

All Truss Reactions are Less
than 3,000 lbs. Unless Noted Otherwise.

-- Denotes Reaction Greater than 3,000 lbs.
Reaction / # of Studs

All Headers Are Considered 2X10 Beams Unless Otherwise Noted

All Walls Shown Are Considered Load Bearing

Roof Area = 2991.65 sq.ft.
Ridge Line = 90.51 ft.
Hip Line = 65.27 ft.
Horiz. OH = 192.83 ft.
Raked OH = 153.56 ft.
Decking = 103 sheets

Dimension Notes

1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
2. All interior wall dimensions are to face of stud unless noted otherwise
3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

Hatch Legend
5' 3-1/2" Walls
Second Floor Walls
Vaulted Ceiling
Drop Beam
Flush Beam

	Conne	Nail Information						
Sym	Product Manuf Qty Supported Member				Header Truss			
	HUS26 USP 16		NA	16d/3-1/2"	16d/3-1/2"			
	THD26-2	USP	5	NA	16d/3-1/2"	10d/3"		

Truss Placement Plan
Scale: 1/4"=1'

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

LO			RT FO				5						
(BASED ON TABLES R502.5(1) & (b))													
NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER													
END REACTION (UP TO)	REQ'D STUDS FOR (2) PLY HEADER		END REACTION (UP TO)	REQ'D STUDS FOR (3) PLY HEADER		END REACTION (UP TD)	REQ'D STUDS FOR (4) PLY HEADER						
1700	1		2550	1		3400	1						
3400	2		5100	2		6800	2						
5100	3		7650	3		10200	3						
6800	4		10200	4		13600	4						
8500	5		12750	5		17000	5						
10200	6		15300	6									
11900	7												
13600	8												
15300	9												

_		_		
BUILDER	New Home, Inc.	CITY / CO.	Lillington / Harnett	THIS IS These tre the buildi sheets fo
JOB NAME	Lot 147 Duncan's Creek	ADDRESS	868 Duncan Creek Road	is respon the overa walls, and regarding
PLAN	The Guilford - French Country "B"	MODEL	Roof	Bearing prescript
SEAL DATE	10/31/23	DATE REV.	02/26/24	(derived foundation than 300 be retain
QUOTE#		DRAWN BY	Jonathan Landry	specified retained
JOB#	J0224-1107	SALES REP.	Johnnie Baggett	Signa

paring reactions less than or equal to 3000# are deemed to comply with the escriptive Code requirements. The contractor shall refer to the attached Tables derived from the prescriptive Code requirements) to determine the minimum undation size and number of wood studs required to support reactions greater an 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those secified in the attached Tables. A registered design professional shall be tained to design the support system for all reactions that exceed 15000#.

Reilly Road Industrial Parl Farly Road Industrial Parly Road Industrial Parl Farly Road Industrial Parly Road Industrial Parl Farly Road Industrial Parl Far

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0224-1107

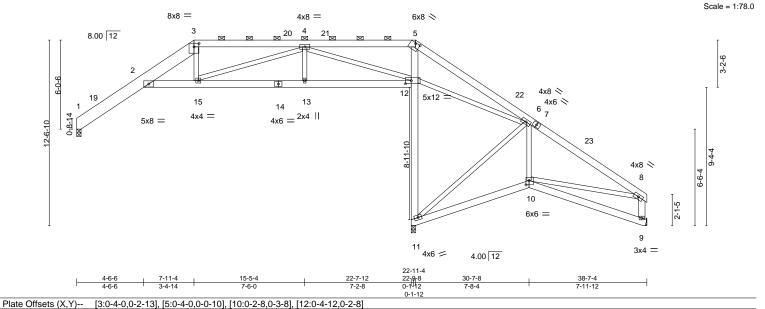
Lot 147 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I63860231 thru I63860265

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844



February 27,2024

Gagan, Iqbal

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 22-11-4 7-6-0

LOADING (psf) SPACING-DEFL. in (loc) I/def L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.50 Vert(LL) -0.09 18 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.25 Vert(CT) -0.1718 >999 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.48 Horz(CT) 0.11 n/a 11 n/a Code IRC2015/TPI2014 **BCDL** 10.0 Wind(LL) >999 240 Weight: 608 lb FT = 20%Matrix-AS 0.10 18

LUMBER-BRACING-

TOP CHORD 2x6 SP No.1 *Except* TOP CHORD

1-3: 2x10 SP No.1 **BOT CHORD** 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 *Except* **WEBS** 8-9: 2x6 SP No.1

REACTIONS. (size) 1=0-3-8, 11=0-3-8, 9=Mechanical

Max Horz 1=-320(LC 8)

Max Uplift 1=-134(LC 12), 11=-89(LC 9), 9=-271(LC 13) Max Grav 1=794(LC 23), 11=1921(LC 1), 9=528(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-639/476, 2-3=-1464/542, 3-4=-1452/555, 4-5=-164/1156, 5-6=-256/1529,

6-8=-729/466, 8-9=-596/371

2-15=-398/1445, 13-15=-313/960, 12-13=-313/960, 11-12=-1717/437, 5-12=-1233/410, **BOT CHORD**

10-11=-291/510

WFBS 4-15=-87/703, 4-13=0/286, 4-12=-2172/663, 6-12=-1234/566, 6-11=-626/358,

6-10=-23/431, 8-10=-197/283

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-6. Interior(1) 4-6-6 to 7-11-4, Exterior(2) 7-11-4 to 14-1-15, Interior(1) 14-1-15 to 22-11-4, Exterior(2) 22-11-4 to 29-1-15, Interior(1) 29-1-15 to 38-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections
- 9) Bearing at joint(s) 1, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1=134, 9=271.

Continued on page 2

February 27,2024

Edenton, NC 27932

SF 1

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied.

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860231 J0224-1107 A01-GR HIP GIRDER Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:28 2024 Page 2 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES-

- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860232 J0224-1107 A01GE Roof Special Supported Gable 2 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:26 2024 Page 1

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f 15-11-8 13-2-0

Scale = 1:60.7

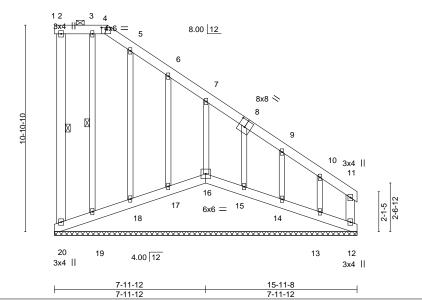


Plate Offsets (X,Y)--[4:0-3-0,0-1-5], [8:0-4-0,0-4-8] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) 999 244/190 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.01 Vert(CT) n/a n/a 999 **BCLL** 0.0 Rep Stress Incr YES WB 0.15 0.01 15 Horz(CT) n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Weight: 163 lb FT = 20%Matrix-R

TOP CHORD

LUMBER-**BRACING-**

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 **OTHERS** 2x4 SP No.2

BOT CHORD WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 16-17,15-16. 2-20, 3-19 1 Row at midpt

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-4.

REACTIONS. All bearings 15-11-8. (lb) -

Max Horz 1=-535(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 20, 1, 12, 19 except 16=-147(LC 13), 17=-154(LC 13),

15=-126(LC 13), 14=-128(LC 13), 13=-121(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 20, 1, 12, 16, 19, 18, 17, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-423/535, 2-3=-422/534, 3-4=-422/534, 4-5=-447/554, 5-6=-441/549, 6-7=-352/438,

7-8=-267/331

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 1, 12, 19
- except (jt=lb) 16=147, 17=154, 15=126, 14=128, 13=121. 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 20, 12, 16, 19, 18, 17, 15, 14, 13.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 147 Duncan's Creek Ply 163860233 J0224-1107 A02 HIP GIRDER Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:29 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$ 22-7-12 2-2-8 10-5-4 5-10-14 20-5-4 10-0-0 Scale = 1:85.2 8x8 = 6x6 = 8.00 12 3x4 II 4-10-6 4x6 > 6 4x8 ≫ 14 13 14-2-10 0-8-14 4x4 = 5x8 = 4x6 = 22 8-11-10 4x8 <> 6-6-4 6x6 = 11 3x4 =6x6 = 4.00 12 22₁9-8 0-1-12 38-7-4 7-11-12 Plate Offsets (X,Y)--[3:0-4-0,0-2-13], [10:0-2-8,0-3-8], [12:0-4-12,0-2-8] LOADING (psf) SPACING-DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.15 TC 0.51 Vert(LL) -0.18 14-17 >999 360 244/190 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.56 Vert(CT) -0.36 14-17 >748 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.67 Horz(CT) 0.22 C n/a n/a Code IRC2015/TPI2014 **BCDL** 10.0 Matrix-MS Wind(LL) 0.21 14-17 240 Weight: 310 lb FT = 20%>999 BRACING-

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

1-3: 2x10 SP 2400F 2.0E

BOT CHORD 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

8-9: 2x6 SP No.1

TOP CHORD

WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

REACTIONS. (size) 1=0-3-8, 11=0-3-8, 9=Mechanical

Max Horz 1=-373(LC 8)

Max Uplift 1=-145(LC 12), 11=-62(LC 12), 9=-266(LC 13) Max Grav 1=818(LC 23), 11=1855(LC 1), 9=547(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-669/476, 2-3=-1121/426, 3-4=-1038/501, 4-5=-231/1238, 5-7=-176/1301,

7-8=-735/457, 8-9=-591/375

BOT CHORD 2-14=-276/1043, 12-14=-567/335, 11-12=-1613/414, 5-12=-480/268, 10-11=-282/518 4-14=-245/1232, 4-12=-1722/490, 7-12=-1153/504, 7-11=-637/348, 7-10=-21/437, **WEBS**

8-10=-208/323

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-6, Interior(1) 4-6-6 to 10-5-4, Exterior(2) 10-5-4 to 16-7-15, Interior(1) 16-7-15 to 20-5-4, Exterior(2) 20-5-4 to 26-7-15, Interior(1) 26-7-15 to 38-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 1, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1=145, 9=266
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

(loc)

9

-0.25 14-17

-0.51 14-17

0.28 14-17

0.30

I/def

>999

>539

>966

n/a

10-0-0 oc bracing: 9-10.

L/d

360

240

n/a

240

(Switched from sheeted: Spacing > 2-8-0).

2-0-0 oc purlins (6-0-0 max.), except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

PLATES

Weight: 627 lb

MT20

GRIP

244/190

FT = 20%

BCLL 0.0 Rep Stress Incr NO WB 0.63 Code IRC2015/TPI2014 **BCDL** 10.0 Matrix-MS

Plate Grip DOL

Lumber DOL

SPACING-

2x6 SP No.1 *Except* TOP CHORD

LOADING (psf)

20.0

10.0

TCLL

TCDL

LUMBER-

1-3: 2x10 SP 2400F 2.0E

BOT CHORD 2x6 SP No.1

2x4 SP No.2 *Except* **WEBS**

8-9: 2x6 SP No.1

REACTIONS. (size) 1=0-3-8, 11=0-3-8, 9=Mechanical

Max Horz 1=-986(LC 4)

Max Uplift 1=-361(LC 8), 11=-215(LC 8), 9=-658(LC 9) Max Grav 1=2015(LC 19), 11=4680(LC 1), 9=1342(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1400/995, 2-3=-2337/325, 3-4=-2104/492, 4-5=-562/3356, 5-7=-484/3531,

7-8=-1635/1129, 8-9=-1254/804

2-14=-553/2302, 12-14=-548/809, 11-12=-4103/279, 5-12=-1110/612, 10-11=-703/1199, **BOT CHORD**

5-0-0

1.15

1.15

TC

ВС

0.57

0.68

9-10=-168/395

WFBS 3-14=-566/491, 4-14=-422/2623, 4-12=-4504/976, 7-12=-2635/740, 7-10=-48/1078,

8-10=-510/765, 7-11=-1464/858

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 1, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

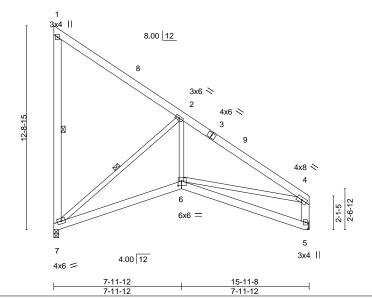
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860235 J0224-1107 A04 **ROOF SPECIAL** 2 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:32 2024 Page 1

Structural wood sheathing directly applied, except end verticals.


1-7, 2-7

Rigid ceiling directly applied.

1 Row at midpt

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 15-11-8 7-11-12 7-11-12

Scale = 1:72.0

Plate Off	sets (X,Y)	[6:0-2-8,0-3-8]		
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.03 6-7 >999 360 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.07 6-7 >999 240
BCLL	0.0 *	Rep Stress Incr YES	WB 0.43	Horz(CT) 0.03 5 n/a n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.01 6 >999 240 Weight: 148 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS

2x4 SP No.2 *Except* 1-7,4-5: 2x6 SP No.1

(size) 5=Mechanical, 7=0-3-8 Max Horz 7=-448(LC 13) Max Uplift 7=-351(LC 13)

Max Grav 5=620(LC 1), 7=723(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-286/228, 2-4=-892/0, 4-5=-589/69

BOT CHORD 6-7=0/704

WEBS 2-7=-935/285, 2-6=0/558, 4-6=0/509

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 15-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

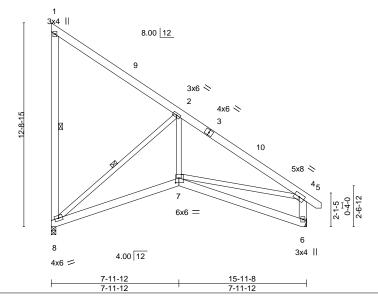
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek	7
10004 4407	4.05	DOOF OPENIAL			I63860236	
J0224-1107	A05	ROOF SPECIAL	2	1		
					Job Reference (optional)	

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:33 2024 Page 1

Structural wood sheathing directly applied, except end verticals.


1-8, 2-8

Rigid ceiling directly applied.

1 Row at midpt

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 16-10-8 0-11-0 15-11-8 7-11-12 7-11-12

Scale = 1:72.0

Plate Off	sets (X,Y)	[7:0-2-8,0-3-8]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.03	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.07	7-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-AS	Wind(LL)	-0.01	7	>999	240	Weight: 150 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-8,4-6: 2x6 SP No.1 REACTIONS. (size) 6=Mechanical, 8=0-3-8

Max Horz 8=-471(LC 13) Max Uplift 8=-352(LC 13)

Max Grav 6=681(LC 1), 8=722(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-8=-288/229, 2-4=-890/0, 4-6=-656/136 TOP CHORD

BOT CHORD 7-8=0/697. 6-7=-82/271

WEBS 2-8=-946/263, 2-7=0/559, 4-7=-47/516

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 16-8-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860237 J0224-1107 A06 PIGGYBACK BASE 3 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:34 2024 Page 1

Structural wood sheathing directly applied, except end verticals, and

5-12, 4-14, 7-14, 7-12

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

1 Row at midpt

Scale: 1/8"=1

 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$ 19-5-4 8-0-0 22-7-12 3-2-8 11-5-4 6-10-14

8x8 = 6x8 = 3 8.00 12 5x8 = 5 9-9-9 4x6 💸 4x8 × 5/426 14-10-10 16 8x 15 25 0-8-14 4x6 5x8 = 4x6 =3x4 4x6 =4x6 <> 8 6x6 = 12 10 13_{3x4} = 3x6 || 4.00 12 4x6 =22-11-4

Plate Offsets (X,Y)	[3:0-5-8,0-3-12], [4:0-4-0,0-2-13], [8:0-1	-8,0-2-0], [11:0-2-8,0-3-8]	, [14:0-5-0,0-4-0]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.82	Vert(LL) -0.21 16-20 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.57	Vert(CT) -0.43 16-20 >651 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.37	Horz(CT) 0.26 17 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.24 16-20 >999 240	Weight: 330 lb FT = 20%

22-9-8 0-1-12 0-1-12

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.1 *Except* TOP CHORD

1-3: 2x10 SP No.1 **BOT CHORD** 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

8-10: 2x6 SP No.1 2x6 SP No.1 **OTHERS**

REACTIONS. (size) 1=0-3-8, 17=0-3-8, 10=0-3-8

Max Horz 1=-411(LC 8)

Max Uplift 1=-142(LC 12), 17=-92(LC 12), 10=-310(LC 13) Max Grav 1=770(LC 23), 17=2013(LC 1), 10=530(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-685/494, 2-3=-877/369, 3-4=-794/451, 4-5=-234/1632, 5-7=-227/1603,

7-8=-553/496, 8-10=-594/463

BOT CHORD 2-16=-197/889, 14-16=-647/412, 11-12=-283/391, 10-11=-120/289

WEBS 12-17=-110/337, 14-17=-1781/438, 5-14=-526/365, 3-16=-263/217, 4-16=-193/1181, 4-14=-1987/392, 7-14=-1268/557, 7-11=-27/399, 7-12=-535/346

NOTES-

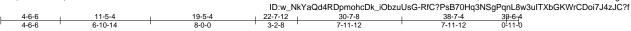
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-6, Interior(1) 4-6-6 to 11-5-4, Exterior(2) 11-5-4 to 17-7-15, Interior(1) 17-7-15 to 19-5-4, Exterior(2) 19-5-4 to 25-7-15, Interior(1) 25-7-15 to 39-4-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 1, 17, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17 except (jt=lb) 1=142, 10=310.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

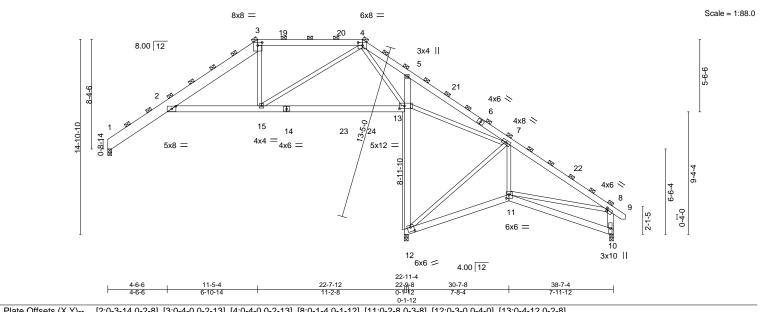
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Comtech, Inc, Fayetteville, NC - 28314,


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:36 2024 Page 1


2-0-0 oc purlins (6-0-0 max.), except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

(Switched from sheeted: Spacing > 2-8-0).

10-0-0 oc bracing: 10-11.

Tiate Offsets (X, 1)		0,0 2 (0), [0:0 : 1,0 : 12	<u> , [11.0-2-0,0-3-0], [12.0-3-0,0-4-0], [13.0-4-12,0-2-0]</u>	
LOADING (psf)	SPACING- 5-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.57	Vert(LL) -0.25 15-18 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.68	Vert(CT) -0.51 15-18 >539 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.74	Horz(CT) 0.30 10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.28 15-18 >978 240	Weight: 632 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER- BRACING-

TOP CHORD 2x6 SP No.1 *Except*

1-3: 2x10 SP 2400F 2.0E

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

8-10: 2x6 SP No.1

REACTIONS. (size) 1=0-3-8, 12=0-3-8, 10=0-3-8

Max Horz 1=-1028(LC 8)

Max Uplift 1=-370(LC 12), 12=-181(LC 12), 10=-761(LC 13) Max Grav 1=2015(LC 23), 12=4684(LC 1), 10=1515(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1757/1248, 2-3=-2338/969, 3-4=-2117/1161, 4-5=-524/3383, 5-7=-445/3560,

7-8=-1856/1232, 8-10=-1706/1229

BOT CHORD 2-15=-522/2350, 13-15=-1274/961, 12-13=-4109/1011, 5-13=-1361/845, 11-12=-697/1227,

10-11=-312/703

WEBS 3-15=-566/496, 4-15=-441/2636, 4-13=-4498/967, 7-13=-3118/1341, 7-11=-70/1100,

8-11=-424/641, 7-12=-1505/851

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

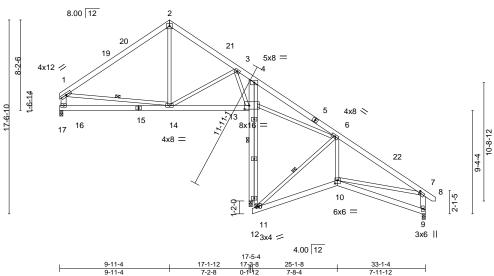
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-6, Interior(1) 4-6-6 to 11-5-4, Exterior(2) 11-5-4 to 17-7-15, Interior(1) 17-7-15 to 19-5-4, Exterior(2) 19-5-4 to 25-7-15, Interior(1) 25-7-15 to 39-4-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 1, 12, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 1=370, 12=181, 10=761.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860239 J0224-1107 A07 **ROOF SPECIAL** 2 Job Reference (optional)

6x6 =

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:37 2024 Page 1

Structural wood sheathing directly applied, except end verticals.


4-11, 1-14, 6-11

Rigid ceiling directly applied.

1 Row at midpt

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 9-11-4 9-11-4 15-11-4 6-0-0

Scale = 1:104.3

Plate Offsets	Plate Offsets (X,Y) [7:0-1-8,0-2-0], [10:0-2-8,0-3-8], [13:0-5-0,0-4-0]											
LOADING ((psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.04 14-16	>999	360	MT20	244/190	
TCDL 1	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.07 14-16	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.02 18	n/a	n/a			
BCDL 1	10.0	Code IRC2015/TF	PI2014	Matrix	(-AS	Wind(LL)	0.02 10	>999	240	Weight: 306 lb	FT = 20%	

BRACING-

WEBS

TOP CHORD

BOT CHORD

0-1-12

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-16,7-9: 2x6 SP No.1

OTHERS 2x6 SP No.1

REACTIONS. (size) 9=0-3-8, 16=0-3-8, 18=0-3-8

Max Horz 16=-511(LC 13)

Max Uplift 9=-261(LC 13), 16=-119(LC 12), 18=-158(LC 13) Max Grav 9=651(LC 20), 16=636(LC 1), 18=1437(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-615/286, 2-3=-633/317, 3-4=-118/287, 4-6=-4/319, 6-7=-930/525, 1-16=-620/328,

7-9=-774/507

14-16=-261/645, 13-14=-386/408, 10-11=-235/663, 9-10=-126/306 **BOT CHORD**

WEBS 11-18=-104/490, 13-18=-1031/232, 4-13=-528/318, 3-14=0/449, 6-13=-425/369,

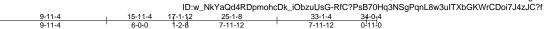
6-11=-911/316, 6-10=-12/513, 7-10=-114/348, 3-13=-662/68

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 9-11-4, Exterior(2) 9-11-4 to 14-4-1, Interior(1) 14-4-1 to 33-10-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 4x6 MT20 unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 9, 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=261, 16=119, 18=158,
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860240 J0224-1107 A08 **ROOF SPECIAL** Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:39 2024 Page 1


Structural wood sheathing directly applied, except end verticals.

1-13, 6-11

Rigid ceiling directly applied.

1 Row at midpt

Scale = 1:102.6

6x6 = 8.00 12 19 4x6 <> 3x4 || 3 4x12 🖊 1-6-14 4x6 <> 17-6-10 5 4x8 < 12 14 13 16 4x6 = 4x8 = 4x6 = 4x6 > 10 6x6 =3x6 || 4x6 = 4.00 12 17₇3-8 0-1 12

Plate Offsets (X,Y)	[7:0-1-8,0-2-0], [10:0-2-8,0-3-8],	[12:0-4-12,0-2-8]

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.32	Vert(LL)	-0.04 13-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.21	Vert(CT)	-0.08 13-15	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.51	Horz(CT)	-0.03 11	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.02 10	>999	240	Weight: 292 lb	FT = 20%

BRACING-

WEBS

TOP CHORD **BOT CHORD**

LUMBER-

REACTIONS.

BOT CHORD

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-15,7-9: 2x6 SP No.1

(size) 11=0-3-8, 9=0-3-8, 15=0-3-8

Max Horz 15=-511(LC 13)

Max Uplift 11=-143(LC 13), 9=-269(LC 13), 15=-121(LC 12) Max Grav 11=1374(LC 1), 9=702(LC 20), 15=652(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-2=-640/295,\ 2-3=-659/326,\ 3-4=-139/252,\ 4-6=-7/289,\ 6-7=-1043/552,\ 1-15=-636/334,$

7-9=-829/521

13-15=-260/649, 12-13=-302/387, 11-12=-989/213, 4-12=-476/246, 10-11=-265/760,

9-10=-128/313

WEBS 3-13=-8/393, 6-12=-462/360, 6-11=-933/328, 6-10=-23/536, 7-10=-135/434,

3-12=-644/134

sheetrock be applied directly to the bottom chord.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 9-11-4, Exterior(2) 9-11-4 to 14-4-1, Interior(1) 14-4-1 to 33-10-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 11, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=143, 9=269, 15=121. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860241 J0224-1107 A09 **ROOF SPECIAL** 3 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:40 2024 Page 1

Scale = 1:102.6

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 9-11-4 9-11-4

33-1-4 7-11-12

Rigid ceiling directly applied.

1 Row at midpt

Structural wood sheathing directly applied, except end verticals.

1-12, 6-10

6x6 = 8.00 12 2 4x6 <> 3x4 || 3 8-2-6 4x12 🖊 1-6-14 4x6 <> 7-6-10 4x8 < 11 13 14 12 15 4x6 = 4x8 = 4x6 = 5x8 <> 2-1-5 6x6 =10 3x4 II $4x6 = 4.00 \boxed{12}$

Plate Off	sets (X,Y)	[9:0-2-8,0-3-8], [11:0-4-12,0-2	-8]							
LOADIN	G (psf)	SPACING- 2-0	-0 cs	l.	DEFL.	in (loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.	15 TC	0.32	Vert(LL)	-0.04 12-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.	15 BC	0.21	Vert(CT)	-0.08 12-14	>999	240		
BCLL	0.0 *	Rep Stress Incr Y	ES WE	0.51	Horz(CT)	-0.03 10	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI201	4 Ma	trix-AS	Wind(LL)	0.02 9	>999	240	Weight: 290 lb	FT = 20%

17-3-8 0-1-12

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-14,7-8: 2x6 SP No.1

(size) 10=0-3-8, 8=0-3-8, 14=0-3-8

Max Horz 14=-488(LC 13)

Max Uplift 10=-159(LC 13), 8=-233(LC 13), 14=-120(LC 12) Max Grav 10=1377(LC 1), 8=640(LC 20), 14=652(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1\hbox{-}2\hbox{-}636/292, 2\hbox{-}3\hbox{-}656/320, 4\hbox{-}6\hbox{-}-9/294, 6\hbox{-}7\hbox{-}-1020/511, 1\hbox{-}14\hbox{-}-634/333, 7\hbox{-}8\hbox{-}-741/415}$ **BOT CHORD** 12-14=-271/639, 11-12=-285/352, 10-11=-988/226, 4-11=-468/240, 9-10=-291/757,

8-9=-124/252

WEBS 3-12=-11/391, 6-11=-453/337, 6-10=-929/361, 6-9=-33/534, 7-9=-166/482,

3-11=-651/148

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 9-11-4, Exterior(2) 9-11-4 to 14-4-1, Interior(1) 14-4-1 to 32-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=159, 8=233, 14=120.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

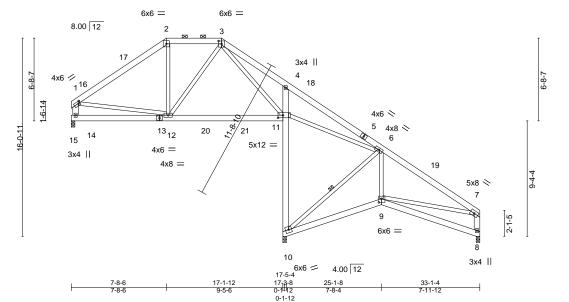
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860242 J0224-1107 A10 Hip Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:41 2024 Page 1

Structural wood sheathing directly applied, except end verticals, and


2-0-0 oc purlins (6-0-0 max.): 2-3.

Rigid ceiling directly applied.

1 Row at midpt

Scale = 1:93.3

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 17-1-12 4-11-10 25-1-8 7-11-12

Plate Offsets (X,Y) [[1:0-1-8,0-2-0], [3:0-3-0,0-2-12], [9:0-2-8,0-3-8], [11:0-4-12,0-2-8]
-----------------------	---

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) -0.05 11-12 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.23	Vert(CT) -0.10 11-12 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.63	Horz(CT) -0.03 10 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.02 9 >999 240	Weight: 290 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-14,7-8: 2x6 SP No.1

(size) 10=0-3-8, 14=0-3-8, 8=0-3-8

Max Horz 14=-465(LC 13)

Max Uplift 10=-161(LC 13), 14=-106(LC 12), 8=-225(LC 13) Max Grav 10=1354(LC 1), 14=662(LC 1), 8=644(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-692/325, 2-3=-606/378, 3-4=-230/294, 6-7=-1013/499, 1-14=-602/328,

7-8=-739/410

BOT CHORD 12-14=-251/471, 11-12=-209/495, 10-11=-953/310, 4-11=-625/415, 9-10=-280/751,

8-9=-124/253

WEBS 3-12=-53/316, 3-11=-579/88, 6-11=-457/363, 6-10=-923/346, 6-9=-29/541,

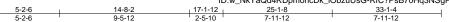
1-12=-59/324, 7-9=-152/476

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 7-8-6, Exterior(2) 7-8-6 to 18-4-13, Interior(1) 18-4-13 to 32-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=161, 14=106, 8=225, 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860243 J0224-1107 A11 Hip Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:43 2024 Page 1 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Structural wood sheathing directly applied, except end verticals, and


2-0-0 oc purlins (6-0-0 max.): 2-3.

Rigid ceiling directly applied.

1 Row at midpt

Scale = 1:84.2

Plate Off	sets (X,Y)	[9:0-2-8,0-3-8], [11:0-4-12,0-2-8]			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.38	Vert(LL) -0.10 11-13 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.31	Vert(CT) -0.21 11-13 >983 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.51	Horz(CT) -0.03 10 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.02 9 >999 240	Weight: 281 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-14,7-8: 2x6 SP No.1

(size) 10=0-3-8, 14=0-3-8, 8=0-3-8

Max Horz 14=-439(LC 13)

Max Uplift 10=-117(LC 13), 14=-101(LC 9), 8=-237(LC 13) Max Grav 10=1369(LC 1), 14=671(LC 23), 8=641(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-782/368, 2-3=-606/390, 4-6=-20/252, 6-7=-1018/528, 1-14=-644/315,

7-8=-740/422

BOT CHORD 13-14=-326/389, 11-13=-259/403, 10-11=-971/291, 4-11=-453/237, 9-10=-306/757,

8-9=-124/250

WEBS 3-13=-19/352, 3-11=-735/275, 6-11=-458/306, 6-10=-934/378, 6-9=-39/536,

1-13=-125/571, 7-9=-187/483

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 5-2-6, Exterior(2) 5-2-6 to 11-5-1, Interior(1) 11-5-1 to 14-8-2, Exterior(2) 14-8-2 to 20-10-13, Interior(1) 20-10-13 to 32-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=117, 14=101, 8=237,
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD

BOT CHORD 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

1-15,7-8: 2x6 SP No.1

REACTIONS. (size) 10=0-3-8, 15=0-3-8, 8=0-3-8

Max Horz 15=-409(LC 13)

Max Uplift 10=-131(LC 8), 15=-138(LC 9), 8=-240(LC 13) Max Grav 10=1422(LC 1), 15=652(LC 23), 8=630(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-625/299, 2-3=-527/308, 4-5=0/453, 5-7=-1000/508, 1-15=-657/292, 7-8=-729/412 **BOT CHORD** 14-15=-398/427, 12-14=-333/998, 11-12=-333/998, 10-11=-1053/298, 4-11=-641/292,

9-10=-305/743, 8-9=-125/250

WEBS 3-14=-503/300, 3-12=0/301, 3-11=-1201/435, 5-11=-570/378, 5-10=-912/379,

5-9=-33/523, 1-14=-219/595, 7-9=-199/470

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

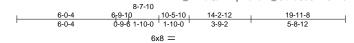
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 8-9-3, Interior(1) 8-9-3 to 17-4-0, Exterior(2) 17-4-0 to 23-6-11, Interior(1) 23-6-11 to 32-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860245 J0224-1107 B1 **ATTIC** 3 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:46 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:70.0

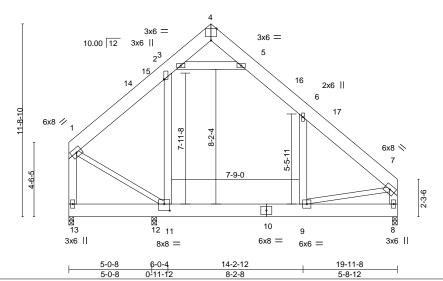


Plate Offsets (X,Y)-- [2:0-0-1,0-0-4], [4:0-4-0,Edge], [11:0-4-0,0-4-12]

LOADIN	G (psf)	SPACING- 2-0)-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.	15	TC	0.24	Vert(LL)	-0.04	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.	15	BC	0.33	Vert(CT)	-0.08	9-11	>999	240		
BCLL	0.0 *	Rep Stress Incr YI	ES	WB	0.23	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI201	4	Matri	x-AS	Wind(LL)	0.03	9	>999	240	Weight: 253 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x10 SP No.1 BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 *Except*

1-11,7-9: 2x4 SP No.2

REACTIONS. (size) 13=0-3-8, 8=0-3-8, 12=0-3-8

Max Horz 13=-292(LC 8)

Max Uplift 13=-168(LC 13), 8=-4(LC 13), 12=-437(LC 11) Max Grav 13=1530(LC 21), 8=1307(LC 21), 12=402(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1344/224, 2-3=-838/291, 5-6=-980/275, 6-7=-1275/86, 1-13=-1551/252,

7-8=-1187/136

12-13=-253/288, 11-12=-253/288, 9-11=0/810, 8-9=-83/279

BOT CHORD WEBS 2-11=-193/525, 6-9=-52/372, 3-5=-1173/414, 1-11=-74/1169, 7-9=0/628

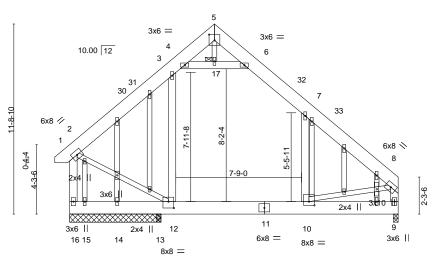
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 8-7-10, Exterior(2) 8-7-10 to 13-0-6, Interior(1) 13-0-6 to 19-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).2-11, 6-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 13=168, 12=437.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Attic room checked for L/360 deflection.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860246 J0224-1107 B1SG ATTIC STRUCTURAL GAB Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:47 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


7-1-28-11-2 10-9-2 0-9-61-10-0 1-10-0 14-6-4 20-3-0 6-3-12 3-9-2 5-8-12

> Scale = 1:71.0 8x8 =

> > Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Brace at Jt(s): 17

5-4-0	6-3-12	14-6-4	20-3-0
5-4-0	0-11-1 ²	8-2-8	5-8-12

TOP CHORD

BOT CHORD

JOINTS

Plate Offsets (X,Y)	[5:0-4-0,0-4-4],	[10:0-4-0,0-2-12], [12:0-4-0,0-4-12]
---------------------	------------------	--------------------------------------

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) -0.04 10-12 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.35	Vert(CT) -0.08 10-12 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.21	Horz(CT) 0.00 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.03 10 >999 240	Weight: 294 lb FT = 20%

LUMBER-BRACING-

TOP CHORD 2x10 SP No.1 **BOT CHORD** 2x10 SP No.1 2x6 SP No.1 *Except* **WEBS**

5-17,2-12,8-10: 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. All bearings 5-7-8 except (jt=length) 9=0-3-8, 13=0-3-8.

Max Horz 16=284(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 9, 15 except 16=-221(LC 13), 14=-456(LC 20), 13=-385(LC 11) Max Grav All reactions 250 lb or less at joint(s) 14, 15 except 16=1535(LC 21), 9=1296(LC 21), 13=501(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1339/234, 3-4=-838/293, 6-7=-969/276, 7-8=-1260/88, 2-16=-1498/289,

8-9=-1174/138

BOT CHORD 15-16=-263/281, 14-15=-263/281, 13-14=-263/281, 12-13=-263/281, 10-12=0/788,

9-10=-83/278

WFBS 3-12=-212/510, 7-10=-54/361, 4-17=-1103/422, 6-17=-1103/422, 2-12=-76/1113,

8-10=0/607

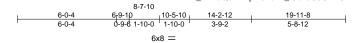
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-5 to 3-10-8, Interior(1) 3-10-8 to 8-11-2, Exterior(2) 8-11-2 to 13-3-14, Interior(1) 13-3-14 to 20-0-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x6 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-17, 6-17; Wall dead load (5.0psf) on member(s).3-12, 7-10
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 10-12
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 15 except (jt=lb) 16=221, 14=456, 13=385.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Attic room checked for L/360 deflection.

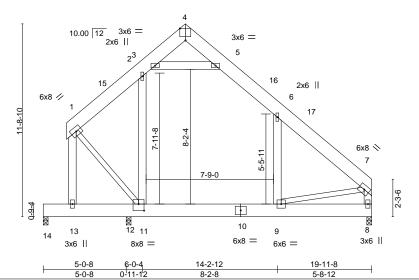
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860247 ATTIC J0224-1107 B2 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:48 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:70.0

Plate Offsets (X,Y)	[4:0-4-0,Edge], [11:0-4-0,0-4-12]

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL)	-0.05 9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.42	Vert(CT)	-0.10 9-11	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.23	Horz(CT)	0.00	3 n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.04	9 >999	240	Weight: 248 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x10 SP No.1 **BOT CHORD** 2x10 SP No.1 WEBS 2x6 SP No.1 *Except* 1-11,7-9: 2x4 SP No.2

REACTIONS. (size) 14=0-3-8, 8=0-3-8, 12=0-3-8

Max Horz 14=-290(LC 8) Max Uplift 14=-101(LC 13)

Max Grav 14=883(LC 21), 8=1095(LC 21), 12=676(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-2=-912/186,\ 2-3=-741/267,\ 5-6=-725/238,\ 6-7=-994/36,\ 1-13=-1411/226,\ 7-8=-915/93$

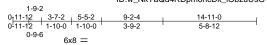
BOT CHORD 13-14=-251/290, 12-13=-230/286, 11-12=-230/286, 9-11=0/649, 8-9=-86/286

WEBS 6-9=-121/321, 3-5=-935/340, 1-11=-75/1102, 7-9=0/454

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 1-9-4 to 6-3-5, Interior(1) 6-3-5 to 8-7-10, Exterior(2) 8-7-10 to 13-0-6, Interior(1) 13-0-6 to 19-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).2-11, 6-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860248 ATTIC J0224-1107 **B**3 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:49 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:70.5

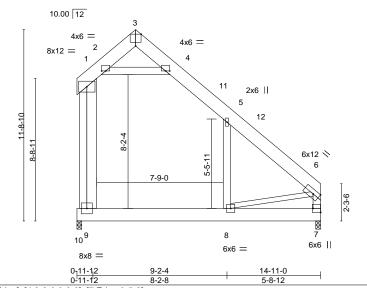


Plate Offsets (X,Y)-- [2:0-3-0,0-0-0], [3:0-4-0,Edge], [4:0-3-0,0-0-0], [7:Edge,0-5-8]

LOADING (psf)	SPACING- 2-0-0	CSI. [DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15		/ert(LL) -0.20	8-9	>825	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15		/ert(CT) -0.41	8-9	>411	240		
BCLL 0.0 *	Rep Stress Incr YES		Horz(CT) 0.00	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS V	Nind(LL) 0.20	8-9	>832	240	Weight: 214 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x10 SP No.1 **BOT CHORD** 2x10 SP No.1 WEBS 2x6 SP No.1 *Except*

1-9: 2x8 SP No.1, 6-8: 2x4 SP No.2

OTHERS 2x6 SP No.1

REACTIONS. (size) 7=0-3-8, 9=0-3-8

Max Horz 9=-333(LC 13)

Max Grav 7=812(LC 21), 9=1324(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $1\hbox{-}2\hbox{--}373/141, 2\hbox{-}3\hbox{--}971/351, 3\hbox{-}4\hbox{--}515/227, 5\hbox{-}6\hbox{--}425/89, 6\hbox{-}7\hbox{--}445/0}$ TOP CHORD

BOT CHORD 8-9=-335/351, 7-8=-142/504

WEBS 1-9=-668/121, 5-8=-251/313, 2-4=-226/879, 6-8=-850/512

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-4 to 7-11-14, Interior(1) 7-11-14 to 14-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 1-2, 4-5, 2-4; Wall dead load (5.0psf) on member(s).1-9, 5-8
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 8-9
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Attic room checked for L/360 deflection.

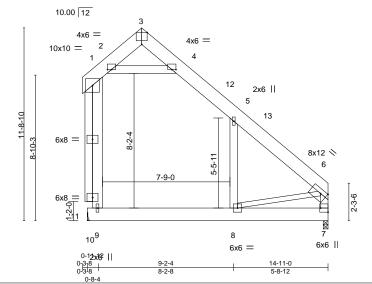
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860249 ATTIC J0224-1107 B4 Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:51 2024 Page 1 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:70.0

Plate Offsets (X,Y)	Plate Offsets (X,Y) [2:0-3-0,0-0-0], [3:0-4-0,Edge], [4:0-3-0,0-0-0], [6:0-4-8,0-3-0], [7:Edge,0-5-8]									
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.69	DEFL. Vert(LL)	in (loc) -0.24 8-9	l/defl >726	L/d 360	PLATES MT20	GRIP 244/190		
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.89 WB 0.45 Matrix-AS	- ()	-0.48 8-9 0.00 7 0.23 8-9	>358 n/a >748	240 n/a 240	Weight: 212 lb	FT = 20%		

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x10 SP No.1 TOP CHORD BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 *Except*

1-9: 2x8 SP No.1, 6-8: 2x4 SP No.2

OTHERS 2x6 SP No.1

REACTIONS. (size) 10=Mechanical, 7=0-3-8

Max Horz 10=-333(LC 13)

Max Grav 10=1269(LC 21), 7=835(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $1\hbox{-}2\hbox{--}368/138, 2\hbox{-}3\hbox{--}1019/360, 3\hbox{-}4\hbox{--}538/232, 5\hbox{-}6\hbox{--}416/103, 6\hbox{-}7\hbox{--}441/0}$ TOP CHORD

BOT CHORD 9-10=-335/351, 8-9=-358/358, 7-8=-145/530

WEBS 1-9=-681/200, 5-8=-225/315, 2-4=-241/947, 6-8=-901/521

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-4 to 7-11-14, Interior(1) 7-11-14 to 14-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 1-2, 4-5, 2-4; Wall dead load (5.0psf) on member(s).1-9, 5-8
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 8-9
- 7) Refer to girder(s) for truss to truss connections.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Attic room checked for L/360 deflection.

February 27,2024

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860250 J0224-1107 C₁ COMMON 5 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:52 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 0-11-0 0-11-0 5-11-8 5-11-8 Scale = 1:36.6 5x5 = 3 8.00 12 11 10 4x8 ≫ 4x8 🖊 X Ø 6 4x8 = 3x10 || 3x10 || 5-11-8 11-11-0 5-11-8

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

I/defI

>999

>999

n/a

Rigid ceiling directly applied.

(loc)

7-8

7-8

6

0.02

-0.01

-0.00

L/d

240

240

n/a

PLATES

Weight: 98 lb

MT20

Structural wood sheathing directly applied, except end verticals.

GRIP

244/190

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD **WEBS**

20.0

10.0

0.0

10.0

2x4 SP No.2 *Except* 2-8,4-6: 2x6 SP No.1

REACTIONS.

(size) 8=0-3-0, 6=0-3-0 Max Horz 8=-143(LC 10)

Max Uplift 8=-131(LC 9), 6=-131(LC 8) Max Grav 8=517(LC 1), 6=517(LC 1)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-412/568, 3-4=-412/568, 2-8=-481/569, 4-6=-481/569

WEBS 3-7=-343/164

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-1 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CSI.

0.12

0.11

0.17

TC

ВС

WB

Matrix-AS

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2-0-0

1.15

1.15

YES

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=131, 6=131,
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860251 J0224-1107 C1-GR Common Girder Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:54 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 5-11-8 5-11-8 Scale = 1:36.6 5x5 = 2 8.00 12 6-0-15 4x8 < 4x8 / 3 2-1-5 2-1-5 \bowtie \mathbb{R} 7 8 9 10 5 8x8 3x4 || 3x4 ||

5-11-8 LOADING (psf) SPACING-CSI. DEFL. L/d **PLATES GRIP** 2-0-0 (loc) I/defl 20.0 Plate Grip DOL 0.03 240 244/190 **TCLL** 1.15 TC 0.14 Vert(LL) 5-6 >999 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.38 Vert(CT) -0.05 5-6 >999 240 **BCLL** 0.0 Rep Stress Incr NO WB 0.17 Horz(CT) 0.00 n/a n/a **BCDL** 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 187 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2 *Except* **WEBS**

1-6,3-4: 2x6 SP No.1

REACTIONS. (size) 6=0-3-8, 4=0-3-8

Max Horz 6=122(LC 5)

Max Uplift 6=-685(LC 8), 4=-680(LC 9) Max Grav 6=1876(LC 1), 4=1834(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1630/636, 2-3=-1630/636, 1-6=-1334/502, 3-4=-1341/503

BOT CHORD 5-6=-229/375, 4-5=-118/264

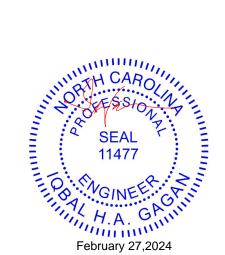
WFBS 2-5=-550/1399. 1-5=-403/1098. 3-5=-411/1123

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=685, 4=680.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 566 lb down and 253 lb up at 2-2-4, 566 lb down and 253 lb up at 3-9-4, 572 lb down and 245 lb up at 5-9-4, and 566 lb down and 257 lb up at 7-9-4, and 558 lb down and 260 lb up at 9-10-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 4-6=-20

Concentrated Loads (lb)

Vert: 5=-572 7=-560(F) 8=-560(F) 9=-565 10=-536

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860252 J0224-1107 C1GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:53 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 11-11-0 12-10-0 0-11-0 -0-11-0 0-11-0 5-11-8 5-11-8 Scale = 1:37.1 5x5 = 3 8.00 12 4x8 × 4x8 // 0-4-0 2-1-5 0-4-0 3x6 || $\stackrel{\times}{>}$ Ř 4x8 = 3x10 || 3x10 ||

				5-11-8		<u> </u>		5-11-8	5	· ·		
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.02	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	7-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	12014	Matri	x-AS						Weight: 114 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

11-11-0

Rigid ceiling directly applied.

Structural wood sheathing directly applied, except end verticals.

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1

2x4 SP No.2 *Except* **WEBS** 2-8,4-6: 2x6 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. (size) 8=0-3-0, 6=0-3-0

Max Horz 8=-179(LC 10)

Max Uplift 8=-188(LC 12), 6=-188(LC 13) Max Grav 8=517(LC 1), 6=517(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-412/579, 3-4=-412/579, 2-8=-481/579, 4-6=-481/579

WFBS 3-7=-340/163

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5-11-8

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163860253 J0224-1107 D1 COMMON 5 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:55 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f -0-11-0 0-11-0 10-5-0 5-2-8 5-2-8 5-2-8 0-11-0 Scale = 1:33.8 5x5 = 3 8.00 12 10 4x8 <> 12 0-4-0 -5

10-5-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL TC Vert(LL) -0.00 360 244/190 **TCLL** 1.15 0.09 6-7 >999 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) -0.01 6-7 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 6 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-AS Wind(LL) 0.00 >999 240 Weight: 87 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

7

4x8 =

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 *Except* **WEBS**

2-8,4-6: 2x6 SP No.1

REACTIONS.

(size) 8=0-3-8, 6=0-3-8 Max Horz 8=-127(LC 10)

Max Uplift 8=-80(LC 12), 6=-80(LC 13) Max Grav 8=457(LC 1), 6=457(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-373/202, 3-4=-373/202, 2-8=-459/292, 4-6=-459/292 TOP CHORD

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 5-2-8, Exterior(2) 5-2-8 to 9-7-5, Interior(1) 9-7-5 to 11-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 \bigotimes

8 3x4 ||

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

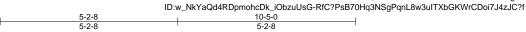
¹ [4/5]

 \mathbb{R}

Rigid ceiling directly applied.

Structural wood sheathing directly applied, except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860254 J0224-1107 D1-GR Common Girder Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:58 2024 Page 1

10-5-0

except end verticals.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

2 8.00 12 4x8 × 4x8 🖊 3 2-1-5 X \mathbb{A} 8 10 9 5 6 3x4 || 8x8 = 3x4 ||

5x5 =

Plate Off	rsets (X,Y)	[5:0-4-0,0-4-4]							
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. ii	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.02	4-5	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.34	Vert(CT) -0.04	4-5	>999	240		
BCLL	0.0 *	Rep Stress Incr NO	WB 0.17	Horz(CT) 0.00) 4	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.02	5-6	>999	240	Weight: 165 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

1-6,3-4: 2x6 SP No.1

(size) 6=0-3-8, 4=0-3-8 Max Horz 6=-106(LC 4)

Max Uplift 6=-711(LC 8), 4=-303(LC 9) Max Grav 6=1671(LC 33), 4=2369(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1586/649, 2-3=-1587/648, 1-6=-1353/529, 3-4=-1332/556

WFBS 2-5=-598/1416. 1-5=-434/1206. 3-5=-523/1152

NOTES-

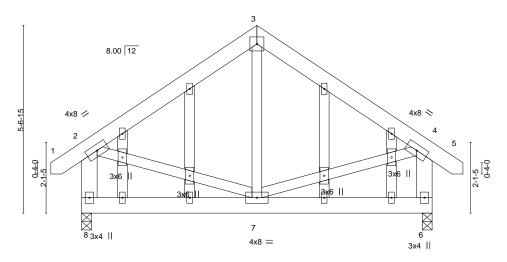
- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=711, 4=303.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 472 lb down and 291 lb up at 2-1-8, 487 lb down and 286 lb up at 4-0-12, 1197 lb down and 708 lb up at 5-11-8, and 600 lb down at 7-10-12, and 607 lb down at 10-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 4-6=-20

Concentrated Loads (lb)


Vert: 4=-607(F) 7=-402(F) 8=-454(F) 9=-1130(F) 10=-600(F)

Scale = 1:33.8

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860255 J0224-1107 D1GE **GABLE** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:41:57 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 0-11-0 0-11-0 5-2-8 5-2-8 10-5-0 5-2-8 0-11-0 Scale = 1:34.2 5x5 =

LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES GRIP** (loc) I/defl 20.0 Plate Grip DOL TC Vert(LL) -0.00 244/190 **TCLL** 1.15 0.09 6-7 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) -0.01 6-7 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 6 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-AS Wind(LL) 0.00 >999 240 Weight: 102 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

10-5-0

Rigid ceiling directly applied.

Structural wood sheathing directly applied, except end verticals.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 *Except* **WEBS**

2-8,4-6: 2x6 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

(size) 8=0-3-8, 6=0-3-8

Max Horz 8=-159(LC 10)

Max Uplift 8=-166(LC 12), 6=-166(LC 13) Max Grav 8=457(LC 1), 6=457(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

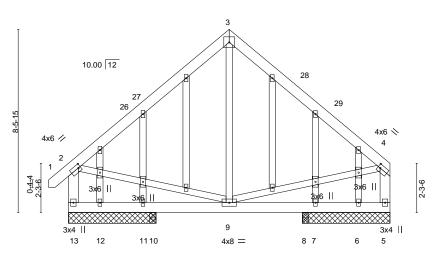
TOP CHORD 2-3=-373/208, 3-4=-373/208, 2-8=-459/298, 4-6=-459/297

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=166, 6=166
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860256 J0224-1107 G1GE COMMON STRUCTURAL GA Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:00 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

14-11-0 7-5-8 7-5-8 7-5-8

> Scale = 1:53.4 6x6 =

> > Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

7-5-8 11-1-12 14-11-0

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)	[2:0-1-4,0-2-0], [4:0-1-4,0-2-0]

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.00	9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.01	9	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.11	Horz(CT)	-0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	2014	Matri	x-AS	Wind(LL)	0.00	9	>999	240	Weight: 158 lb	FT = 20%

LUMBER-

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 *Except*

2-13,4-5: 2x6 SP No.1

OTHERS 2x4 SP No.2


REACTIONS. All bearings 4-0-12 except (jt=length) 10=0-3-8, 8=0-3-8.

Max Horz 13=210(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 7, 6 except 13=-175(LC 12), 5=-163(LC 12) All reactions 250 lb or less at joint(s) 12, 7, 6, 10, 8 except 13=559(LC 1), 5=491(LC 1) Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-476/303, 3-4=-468/296, 2-13=-574/375, 4-5=-516/307 **BOT CHORD** 12-13=-290/314, 11-12=-290/314, 10-11=-290/314, 9-10=-290/314

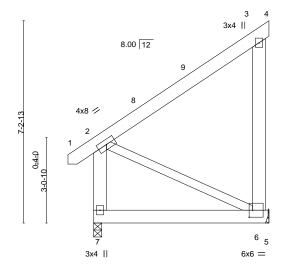
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-4 to 3-7-9, Interior(1) 3-7-9 to 7-5-8, Exterior(2) 7-5-8 to 11-10-5, Interior(1) 11-10-5 to 14-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 7, 6 except (it=lb) 13=175, 5=163.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
					163860257
J0224-1107	M1	MONOPITCH	4	1	
					Job Reference (optional)


Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:01 2024 Page 1

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-11-0 6-3-4 6-3-4

Scale = 1:41.2

Plate Off	sets (X,Y)	[6:0-1-8,0-3-0]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.22	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-AS	Wind(LL)	0.00	7	****	240	Weight: 64 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* 2-6: 2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 6=Mechanical

Max Horz 7=216(LC 9) Max Uplift 6=-202(LC 12)

Max Grav 7=291(LC 1), 6=331(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-6=-299/262 **BOT CHORD** 6-7=-376/320 **WEBS** 2-6=-354/416

NOTES-

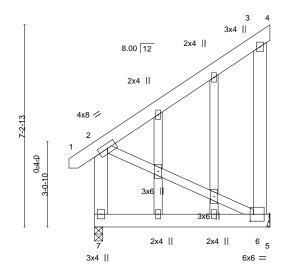
- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 3-7-12, Interior(1) 3-7-12 to 6-3-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=202.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
					163860258
J0224-1107	M1GE	GABLE	1	1	
					Job Reference (optional)


Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:02 2024 Page 1

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-11-0 6-3-4 6-3-4

Scale = 1:41.2

BRACING-

TOP CHORD

BOT CHORD

Plate Off	fsets (X,Y)	[6:0-1-8,0-3-0]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.12	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.22	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/Ti	PI2014	Matri	x-AS	Wind(LL)	0.00	7	****	240	Weight: 76 lb	FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x6 SP No.1 *Except*

2-6: 2x4 SP No.2 2x4 SP No.2

REACTIONS. (size) 7=0-3-8, 6=Mechanical

Max Horz 7=254(LC 9) Max Uplift 6=-323(LC 12)

Max Grav 7=291(LC 1), 6=349(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-6=-299/280 **BOT CHORD** 6-7=-394/320 **WEBS** 2-6=-354/436

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=323.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

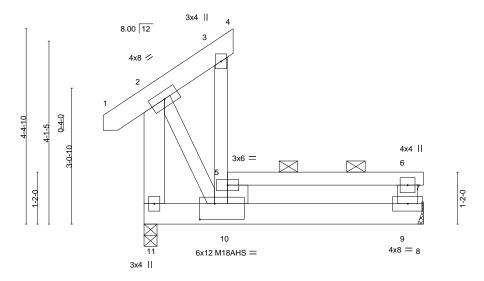
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 Job
 Truss
 Truss Type
 Qty
 Ply
 Lot 147 Duncan's Creek
 I63860259

 J0224-1107
 M2
 HALF HIP
 4
 1
 Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:03 2024 Page 1


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 7-10-10 oc bracing.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-10, 5-7.

| ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:25.9

2-0-0 6-3-4 2-0-0 4-3-4

TOP CHORD

BOT CHORD

Except:

6-0-0 oc bracing: 3-5

Plate Offsets (X,Y)	[10:0-4-0,0-4-4]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.54	Vert(LL) -0.02 10 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.60	Vert(CT) -0.04 9-10 >999 240	M18AHS 186/179
BCLL 0.0 *	Rep Stress Incr NO	WB 0.06	Horz(CT) -0.00 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.06 9-10 >999 240	Weight: 46 lb FT = 20%

LUMBER- BRACING-

TOP CHORD 2x6 SP No.1 *Except*

5-7: 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 *Except*

3-10,2-10: 2x4 SP No.2

REACTIONS. (size) 9=Mechanical, 11=0-3-8

Max Horz 11=169(LC 13)

Max Uplift 9=-160(LC 13), 11=-135(LC 9) Max Grav 9=385(LC 1), 11=663(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-10=-613/515, 5-6=-820/760, 6-9=-184/255

BOT CHORD 10-11=-341/311, 9-10=-760/820

WEBS 2-10=-220/326

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 2-0-0, Interior(1) 1-8-12 to 6-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=160, 11=135.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-20, 5-6=-60, 6-7=-60, 8-11=-20

Continued on page 2

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we hand/or chort Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860259 HALF HIP J0224-1107 M2

Fayetteville, NC - 28314, Comtech, Inc,

| Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:03 2024 Page 2 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 5=-500(F)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860260 HALF HIP J0224-1107 M2-GR 2 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:04 2024 Page 1

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-10, 5-7.

-0-11-0 0-11-0 2-0-0 4-3-4

Scale = 1:25.9

2-0-0 2-0-0

TOP CHORD

BOT CHORD

Except:

10-0-0 oc bracing: 3-5

SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP			
SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
Plate Grip DOL 1.15	TC 0.59	Vert(LL) -0.02 10 >999 360	MT20 244/190
Lumber DOL 1.15	BC 0.50	Vert(CT) -0.04 9-10 >999 240	M18AHS 186/179
Rep Stress Incr NO	WB 0.01	Horz(CT) 0.00 9 n/a n/a	
Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.03 10 >999 240	Weight: 92 lb FT = 20%
	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC 0.59 Lumber DOL 1.15 BC 0.50 Rep Stress Incr NO WB 0.01	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d Plate Grip DOL 1.15 TC 0.59 Vert(LL) -0.02 10 >999 360 Lumber DOL 1.15 BC 0.50 Vert(CT) -0.04 9-10 >999 240 Rep Stress Incr NO WB 0.01 Horz(CT) 0.00 9 n/a n/a

LUMBER-BRACING-

TOP CHORD 2x6 SP No.1 *Except*

5-7: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* 3-10,2-10: 2x4 SP No.2

(size) 9=Mechanical, 11=0-3-8

Max Horz 11=169(LC 9)

Max Uplift 9=-379(LC 9), 11=-246(LC 5) Max Grav 9=1444(LC 16), 11=1184(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-10=-1017/258, 5-6=-1532/480, 6-9=-1097/292, 2-11=-273/26

BOT CHORD 9-10=-480/1532

REACTIONS.

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-8-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x6 - 2 rows staggered at 0-2-0 oc, 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=379, 11=246.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

February 27,2024

Continued on page 2

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163860260 HALF HIP 2 J0224-1107 M2-GR | **Z** | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:04 2024 Page 2

Fayetteville, NC - 28314, Comtech, Inc,

ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

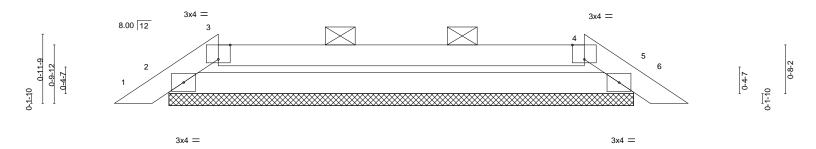
Vert: 1-2=-60, 2-3=-60, 3-4=-20, 5-6=-360(F=-300), 6-7=-360(F=-300), 8-11=-20

Concentrated Loads (lb) Vert: 5=-500(F)

818 Soundside Road Edenton, NC 27932

ı	Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek	
						1638602	31
	J0224-1107	PB1	Piggyback	1	1		
						Job Reference (optional)	
	Comtech, Inc, Fayettev	ville, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Mon Feb 26 12:42:05 2024 Page 1	
			ID:w NkY	aQd4RDpi	mohcDk i0	ObzuUsG-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f	

5-1-4


Scale: 3/4"=1

1-5-6

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 9-5-5 oc bracing.

	L	1				8-0-0						
	1					8-0-0						1
Plate Offse	ets (X,Y)	[3:0-2-0,Edge], [4:0-2-0,E	Edge]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	0.00	` 6	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	ВС	0.29	Vert(CT)	0.00	6	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-R	\					Weight: 22 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. 2=6-5-12, 5=6-5-12 (size) Max Horz 2=23(LC 11)

Max Uplift 2=-57(LC 9), 5=-57(LC 8) Max Grav 2=289(LC 1), 5=289(LC 1)

1-5-6

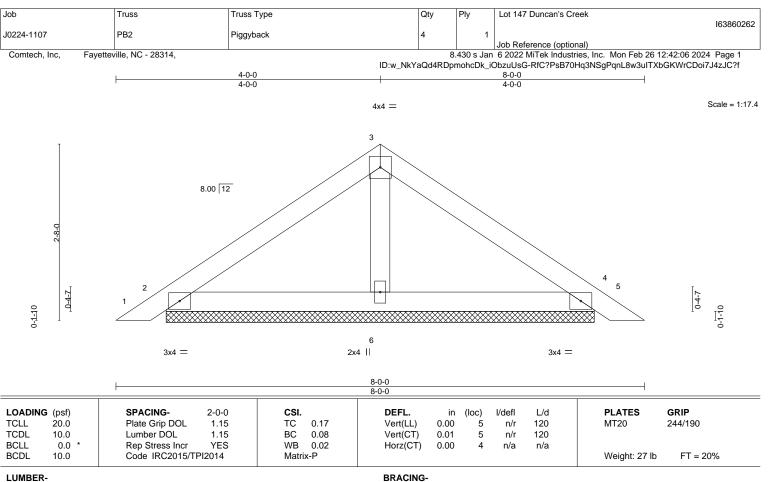
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-521/522, 3-4=-494/486, 4-5=-521/523 TOP CHORD

BOT CHORD 2-5=-440/494

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1

BOT CHORD **OTHERS** 2x4 SP No.2

REACTIONS.

2=6-5-12, 4=6-5-12, 6=6-5-12 (size) Max Horz 2=80(LC 11) Max Uplift 2=-55(LC 12), 4=-63(LC 13)

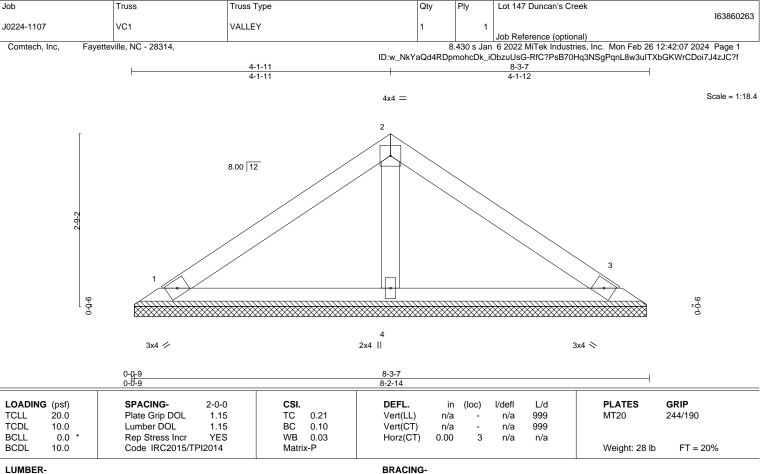
Max Grav 2=173(LC 1), 4=174(LC 20), 6=232(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2

REACTIONS.

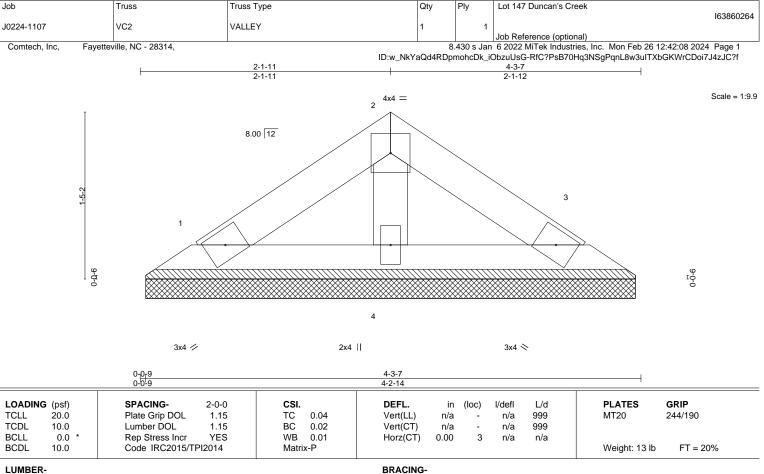
1=8-2-5, 3=8-2-5, 4=8-2-5 (size)

Max Horz 1=78(LC 11)

Max Uplift 1=-48(LC 12), 3=-55(LC 13), 4=-4(LC 12) Max Grav 1=159(LC 1), 3=161(LC 20), 4=266(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 6) Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

1=4-2-5, 3=4-2-5, 4=4-2-5 (size)

Max Horz 1=35(LC 9)

Max Uplift 1=-21(LC 12), 3=-25(LC 13), 4=-2(LC 12) Max Grav 1=72(LC 1), 3=73(LC 20), 4=120(LC 1)

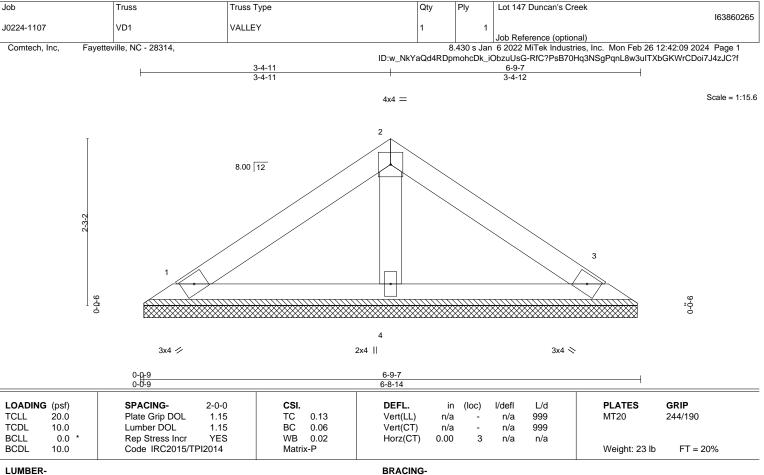
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 6) Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 4-3-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

1=6-8-5, 3=6-8-5, 4=6-8-5 (size) Max Horz 1=62(LC 11)

Max Uplift 1=-38(LC 12), 3=-44(LC 13), 4=-3(LC 12) Max Grav 1=126(LC 1), 3=128(LC 20), 4=212(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

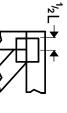
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 6) Non Standard bearing condition. Review required.

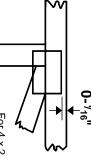
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

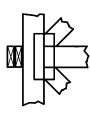
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

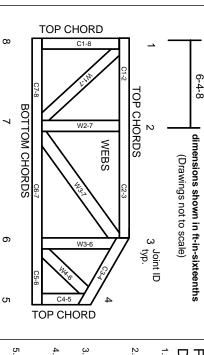

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National I

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

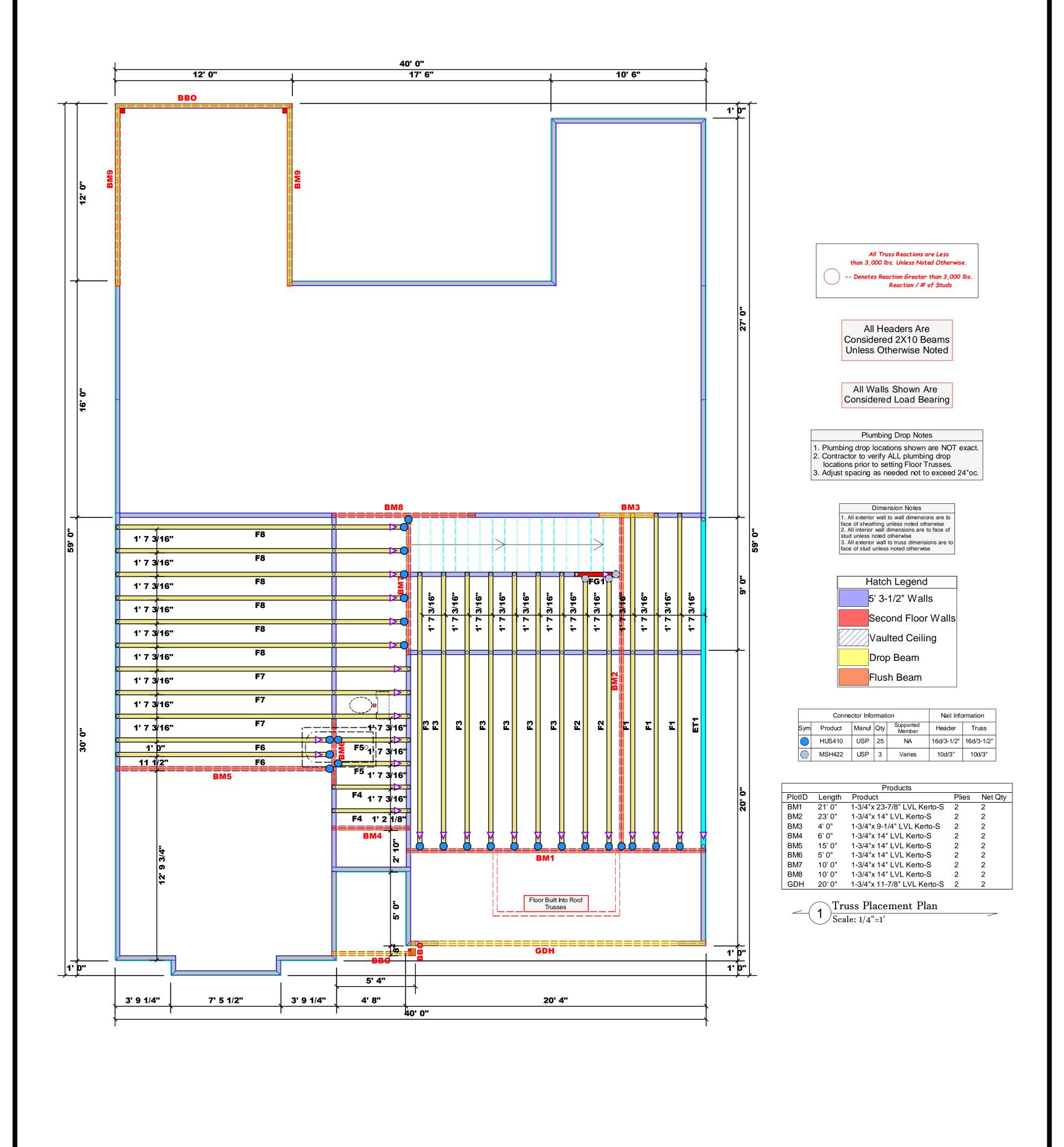
Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023


▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

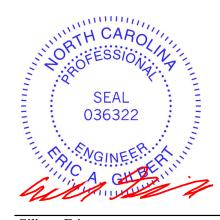
(BAS	LOAD CHART FOR JACK STUDS (BASED ON TABLES R502.5(1) & (b))		BUILDER	VILDER New Home, Inc. CITY / CO. Lillington / Harnett		Lillington / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incor the building design at the specification of the building designer. See individual sheets for each truss design identified on the placement drawing. The build		
NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/GIRDER		O TION DS FOR SADER	JOB NAME	Lot 147 Duncan's Creek	ADDRESS	868 Duncan Creek Road	is responsible for temporary and permanent bracing of the roof and floor syst the overall structure. The design of the truss support structure including head walls, and columns is the responsibility of the building designer. For general regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss deliv		
END REAC (UP TO REQ'D STUF (2) PLY HE	END REACTION (UP TO) REQ'D STUDS FOR (3) PLY HEADER	END REAC (UP TC REQ'D STU (4) PLY HE	PLAN	The Guilford - French Country "B"	MODEL	Floor	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply verscriptive Code requirements. The contractor shall refer to the attack.		
1700 1 3400 2 5100 3	2550 1 5100 2 7650 3	3400 1 6800 2 10200 3	SEAL DATE	10/31/23	DATE REV.	02/26/24	(derived from the prescriptive Code requirements) to determine the required to support reactiful than 3000# but not greater than 15000#. A registered design profession be retained to design the support system for any reaction that exceed.		
6800 4 8500 5 10200 6	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE#		DRAWN BY	Jonathan Landry	specified in the attached Tables. A registered design professional sharetained to design the support system for all reactions that exceed 15		
11900 7 13600 8 15300 9	.5550		JOB#	J0224-1108	SALES REP.	Johnnie Baggett	Jonathan Landry Jonathan Landry		

as individual building components to be incorporated into ecification of the building designer. See individual design identified on the placement drawing. The building designer and permanent bracing of the roof and floor system and for sign of the truss support structure including headers, beams, sponsibility of the building designer. For general guidance CSI-B1 and BCSI-B3 provided with the truss delivery package соттесн **ROOF & FLOOR TRUSSES & BEAMS**

Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0224-1108


Lot 147 Duncan's Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I63861381 thru I63861390

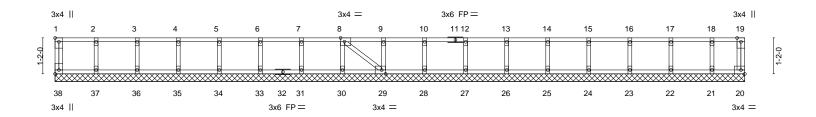
My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

February 27,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job Tr	russ	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
10224 1109	T4	GABLE	_	,	163861381
J0224-1108 E1	11	GABLE	1	1	Job Reference (optional)

Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:21 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0-<u>1</u>-8

Scale = 1:37.4

1-4-0 2-8- 1-4-0 1-4-			-0-0 -4-0 9-4- 1-4-		+ 12-0-0 1-4-0 1-4-0 1-4-		1-8-0 -4-0	16-0-0 1-4-0	17-4-0 1-4-0	18-8-0 1-4-0	1-4-0	21-4-0 22-4-12 1-4-0 1-0-12
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,I	Edge], [29:0-1-	8,Edge], [38:	Edge,0-1-8]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/Ti	2-0-0 1.00 1.00 YES PI2014	CSI. TC BC WB Matrix	0.06 0.01 0.03 c-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a		PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%F, 11%E

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 2x4 SP No.3(flat) **OTHERS** 2x4 SP No.3(flat)

REACTIONS. All bearings 22-4-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 38, 20, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21

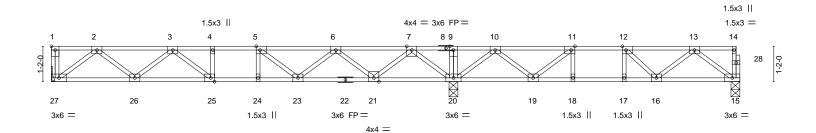
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

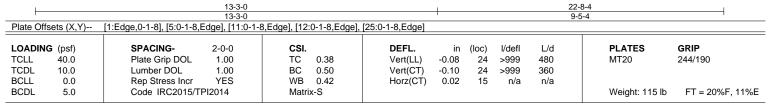
NOTES-

- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
		_			163861382
J0224-1108	F1	Floor	3	1	
					Job Reference (optional)

Comtech, Inc. Fayetteville, NC - 28314,


1-3-0


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:23 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-6-12 1-0-0 0-<u>1</u>-8

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Scale = 1:38.0

LUMBER-**BRACING-**

1-4-8

TOP CHORD 2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 27=Mechanical, 20=0-3-8, 15=0-3-8 Max Grav 27=641(LC 10), 20=1483(LC 1), 15=439(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1217/0, 3-4=-1775/0, 4-5=-1775/0, 5-6=-1508/0, 6-7=-607/84, 7-9=0/1357, 9-10=0/1357, 10-11=-461/502, 11-12=-846/202, 12-13=-727/51

BOT CHORD 26-27=0/779, 25-26=0/1622, 24-25=0/1775, 23-24=0/1775, 21-23=0/1221, 20-21=-354/0,

19-20=-745/100, 18-19=-202/846, 17-18=-202/846, 16-17=-202/846, 15-16=0/524

2-27=-978/0, 2-26=0/569, 3-26=-527/0, 3-25=-77/318, 7-20=-1258/0, 7-21=0/873,

6-21=-839/0, 6-23=0/425, 5-23=-476/0, 10-20=-952/0, 10-19=0/608, 11-19=-695/0,

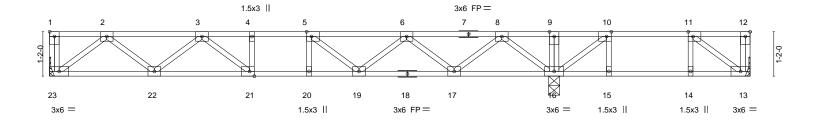
13-15=-654/0, 13-16=-92/265

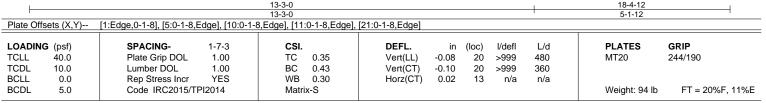
NOTES-

WFBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

February 27,2024


Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163861383 Floor J0224-1108 F2 2 Job Reference (optional)


Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:24 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

1-3-0 1-4-8 2-0-4

Scale = 1:30.3

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 23=Mechanical, 13=Mechanical, 16=0-3-8

Max Uplift 13=-18(LC 3)

Max Grav 23=551(LC 10), 13=197(LC 4), 16=912(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1065/0, 3-4=-1637/0, 4-5=-1637/0, 5-6=-1497/0, 6-8=-876/0, 8-9=0/439,

9-10=0/439

 $22 - 23 = 0/673,\ 21 - 22 = 0/1440,\ 20 - 21 = 0/1637,\ 19 - 20 = 0/1637,\ 17 - 19 = 0/1320,\ 16 - 17 = 0/406$ **BOT CHORD**

WFBS 2-23=-844/0, 2-22=0/511, 3-22=-488/0, 3-21=0/375, 8-16=-938/0, 8-17=0/625,

6-17=-592/0, 6-19=0/274, 5-19=-296/0, 10-16=-540/0

NOTES-

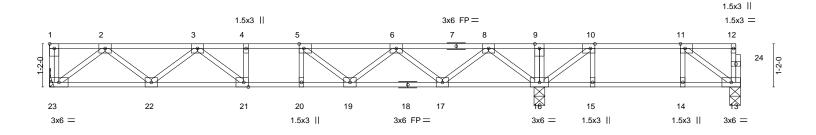
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 13.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

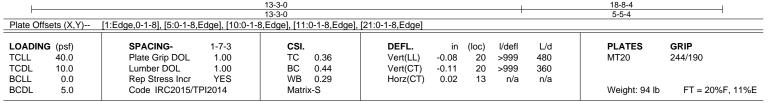
February 27,2024

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163861384 Floor J0224-1108 F3 Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:25 2024 Page 1

Comtech, Inc, Fayetteville, NC - 28314,


1-3-0


 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Structural wood sheathing directly applied or 6-0-0 oc purlins,

1-4-8 2-3-12 0-<u>11</u>-8

Scale = 1:31.2

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.1(flat) TOP CHORD

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 23=Mechanical, 16=0-3-8, 13=0-3-8

Max Uplift 13=-2(LC 3)

Max Grav 23=554(LC 10), 16=908(LC 9), 13=208(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-1074/0, 3-4=-1658/0, 4-5=-1658/0, 5-6=-1525/0, 6-8=-913/0, 8-9=0/396,

9-10=0/396

22-23=0/678, 21-22=0/1454, 20-21=0/1658, 19-20=0/1658, 17-19=0/1353, 16-17=0/448 **BOT CHORD**

WFBS 2-23=-850/0, 2-22=0/516, 3-22=-495/0, 3-21=0/383, 8-16=-934/0, 8-17=0/619,

6-17=-587/0, 6-19=0/271, 5-19=-292/0, 10-16=-544/0, 11-13=-263/116

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 13.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

February 27,2024

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163861385 Floor F4 2 J0224-1108 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:26 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 0-1-8 0-1-8 Scale = 1:10.1 1-3-0 2-1-0 3x4 = 3x4 = 2 4 1.5x3 || 1 1.5x3 || 10 9 3x4 = 3x4 = 1.5x3 || 7 1.5x3 || 3x6 = 3x6 =5-4-0 Plate Offsets (X,Y)--[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8], [10:0-1-8,0-1-8] LOADING (psf) SPACING-DEFL. (loc) L/d **PLATES** in I/defl GRIP Plate Grip DOL **TCLL** 40.0 1.00 TC 0.16 Vert(LL) -0.01 >999 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.11 Vert(CT) -0.01 >999 360 **BCLL** 0.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 5 n/a n/a **BCDL** Code IRC2015/TPI2014 FT = 20%F, 11%E 5.0 Matrix-S Weight: 28 lb LUMBER-**BRACING-**TOP CHORD Structural wood sheathing directly applied or 5-4-0 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 8=0-3-8, 5=0-3-8 Max Grav 8=273(LC 1), 5=273(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-311/0

BOT CHORD 7-8=0/311, 6-7=0/311, 5-6=0/311

2-8=-381/0, 3-5=-381/0 WEBS

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Ply Lot 147 Duncan's Creek 163861386 J0224-1108 F5 Floor 2 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:27 2024 Page 1 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$ 0-1-8 1-3-0 1-9-8 Scale = 1:10.0 3x4 =2 4 3x4 || 1 1.5x3 || 3x4 = 1-2-0 3x4 =1.5x3 || 1.5x3 || 5 3x6 = 3x6 =5-0-8 Plate Offsets (X,Y)--[2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8] SPACING-**PLATES** LOADING (psf) CSI. DEFL. in (loc) I/defl L/d GRIP **TCLL** 40.0 Plate Grip DOL 1.00 TC 0.13 Vert(LL) -0.01 6 >999 480 244/190 MT20 TCDL 10.0 Lumber DOL 1.00 BC 0.10 Vert(CT) -0.01 6 >999 360 **BCLL** 0.0 Rep Stress Incr YES WB 0.08 0.00 5 Horz(CT) n/a n/a Code IRC2015/TPI2014 Weight: 27 lb FT = 20%F, 11%E **BCDL** 5.0 Matrix-S **BRACING-**TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 5-0-8 oc purlins, BOT CHORD 2x4 SP No.1(flat) except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 8=0-3-8, 5=Mechanical Max Grav 8=257(LC 1), 5=264(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-282/0

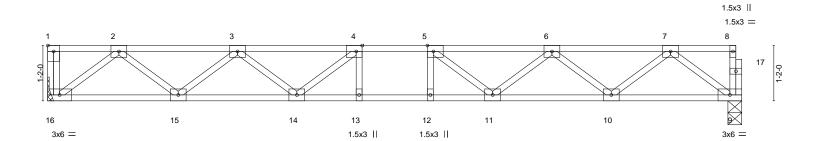
BOT CHORD 7-8=0/282, 6-7=0/282, 5-6=0/282

WEBS 2-8=-344/0, 3-5=-348/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163861387 Floor 2 J0224-1108 F6 Job Reference (optional)


Comtech, Inc, Fayetteville, NC - 28314,

1-3-0

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:28 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

1-4-8 0118

Scale = 1:24.3

-			14-7-8 14-7-8					
Plate Offsets (X,Y) [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.31 BC 0.63 WB 0.39	DEFL. in Vert(LL) -0.13 1 Vert(CT) -0.18 1 Horz(CT) 0.04		L/d 480 360 n/a	PLATES MT20	GRIP 244/190	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 74 lb	FT = 20%F, 11%E	

LUMBER-**BRACING-**

2x4 SP No.1(flat) TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD 2x4 SP No.1(flat) except end verticals. WEBS 2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 16=Mechanical, 9=0-3-8

Max Grav 16=791(LC 1), 9=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1599/0, 3-4=-2462/0, 4-5=-2719/0, 5-6=-2462/0, 6-7=-1599/0

BOT CHORD 15-16=0/971, 14-15=0/2193, 13-14=0/2719, 12-13=0/2719, 11-12=0/2719, 10-11=0/2193,

9-10=0/970

 $2-16 = -1218/0, \ 2-15 = 0/818, \ 3-15 = -773/0, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 7-9 = -1214/0, \ 7-10 = 0/819, \ 3-14 = 0/406, \ 3-14 = 0/4$ **WEBS**

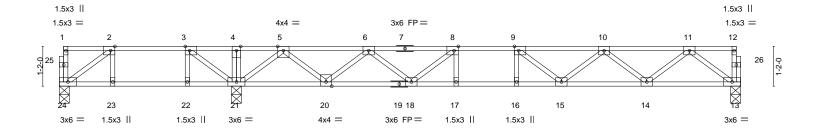
6-10=-774/0, 6-11=0/406, 5-11=-484/0, 4-14=-484/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

February 27,2024

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
					I63861388
J0224-1108	F7	Floor	3	1	
					Job Reference (optional)


Fayetteville, NC - 28314, Comtech, Inc.

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:29 2024 Page 1 $ID: w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

0-1-8 Scale = 1:33.8

	5-2-4			19-11-8				
	5-2-4			14-9-4				'
Plate Offsets (X,Y)	[2:0-1-8,Edge], [3:0-1-8,Edge]	, [8:0-1-8,Edge], [9:0-1-	I-8,Edge]					
LOADING (psf)		0-0 CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Lumber DOL 1.	00 BC	0.71 Vert(CT)	-0.13 16 -0.18 16	>999 >963	480 360	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr Yill Code IRC2015/TPI201	-	0.43 Horz(CT)	0.04 13	n/a	n/a	Weight: 100 lb	FT = 20%F, 11%E

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 23-24,22-23,21-22.

REACTIONS. (size) 24=0-3-8, 21=0-3-8, 13=0-3-8

Max Uplift 24=-40(LC 4)

Max Grav 24=237(LC 3), 21=1243(LC 8), 13=763(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=0/635, 4-5=0/635, 5-6=-1227/0, 6-8=-2210/0, 8-9=-2564/0, 9-10=-2359/0,

10-11=-1547/0

BOT CHORD $20-21=0/539,\ 18-20=0/1875,\ 17-18=0/2564,\ 16-17=0/2564,\ 15-16=0/2564,\ 14-15=0/2120,$

13-14=0/941

 $2-24 = -272/241, \ 3-21 = -738/0, \ 11-13 = -1178/0, \ 11-14 = 0/788, \ 10-14 = -746/0, \ 10-15 = 0/367, \ 10-14 = -746/0,$

9-15=-425/11, 5-21=-1324/0, 5-20=0/909, 6-20=-859/0, 6-18=0/469, 8-18=-578/0

NOTES-

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 24.
 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

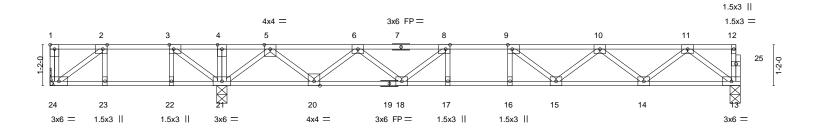
February 27,2024

Job	Truss	Truss Type	Qty	Ply	Lot 147 Duncan's Creek
J0224-1108	Го	Floor		1	163861389
JU224-1108	F8	Floor	ь	1	Job Reference (optional)

Comtech, Inc. Fayetteville, NC - 28314,

1-9-4

1-3-0


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:30 2024 Page 1 ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-7-12 0-1-8

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Scale = 1:32.8

		4-10-12	1				19-	8-0				
	I	4-10-12	I				14-	9-4				
Plate	Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,l	Edge], [3:0-1-8	3,Edge], [8:0-1	-8,Edge], [9:0-1-8,Edge]						
LOAD	DING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.50	Vert(LL)	-0.13	16	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.72	Vert(CT)	-0.18	16	>968	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	13	n/a	n/a		
BCDL	5.0	Code IRC2015/T	PI2014	Matrix	(-S	, ,					Weight: 99 lb	FT = 20%F, 11%E
												·

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat) WEBS

2x4 SP No.3(flat) **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 23-24,22-23,21-22.

TOP CHORD

REACTIONS. (size) 24=Mechanical, 21=0-3-8, 13=0-3-8

Max Uplift 24=-68(LC 4)

Max Grav 24=221(LC 3), 21=1257(LC 8), 13=758(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=0/713, 4-5=0/713, 5-6=-1159/0, 6-8=-2157/0, 8-9=-2522/0, 9-10=-2330/0,

10-11=-1532/0

BOT CHORD $20-21=0/464,\ 18-20=0/1813,\ 17-18=0/2522,\ 16-17=0/2522,\ 15-16=0/2522,\ 14-15=0/2099,\ 18-10=0/2522,\ 18-10$

13-14=0/933

2-24=-228/297, 3-21=-751/0, 11-13=-1168/0, 11-14=0/779, 10-14=-738/0, 10-15=0/358, 9-15=-411/18, 5-21=-1333/0, 5-20=0/918, 6-20=-867/0, 6-18=0/473, 8-18=-585/0

NOTES-

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 24.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

February 27,2024

Job Truss Truss Type Qty Lot 147 Duncan's Creek 163861390 J0224-1108 FG1 FLOOR GIRDER Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 26 13:11:31 2024 Page 1 Fayetteville, NC - 28314, Comtech, Inc. ID:w_NkYaQd4RDpmohcDk_iObzuUsG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 3x6 | 3x4 = 3x6 = 1-3-0 0-1-8 9 3 Scale = 1:8.6 3x4 || 3x6 =1.5x3 || 3x4 ||

Plate Off	Plate Offsets (X,Y) [3:0-1-8,Edge]									
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP					
TCLL	40.0	Plate Grip DOL 1.00	TC 0.22	Vert(LL) -0.02 5 >999 480	MT20 244/190					
TCDL	10.0	Lumber DOL 1.00	BC 0.18	Vert(CT) -0.03 5 >999 360						
BCLL	0.0	Rep Stress Incr NO	WB 0.01	Horz(CT) 0.00 4 n/a n/a						
BCDL	5.0	Code IRC2015/TPI2014	Matrix-S		Weight: 21 lb FT = 20%F, 11%E					

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1(flat) **BOT CHORD** 2x4 SP No.1(flat)

WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 4=0-4-0, 6=Mechanical Max Grav 4=275(LC 1), 6=283(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 183 lb down and 87 lb up at 0-8-8, and 129 lb down and 86 lb up at 2-3-11 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

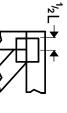
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 4-6=-10, 1-3=-100 Concentrated Loads (lb)

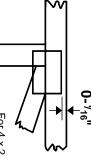
Vert: 8=-128(F) 9=-129(F)

Structural wood sheathing directly applied or 3-0-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

February 27,2024



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

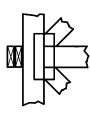
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

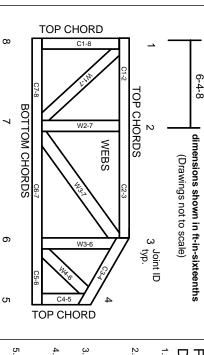

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National I

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.