Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 43962 JOB: 23-B587-R01 JOB NAME: LOT 0.0098 BLAKE POND Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *45 Truss Design(s)*

Trusses:

J01, J02, J03, J04, J08, J09, PB01, PB02, PB03, R01, R02, R03, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R14A, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, V01, V02, V03, V04, V05, V06, V07, V08

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling*,

Max Grav 8=213(LC 1), 6=79(LC 5), 4=91(LC 28)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.

between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 8 and 29 lb uplift at joint 4. 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. LOAD CASE(S) Standard SEAL 28147

1/6/2024

Max Uplift7=-5(LC 12), 4=-22(LC 9), 5=-13(LC 12)

Max Grav 7=221(LC 1), 4=79(LC 1), 5=67(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.

1/6/2024

TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.25 BC 0.18 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc 0.02 4- -0.03 4- 0.02 3) l/defl 5 >999 5 >999 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 • FT = 0%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural end vertic Rigid ceili	wood she als. ng directly	athing direo	ctly applied or 4-0-0 o 10-0-0 oc bracing.	c purlins, except
					MiTek re be instal	commend led during	ls that Stab truss erect	ilizers and required cr ion, in accordance wi	ross bracing th Stabilizer

Installation guide.

REACTIONS. (lb/size) 5=221/0-3-8 (min. 0-1-8), 3=99/Mechanical, 4=44/Mechanical Max Horz 5=142(LC 12) Max Uplift3=-91(LC 12), 4=-5(LC 12) Max Grav 5=221(LC 1), 3=112(LC 24), 4=73(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 3 and 5 lb uplift at joint 4.

LOAD CASE(S) Standard

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

- non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 8 and 30 lb uplift at joint 4.

- 10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-8=-20

1/6/2024

REACTIONS. (lb/size) 3=34/Mechanical, 2=135/0-3-8 (min. 0-1-8), 4=16/Mechanical Max Horz 2=50(LC 12) Max Uplift3=-27(LC 12), 2=-13(LC 12) Max Grav 3=38(LC 20), 2=148(LC 18), 4=33(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 3 and 13 lb uplift at joint 2.

LOAD CASE(S) Standard

1/6/2024

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.18 BC 0.17 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 5 0.01 5 0.00 4	l/defi L/d n/r 180 n/r 80 n/a n/a	PLATES G MT20 2 Weight: 26 lb	GRIP 244/190 FT = 0%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.2			BRACING- TOP CHORD BOT CHORD	Structural woo Rigid ceiling o MiTek recon be installed Installation o	od sheathing direct directly applied or 1 nmends that Stabili during truss erectic quide.	ly applied or 6-0-0 oc p 0-0-0 oc bracing. izers and required cros on, in accordance with \$	ourlins. ss bracing Stabilizer

REACTIONS. (lb/size) 2=168/6-4-4 (min. 0-1-8), 4=168/6-4-4 (min. 0-1-8), 6=232/6-4-4 (min. 0-1-8) Max Horz 2=-48(LC 10) Max Uplift2=-32(LC 12), 4=-39(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2 and 39 lb uplift at joint 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

REACTIONS. All bearings 6-4-4.

(lb) - Max Horz 2=-41(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-2 to 4-11-4, Exterior(2R) 4-11-4 to 5-11-4, Exterior(2E) 5-11-4 to 7-7-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding.
- 5) Provide adequate drainage to prevent water pondin
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 9, 8.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

1/6/2024

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 10, 9, 8

-		 -	-

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.2

10.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=147/5-4-4 (min. 0-1-8), 4=147/5-4-4 (min. 0-1-8), 6=194/5-4-4 (min. 0-1-8) Max Horz 2=41(LC 11) Max Uplift2=-28(LC 12), 4=-34(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.20 BC 0.15 WB 0.07 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/ -0.00 1 0.00 1 0.00	/defl L/d n/r 180 n/r 80 n/a n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.: BOT CHORD 2x4 SP No.: WEBS 2x4 SP No.: OTHERS 2x4 SP No.:	2 3 3 3		BRACING- TOP CHORD BOT CHORD	Structural woo end verticals. Rigid ceiling di MiTek recom be installed d Installation gi	d sheathing directl irectly applied or 1 mends that Stabili luring truss erectio uide.	y applied or 6-0-0 oc 0-0-0 oc bracing. zers and required cro n, in accordance with	purlins, except oss bracing n Stabilizer

REACTIONS. All bearings 6-9-8.

(lb) - Max Horz 2=76(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 9, 8, 10 Max Grav All reactions 250 lb or less at joint(s) 7, 2, 9, 8 except 10=370(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-10=-298/232

NOTES-(12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

- 1015 truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with CARO, fit between the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing ploto conclusion with the second sec

LOAD CASE(S) Standard

1/6/2024

REACTIONS. (lb/size) 4=257/Mechanical, 2=309/0-3-8 (min. 0-1-8) Max Horz 2=76(LC 10) Max Uplift4=-45(LC 14), 2=-48(LC 10) Max Grav4=346(LC 21), 2=398(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-281/158

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOAD CASE(S) Standard

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

1/6/2024

Warning 1—Verity design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL	COURT LILLINGTON, NC
23-B587-R01	R10	HIP GIRDER	1	1	Job Reference (optional)	# 43962
			Run: 8 430 s Feb 12	2021 Prin	1: 8 430 s Eeb 12 2021 MiTek Industries Inc.	Tue Jan 9 09:58:37 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Jan 9 09:58:37 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-dg3b_iXQSFZ43wl0VRUgXTIHtu_pWyYJ548s_qzx83W

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-9=-60, 2-9=-20

Concentrated Loads (lb)

Vert: 15=-24(F) 5=-39(F) 12=-24(F) 18=-31(F) 19=-19(F) 21=-39(F) 22=-39(F) 23=-39(F) 24=-39(F) 25=-39(F) 26=-39(F) 27=-39(F) 28=-39(F) 29=-39(F) 30=-39(F) 32=-19(F) 33=-31(F) 34=-33(F) 35=-44(F) 36=-142(F) 37=-24(F) 38=-24(F) 40=-24(F) 41=-24(F) 42=-24(F) 43=-24(F) 44=-24(F) 45=-142(F) 46=-44(F) 47=-33(F)

Scale = 1:59.9

9-0-0 0-3-0 0-3-0 9-0-0 Plate Offsets (X,Y) [2:0-1-2,0-1-8], [4:0-4-4,0-2-4], [5:0-4-0,0-3-0], [6:0-4-4,0-2-4], [8:0-1-2,0-1-8] 9-0-0 9-0-0 LOADING (psf) SPACING 2.0.0 CSL DEFL in(log) I/deft I/d PLATES CPIP	
TCLL (roof) 20.0 SPACING- 220-0 CSI. DEFL. Iff (lcC) //deft L/d PLATES GRP Snow (Pf) 20.0 Plate Grip DOL 1.15 TC 0.59 Vert(LL) -0.09 8-9 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.56 Vert(CT) -0.19 8-9 >999 180 BCLL 0.0 * Rep Stress Incr NO WB 0.93 Horz(CT) 0.05 8 n/a N/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-SH Weight: 376 lb FT = 0%	
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING- TOP CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 REACTIONS. All bearings 0-3-8 except (jt=length) 8=Mechanical, 13=15-9-8. (ib) - Max Horz 2=157(LC 39) Max Uplift All uplift 100 lb or less at joint(s) except 8=-1858(LC 43), 2=-2335(LC 40), 13=-595(LC 35) Max Grav All reactions 250 lb or less at joint(s) 2 except 8=2254(LC 52), 2=2417(LC 37), 13=2250(LC 30)	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-14=-3941/3996, 3-14=-2914/3041, 3-4=-2867/3025, 4-15=-1396/1597, 5-15=-244/610, 5-16=-1559/1076, 6-16=-1356/805, 6-7=-2557/2047, 7-8=-3583/3177 BOT CHORD 2-13=-3256/3270, 12-13=-862/1343, 12-17=-2354/2815, 17-18=-2635/2873, 11-18=-3261/3499, 11-19=-3261/3499, 9-10=-3261/3499, 8-9=-2546/3001 WEBS 3-13=-418/278, 4-13=-1254/1026, 5-13=-2103/930, 5-11=0/504, 5-9=-803/978, 6-9=-419/616, 7-9=-338/230	
 NOTES- 1) 2-ply truss to be connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2R) 10-2: to 35-54 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DCL=1.60 plate grip DCL=1.60 5) TCLL: ASCE 7-16; Vult=120mph (second gust) Vasd=95mph; TCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS for reactions shown; Lumber DCL=1.60 plate grip DCL=1.60 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DCL=1.15 Plate DCL=1.15); Is=1.0; Routh DCL=1.60 6) TCLL: ASCE 7-16; Vult=120mph (second gust) Vasd=95 or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with ther live loads. 7) Provide adequate drainage to prevent water ponding. 8) This truss has been designed for greater of min roof live load on nonconcurrent with any other live loads. 9) This truss has been designed for a low psf othorm chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Refer to gride(15) for truss to truss connections. 11) Provide mechanical connection. 12) This truss has been designed for a total drag load of 200 plf. Lumber DCL=(1.33) Plate grip DCL=(1.33) Connect truss to resist drag 16/2024 	

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL COURT LILLINGTON, NC
23-B587-R01	R11	HIP	1	2	Job Reference (optional) # 43962

Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Jan 9 09:58:38 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-5tczB2Y2DYixh4KC38?v4grUPIKuFL4SKktPWHzx83V

LOAD CASE(S) Standard

1/6/2024

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL 0	COURT LILLINGTON, NC
23-B587-R01	R14	PIGGYBACK BASE	3	1	Job Reference (optional)	# 43962
		Run: 8.4 ID:qc	30 s Feb 1 IfH?Rqen	2 2021 Prin Z1wWmx	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. uKuRIUzBcTx-1FkkckZIIAyfwOUbAZ1N	Tue Jan 9 09:58:40 2024 Page 2 95wpH5xRjFDIn2MWb9zx83T

LOAD CASE(S) Standard

1/6/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLA	KE POND 87 WH	IMBREL COURT LIL	LINGTON, NC
23-B587-R01	R14A	PIGGYBACK BASE	2	1	Job Reference	(optional)	#	43962
			Run: 8.430 s Feb 1	2 2021 Print	: 8.430 s Feb 12	2021 MiTek Industr	ies, Inc. Tue Jan 90 UbAZ1N95wpE5x)9:58:40 2024 Page 1 diFDIn2MWb9zx83T
	-0-10-8 2-3-8 7-3-6	13-9-12 17-2-4	21-8-4	28-	5-13	35-6-0 7-0-3	<u>36-4-8</u>	JI DII200000000
	0-10-0 2-0-0 4-11-14	0-0-0 0-4-1	4-0-0	0-5	-10	1-0-0	0-10-0	
		5x6 = 4x	4 = 5x8	3 =				Scale = 1:77.5
		6	7 _{T3}	8	8.00 12			
]
		т2 //			4			
	5x8 ⁄					5x6 📎		
œ	5	B4				9		œ
а- б	4x6 🖉		vg yv10	wit	//			8- 6
	4x4 23	W6 W6			W12	15		
	2 3 4 W4			```	$\backslash //$			
ု ဝု			85 86 6 3 85	•		B6		<u></u>
0	$\begin{array}{c} \checkmark \boxtimes \\ 4x4 = \\ 21 5x10 = \\ 4\end{array} $	13 17 16	15 ¹⁴ 24	25	13 12 26	27	⊠ \ o 4x4 =	
	$4x4 \equiv$	2x4 4	4x6 = 4x6	= 4x6 =	5x8 =			
		5x8 =	4x6 =		4x6 =			
		2x4 3x4						
	2-3-8 7-3-6	13-6-0 13-10-1317-2-4	26-2-4	4	I	35-6-0		
Plate Offsets (X,Y) [3:0	<u>2-3-8</u> <u>4-11-14</u> -1-0,0-2-0], [4:0-1-8,0-2-0],	<u>6-2-10</u> <u>0-4-13</u> <u>3-3-6</u> [5:0-4-0,0-3-0], [6:0-3-0,0-2-3], [8:0-	<u>9-0-0</u> 5-12,0-2-0], [9:0-3) -0,0-3-4],	[10:0-0-0,0-0	<u>9-3-12</u> -14], [12:0-4-0,0)-3-0], [18:0-2-12	2,0-2-8], [18:0-2-0
,0-0	-0], [19:0-1-12,0-1-12], [20:	0-4-8,0-0-0]			• ·			
LOADING (psf) TCLL (roof) 20.0	SPACING-	2-0-0 CSI .	DEFL.	in (lo	c) I/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip DOL Lumber DOL	1.15 IC 0.70 1.15 BC 0.85	Vert(LL) Vert(CT)	-0.16 10-1 -0.37 10-1	12 >999 12 >999	240 180	MT20	244/190
BCLL 0.0 *	Rep Stress Incr	YES WB 0.95 2014 Matrix_SH	Horz(CT)	0.22	10 n/a	n/a	Weight: 248 lb	FT = 0%
BCDL 10.0								11-070
TOP CHORD 2x4 SP No	0.2		BRACING- TOP CHORD	Structura	l wood sheat	hing directly ap	plied or 2-2-0 oc	purlins.
BOT CHORD 2x4 SP No B1: 2x4 SP	0.1 *Except* 2 No 2 B4: 2x4 SP No 3 B4	5: 2x6 SP No 2	BOT CHORD	Rigid cei	ling directly a	pplied or 10-0-0) oc bracing, Ex	cept:
WEBS 2x4 SP No	0.3 *Except*			9-0-13 o	bracing: 19-	20.		
W3,W2: 2>	x4 SP No.2		WEBS	10-0-0 o 1 Row at	c bracing: 16- : midpt	18 7-15, 4-19		
				MiTek r	ecommends	that Stabilizers	and required cro	ss bracing
				Installa	tion guide.	uss erection, in	accordance with	Stabilizer
REACTIONS. (Ib/size) Max Horz	2=1474/0-3-8 (min. 0-1-12) 2=-192(LC 10)	, 10=1474/0-3-8 (min. 0-1-12)						
Max Uplift	2=-97(LC 12), 10=-96(LC 1)	3)						
	2-1474(LC 1), 10-1489(LC							
FORCES. (lb) - Max. Col TOP CHORD 6-7=-142	mp./Max. Ten All forces 2 20/232, 7-8=-1348/239, 8-9=	50 (lb) or less except when shown. -2028/263, 9-22=-2075/204, 10-22=	=-2164/169,					
2-3=-196	2/138, 3-4=-4197/385, 4-23	=-2535/184, 5-23=-2493/205, 5-6=-	1822/226	Q1				
12-26=-8	3/1720, 26-27=-83/1720, 10)-27=-83/1720, 19-20=-480/4212, 1	8-19=-150/2096,	.01,				
6-18=-19 WEBS 9-12=-36	%705 %3/216, 20-21=-130/1181, 4-	20=-123/1294, 3-20=-364/3102, 3-2	21=-1496/180,					
7-15=-53 4-19=-21	5/138, 15-18=0/1414, 7-18= 25/333, 5-18=-796/191	=-57/309, 8-15=-96/306, 8-12=-114/	/813, 5-19=0/465,					
NOTES								
1) Unbalanced roof live lo	oads have been considered	for this design.				111	annin annin anni anni anni anni anni an	
2) Wind: ASCE 7-16; Vult (envelope) gable end z	t=120mph (3-second gust) \ rone and C-C Exterior(2E) -	/asd=95mph; TCDL=5.0psf; BCDL= 0-10-8 to 3-11-2_Interior(1) 3-11-2 t	=5.0psf; h=23ft; Ca o 7-0-13 Exterior(at. II; Exp I 2R) 7-0-1;	B; Enclosed; 3 to 28-6-13	MWFRS	TH LAROL	1111
28-6-13 to 31-6-14, Ext	terior(2E) 31-6-14 to 36-4-8	zone;C-C for members and forces	& MWFRS for read	ctions sho	wn; Lumber [DOL=1.60	OFESSION	7 III
3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DOL	=1.15 Plate DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DOI	L=1.15); ls=1	.0; Rough	SEAL	1
Cat B; Partially Exp.; C 4) This truss has been de	ce=1.0; Cs=1.00; Ct=1.10 signed for greater of min ro	of live load of 12.0 psf or 2.00 times	s flat roof load of 2	0.0 psf on	overhands	1111	28147	11114
non-concurrent with oth	her live loads.				g-		/	mm
6) This truss has been de	signed for a 10.0 psf botton	ng. n chord live load nonconcurrent with	n any other live loa	ds.		THE ALSO	VOINEER	in the second second
This truss has been of between the bottom ch	designed for a live load of 30 ord and anv other members	0.0psf on the bottom chord in all are s. with BCDL = 10.0psf.	eas where a rectan	gle 3-6-0	tall by 1-0-0 v	vide will fit	K. MOHIM	14
8) Provide mechanical co	nnection (by others) of truss	s to bearing plate capable of withsta	anding 97 lb uplift a	at joint 2 a	nd 96 lb uplif	t at joint	1/6/2021	
. Warning ! Varify design	ngrameters and road notes by	fore use. This design is based only upon	narameters chown or	nd is for an	individual build	ing component to	1/U/ZUZ4	ded
LOAD CASE(S)' Standard vertically. Applicability of	design parameters and proper in	corporation of component is responsibility	of building designer	– not truss	designer or trus	s engineer. Braci	ng shown is for late	ral support
of individual web members	only. Additional temporary brac	cing to ensure stability during construction	is the responsibility	of the erect	or. Additional j	permanent bracing	of the overall struc	ture is the
Plate Connected Wood Trus	ss Construction and BCSI 1-03	Guide to Good Practice for Handling, In	stalling & Bracing of	Metal Plat	e Connected W	ood Trusses from	Truss Plate Institut	e, 583

D'Onofrio Drive, Madison, WI 53719.

		7-3-6	9-10-14	9-0	-0	2-10-13	6-4-15
Plate Offsets	(X,Y) [2:0-0	-0,0-0-14], [3:0-3-0,0-3-0], [4:0-5-12,	0-2-0], [5:0-2-8,Edge], [6	<u>5:0-4-0,0-3-0], [7:0</u>)-3-12,0-2-0], [9	9:Edge,0-0-14], [10	:0-5-14,Edge]
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.77 BC 0.91 WB 0.70 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.46 14-16 -0.67 14-16 0.09 9	l/defi L/d >921 240 >630 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 225 lb FT = 0%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.1 B3: 2x6 SP N 2x4 SP No.3 W6: 2x4 SP	*Except* No.2, B2: 2x4 SP SS *Except* SS		BRACING- TOP CHORD BOT CHORD WEBS	Structural wo Rigid ceiling o 7-11-2 oc bra 1 Row at mid MiTek recor be installed	bod sheathing directly applied or acing: 11-14. Ipt 5-14, mmends that Stabil (during truss erect)	ttly applied. 10-0-0 oc bracing, Except: 6-10 lizers and required cross bracing on in accordance with Stabilizer
REACTIONS.	(lb/size) 9= Max Horz 2= Max Uplift9= Max Grav 9=	:1400/Mechanical, 2=1470/0-3-8 (m :189(LC 11) :-96(LC 13), 2=-101(LC 12) :1510(LC 3), 2=1611(LC 20)	in. 0-1-14)		Installation	guide.	
FORCES. (Ib TOP CHORD BOT CHORD WEBS) - Max. Comp 2-3=-2480/ 6-7=-1494/ 2-20=-138/ 14-22=-34/ 11-24=-25/ 3-16=-392/ 5-17=-20/3	b./Max. Ten All forces 250 (lb) or lo 200, 3-18=-2453/311, 4-18=-2347/3 295, 7-19=-2032/288, 8-19=-2130/2 2034, 16-20=-138/2034, 16-21=-34/ 1475, 13-14=-25/1500, 13-23=-311/1 1500, 10-25=-136/1830, 25-26=-136 259, 4-16=-221/954, 8-10=-342/196 85, 7-10=-42/612, 6-11=-287/261, 1	ess except when shown. 15, 4-5=-1577/237, 5-6= 16, 8-9=-2281/246 1475, 15-21=-34/1475, 1 157, 12-23=-29/1464, 12 14830, 9-26=-136/1830 4-14=-36/419, 14-17=-7 0-11=-103/1372	-1426/191, 15-22=-34/1475, 2-24=-25/1500, 73/368,			
NOTES- 1) Unbalanced 2) Wind: ASCI (envelope): 20-8-4 to 2' forces & M 3) TCLL: ASC Cat B; Parti 4) This truss h non-concur 5) Provide add 6) This truss h 7) * This truss between the 8) Refer to gin 9) Provide me 2. LOAD CASE(S	d roof live load E 7-16; Vult=' gable end zor 1-9-0, Exterion WFRS for rea E 7-16; Pr=2(ally Exp.; Ce- has been desi- rent with othe equate draina has been desi- has been desi- has been desi- has been desi- chanical conr G) Standard	ds have been considered for this des 120mph (3-second gust) Vasd=95m he and C-C Exterior(2E) -0-10-8 to 3 (2R) 21-9-0 to 27-6-10, Interior(1) 2 ctions shown; Lumber DOL=1.60 pla 0.0 psf (roof LL: Lum DOL=1.15 Plat =1.0; Cs=1.00; Ct=1.10 gned for greater of min roof live load r live loads. ge to prevent water ponding. gned for a 10.0 psf bottom chord live signed for a live load of 30.0psf on tt d and any other members, with BCD s to truss connections. hection (by others) of truss to bearing	ign. h; TCDL=5.0psf; BCDL 11-2, Interior(1) 3-11-2 + -6-10 to 30-7-10, Exteri te grip DOL=1.60 \Rightarrow DOL=1.15); Pf=20.0 ps of 12.0 psf or 2.00 times load nonconcurrent with e bottom chord in all are L = 10.0psf. plate capable of withsta	=5.0psf; h=23ft; C to 9-0-2, Exterior(or(2E) 30-7-10 to sf (Lum DOL=1.15 s flat roof load of 2 h any other live lo eas where a recta anding 96 lb uplift	Cat. II; Exp B; Er 2R) 9-0-2 to 20 35-5-4 zone;C- 5 Plate DOL=1. 20.0 psf on ove ads. ngle 3-6-0 tall b at joint 9 and 1	nclosed; MWFRS -8-4, Exterior(2E) -C for members and 15); Is=1.0; Rough erhangs by 1-0-0 wide will fi 101 lb uplift at joint	SEAL 28147
LOAD CASE(C	Janualu						1/6/2024

	L	7-3-6		17-2-4	26-2	2-4	29-	-1-1	35-6-0	
		7-3-6		9-10-14	9-0	-0	2-1	0-13	6-4-15	
Plate Offsets ()	X,Y) [2:0-0-	-0,0-0-14], [3:0-3-0,0-3	-0], [4:0-5-12,0)-2-0], [5:0-6-4,0-2-4],	[7:0-3-12,0-2-0], [9:	Edge,0-0-14],	[10:0-5-8	8,Edgej	1	
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCLL	20.0 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/7	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.81 BC 0.89 WB 0.56 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.47 13-15 -0.70 13-15 0.08 9	l/defl >904 >609 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 0%
BCDL	10.0								-	
LUMBER- TOP CHORD : BOT CHORD : WEBS :	2x4 SP No.2 2x4 SP No.1 B3: 2x6 SP N 2x4 SP No.3	*Except* Io.2, B2: 2x4 SP SS			BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek reco be installed Installation	ood shea directly a dpt ommends d during t	athing direct applied or 1 5-13, 6 s that Stabili truss erectio	ly applied. 0-0-0 oc bracing. 5-10 zers and required croson, in accordance with	ss bracing Stabilizer
REACTIONS.	(lb/size) 9= Max Horz 2= Max Uplift9= Max Grav 9=	1411/Mechanical, 2=1 189(LC 11) -90(LC 13), 2=-99(LC 1557(LC 3), 2=1626(L	474/0-3-8 (mii 12) C 20)	n. 0-1-15)			guido.			
FORCES. (lb) TOP CHORD	- Max. Comp 2-3=-2509/	o./Max. Ten All forces 191, 3-16=-2481/301, 4	s 250 (lb) or les 4-16=-2376/33	ss except when showr 5, 4-5=-1599/226, 5-6	n. =-2483/338,					
BOT CHORD	2-18=-134/2 13-20=-27/	2058, 15-18=-134/2058 1496, 12-13=-0/1552, 10-22	3, 15-19=-27/1 12-21=-5/1521	496, 14-19=-27/1496, , 11-21=-3/1528, 11-2	14-20=-27/1496, 2=-0/1552,					
WEBS	3-15=-389/2 6-10=-1388	52, 10-23=-119/1981, 259, 4-15=-220/960, 8- 3/210, 5-10=-192/1133	-23-24=-119/1 -10=-266/158,	4-13=-31/420, 7-10=-§	92/1074,					
NOTES- 1) Unbalanced 2) Wind: ASCE (envelope) g (20-8-4 to 24) reactions sh 3) TCLL: ASCE Cat B; Partia 4) This truss ha non-concurr 5) Provide adee 6) This truss ha 7) * This truss ha 8) Refer to gird 9) Provide med	roof live load 7-16; Vult=1 (able end zor 9-0, Exterior 9-0, Exterior 9-0, Exterior 9-0, Exterior 9-0, Exterior 9-0, Exterior 10, Pr=20 ally Exp.; Ce= as been desig ent with other quate drainaq as been desig has been desig bottom chorr er(s) for truss	Is have been consider (20mph (3-second gus e and C-C Exterior(2E (2R) 24-9-0 to 30-7-10 DOL=1.60 plate grip I 0.0 psf (roof LL: Lum D 1.0; Cs=1.00; Ct=1.10 gned for greater of min r live loads. ge to prevent water poi gned for a 10.0 psf bot signed for a 10.0 psf bot signed for a live load of d and any other memb s to truss connections. lection (by others) of tr	ed for this desi t) Vasd=95mpl) -0-10-8 to 3-, Exterior(2E) 3 OOL=1.60 OOL=1.15 Plate roof live load of nding. tom chord live 30.0psf on the ers, with BCDL uss to bearing	ign. h; TCDL=5.0psf; BCD 11-2, Interior(1) 3-11-2 30-7-10 to 35-5-4 zone DOL=1.15); Pf=20.0 µ of 12.0 psf or 2.00 time load nonconcurrent w e bottom chord in all a _ = 10.0psf. plate capable of withs	L=5.0psf; h=23ft; C to 9-0-2, Exterior(2 c;C-C for members osf (Lum DOL=1.15 es flat roof load of 2 th any other live loa reas where a rectar tanding 90 lb uplift	at. II; Exp B; E 2R) 9-0-2 to 2(and forces & f Plate DOL=1 20.0 psf on ov ads. ngle 3-6-0 tall at joint 9 and	Enclosed; J-8-4, Exi MWFRS .15); Is=* erhangs by 1-0-0 99 Ib upli	; MWFRS terior(2E) for 1.0; Rough wide will fit ift at joint 2.	SEAL 28147	ALL DATE OF THE OF T
									1/6/2024	

	Truss	nace type		Qty	Ply	LOT 0.0098 BLA	KE POND 8			
23-B587-R01	R19	PIGGYBACK BASE		1	1	Job Roforance	(ontional)		# 4.	3962
		I	F	Run: 8.430 s Feb 1	12 2021 Print	8.430 s Feb 12 2	2021 MiTek li	ndustries, Inc. Tu	e Jan 9 09:5	8:43 2024 Page
0.40.0	C 11 E	10.0.10		אי חווףא. שי.			yws⊏iCA25	22 0 0	35-6-0)
- <u>u-10-8</u> 0-10-8	6-11-5	6-10-7	6-10-7		6-1	0-7		6-2-5	34-9-0 1-0-0	
		5)	v6 =						0-9-0	Scale = 1:64
		8.00 12	-	5x8 =	=					
Т			5 T3	6						Ţ
					\searrow					
	3	x8 // T2								
	4.4	4			\	18				
	4x4 */			// \	W5		4x4 ∖\ 7			
8-8-	° (1/2					8-8-
0			WB W4					<		0
	T	W2						\searrow	5x6	=
	W1					₩6 v	v1		5x8 =	
9012										0
1 4 4 E	B1		B2		<u> </u>			< XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		႞ၯႍ
5x5 =	¹⁹ 17	20 16	15 21		22 14	4	x4 =		5x5 = 4x	4 =
	2x4	4xo -	- 4x8 =		570 -	- 13	12		11 9	
⊢	6-11-5	13-9-12	20-8-4	23	3-5-12 2	5-10-8 27-6-11	1	33-9-0	35-6-0	
Plate Offsets (X,Y) [3	:0-1-12,0-2-0], [5:0-4-4,0	-2-4], [6:0-5-12,0-2-0]	, [7:0-1-12,0-2-0], [9:0-	-4-4,0-2-4], [10	<u>2-9-9</u> 22	-6], [11:0-2-8,	0-3-0], [14	6-2-5 :0-4-0,0-3-4]	1-9-0	
LOADING (psf)	SPACING-	2-0-0	CSI	DEFL.	in (lo	c) l/defl	I /d	PLATE	s c	RIP
TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DO	L 1.15	TC 0.80	Vert(LL)	-0.39 14-1	15 >797	240	MT20	2	44/190
TCDL 10.0	Lumber DOL Rep Stress Inc	1.15 cr YES	BC 0.89 WB 0.87	Vert(CT) Horz(CT)	-0.55 14-1	15 >555 11 n/a	180 n/a			
BCLL 0.0 * BCDL 10.0	Code IRC2021	I/TPI2014	Matrix-SH	(-)			-	Weight	:: 206 lb	FT = 0%
LUMBER-			BF	RACING-						
TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N	No.2 No.1		TC BC	OP CHORD	Structura Rigid cei	ll wood sheath ling directly ar	ning directl	y applied. -10-11 oc brad	cina.	
WEBS 2x4 SP N	No.3		W	EBS	1 Row at	midpt	3-15, 6	-14	5	
					MiTek r	ecommends t alled during tru	hat Stabili iss erectio	zers and requ n. in accordar	ired cross nce with S	bracing tabilizer
	nin na 0 11 0 avra nt (it-la				Installat	tion guide.		,		
(lb) - Max Hor	rz 2=283(LC 39)	ingin) 2–0-3-6, 13–0-	D-0.							
Max Upl	ift All uplift 100 lb or less 13=-290(I C 19)	s at joint(s) 10, 12 exc	ept 10=-884(LC 39), 2	e=-1487(LC 40)), 11=-727	(LC 43),				
Max Gra	All reactions 250 lb or	less at joint(s) 13 exe	cept 10=838(LC 42), 2	=2228(LC 57),	12=1785	(LC 31),				
	11=881(LC 38)									
FORCES. (lb) - Max. C	Comp./Max. Ten All ford	ces 250 (lb) or less ex	cept when shown.	045/1002						
10F 010RD 2-334	1869/1586, 7-8=-2509/25	53, 8-9=-1573/1589,	9-10=-1148/1158	JULUZU,						
7-18=-'		/2804, 17-20=-2007/2	804, 16-20=-2007/280)4,						
7-18=- BOT CHORD 2-19=-2 15-16=	2007/2804, 17-19=-2007/ -2007/2804, 15-21=-210/	4/2389.21-22=-2104/	2309.14-222104/23	89.						
7-18=- BOT CHORD 2-19=-2 15-16= 13-14=	2007/2804, 17-19=-2007/ -2007/2804, 15-21=-210/ -2122/2107, 12-13=-212:	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/	2389, 14-222104/23 1604, 10-11=-804/720	189,)						
7-18=- BOT CHORD 2-19=-2 15-16= 13-14= WEBS 3-17=0 8-12=-4	2007/2804, 17-19=-2007/ -2007/2804, 15-21=-210/ -2122/2107, 12-13=-212: /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-33 0, 9-11=-1134/1152,	2369, 14-22-2104/23 1604, 10-11=-804/720 36/680, 7-12=-1625/15 6-14=-468/142, 7-14=	89,) 58, -21/1055						
BOT CHORD 2-19=-: 15-16= 13-14= WEBS 3-17=0 8-12=-2	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152,	2389, 14-222104/23 1604, 10-11=-804/720 36/680, 7-12=-1625/15 6-14=-468/142, 7-14=-	89,) 58, -21/1055						
7-18=- BOT CHORD 2-19=-: 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live	2007/2804, 17-19=-2007/ -2007/2804, 15-21=-210 -2122/2107, 12-13=-212: /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ered for this design	2389, 14-222104/23 1604, 10-11=-804/220 36/680, 7-12=-1625/15 6-14=-468/142, 7-14=-	889, 58, -21/1055						
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been conside ult=120mph (3-second gt zone and C-C Exterior(2)	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ered for this design. ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2.	2369, 14-222104/23 1604, 10-11804/720 36/680, 7-121625/15 6-14=-468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9-	89,) ≥21/1055)psf; h=23ft; Ca 0-3. Exterior(2	at. II; Exp I	3; Enclosed; № 25-5-13. Inte	/WFRS erior(1)			
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end 25-5-13 to 33-9-0, Ex-	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been conside ult=120mph (3-second gi t zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 4 20 at a second 20 at 4	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ered for this design. ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9-	2369, 14-222104/22 1604, 10-11804/720 36/880, 7-121625/15 6-14468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f	89,) ∂8, -21/1055 0psf; h=23ft; Ca 0-3, Exterior(2 for members an	at. II; Exp I R) 9-0-3 to nd forces a	3; Enclosed; № 5 25-5-13, Inte & MWFRS for	/WFRS erior(1) reactions	antinina CA		
7-18=- BOT CHORD 2-19=-: 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vr (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOL 3) TCLL: ASCE 7-16; P	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210, -2122/2107, 12-13=-212; /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been considd ult=120mph (3-second gu I zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3; 0, 9-11=-1134/1152, ered for this design. ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 0 DOL=1.15 Plate DOL	2369, 14-222104/23 1604, 10-11804/720 36/680, 7-121625/15 6-14468/142, 7-14 DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L	189, 188, -21/1055 0psf; h=23ft; Ca 0-3, Exterior(2 for members an um DOL=1.15	at. II; Exp I R) 9-0-3 to nd forces 8 Plate DOI	3; Enclosed; N o 25-5-13, Inte & MWFRS for _=1.15); Is=1.	/WFRS prior(1) reactions 0; Rough	WITH CA	ROLA	
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vr (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOL: 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been conside ult=120mph (3-second gi d zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 0 DOL=1.15 Plate DOL 10 in troof live load of 12	2369, 14-222104/22 1604, 10-11804/720 36/680, 7-121625/15 6-14=-468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times for	189, 188, -21/1055 0psf; h=23ft; Ca -0-3, Exterior(2 for members au um DOL=1.15 t roof load of 2	at. II; Exp I R) 9-0-3 to nd forces & Plate DOI	B; Enclosed; M 5 25-5-13, Inte & MWFRS for _=1.15); Is=1.1	AWFRS erior(1) reactions 0; Rough	TH CA	ROLINA	
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; V((envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOLE 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been of non-concurrent with of	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been conside ult=120mph (3-second gi zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m other live loads.	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ered for this design. Just) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 30 DOL=1.15 Plate DOL 10 in roof live load of 12	2369, 14-222104/22 1604, 10-11804/720 36/880, 7-121625/15 6-14=-468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla	89, 58, -21/1055 0psf; h=23ft; Ca -0-3, Exterior(2 for members an um DOL=1.15 t roof load of 2	at. II; Exp I R) 9-0-3 to nd forces & Plate DOI 0.0 psf on	B; Enclosed; № 5 25-5-13, Inte & MWFRS for _=1.15); Is=1. overhangs	AWFRS prior(1) reactions 0; Rough	REAL	ROLINA	- HANDING
7-18=- BOT CHORD 2-19=-: 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOL 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been of non-concurrent with of 5) Provide adequate dra 6) This truss has been of	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been considu ult=120mph (3-second gu I zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m other live loads. ainage to prevent water p designed for a 10.0 psf b	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 20, 9-11=-1134/1152, ered for this design. ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 00 DOL=1.15 Plate DOL 10 in roof live load of 12 ponding. ottom chord live load	2009; 14-222104/22 1604, 10-11804/720 36/680, 7-121625/15 6-14=-468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla nonconcurrent with an	189, 188, -21/1055 Dpsf; h=23ft; Ca -0-3, Exterior(2 for members an um DOL=1.15 t roof load of 2 uy other live load	at. II; Exp I R) 9-0-3 to nd forces { Plate DOI 0.0 psf on ads.	3; Enclosed; N o 25-5-13, Inte & MWFRS for _=1.15); Is=1. overhangs	AWFRS erior(1) reactions 0; Rough	SEAL 28147	ROLINA	anumunumu a
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOL: 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been of 5) Provide adequate dra 6) This truss has been of 7) * This truss has been of 7) * This truss has been of 7) * This truss has been of	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212; /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been considu ult=120mph (3-second gr d zone and C-C Exterior(2 z	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 0 DOL=1.15 Plate DOL 10 in roof live load of 12 wonding. ottom chord live load of 30.0psf on the both	2009; 14-222104/22 1604, 10-11804/720 36/680, 7-121625/15 6-14468/142, 7-14 DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla nonconcurrent with an iom chord in all areas	189, 189, 121/1055 10-3, Exterior(2 10-3, Ex	at. II; Exp I R) 9-0-3 to nd forces a Plate DOI 0.0 psf on ods. ngle 3-6-0	3; Enclosed; № o 25-5-13, Inte & MWFRS for _=1.15); Is=1. overhangs tall by 1-0-0 w	AWFRS erior(1) reactions 0; Rough ide will fit	SEAL 28147	ROJINA	THE REPORT OF THE PARTY OF THE
7-18=- BOT CHORD 2-19=-; 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOL 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been of non-concurrent with of 5) Provide adequate dra 6) This truss has been of 7) * This truss has been of 7) * This truss has been of 8) Provide mechanical of	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 loads have been conside ult=120mph (3-second gi t zone and C-C Exterior(2 kterior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 (r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m other live loads. ainage to prevent water p designed for a live load chord and any other men connection (by others) of	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 0, 9-11=-1134/1152, ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 00 DOL=1.15 Plate DOL 10 in roof live load of 12 ponding. ottom chord live load of 30.0psf on the bott hoers, with BCDL = 10 truss to bearing plate	2369, 14-222104/22 1604, 10-11804/720 36/680, 7-121625/15 6-14=-468/142, 7-14= DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla nonconcurrent with an icom chord in all areas .0psf. capable of withstandi	189, 189, 188, -21/1055 0psf; h=23ft; Ca 0-3, Exterior(2 for members an um DOL=1.15 t roof load of 2 uy other live loa where a rectar ng 100 lb upliff	at. II; Exp I R) 9-0-3 tr nd forces & Plate DOI 0.0 psf on ads. ngle 3-6-0 t at joint(s)	B; Enclosed; N o 25-5-13, Inte & MWFRS for _=1.15); Is=1. overhangs tall by 1-0-0 w 12 except (it=	AWFRS prior(1) reactions D; Rough ide will fit	SEAL 28147	ROJINA	and a state of the
7-18=- BOT CHORD 2-19=: 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable end 25-5-13 to 33-9-0, Ex shown; Lumber DOLE 3) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.; 4) This truss has been non-concurrent with of 5) Provide adequate dra 6) This truss has been 6) This truss has been 6) This truss has been 6) Provide mechanical 10=884, 2=1487, 11= 9) This trues has been	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212; /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 ult=120mph (3-second gi t zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m other live loads. ainage to prevent water p designed for a 10.0 psf b to designed for a 10.0 psf b to designed for a live load chord and any other men connection (by others) of =727, 13=290. designed for a total desc	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 2/2107, 11-12=-1612/ 5=-193/431, 6-15=-3: 50, 9-11=-1134/1152, ust) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 30 DOL=1.15 Plate DOL 10 in roof live load of 12 bonding. oottom chord live load of 30.0psf on the bott bers, with BCDL = 10 truss to bearing plate	2009; $14-222104/22$ 1604, $10-11804/72036/880$, $7-121625/156-14=-468/142$, $7-14=-DL=5.0psf$; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla nonconcurrent with an iom chord in all areas 0.0psf. capable of withstandi ar DOI =(1.32) Ploto c	189, 189, 188, -21/1055 109sf; h=23ft; Ca 0-3, Exterior(2 for members al um DOL=1.15 t roof load of 2 hy other live load where a rectar ng 100 lb uplift rip DOL=(1.22)	at. II; Exp I R) 9-0-3 to nd forces & Plate DOI 0.0 psf on ngle 3-6-0 t at joint(s)	B; Enclosed; M o 25-5-13, Inte MWFRS for _=1.15); Is=1. overhangs tall by 1-0-0 w 12 except (jt=	AWFRS prior(1) reactions D; Rough ide will fit	SEAL 28147 28147 28147	ROLL VA	and the second second second
 Rott CHORD 2-19=:: 15-16= 13-14= WEBS 3-17=0 8-12=-4 NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; Vi (envelope) gable enc 25-5-13 to 33-9-0, E> shown; Lumber DOL: 3) TCLL: ASCE 7-16; P Cat B; Partially Exp.; 4) This truss has been of non-concurrent with dra 6) This truss has been of 7) * This truss has been of 10=884, 2=1487, 11= 9) This truss has been of loads along bottom of 	2007/2804, 17-19=-2007, -2007/2804, 15-21=-210 -2122/2107, 12-13=-212 /280, 3-15=-652/233, 5-1 400/392, 8-11=-1518/154 ult=120mph (3-second gi 1 zone and C-C Exterior(2 terior(2R) 33-9-0 to 34-9 =1.60 plate grip DOL=1.6 r=20.0 psf (roof LL: Lum Ce=1.0; Cs=1.00; Ct=1. designed for greater of m other live loads. ainage to prevent water p designed for a live load chord and any other men connection (by others) of =727, 13=290. designed for a total drag hord from 25-7-0 to 35-6	4/2389, 21-22=-2104/ 2/2107, 11-12=-1612/ 2/2107, 11-12=-1612/ 0, 9-11=-1134/1152, ared for this design. List) Vasd=95mph; TC 2E) -0-10-8 to 3-11-2, -0, Exterior(2E) 34-9- 00 DOL=1.15 Plate DOL 10 in roof live load of 12 bonding. ottom chord live load of 30.0psf on the bott bers, with BCDL = 10 truss to bearing plate load of 125 plf. Lumbi- 0 for 447.5 plf.	2009; $14-222104/23$ 1604, 10-11804/720 36/680, 7-121625/15 6-14=-468/142, 7-14=- DL=5.0psf; BCDL=5.0 Interior(1) 3-11-2 to 9- 0 to 35-4-4 zone;C-C f =1.15); Pf=20.0 psf (L 0 psf or 2.00 times fla nonconcurrent with an toom chord in all areas 0.0psf. capable of withstandi er DOL=(1.33) Plate g	189, 189, 18, -21/1055 Dpsf; h=23ft; Ca 0-3, Exterior(2 for members an um DOL=1.15 t roof load of 2 uy other live loa where a rectar ng 100 lb uplift rip DOL=(1.33)	at. II; Exp I R) 9-0-3 to nd forces { Plate DOI 0.0 psf on ads. ngle 3-6-0 t at joint(s)) Connect	3; Enclosed; N o 25-5-13, Inte & MWFRS for _=1.15); Is=1. overhangs tall by 1-0-0 w 12 except (jt= truss to resis	AWFRS erior(1) reactions 0; Rough ide will fit =lb) t drag	SEAL 28147 SNONE SNONE	ROLINA DRAFT	THEN DE VIEN HUNDER

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional temporary bracing to the averall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POI	ND 87 WHIMBRE	L COURT LILLINGTON, NC
23-B587-R01	R20	PIGGYBACK BASE	4	1			# 43962
			Run: 8 430 s Feb 1	12 2021 Print	Job Reference (optio	nal) iTek Industries, Inc	Tue.lan 9.09:58:44 2024 Page 1
			ID:qqlfH?Rqem	Z1wWmxuł	KuRIUzBcTx-w1_FS5	cppOS4P?oMPF	² 6JKx5TXiGdfDRLigKkkwzx83P
-0-10-8	6-11-5	13-9-12 6-10-7	20-8-4		27-6-11	34-6	-0 35-4-8 -5 0-10-8
0-10-0	0-11-0	0-10-1	0-10-1		0-10-7	0-11	-0 0-10-0
		4×6 —					Scale = 1:62.3
		470 —	5x	8 =			
		8.00 12 5	T 0 6				
[]
				\bigcap			
	3x8 <		// /	1 /	220		
					7		
	4x4 🥢					2x4 //	
~	3		W4//	//		8	m
8-0-0			\$/	, Aug		\sim	8-
0		W3		vvə			0)
	15 71	W2		//		TA 1	6
				//	NKIG		\sim
	W1			//	////		
0.2					$\backslash / /$		HW/910 C
[4] 2	B1 g		B2	C	€ <u></u>	B3	
4x4 =	17 ₁₄ 1	8 13 ₁₂	19	20	11 21	22	⊠ ∖ 0 4x6 =
	2x4	3x8 = 4x8 -		5x12 M	/T20HS=		
	274	470					
	6-11-5	<u>13-9-12</u> 6-10-7	23-5-12		+	<u>34-6-0</u> 11-0-4	
Plate Offsets (X,Y) [3:0-	-1-12,0-2-0], [5:0-3-12,0-2-)], [6:0-5-12,0-2-0], [9:Edge,0)-0-6], [11:0-6-0,0-3-0]			1101	
LOADING (psf)	0040000		DEEL		-) 1/1-61 1/1		
TCLL (roof) 20.0	Plate Grin DOI	2-0-0 CSI. 115 TC 0.80) Vert(LL)	IN (IO	c) I/defi L/d 12 >969 240		ATES GRIP 20 244/190
Snow (Pf) 20.0	Lumber DOL	1.15 BC 0.98	3 Vert(CT)	-0.57 9-	11 >715 180	MT	20HS 187/143
BCLL 0.0 *	Rep Stress Incr	YES WB 0.30) Horz(CT)	0.08	9 n/a n/a		
BCDL 10.0	Code IRC2021/TP	2014 Matrix-SH				We	ight: 188 lb F I = 0%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP No.	.2		TOP CHORD	Structura	l wood sheathing d	irectly applied of	or 2-2-0 oc purlins.
BOT CHORD 2X4 SP No. B3: 2v4 SP	2 *Except* 2 SS B2: 2x4 SP No 1		BOT CHORD	Rigid cei	ling directly applied	or 10-0-0 oc b	racing, Except:
WEBS 2x4 SP No.	.3		WEBS	1 Row at	midpt 3-	12, 6-12	
WEDGE				MiTek	ecommends that S	tabilizers and r	equired cross bracing
Right: 2x4 SP No.3				be insta	alled during truss er	ection, in acco	dance with Stabilizer
REACTIONS (Ib/size)	2=1430/0-3-8 (min 0-1-12	9=1430/0-3-8 (min 0-1-12))	Installa	tion guide.		
Max Horz 2	2=-192(LC 10)	, 3- 1 4 30/0-3-0 (mm. 0-1-12))				
Max Uplift2	2=-98(LC 12), 9=-98(LC 13)					
Max Grav2	2=1483(LC 20), 9=1496(LC	21)					
FORCES. (lb) - Max. Cor	np./Max. Ten All forces 2	50 (lb) or less except when s	hown.				
TOP CHORD 2-15=-220	09/166, 3-15=-2100/189, 3	4=-1685/197, 4-5=-1581/224	, 5-6=-1322/232,				
6-7=-1820	6/233, 7-8=-1934/206, 8-16	=-2052/213, 9-16=-2142/178	} 0/4000 40 40- 400/4000	`			
12-19=0/	8/1829, 14-17=-138/1829, 1315, 19-20=0/1315, 11-20	=0/1315, 11-21=-90/1706, 21	8/1829, 12-13=-138/1829 1-22=-90/1706.	9,			
9-22=-90/	/1706		····,				
WEBS 3-14=0/28	88, 3-12=-606/184, 5-12=-1	1/581, 6-11=-59/780, 8-11=-	370/214				
NOTES- (10)							
1) Unbalanced roof live lo	ads have been considered	for this design.					
2) Wind: ASCE 7-16; Vult	=120mph (3-second gust)	/asd=95mph; TCDL=5.0psf;	BCDL=5.0psf; h=23ft; Ca	at. II; Exp	B; Enclosed; MWFF	RS	
(envelope) gable end ze 27-7-14 to 30-6-14 Ext	one and C-C Exterior(2E) - erior(2E) 30-6-14 to 35-4-8	0-10-8 to 3-11-2, Interior(1) 3 zone C-C for members and 1	-11-2 to 6-11-5, Exterior(forces & MWERS for rea	(2R) 6-11- ctions sho	5 to 27-7-14, Interio wn: Lumber DOI =1	r(1)	
plate grip DOL=1.60							
3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DOI	=1.15 Plate DOL=1.15); Pf=2	20.0 psf (Lum DOL=1.15	Plate DO	L=1.15); ls=1.0; Ro	ugh	CASIM
Cat B; Partially Exp.; Co	e=1.0; Cs=1.00; Ct=1.10	of live lead of 12.0 pet or 2.0	0 times flat reaf load of 2	0 0 pof op	overbange	IN BATH	SAHOLIN
non-concurrent with oth	ier live loads.	or invertidad of 12.0 psi of 2.0	o amos natitudi ludu ULZ	.o.o pai 00	overnangs	ST DOFE	SSIDA
5) Provide adequate drain	age to prevent water pond	ng.				and a second	LEI
6) All plates are MT20 pla	tes unless otherwise indica	ted.	ant with any other live !	de		1 St	AL
8) * This truss has been d	esigned for a live load of 3	0.0psf on the bottom chord in	all areas where a rectar	ngle 3-6-0	tall by 1-0-0 wide 🐺	ill fit 28	147 3
between the bottom cho	ord and any other member	s, with BCDL = 10.0psf.		5.55	,	1111 and 1	
9) Provide mechanical cor	nnection (by others) of trus	s to bearing plate capable of	withstanding 100 lb uplif	t at joint(s)	2, 9.	The ANON	NEEP. C. ANT
LOAD CASE(S) Standard						ARK	MORALINI
- (-)						manne	Internet
						1/4	5/2024
						1/0	<i>1/2024</i>

	6-2-5 12-3-12		2	22-2-4			28-3-11		34-6-0		
	6	6-2-5	6-1-7	,		9-10-8	I	6-1-7	1	6-2-5	
Plate Offsets (X,Y) [3:0-4	-0,0-3-0], [4:0-3	-12,0-2-0], [6:0	-3-12,0-2-0], [7:0	-4-0,0-3-0]						
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL) 20.0 20.0 10.0 0.0 * 10.0	SPACING Plate Grij Lumber I Rep Stres Code IRC	3- 2-0-0 p DOL 1.15 DOL 1.15 ss Incr YES C2021/TPI2014) CS 5 TC 5 BC 8 WI 4 Ma	I. 0.51 0.94 3 0.47 trix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.46 12-13 -0.69 12-13 0.08 8	l/defl >893 >595 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 0%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 B2: 2x4 SP I 2x4 SP No.3	*Except* No.1				BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 2-2-0 oc bra 1 Row at mi	ood shea directly a cing: 12- dpt	thing direct applied or 1 13. 5-13, 5	ly applied or 3-5-13 oc 0-0-0 oc bracing, Ex 5-12	purlins. cept:
REACTIONS.	(lb/size) 2= Max Horz 2= Max Uplift2=	:1430/0-3-8 (mi :-172(LC 10) :-89(LC 12), 8=-	in. 0-1-11), 8=1 -89(LC 13)	1430/0-3-8 (min.	0-1-11)		MiTek reco be installed Installation	ommends d during t i guide.	that Stabil russ erectio	izers and required croson, in accordance with	ss bracing Stabilizer

TOP CHORD 2-16=-2102/191, 16-17=-1971/207, 3-17=-1911/211, 3-4=-1676/235, 4-5=-1325/236,

- 5-6=-1325/236, 6-7=-1676/235, 7-18=-1911/211, 18-19=-1971/207, 8-19=-2102/191 BOT CHORD 2-15=-121/1637, 14-15=-121/1635, 13-14=-121/1635, 13-20=-41/1397, 20-21=-41/1397,
- 12-21=-41/1397, 11-12=-95/1635, 10-11=-95/1635, 8-10=-94/1637 WEBS 3-13=-425/167, 4-13=-23/628, 5-13=-288/144, 5-12=-288/144, 6-12=-23/628, 7-12=-425/168

NOTES-(9)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 5-6-5, Exterior(2R) 5-6-5 to 28-11-11, Interior(1) 28-11-11 to 30-6-14, Exterior(2E) 30-6-14 to 35-4-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

OFES 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit STOODHUIHIIHI between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

LOAD CASE(S) Standard

2024 1/6/2024 Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

SEAL

28147

K. MORP

Scale = 1:58.2

9-3-12	17-3-0	25-2-4	34-6-0				
9-3-12 Plate Offsets (X,Y) [2:0-0-0,0-0-6], [4:0-3-12,0-2-0], [6:0-3-12,	D-2-0], [8:0-0-0,0-0-6]	/- -4	9-3-12				
LOADING (psf) SPACING- 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf) 20.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2021/TPI2014 200	CSI. DEFL. TC 0.88 Vert(L BC 0.88 Vert(C WB 0.38 Horz(C Matrix-SH Kerter Kerter	in (loc) l/defl L L) -0.18 8-10 >999 2 T) -0.39 8-10 >999 1 CT) 0.10 8 n/a r	/d PLATES GRIP 40 MT20 244/190 80 1/a Weight: 186 lb FT = 0%				
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3 REACTIONS. (lb/size) 2=1430/0-3-8 (min. 0-1-11), 8=1430/0 Max Horz 2=-133(LC 10) Max Uplift2=-68(LC 12), 8=-68(LC 13)	BRACING- TOP CHOR BOT CHOR WEBS 3-8 (min. 0-1-11)	D Structural wood sheathi D Rigid ceiling directly ap 1 Row at midpt MiTek recommends th be installed during true Installation guide.	ng directly applied or 2-2-0 oc purlins. plied or 10-0-0 oc bracing. 5-14, 5-10 nat Stabilizers and required cross bracing ss erection, in accordance with Stabilizer				
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-15=-2055/210, 3-15=-1930/233, 3-4=-1858/219, 4-16=-1505/217, 5-16=-1505/217, 5-16=-1505/217, 5-17=-1505/217, 6-7=-1858/219, 7-18=-1930/233, 8-18=-2055/210 BOT CHORD 2-14=-152/1626, 13-14=-140/2016, 13-19=-140/2016, 12-19=-140/2016, 12-20=-140/2016, 12-20=-140/2016, 12-20=-140/2016, 12-20=-140/2016, 12-20=-140/2016, 12-20=-140/2016, 12-19=-140/2016, 12-20=-140/200, 12-20=-140/200, 12-20=-140/200, 12-20=-140							
 NOTES- (9) 1) Unbalanced roof live loads have been considered for this des 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mp (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3- Exterior(2R) 18-4-13 to 30-6-14, Exterior(2E) 30-6-14 to 35-4- Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live 7) * This truss has been designed for a live load of 30.0psf on th between the bottom chord and any other members, with BCD 8) Provide mechanical connection (by others) of truss to bearing LOAD CASE(S) Standard 	ign. h; TCDL=5.0psf; BCDL=5.0psf; h=23 11-2, Exterior(2R) 3-11-2 to 16-1-3, Ir 8 zone;C-C for members and forces & 2 DOL=1.15); Pf=20.0 psf (Lum DOL= of 12.0 psf or 2.00 times flat roof load load nonconcurrent with any other liv e bottom chord in all areas where a re L = 10.0psf. plate capable of withstanding 100 lb	ft; Cat. II; Exp B; Enclosed; M Iterior(1) 16-1-3 to 18-4-13, & MWFRS for reactions shown 1.15 Plate DOL=1.15); Is=1.0 of 20.0 psf on overhangs e loads. ectangle 3-6-0 tall by 1-0-0 win uplift at joint(s) 2, 8.	WFRS n; ; Rough de willfit SEAL 28147 NOREERIS				

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL	COURT LILLINGTON, NC
23-B587-R01	R24	HIP GIRDER	1	1	Job Reference (optional)	# 43962
			Run: 8 430 s Feb 12	2021 Prin	t 8 430 s Eeb 12 2021 MiTek Industries Inc.	Tue Jan 9 09:58:47 2024 Page 2

ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-KcfN47fh6JqfGSWx4Xf0xajyGwLzsUSnOeZOLFzx83M

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-7=-60, 7-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 13=-24(B) 4=-39(B) 5=-39(B) 12=-24(B) 11=-24(B) 6=-39(B) 15=-31(B) 16=-19(B) 18=-39(B) 19=-39(B) 20=-39(B) 21=-39(B) 22=-39(B) 23=-39(B) 24=-39(B) 25=-39(B) 25=-39(B) 28=-31(B) 29=-33(B) 30=-44(B) 31=-142(B) 32=-24(B) 33=-24(B) 35=-24(B) 35 41=-44(B) 42=-33(B)

1/6/2024

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 19, 21, 22, 17, 16, 15 except 23=-103(LC 12) Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-2-0, Corner(3R) 4-2-0 to 7-10-0, Corner(3E) 7-10-0 to 12-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

- 8) Gable requires continuous beam
 9) Truss to be fully sheathed from one face or secure y beam
 10) Gable studs spaced at 1-4-0 oc.
 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other new control of the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 m. fit between the bottom chord and any other members, with BCDL = 10.0psf.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 19, 21, 27, 17, 16, 15 except (jt=lb) 23=103.

SEAL 28147 2024

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the unit of the erector. Additional permanent bracing of the overall structure is the responsibility of the unit of the erector. Additional permanent bracing of the overall structure is the responsibility of the unit of the erector. Additional permanent bracing of the overall structure is the responsibility of the unit of the erector. Additional permanent bracing of the overall structure is the responsibility of the erector. Additional permanent bracing of the overall structure is the *Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL C	OURT LILLINGTON, NC
23-B587-R01	R26	HIP GIRDER	1	2	Job Reference (optional)	# 43962
		Run: 8.4 ID	30 s Feb 1 qqlfH?Rc	2 2021 Prin emZ1wW	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Ti mxuKuRIUzBcTx-ooDIITgJsdyWtc57eEA	ue Jan 9 09:58:48 2024 Page 2 FUnFELKezb_8xdIIxthzx83L

```
NOTES- (15)
```

13) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 8-0-12 from the left end to 10-0-12 to connect truss(es) R12 (1 ply 2x4 SP), R13 (1 ply 2x4 SP) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-60, 7-10=-20

Concentrated Loads (lb)

Vert: 6=-899(B) 14=-942(B) 17=-1391(B) 19=-1407(B)

1/6/2024

- non-concurrent with other live loads
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 1-4-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will 12) fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 13, 18, 20, 24, Aunun HAAAK , 15, 14 except (jt=lb) 22=100.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0098 BLAKE POND 87 WHIMBREL	COURT LILLINGTON, NC
23-B587-R01	R28	HIP GIRDER	1	2	Job Reference (optional)	# 43962
		Dup: 9	120 o Eob 1	2 2021 Drin	t: 9 420 a Eab 12 2021 MiTak Industrian Inc.	Tue lon 0.00:59:40.2024 Dege 2

ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-G_n8Vogxdx4NVmgJCyiU1?oMSjz4KOR4ry2UP8zx83K

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 1-4=-20 Concentrated Loads (lb)

Vert: 6=-1380(B) 5=-1391(B) 7=-1393(B) 9=-1391(B) 11=-1391(B)

1/6/2024

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=98/4-9-5 (min. 0-1-8), 3=98/4-9-5 (min. 0-1-8), 4=130/4-9-5 (min. 0-1-8) Max Horz 1=-40(LC 8) Max Uplift1=-18(LC 13), 3=-18(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=56/2-1-5 (min. 0-1-8), 3=56/2-1-5 (min. 0-1-8) Max Horz 1=-14(LC 8) Max Uplift1=-3(LC 13), 3=-3(LC 12)

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=68/2-4-13 (min. 0-1-8), 3=68/2-4-13 (min. 0-1-8) Max Horz 1=-17(LC 10) Max Uplift1=-3(LC 13), 3=-3(LC 13)

NOTES- (8)

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

²⁾ Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

³⁾ TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10