.00 times continuous bol spaced at 4-0-0 c s been designed d nonconcurrent as been designed	of (roof liv) Pf=20.0 p : Lumber 3; Fully E een reduc for greate flat roof lo h other livit tom chor bc. for a 10.0 with any d for a livit	e load: Lumb sf (flat roof DOL=1.15 P xp.; Ct=1.10; ed to account er of min roof pad of 20.0 ps re loads. d bearing. 0 psf bottom other live load e load of 20.0.	er 'late t for live sf on ds. lpsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3-06 choi	6-00 tall b	y 2-00-00 wide w v other members	vill fit betv	een the botto	m					
TOP CHORD	1-2=0/25, 2-3=-198/	79, 3-4=-198/79,	11) Prov	vide mech	nanical connectio	n (by oth	ers) of truss t	0					
BOT CHORD WEBS	2-6=-31/110, 4-6=-1 3-6=-160/19	5/110	bea 2, 3 uplif	ring plate 4 lb uplift ft at joint 4	capable of withs at joint 4, 24 lb u	tanding 2 plift at joi	4 lb uplift at jo nt 2 and 34 lb	oint o					
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	12) This Inte R80	s truss is o ernational 02.10.2 an	+. designed in acco Residential Code nd referenced sta	rdance w sections ndard AN	th the 2015 R502.11.1 a ISI/TPI 1.	nd				TH CA	Politi

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V1	Valley	1	1	T33208552 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:00 ID:7kVuTHHfhpzaUeGHfXp_iFzs99h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.1

Plate Offsets (X, Y): [9:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf)	(p 2 8 3/2	psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00 1.15		CSI TC BC	0.08	DEFL Vert(LL)	in n/a n/a	(ŀ	oc) -	l/defl n/a n/a	L/d 999	PLATES MT20	GRIP 244/190	
TCDL	0.0/2	0.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.01		17	n/a	n/a			
BCLL		0.0*	Code	IRC2)15/TPI2014	Matrix-MS										
BCDL	1	0.0												Weight: 191 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural woo 6-0-0 oc purlin Rigid ceiling d bracing. 1 Row at midp (size) 1=2	od shea ns. directly a bt 8	thing directly applie applied or 10-0-0 oc 3-25, 10-24, 7-26, 1 17=22-2-3, 18=22-2	ed or 2 1-23	TOP CHORD	1-2=-327/224, 2-3=- 4-5=-167/96, 5-6=-1 7-8=-83/82, 8-9=-74 10-11=-77/67, 11-12 13-14=-148/89, 14 15-16=-265/179, 16 1-32=-178/255, 21-3 30-31=-178/255, 22 27-29=-178/255, 22 25-26=-178/255, 22	283/18 12/75, 1/60, 9- 2=-74/2 15=-20 -17=-30 32=-174 -30=-1 -30=-1 -27=-1 -25=-1 -23=-1	1, 3-4=-223/1: 6-7=-94/55, 10=-73/58, 9, 12-13=-98/- 4/134, 07/224 3/255, 78/255, 78/255, 78/255, 78/255,	36, 49,	5) 6) 7) 8) 9) 10)	Roof slope All pl Gabl Gabl This chore * This on th 3-06- chore	design e. lates ar e requil e studs truss ha d live lo s truss le botto -00 tall d and a	snow e 2x4 res col space as bee ad noi has be m cho by 2-0 ny oth	Ioad has been MT20 unless ot ntinuous bottom ed at 1-4-0 oc. an designed for nconcurrent witt een designed for rd in all areas w 0-00 wide will fi er members, wit	reduced to ac nerwise indic chord bearin a 10.0 psf bo any other lin r a live load c here a rectar t between the	ecount for ated. Ig. ttom re loads. of 20.0psf igle b bottom 0.0psf.
REACTIONS	(SiZe) 1=2 19= 22= 25= 29= 32= Max Uplift 1=2 Max Uplift 1=- 19= 21= 23= 27= 30= 30= 32=	22-2-3, =22-2-2, =22-2-2, =22-2-2, =22-2-2, =22-2,	17=22-2-3, 18=22-2 20=22-2-3, 21=22 23=22-2-3, 24=22 26=22-2-3, 27=22 30=22-2-3, 31=22 11) 12), 17=-29 (LC 13 15), 20=-44 (LC 1 15), 22=-47 (LC 1 15), 26=-70 (LC 1 14), 29=-49 (LC 1 14), 31=-62 (LC 1	3, -2-3, -2-3, -2-3, -2-3, 5), 5), 5), 4), 4),	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp	21-22=-178/255, 20 19-20=-178/255, 18 17-18=-178/255 8-25=-100/18, 10-24 6-27=-90/64, 5-29=- 3-31=-91/70, 2-32=- 12-22=-90/64, 13-2* 15-19=-90/72, 16-18 roof live loads have 7-10; Vult=115mph h; TCDL=6.0ps;; BC	-21=-1 -19=-1 4=-86/0 -89/64, 107/46 1=-89/6 3=-103/ - been o been o CDL=6.0	78/255, 78/255, 4-30=-90/64, , 11-23=-109// 4, 14-20=-90// 42 considered for cond gust) 0psf; h=30ft; C	4, 89, 63, Cat.	11) 12) LO	Provi beari 1, 29 uplift 30, 6 uplift 21, 4 This Intern R802 AD CA	ide med ing plat) lb uplit at joint 2 lb up at joint 4 lb up truss is nationa 2.10.2 a ASE(S)	t at joi 27, 49 27, 49 23, 4 lift at jo 23, 4 lift at jo 23, 4 lift at jo desig I Resid I Resid I Resid Sta	al connection (b able of withstam, int 17, 70 lb upli 9 lb uplift at join oint 31, 9 lb upli 7 lb uplift at join oint 20 and 67 ll ned in accordar dential Code se ierenced standar ndard	y others) of t ling 64 lb upl it at joint 26, 29, 45 lb up it at joint 32, 22, 49 lb up o uplift at join oce with the 2 ctions R502.1 rd ANSI/TPI	russ to ift at joint 47 lb lift at joint 76 lb lift at joint t 19. 015 1.1 and 1.
FORCES	Max Grav 1=1 18= 20= 24= 26= 29= 31= (Ib) - Maximun Tension	199 (LC =168 (LC =119 (LC =120 (LC =165 (LC =101 (LC =113 (LC =98 (LC m Comp	14), 17=176 (LC 1) C 2), 19=102 (LC 2) C 26), 21=113 (LC 2) C 26), 23=101 (LC 2) C 27), 25=184 (LC 2) C 29), 27=120 (LC 2) C 29), 30=120 (LC 2) Oression/Maximum	5), 6), 26), 30), 25), 25), 25), 5)	 II; Exp B; En and C-C Ext exposed; en members an Lumber DOI Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=8 DOL=1.00; Unobstructe 	<pre>closed; MWFRS (er erior (2) zone; cantil nd vertical left and ri d forces & MWFRS _=1.60 plate grip DC ned for wind loads in uds exposed to wind d Industry Gable En ualified building desis E 7-10; Pr=20.0 psf (late DOL=1.00); Pf= i.3 psf (roof snow: Li Category II; Exp B; d slippery surface</pre>	hvelope lever le ght exp for rea DL=1.33 n the pi d (norm d Deta gner as (roof liv =20.0 p umber Fully E	e) exterior zona ff and right loosed;C-C for ctions shown; ane of the trus al to the face), ils as applicab s per ANSI/TP e load: Lumbes sf (flat roof DOL=1.15 Pla xp.; Ct=1.10;	e ss ile, il 1. er te							

March 13,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V2	Valley	1	1	T33208553 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:01 ID:Mk4jwAbzZoFtcdFGA_H4lkzs99H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

22-10-10

Scale = $1:73.2$:73.2
------------------	-------

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.17 0.28	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=22-10- 10=22-10 13=22-10 Max Horiz 1=218 (LC Max Uplift 1=52 (LC 8=-121 (L 12=-163 (Max Grav 1=177 (LC 8=383 (LC 10=422 (L 13=388 (L	athing directly applie applied or 6-0-0 oc 4-10 10, 7=22-10-10, 10, 9=22-10-10, -10, 12=22-10-10, -10 2 11) 12), 7=-4 (LC 13), C 15), 9=-164 (LC 14), 13=-126 (LC 2 27), 7=153 (LC 28) 2 26), 9=491 (LC 26) C 28), 12=490 (LC 2 C 28), 12=490 (LC 2	2) d or 3) 5), 5) 14) 6) ; 7) ; 5), 8) 55), 9	 Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext exposed ; er members an Lumber DOL Truss desig only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=8 DOL=1.00;; Unobstructed Roof design slope. Gable requir Gable studs This truss has chord live los 	7-10; Vult=115m; ; TCDL=6.0psf; E closed; MWFRS (prior (2) zone; car d vertical left and d forces & MWFR =1.60 plate grip L hed for wind loads ids exposed to win a lndustry Gable E alified building de 7-10; Pr=20.0 ps iate DOL=1.00); F 3 psf (roof snow: Category II; Exp E d slippery surface snow load has be es continuous bot spaced at 4-0-0 o s been designed id nonconcurrent	oh (3-sec 3CDL=6.) envelope titlever le right exp S for rea 0DL=1.33 s in the p nd (norm 5 nd Deta signer a: f (roof liv f=20.0 p Lumber s; Fully E en reduc tom choir c. for a 10.1 with any d for a liv	cond gust) Opsf; h=30ft; (h=30ft; (b) exterior zor ff and right boosed;C-C for ctions shown alane of the trual to the face by er ANS/TF e load: Lumb sf (flat roof DOL=1.15 Pk xp.; Ct=1.10; ed to accound d bearing. D opsf bottom other live load e load of 20 (f	Cat. ne ; sss), ble, PI 1. er ate t for ds. Dosf					
FORCES	(lb) - Maximum Com Tension 1-2=-250/198, 2-3=- 4-5=-159/171, 5-6=-	pression/Maximum 169/144, 3-4=-159/1 125/99, 6-7=-209/16	9) 79, ⁴ 1(on the bottor 3-06-00 tall t chord and ar 0) Provide mec	n chord in all area by 2-00-00 wide w by other members hanical connection	is where ill fit betv , with BC n (by oth	a rectangle veen the botto DL = 10.0psf ers) of truss t	om o				ORTH CA	ROLIN
BOT CHORD	1-13=-133/192, 12-1 10-12=-133/192, 9-1 8-9=-133/192, 7-8=- 4 10= 222/22, 2 12=	3=-133/192, 0=-133/192, 133/192		bearing plate 1, 4 lb uplift uplift at joint	e capable of withst at joint 7, 163 lb u 13, 164 lb uplift at	anding 5 plift at joi i joint 9 a	2 lb uplift at j nt 12, 126 lb nd 121 lb upl	oint ift at				IN SEA	NAL
NOTES 1) Unbalance this design	2-13=-249/168, 5-9= ed roof live loads have n.	-269/213, 6-8=-249/	166 ₁ 1	joint 8. 1) This truss is International R802.10.2 a OAD CASE(S)	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	ith the 2015 ⊧ R502.11.1 a ISI/TPI 1.	nd		11110 C	Part		25 PREGATION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 13,2024

Thuman Com

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V3	Valley	1	1	T33208554 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:01 ID:yQw0symIG50uHnKz?xXMJhzs993-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.8

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.19 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=19-10-1 8=19-10-1 10=19-10- 13=19-10- Max Horiz 1=189 (LC Max Uplift 1=-72 (LC 8=-85 (LC 12=-167 (Max Grav 1=147 (LC 8=276 (LC 10=389 (L 13=279 (L	athing directly applied applied or 10-0-0 oc 4-10 10, 7=19-10-10, -10, 12=19-10-10, -10, 12=19-10-10, -10 C 13) : 15), 9=-168 (LC 13), : 15), 9=-168 (LC 15), LC 14), 13=-92 (LC 1 C 14), 7=-119 (LC 28), C 2), 9=435 (LC 26), C 28), 12=435 (LC 2	2) d or 3) 4) 5), 5), 8) 9)	Wind: ASCE Vasd=91mpf II; Exp B; En and C-C Extu exposed ; en members an Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Ps=8 DOL=1.00); (Unobstructed Roof design slope. Gable requirt Gable studs This truss ha chord live loss	7-10; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (erior (2) zone; can d vertical left and d forces & MWFR .=1.60 plate grip D ned for wind loads uds exposed to wird l ndustry Gable E tailfied building de ; 7-10; Pr=20.0 psi late DOL=1.00); P .3 psf (roof snow: Category II; Exp B d slippery surface snow load has be es continuous bott spaced at 4-0-0 of sa been designed f ad nonconcurrent	oh (3-sec ICDL=6.1 envelope tilever le right exp S for reas IOL=1.33 in the p and (norm and Deta signer as f (roof liv f=20.0 p Lumber c. f roof liv f=20.0 p Lumber en reduc com chor c. or a 10.0 with any d for a liv	cond gust) Dpsf; h=30ft; (a) exterior zor ff and right ososed;C-C for citions shown alane of the tru- al to the face ils as applical s per ANSI/TF e load: Lumb sf (flat roof DOL=1.15 Pl: xp.; Ct=1.10; red to account d bearing. D psf bottom other live loa e load of 20.0	Cat. ne ; iss ole, ole, PI 1. er ate t for ds. bosf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-242/161, 2-3=- 4-5=-172/151, 5-6=-	pression/Maximum 191/122, 3-4=-172/15 155/78 6-7=-207/134	57, 1 40	on the bottor 3-06-00 tall b chord and ar	n chord in all area by 2-00-00 wide wi by other members,	s where ill fit betv with BC	a rectangle veen the botto DL = 10.0psf	om			. In	ORTH CA	ROLLIN
BOT CHORD	1-13=-89/162, 12-13 10-12=-89/162, 9-10 7-8=-89/162	=-89/162, 8-9=-89/16 =-89/162, 8-9=-89/16	. 10 62,	bearing plate 1, 28 lb uplift	capable of withst at joint 7, 167 lb u	anding 7	2 lb uplift at j 2 lb 12, 92 lb 2 nd 85 lb uplif	o oint			N.V.	A	NR. R
WEBS	4-10=-174/43, 3-12= 2-13=-224/152, 5-9=	294/215, 294/215, 6-8=-221/1	150 11	joint 8.	designed in accor	dance w	ith the 2015	ıal				SEA	L
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	LC	International R802.10.2 ar DAD CASE(S)	Residential Code nd referenced star Standard	sections ndard AN	; R502.11.1 a ISI/TPI 1.	nd		11.0	Rinnin	NGIN	EEP. A.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

818 Soundside Road Edenton, NC 27932

O minimun v

March 13,2024

"LIP

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V4	Valley	1	1	T33208555 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:02 ID:UVu3DRynV01dCEY1xlp6z3zs98p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-10-10

Scole	1	.54
Juan		.04

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014 3) Truss desi	CSI TC BC WB Matrix-MS	0.26 0.17 0.37	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-10- 6=16-10- 9=16-10- Max Horiz 1=-160 (L Max Uplift 1=-27 (LC 9=-176 (L Max Grav 1=133 (LC 6=484 (LC 9=488 (LC	athing directly applied applied or 6-0-0 oc 10, 5=16-10-10, 10, 7=16-10-10, 10 C 10) C 10), 6=-172 (LC 15) C 14) C 26), 5=114 (LC 28), C 26), 7=462 (LC 25), C 25)	 only. For s see Standa or consult (4) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruct 5) Roof desig slope. 6) Gable stud 8) This truss I chord live I 9) * This truss on the bott 3-06-00 tal 	tuds exposed to win rd Industry Gable E jualified building de E 7-10; Pr=20.0 ps Plate DOL=1.00; F 8.3 psf (roof snow: ; Category II; Exp E ed slippery surface n snow load has be rires continuous bot s spaced at 4-0-0 o has been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w	In (norm End Deta signer as f (roof liv Pf=20.0 p Lumber 3; Fully E en reduc tom chor c. for a 10. with any d for a liv is where ill fit betw	al to the face ils as applical s per ANSI/TF e load: Lumb DOL=1.15 Pli xp.; Ct=1.10; ed to accoun d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott DDL=1.0 psf	ds, ple, pl 1. er ate t for ds. ppsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-160/218, 2-3=- 4-5=-133/182 1-9=-148/145, 7-9=- 5-6=-148/145 3-7=-294/0, 2-9=-30 ed roof live loads have	pression/Maximum 67/155, 3-4=-49/135, 148/145, 6-7=-148/14 9/212, 4-6=-307/211 been considered for	410) Provide me bearing pla 1, 176 lb uj 11) This truss i Internation R802.10.2 LOAD CASE(S	chanical connection te capable of withst lift at joint 9 and 17 s designed in accor al Residential Code and referenced star) Standard	, with Be n (by oth tanding 2 72 Ib upli dance w sections ndard AN	ers) of truss t 7 lb uplift at j ft at joint 6. ith the 2015 \$ R502.11.1 a ISI/TPI 1.	o oint nd			Anna	OR THE CA	

 Wind: ASCE 7-10; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V5	Valley	1	1	T33208556 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:02 ID:nspjhq2As9vdYJaNrGRIIYzs98i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:47.5

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(ps 20. 8.3/20. 10. 0. 10.	spacing 0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr .0* Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dir bracing. (size) 1=13 6=13 8=13 Max Horiz 1=13 Max Horiz 1=13 Max Uplift 1=-25 8=-14 Max Grav 1=12 6=37 8=38	sheathing directly applia ectly applied or 6-0-0 oc -10-10, 5=13-10-10, -10-10, 7=13-10-10, -10-10 1 (LC 13) 0 (LC 10), 6=-139 (LC 15 13 (LC 14) 8 (LC 26), 5=105 (LC 25 6 (LC 25)	3) 4) 6) 7) 6) 7) 8) 9)), 9)	Truss desig only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=8 DOL=1.00); Unobstructee Roof design Slope. Gable requir Gable studs This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b	ned for wind load dis exposed to w d Industry Gable lalified building of ate DOL=1.00); .3 psf (roof snov Category II; Exp d slippery surfac snow load has t es continuous b spaced at 4-0-0 is been designe ad nonconcurrer as been design n chord in all are yy 2-00-00 wide	ds in the p vind (normal end Deta Jesigner a: sof (roof liv Pf=20.0 p v: Lumber B; Fully E been reduc ottom chor oc. d for a 10. tt with any eed for a liv eas where will fit betv re with PG	lane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb DOL=1.15 PI xp.; Ct=1.10; ced to accour d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott DUL = 10 0000	uss), ble, Pl 1. er ate t for ds. Dpsf om					
FORCES	(lb) - Maximum Tension	Compression/Maximum	10)) Provide mec bearing plate	hanical connecti capable of with	ion (by oth istanding 2	ers) of truss t 9 lb uplift at j	to oint					
TOP CHORD	1-2=-145/124, 2 4-5=-127/86	2-3=-136/110, 3-4=-119/	100,	1, 143 lb upli	ift at joint 8 and	139 lb upli	ft at joint 6.						
BOT CHORD WEBS	1-8=-64/112, 7- 5-6=-64/103 3-7=-183/0, 2-8	8=-64/103, 6-7=-64/103, =-265/186, 4-6=-265/184	· · ·	International R802.10.2 a	Residential Coo nd referenced st	de sections andard AN	s R502.11.1 a NSI/TPI 1.	ind			0	THC	RO
NOTES			LC	JAD CASE(S)	Standard						S.	O'I	TON V
 Unbalance this design 	ed roof live loads h n.	nave been considered fo	r								i v	P	N. P

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V6	Valley	1	1	T33208557 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:02 ID:4CkM9D7ZCJoeuOcklE3OX0zs98b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1.43.7	Late = 1.43.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Ps/Pf)	8.3/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS									
BCDL	10.0										Weight: 48 lb	FT = 20%	
				an a d far wind laa	ام الم الم								

10-10-10

LUWBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=10-10-10, 5=10-10-10,
		6=10-10-10, 7=10-10-10,
		8=10-10-10, 13=10-10-10
	Max Horiz	1=102 (LC 13)
	Max Uplift	1=-88 (LC 12), 5=-1 (LC 15),
		6=-108 (LC 15), 8=-132 (LC 14),
		13=-1 (LC 15)
	Max Grav	1=97 (LC 11), 5=0 (LC 13), 6=318
		(LC 26), 7=300 (LC 28), 8=316 (LC
		25), 13=0 (LC 13)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-155/	(166, 2-3=-170/175, 3-4=-155/148,
	4-5=-42/6	5

BOT CHORD 1-8=-26/25, 7-8=-1/25, 6-7=-1/25, 5-6=-1/34 WEBS 3-7=-219/30, 2-8=-293/216, 4-6=-286/205

- NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=8.3 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 1, 1 lb uplift at joint 5, 132 lb uplift at joint 8, 108 lb uplift at joint 6 and 1 lb uplift at joint 5.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V7	Valley	1	1	T33208558 Job Reference (optional)

3-11-9

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:02 ID:vM5dQGCKo9YncJ4t6VAonHzs98V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	- 1.32	a

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.17 0.18 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-10-10 cc purlins. Rigid ceiling directly bracing. (size) 1=7-10-11 Max Horiz 1=-73 (LC (LC 14) Max Grav 1=-78 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-59/193, 2-3=-5 1-4=-138/92, 3-4=-1	athing directly applied applied or 6-0-0 oc 0, 3=7-10-10, 4=7-10- 20), 3=-1 (LC 29), 4=- 29), 3=78 (LC 30), 4=- pression/Maximum 9/193 38/92	4) l or 5) (0) (7) (7) (8) (7) (8) (7) (7) (9) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	TCLL: ASCE DOL=1.15 P snow; PS=8 DOL=1.00; Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mect bearing plate 1, 1 lb uplift a This truss is International	7-10; Pr=20.0 p [ate DOL=1.00); 3 psf (roof snow Category II; Exp d slippery surface snow load has b es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designed ad nonconcurren in chord in all are by 2-00-00 wide in yo other member hanical connecti e capable of with at joint 3 and 51 designed in accor Residential Cod	est (roof liv Pf=20.0 p r: Lumber B; Fully E e een reduc bttom chor oc. d for a 10.1 t with any ed for a liv ass where will fit betw s. on (by oth standing 1 lb uplift at ordance w e sections	e load: Lumb sf (flat roof DOL=1.15 Pl xp.; Ct=1.10; ed to accour d bearing. D psf bottom other live loa e load of 20.1 a rectangle even the bott ers) of truss i lb uplift at jo joint 4. ith the 2015 is R502.11.1 a	per ate at for dds. 0psf om to om to and				<u>.</u>	

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	V8	Valley	1	1	T33208559 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:03 ID:cHiPWhJbREpNorrohbM9BOzs98L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-10

Page: 1

Scale = 1:27.8

Plate Offsets (X, Y): [2:0-2-0.Edge]

Loading (pst) Spacing 2-0-0 CSI DEFL in (loc) I/def PLATES GRIP Now (Ps/P) 8.3/200 Nov PLATES GRIP TC 0.15 Vert(TL) n/a n/a 999 MTz0 24/4190 Noble 0.00 0.00 RC2DE/GIG/PE2014 Well Vert(TL) n/a n/a 999 MTz0 24/4190 LUMEER 0.00 0.00 RC2DE/GIG/PE2014 Well Well Vert(TL) n/a n/a <t< th=""><th></th><th>, , ,). [<u></u> _ 0,<u></u>go]</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		, , ,). [<u></u> _ 0, <u></u> go]													
 LUMBER TOP CHORD 2x4 SP No.2 BRACING BOT CHORD Structural wood sheathing directly applied. 81 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 92 This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 93 This truss has been designed for a 10.0 psf bottom chord and any other inveloads. 94 This truss designed in a coordance with the 2015 International Residential Code sectors R502.11.1 and R802.10.2 and referenced standard ANSUTPI 1. 105 This truss designed in a coordance with the 2015 International Residential Code sectors R502.11.1 and R802.10.2 and referenced standard ANSUTPI 1. 110 This truss designed for a 10.0 psf directly to the top chord and 12² gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard LOAD CASE(S) Standard LOAD CASE(S) Standard Cruss designed for a direct with other of the truss existing and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.37 This truss designed for wind loads in the plane of the truss only. For stude seposed is dords a NASUTPI 1. To trus designed for wind loads in the plane of the truss only. For stude seposed bean of the act Lumber DOL=1.16P ated DDL=1.00, Pl=2.00 psf (ford live load: Lumber DOL=1.16P ate DDL=1.00, Pl=2.00 psf (ford live load: Lumber DOL=1.16P ated DDL=1.00, Pl=2.00 psf (ford show: Lumber DOL=1.15 Plate DDL=1.01, Clategory II: Exp B. Fully Exp. Cla = 1.0; Uncotstructed stippery surface Gable requires continuous botom chord bearing. 	Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.15 0.14 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
	LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=91m II; Exp B; F and C-C E exposed ; members a Lumber DC 3) Truss des only. For a see Stand 4) TCLL: ASC DOL=1.10 Unobstruc 5) Roof desig slope. 6) Gable requ	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=4-10-10 Max Grav 1=195 (LC (lb) - Maximum Com Tension 1-2=-247/32, 2-3=-2 1-3=-19/178 ad roof live loads have Directory Comparison CE 7-10; Vult=115mph ph; TCDL=6.0psf; BC Directory Cancer Cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig and forces & MWFRS (er exterior (2) zone; cantil end vertical left and rig end vertical l	athing directly applied applied. 0, 3=4-10-10 C 2), 3=195 (LC 2) apression/Maximum 47/32 been considered for (3-second gust) DL=6.0psf; h=30ft; C novelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; DL=1.33 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbe 20.0 psf (flat roof umber DOL=1.15 Pla Fully Exp.; Ct=1.10; n reduced to account m chord bearing.	8) 9) ed. 10 11 LC Cat. e Ss ole, 11. er tte	This truss ha chord live lo: * This truss I on the bottor chord and an) This truss is International R802.10.2 a) This truss de structural wc chord and 1/ the bottom c DAD CASE(S)	as been designed ad nonconcurrent has been designed in chord in all are by 2-00-00 wide designed in acco Residential Code nd referenced sta sign requires tha bod sheathing be 2" gypsum sheet hord. Standard	l for a 10.0 t with any ed for a liv as where will fit betv s. ordance w e sections andard AN tt a minim applied d rock be a	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ith the 2015 is R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t opplied directly	ds. Dpsf om Ind iop 7 to			Number of the second seco	SEA 0433	L 25 EEREGA	and an

7) Gable studs spaced at 4-0-0 oc.

J. O'F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VF1	Valley	1	1	T33208560 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:03 ID:RfTog?NsS9wHPre5XJre_2zs90W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-8

Scale = 1:42.9													
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing2Plate Grip DOL1Lumber DOL1Rep Stress IncrYCodeII	-0-0 .00 .15 ES RC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.17 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=10-6-8, 7=10-6-8, Max Horiz 1=-98 (LC Max Uplift 1=-71 (LC 6=-117 (L) Max Grav 1=89 (LC (LC 26), 7 25)	athing directly applied. applied. 5=10-6-8, 6=10-6-8, 8=10-6-8 : 10) : 12), 5=-38 (LC 13), C 15), 8=-121 (LC 14) 14), 5=67 (LC 15), 6=3 '=218 (LC 2), 8=317 (LC	4) 5) 6) 7) 8) 9) 14	TCLL: ASCE DOL=1.15 P snow); Ps=8 DOL=1.00); Unobstructe Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss l on the botton 3-06-00 tall h chord and an	7-10; Pr=20.0 late DOL=1.00) .3 psf (roof snow Category II; Exy d slippery surfac snow load has l es continuous b spaced at 4-0-C as been designe ad nonconcurrer as been design n chord in all ar by 2-00-00 wide ny other membe	psf (roof liv ; Pf=20.0 p w: Lumber b B; Fully E been reduc bottom chor c c. d for a 10.0 nt with any eed for a 10.0 mt with any eed swhere will fit betw rs.	re load: Lumb sf (flat roof DOL=1.15 PI xp.; Ct=1.10; red to accour d bearing. 0 psf bottom other live load of 20.0 a rectangle veen the bott	er ate t for ds. Dpsf Dm					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	bearing plate 1, 38 lb uplif	e capable of with t at joint 5, 121 l	hstanding 7 b uplift at je	71 lb uplift at j oint 8 and 11	o oint 7 lb					
TOP CHORD	1-2=-154/108, 2-3=- 4-5=-136/81	162/85, 3-4=-160/80,		uplift at joint	6.		ith the 2015						
BOT CHORD	1-8=-54/79, 7-8=-23/ 5-6=-50/79	/79, 6-7=-23/79,	11	International R802.10.2 a	Residential Co nd referenced s	de sections	s R502.11.1 a	ind					
WEBS	3-7=-131/0, 2-8=-29	1/218, 4-6=-290/217	12) This truss de	esign requires th	at a minim	um of 7/16"						116
NOTES 1) Unbalance	ed roof live loads have	been considered for		structural wo	ood sheathing be 2" gypsum shee	e applied d etrock be a	pplied directly	top / to			2	"TH CA	RO

this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VF2	Valley	1	1	T33208561 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:03 ID:ZuElqdKLOxQrxEKKITmiqCzs90a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.15 0.16 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-6-8 oc purlins. Rigid ceiling directly bracing. (size) 1=7-6-8, 3 Max Horiz 1=-69 (LC Max Uplift 4=-46 (LC Max Grav 1=78 (LC	athing directly applie applied or 6-0-0 oc 3=7-6-8, 4=7-6-8 12) 14) 29), 3=78 (LC 30), 4	ed or g	 Roof design slope. Gable require Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 4. This truss is is 	snow load has be es continuous boi spaced at 4-0-0 c s been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w by other members hanical connectic c capable of withs designed in acco	een reduc ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. on (by oth ttanding 4 rdance w	ed to accound d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the bott ers) of truss t 6 lb uplift at j ith the 2015	t for ds. Dpsf om oint					
FORCES TOP CHORD BOT CHORD	(LC 2) (lb) - Maximum Com Tension 1-2=-58/179, 2-3=-5i 1-4=-127/86, 3-4=-1: 2-4=-352/404	pression/Maximum 8/177 27/86	I	International R802.10.2 ar _OAD CASE(S)	Residential Code nd referenced sta Standard	e sections indard AN	R502.11.1 a ISI/TPI 1.	ind					
NOTES	2-4=-352/104												
 Orbatance this design Wind: ASC Vasd=91n II; Exp B; I and C-C E exposed ; members a Lumber Di Truss des only. For see Stand or consult TCLL: ASC DOL=1.15 snow): Ps: 	A. Definite iolads have h. Definition of the iolads have h. Definition of the iolads have h. Definition of the iolads have here iolads here iolad here iolad here iolad here iolad here iolad here iola	(3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ever left and right ht exposed;C-C for for reactions shown; L=1.33 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe 20.0 psf (flat roof imber DOL=1.15 Pla	Cat. e ss ple, rl 1. er ate								ALL AND ALL AN	SEA 0433	L 25

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 4) snow); Ps=8.3 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

O'F

March 13,2024

"Humment

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VF3	Valley	1	1	T33208562 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:03 ID:GYJeMEFy2nYrb9I_OV832jzs90h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-8

Page: 1

Scale = 1:27.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 8.3/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI20	14	CSI TC BC WB Matrix-MP	0.14 0.13 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-6-8 oc purlins. Rigid ceiling directly bracing. (size) 1=4-6-8, 3 Max Horiz 1=-40 (LC Max Grav 1=-162 (LC (lb) - Maximum Com Tension	athing directly applied applied or 10-0-0 oc 3=4-6-8 10) 14), 3=-1 (LC 15) 2 2), 3=182 (LC 2) pression/Maximum	 6) Gable 7) Gable 8) This to chorce 9) * This on the 3-06-chorce 10) Provine 10) Provine 11) This to interregative 100 CAD CA 	e require studs russ ha live loa truss h b truss h b bottor 00 tall b and ar de mec ng plate lb uplif russ is ational .10.2 at	es continuous botto spaced at 4-0-0 oc s been designed fo ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil y other members. hanical connection e capable of withsta t at joint 3. designed in accord Residential Code s hd referenced stan Standard	om chor c. or a 10.0 vith any for a liv s where I fit betw (by oth anding 1 dance w sections dard AN	d bearing.) psf bottom other live loa: e load of 20.0 a rectangle veen the botto ers) of truss tr lb uplift at joi ith the 2015 R502.11.1 a ISI/TPI 1.	ds. Dpsf om int 1 nd					
TOP CHORD BOT CHORD	1-2=-228/30, 2-3=-22 1-3=-18/164	28/30		.02(0)	Otandard								
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C Ex- exposed; e members a Lumber DC 3) Truss desi only. For s see Standa or consult o 4) TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 Unobstruct 5) Roof desig slope.	d roof live loads have E 7-10; Vult=115mph ph; TCDL=6.0psf; BCI inclosed; MWFRS (en xterior (2) zone; cantile and forces & MWFRS (en bl=1.60 plate grip DO gined for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig E 7-10; Pr=20.0 psf (i Plate DOL=1.00); Pf= :8.3 psf (roof snow: Lu ; Category II; Exp B; F ed slippery surface n snow load has been	been considered for (3-second gust) DL=6.0psf; h=30ft; C: velope) exterior zone ever left and right ht exposed;C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof live load: Lumbe 20.0 psf (flat roof imber DOL=1.15 Plat fully Exp.; Ct=1.10; reduced to account t	at. s e, 1. r e							. antitution .	Part Parts	SEA 0433	ROTAR L 25 PREGNIII

slope.

March 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VG1	Valley	1	1	T33208563 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:04 ID:n?68JqC0IMi2GxjSMRcuZbzs921-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20%

22-3-5

Scale = 1:58.8													
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.17 0.19 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh Rigid ceiling directl (size) 1=22-3-5 9=22-3-5 13=22-3 Max Horiz 1=-159 (Max Uplift 1=-25 (L 9=-104 (13=-76 (Max Grav 1=129 (L 8=316 (L 10=427 (13=316)	eathing directly applied y applied. 5, 7=22-3-5, 8=22-3-5, 3, 10=22-3-5, 12=22-3 -5 LC 10) C 10), 8=-74 (LC 15), LC 15), 12=-104 (LC 15), LC 14) .C 26), 7=102 (LC 25), C 2), 9=405 (LC 26), (LC 28), 12=405 (LC 2	3) 4) d. -5, 5) (6) 7) (4), 8) , 9) (5),	Truss desig only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructen Roof design Slope. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th	ned for wind load ids exposed to w d Industry Gable ialified building d if 7-10; Pr=20.0 p late DOL=1.00; 1.0 psf (roof sno Category II; Exp d slippery surface snow load has b es continuous bo spaced at 4-0-0 is been designed ad nonconcurren as been designen n chord in all are by 2-00-00 wide	Is in the p vind (norm End Deta lesigner a: sof (roof liv Pf=20.0 p w: Lumbe B; Fully E e een reduc btom chor oc. d for a 10.1 t with any ed for a 11 eas where will fit bett	lane of the tri ial to the face ills as applica s per ANSI/T ve load: Lumb sf (flat roof r DOL=1.15 I xxp.; Ct=1.10; ced to accour rd bearing. 0 psf bottom other live load of 20. a rectangle ween the bott	uss), ble, Pl 1. Plate Plate it for opsf					
	(lb) - Maximum Cor Tension	npression/Maximum	10) Provide mec bearing plate	hanical connection con	on (by oth standing 2	iers) of truss 25 lb uplift at	to joint					
IOF CHORD	4-5=-130/139, 5-6=		1 0,	1, 104 lb upl	nt at joint 12, 76 9 and 74 lb unlift	ID uplift at	joint 13, 104	D					
BOT CHORD	1-13=-77/139, 12-1 10-12=-77/116, 9-1 7-8=-77/116	3=-77/116, 0=-77/116, 8-9=-77/1	11 16,) This truss is International	designed in acco Residential Cod	ordance w e sections	/ith the 2015 s R502.11.1 a	and				TH CA	POL
WEBS	4-10=-211/0, 3-12= 5-9=-269/153, 6-8=	-269/153, 2-13=-231/ [.] -229/117	118, 12	?) This truss de structural wo	esign requires that od sheathing be	at a minim applied d	ium of 7/16" irectly to the	top			i e		ONY
NOTES				chord and 1/	2" gypsum sheet	trock be a	pplied directl	y to			-	:9	X
 Unbalance 	ed roof live loads have	e been considered for		the bottom c	hord.					-	5 B	054	1

this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VG2	Valley	1	1	T33208564 Job Reference (optional)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Mar 12.07:33:04 ID:ruWpSyOQmzbwaENKk5NPglzs91o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TOP CHORD 1-2=-116/266, 2-3=-2/202, 3-4=0/202, 4-5=-111/240 BOT CHORD 1-9=-175/117, 7-9=-175/106, 6-7=-175/106, 5-6=-175/106 WEBS 3-7=-368/0. 2-9=-318/164. 4-6=-317/163

NOTES

FORCES

Scale = 1:49.8 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

Snow (Ps/Pf)

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VG3	Valley	1	1	T33208565 Job Reference (optional)

ŝ

5-0-2

0-0-4

Spacing

Code

5-4-8

(psf)

20.0

10.0

0.0

10.0

Rigid ceiling directly applied.

(LC 14)

Max Horiz 1=-101 (LC 10)

25)

7=14-3-5, 8=14-3-5

11 0/20 0

2x4 SP No.2

2x4 SP No.2 2x4 SP No.3

Max Grav

Tension

4-5=-108/83

5-6=-52/84

Scale = 1:40.6 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

Snow (Ps/Pf)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:04 ID:Yp7aZNWhP2sVmn8FJBYI4szs91e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-3-5 7-1-11 13-10-12 7-1-11 6-9-1 4x6 = 3 2x4 II 2x4 II 2 4 12 9 Г 5 8 6 7 3x4 3x4 🦼 2x4 II 2x4 II 2x4 II 14-3-5 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.00 TC 0.18 Vert(LL) n/a 999 MT20 244/190 n/a BC Lumber DOL 1 15 0.11 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.12 Horiz(TL) 0.00 5 n/a n/a IRC2015/TPI2014 Matrix-AS Weight: 59 lb FT = 20%4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface Roof design snow load has been reduced to account for 5) Structural wood sheathing directly applied. slope. Gable requires continuous bottom chord bearing. 6) 1=14-3-5, 5=14-3-5, 6=14-3-5, 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Max Uplift 1=-9 (LC 10), 6=-91 (LC 15), 8=-93 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 1=104 (LC 26), 5=93 (LC 2), 6=337 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 26), 7=306 (LC 2), 8=339 (LC chord and any other members. 10) Provide mechanical connection (by others) of truss to (lb) - Maximum Compression/Maximum bearing plate capable of withstanding 9 lb uplift at joint 1, 93 lb uplift at joint 8 and 91 lb uplift at joint 6. 1-2=-133/110, 2-3=-89/99, 3-4=-77/84, 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 1-8=-52/110, 7-8=-52/67, 6-7=-52/67, R802.10.2 and referenced standard ANSI/TPI 1. 12) This truss design requires that a minimum of 7/16" 3-7=-229/0, 2-8=-250/132, 4-6=-249/131 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to NORT Unbalanced roof live loads have been considered for the bottom chord. LOAD CASE(S) Standard Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. Martin Hall II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right SEAL exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; 043325

Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

O mmm March 13,2024

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VG4	Valley	1	1	T33208566 Job Reference (optional)

5-1-11

5-1-11

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WFBS

NOTES

1)

2)

3)

4)

Unobstructed slippery surface

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Mar 12.07:33:05 ID:vmwTc5ZqEaUotY0D6k8wnvzs91Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-10-12

4-9-1

Page: 1

4x6 = 2 3-10-8 12 9 Г 3 P-0-0 4 2x4 II 3x4 🖌 3x4 10-3-5 Scale = 1:34.1 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.27 Vert(LL) n/a 999 MT20 244/190 n/a BC Snow (Ps/Pf) 1 15 0.24 11 0/20 0 Lumber DOL Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 3 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-AS 10.0 Weight: 38 lb FT = 20%Roof design snow load has been reduced to account for 5) slope. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Gable requires continuous bottom chord bearing. 6) 2x4 SP No.3 7) Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom 8) BRACING chord live load nonconcurrent with any other live loads. Structural wood sheathing directly applied. TOP CHORD * This truss has been designed for a live load of 20.0psf 9) BOT CHORD Rigid ceiling directly applied. on the bottom chord in all areas where a rectangle REACTIONS (size) 1=10-3-5, 3=10-3-5, 4=10-3-5 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Horiz 1=-71 (LC 10) chord and any other members. Max Uplift 1=-22 (LC 30), 3=-22 (LC 29), 10) Provide mechanical connection (by others) of truss to 4=-37 (LC 14) bearing plate capable of withstanding 22 lb uplift at joint Max Grav 1=80 (LC 29), 3=80 (LC 30), 4=742 1, 22 lb uplift at joint 3 and 37 lb uplift at joint 4. (LC 2) 11) This truss is designed in accordance with the 2015 (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=-67/318, 2-3=-67/318 12) This truss design requires that a minimum of 7/16" BOT CHORD 1-4=-213/91, 3-4=-213/91 structural wood sheathing be applied directly to the top 2-4=-575/129 chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design Wind: ASCE 7-10; Vult=115mph (3-second gust) The second second Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. NOR II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss SEAL only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, 043325 or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;

Edenton, NC 27932

O mmm March 13,2024 WWWWWWWWWW

Job	Truss	Truss Type	Qty	Ply	WILLIAM ROBERT BAREFOOT - JAKE SMITH
3843084	VG5	Valley	1	1	T33208567 Job Reference (optional)

2-0-13

0-0-4

2-4-8

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Mar 12 07:33:05 ID:C7r74UfDakNoDd2Z0imZZOzs91S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-3-5

Scale = 1:26.5

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 11.0/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	912014	CSI TC BC WB Matrix-AS	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=6-3-5, 2 Max Horiz 1=-42 (LC Max Grav 1=68 (LC (LC 2)) (lb) - Maximum Com Tension 1-2=-62/148, 2-3=-6 1-4=-114/60, 3-4=-1 2-4=-273/61 xed roof live loads have 	athing directly applie applied. 3=6-3-5, 4=6-3-5 : 10) 15), 4=-17 (LC 14) 29), 3=68 (LC 30), 4 pression/Maximum 2/148 14/60 been considered for	6) Ga 7) Ga 8) Th ch 9) * T d. 3-(ch 10) Pr be an =404 11) Th Int R8 12) Th str ch LOAD	able require able studs a his truss ha ord live loa This truss h the bottom ord and an rovide mecl earing plate ad 17 lb upl his truss is ternational 302.10.2 ar his truss de ructural wo ord and 1/2 e bottom cl	es continuous bott spaced at 4-0-0 or spaced at 4-0-0 or s been designed na nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. hanical connectior capable of withst ift at joint 4. designed in accor Residential Code nd referenced star sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	tom chor c. for a 10.0 with any d for a liv s where ill fit betw n (by oth anding 3 dance w sections ndard AN a minim ipplied di pock be ap	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the bottu- ers) of truss t lb uplift at jo th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the to oplied directly	ids. Dpsf om int 3 and top y to					
 this designed to the second second	n. GE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DO isigned for wind loads ir studs exposed to wind dard Industry Gable Ere	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; IL=1.33 h the plane of the true (normal to the face) d Details a applicable	ss								All All	OR SEA	

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=11.0 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.

Pt The man we wanted P O'F "HILLINN March 13,2024

043325

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

