

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 102 FaNC DRAYTON 4

THE PLACEMENT PLAN NOTES:

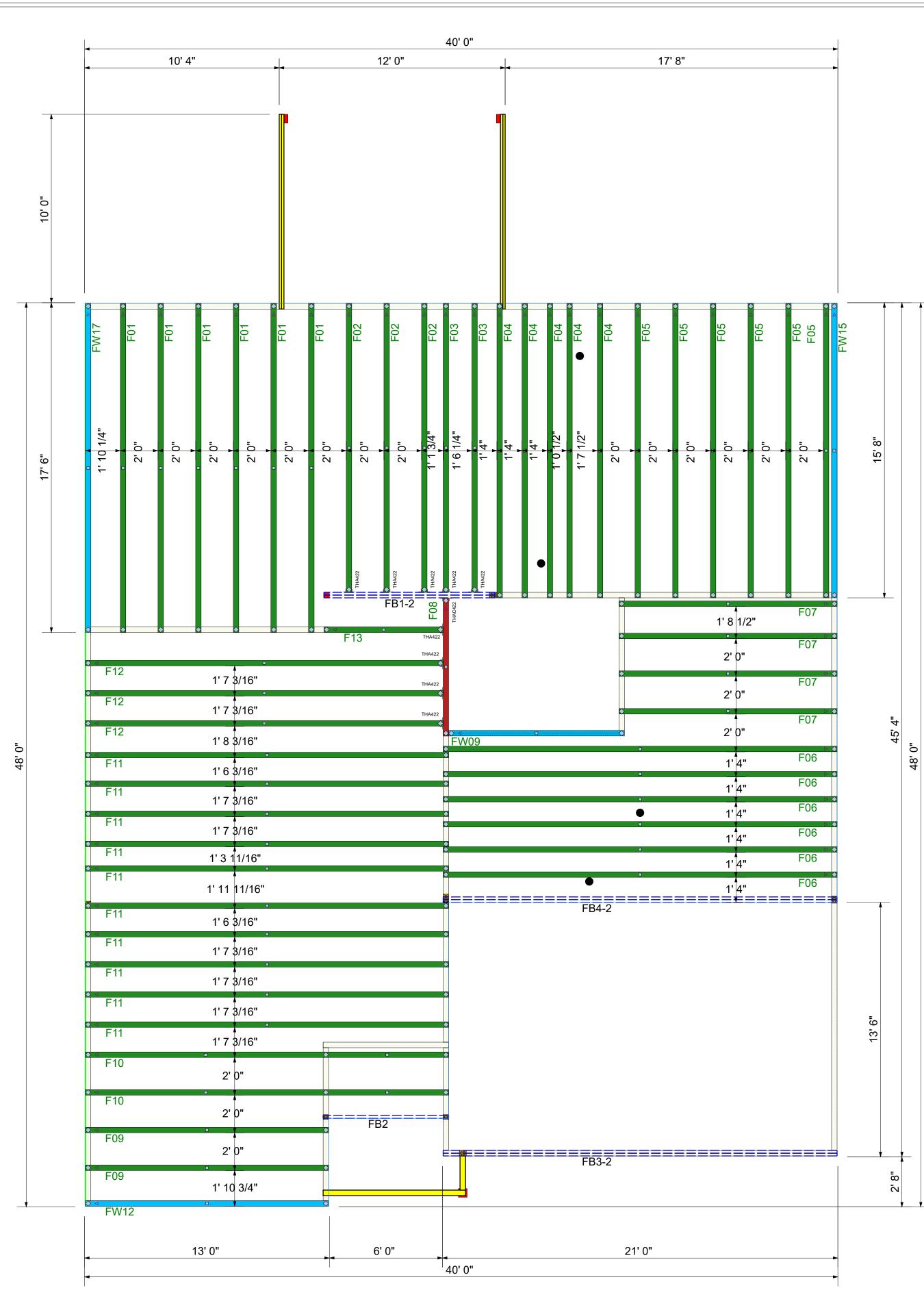
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

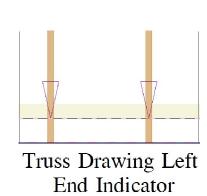
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

PLANT

ONENT

HH

TOLD TO BY

UNLESS

SHOULD NOT BE INST

DAMAGED COMPONENTS

*

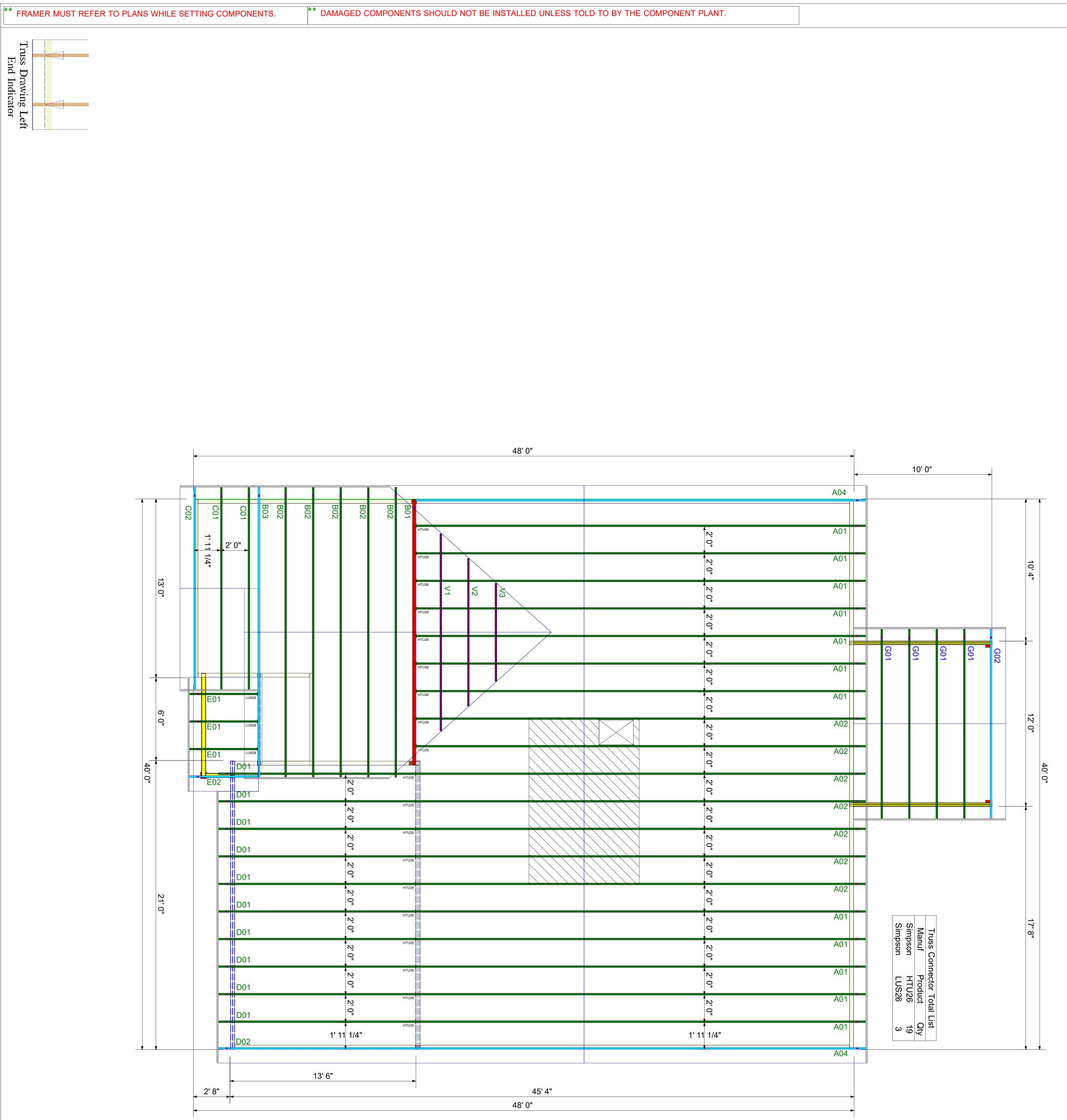
C C

ш

| ≯

TO PLANS

REFER


MUST

IER

	Products									
PlotID	Length	Prod	uct		Plies	Net Qty	Fab Type			
FB3-2	22' 0"	2.0 F	RigidLa	am DF LVL 1-3/4 x 11-7/8	2	2	FF			
FB1-2	10' 0"	2.0 F	RigidLa	2	2	FF				
FB2	8' 0"	2.0 F	RigidLa	am DF LVL 1-3/4 x 14	1	1	FF			
FB4-2	34-2 22' 0" 2.0 RigidLam DF LVL 1-3/4 x 20					2	FF			
Truss (Connector	Total	List							
Manuf	Produ	ct	Qty							
Simpsor	n THA42	22	9							
Simpsor	n THAC	422	1							

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

	F 00/00/ 00/00/ 00/00/ 00/00/	00 00 00 00 00 00 00 00 00 00 00 00 00	ns Name Name Name Name					
IRUSS IN IRUSS CUNNECTIONS ARE THE WAILED, UNLESS NUTED VITERWISE.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179						
			A Division of the Certer Lumber Company					
	DRB HOMES	102 FARM ATW NEILLS CREEK DRAYTON 4	COMPONENT PLACEMENT PLAN					
	Scale: Date: 1	NTS /18/202 Designe						
		ND Project Nur 231201 Sheet Nur	51					

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS

* PLC

**

REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

** ALL BEARING POINT

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.

** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	Revisions	
Name	Name	Name	Name	Name	sions	

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23120151 DRB GROUP - 102 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

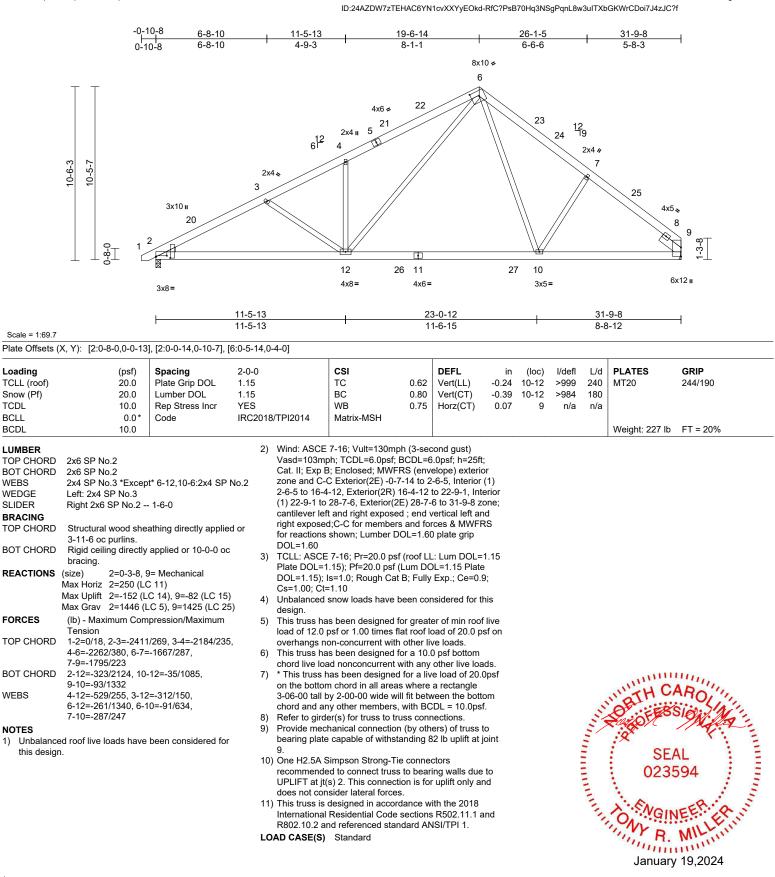
Pages or sheets covered by this seal: I63122460 thru I63122493

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

January 19,2024

Tony Miller


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

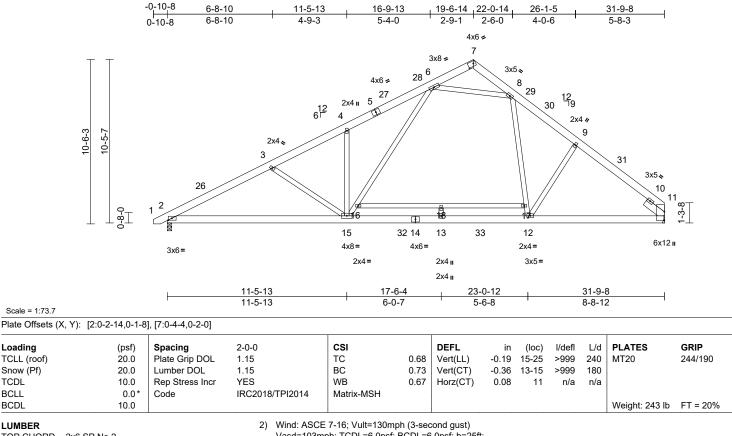
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	A01	Roof Special	12	1	Job Reference (optional)	163122460

1)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:45:53

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	A02	Roof Special	7	1	Job Reference (optional)	163122461

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:45:55 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER		2
TOP CHORD	2x6 SP No.2	
BOT CHORD	2x6 SP No.2	
WEBS	2x4 SP No.3 *Except* 16-17:2x4 SP No.2	
SLIDER	Right 2x6 SP No.2 1-6-0	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	4-1-3 oc purlins.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	З
REACTIONS	(size) 2=0-3-8, 11= Mechanical	
	Max Horiz 2=250 (LC 11)	
	Max Uplift 2=-63 (LC 14)	
	Max Grav 2=1424 (LC 21), 11=1382 (LC 1)	4
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	5
TOP CHORD	1-2=0/18, 2-3=-2446/60, 3-4=-2144/12,	
	4-6=-2225/129, 6-7=-159/92, 7-8=-207/68,	
	8-9=-1619/76, 9-11=-1792/34	6
BOT CHORD		
	12-13=0/1246, 11-12=0/1296	7
WEBS	4-15=-480/242, 3-15=-319/191,	
	15-16=-113/1135, 6-16=-97/1141,	8
	8-17=0/475, 12-17=0/455, 9-12=-172/257,	
	16-18=-7/12, 17-18=-7/12, 13-18=0/41,	
	6-8=-1255/126	
NOTES		c

NOTES

Scale = 1:73.7

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

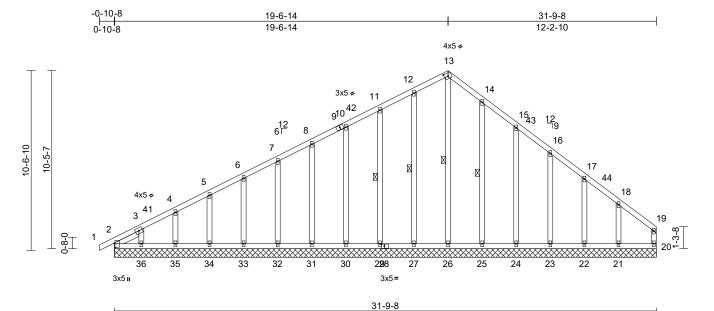
BCDL

1) Unbalanced roof live loads have been considered for this design.

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-7-14 to 2-6-5, Interior (1) 2-6-5 to 16-4-12, Exterior(2R) 16-4-12 to 22-9-1, Interior (1) 22-9-1 to 28-7-6, Exterior(2E) 28-7-6 to 31-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 17-6-8 6) from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply DRB GROUP - 102 FaNC		
23120151	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	163122462

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:45:56 ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.6

Plate Offsets (X, Y): [2:0-2-8,0-0-5], [13:0-2-10,0-2-4], [28:0-2-2,0-1-8]

Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.12 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.09 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr WB Horz(CT) 20 YES 0.18 0.00 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH FT = 20% BCDL 10.0 Weight: 229 lb LUMBER FORCES (Ib) - Maximum Compression/Maximum 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No 2 Tension TOP CHORD 2x4 SP No.2 TOP CHORD 1-2=0/23, 2-3=-109/46, 3-4=-239/112, BOT CHORD see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4-5=-226/131, 5-6=-212/154, 6-7=-199/178, WEBS 2x4 SP No.3 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 OTHERS 2x4 SP No.3 7-8=-186/214. 8-10=-172/259. 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 10-11=-159/304, 11-12=-147/352, Left 2x4 SP No.3 -- 1-7-7 SLIDER 12-13=-133/388, 13-14=-146/424, DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; BRACING 14-15=-117/358. 15-16=-90/276. Cs=1 00. Ct=1 10 TOP CHORD Structural wood sheathing directly applied or 16-17=-71/201, 17-18=-56/127, 5) Unbalanced snow loads have been considered for this 6-0-0 oc purlins, except end verticals. 18-19=-80/41, 19-20=-66/20 design BOT CHORD Rigid ceiling directly applied or 10-0-0 oc BOT CHORD 2-36=-42/90, 35-36=-42/90, 34-35=-42/90, 6) This truss has been designed for greater of min roof live bracing. 33-34=-42/90, 32-33=-42/90, 31-32=-42/90, load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on WEBS 1 Row at midpt 13-26, 12-27, 11-29, 30-31=-42/90, 29-30=-42/90, 27-29=-42/90, overhangs non-concurrent with other live loads. 14-25 26-27=-42/90, 25-26=-42/90, 24-25=-42/90, All plates are 2x4 MT20 unless otherwise indicated. 2=31-9-8, 20=31-9-8, 21=31-9-8, **REACTIONS** (size) Gable requires continuous bottom chord bearing. 23-24=-42/90, 22-23=-42/90, 21-22=-42/90, 8) 22=31-9-8, 23=31-9-8, 24=31-9-8 20-21=-42/90 9) Gable studs spaced at 2-0-0 oc. 25=31-9-8, 26=31-9-8, 27=31-9-8, WEBS 13-26=-347/80, 12-27=-204/59, This truss has been designed for a 10.0 psf bottom 10) 29=31-9-8, 30=31-9-8, 31=31-9-8, 11-29=-188/87, 10-30=-135/76, chord live load nonconcurrent with any other live loads. 32=31-9-8, 33=31-9-8, 34=31-9-8, 8-31=-120/78, 7-32=-120/77, 6-33=-120/77, 11) * This truss has been designed for a live load of 20.0psf 35=31-9-8, 36=31-9-8, 37=31-9-8 5-34=-119/76, 4-35=-123/81, 3-36=-100/102, on the bottom chord in all areas where a rectangle Max Horiz 2=271 (LC 13), 37=271 (LC 13) 14-25=-226/87, 15-24=-180/111, 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift 2=-52 (LC 15), 21=-124 (LC 15), chord and any other members. 16-23=-132/102, 17-22=-125/99, SE, 02355 02355 VGINEERING January 19,20 22=-52 (LC 15), 23=-69 (LC 15), ORTH 18-21=-154/198 24=-72 (LC 15), 25=-57 (LC 15), NOTES 26=-40 (LC 13), 27=-35 (LC 14), Unbalanced roof live loads have been considered for 1) 29=-48 (LC 14), 30=-43 (LC 14), this design 31=-44 (LC 14), 32=-44 (LC 14), Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) 33=-44 (LC 14), 34=-44 (LC 14), Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: 35=-43 (LC 14), 36=-83 (LC 14), Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 37=-52 (LC 15) zone and C-C Corner(3E) -0-10-8 to 2-3-10, Exterior 2=205 (LC 25), 20=97 (LC 27) Max Grav (2N) 2-3-10 to 16-4-12, Corner(3R) 16-4-12 to 22-9-1, 21=210 (LC 25), 22=161 (LC 25), Exterior(2N) 22-9-1 to 28-5-10, Corner(3E) 28-5-10 to 23=173 (LC 25), 24=220 (LC 22), 31-7-12 zone; cantilever left and right exposed ; end 25=266 (LC 22), 26=283 (LC 15), vertical left and right exposed;C-C for members and 27=244 (LC 21), 29=228 (LC 21), forces & MWFRS for reactions shown; Lumber 30=175 (LC 21), 31=160 (LC 34), DOL=1.60 plate grip DOL=1.60 32=160 (LC 21), 33=160 (LC 1), 34=159 (LC 21), 35=164 (LC 1), 36=137 (LC 34), 37=205 (LC 25)

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE 📐 WARNIN Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Carter Components (Sanford, NC), Sanford, NC - 27332,			Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:56					
	23120151	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	163122462	
	Job	Truss	Truss Type Q		Ply	DRB GROUP - 102 FaNC		

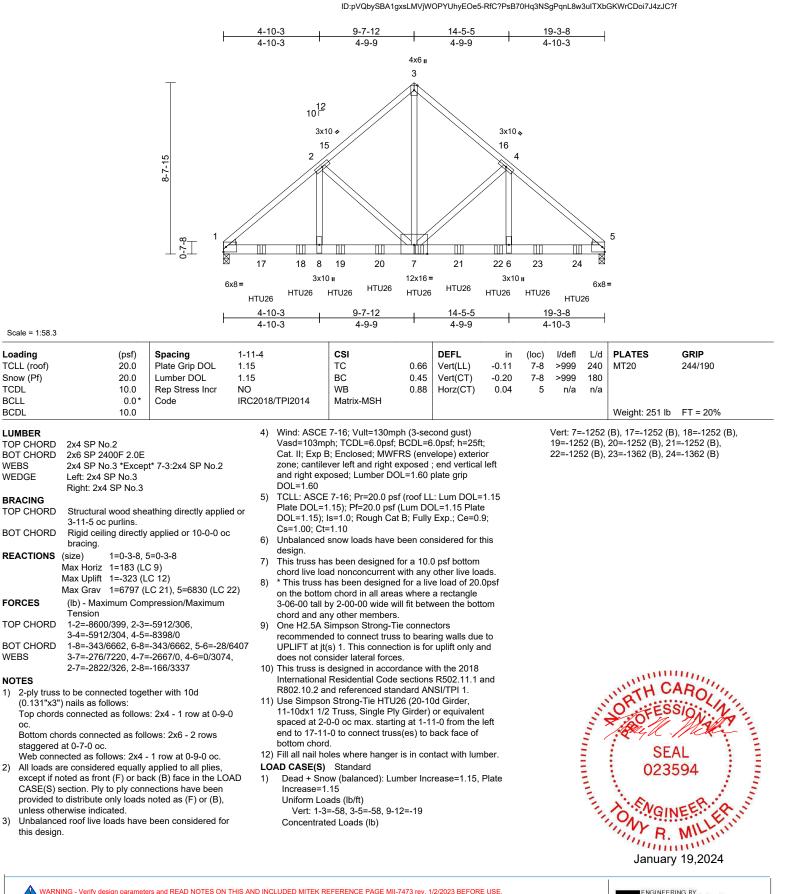
ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

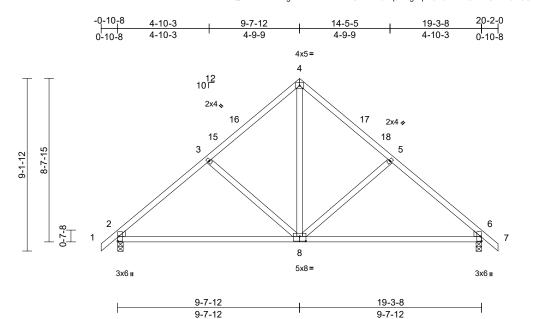

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	B01	Common Girder	1	2	Job Reference (optional)	163122463

2)

3)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:45:57

Page: 1



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	B02	Common	5	1	Job Reference (optional)	163122464

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:57 ID:f1Qu7BWIv1Pa4lgBP4Ecl7zkPbb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

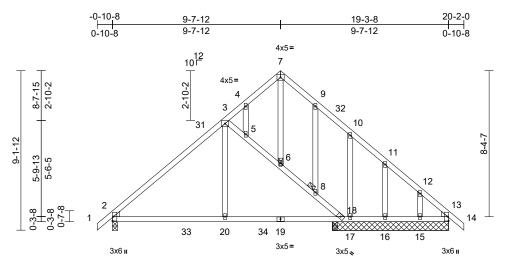
Page: 1

Scale = 1:61.1

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/ 3)		CSI TC BC WB Matrix-MSH	0.48 0.78 0.26 f (roof LI	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.02	(loc) 8-11 8-11 6	l/defl >999 >897 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 5-4-8 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 5=0-3-8 C 12) 2 14), 6=-73 (LC 15) C 21), 6=872 (LC 22)	4) 5) ed or 6) 7) 8)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and an One H2.5A \$	I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I as been designed f psf or 1.00 times f on-concurrent with the been designed the has been designed the has been designed on chord in all area by 2-00-00 wide w by other members. Simpson Strong-Ti	(Lum DC B; Fully been con for great lat roof I n other li for a 10. with any J for a liv J for a liv for a s where s where s where a conne	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors	e 9; flive flive ads. 0psf om					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 Cat. II; Ex zone and 2-1-8 to 6. (1) 12-7-1 zone; can and right e	Tension 1-2=0/34, 2-3=-1005 4-5=-785/151, 5-6=- 2-6=-136/727 4-8=-67/556, 5-8=-3 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi p; B; Enclosed; MWFR C-C Exterior(2E) -0-10 -7-12, Exterior(2R) 6-7 2 to 17-2-0, Exterior(2I tilever left and right exp exposed; C-C for memb for reactions shown; Lu	, j/137, 3-4=-785/151, 1005/137, 6-7=0/34 25/198, 3-8=-325/19 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (-12 to 12-7-12, Interi E) 17-2-0 to 202-00 ossed ; end vertical I vers and forces &	9) 8 LOA r 1) ior eft	UPLIFT at jt(and does no This truss is International	ed to connect truss (s) 2 and 6. This ci t consider lateral f designed in accor Residential Code nd referenced star Standard	onnectio orces. dance w sections	n is for uplift ith the 2018 s R502.11.1 a	only			and a state of the	1. 11.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the preventione applicable from the Structure Building Component Advance international truss properties and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

R. M R. MIL January 19,2024

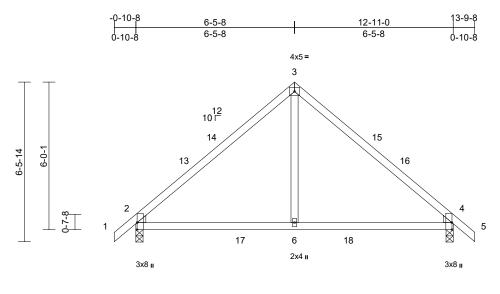
Job	Truss	Truss Type	Qty	Ply		
23120151	B03	Common Structural Gable	1	1	Job Reference (optional)	163122465

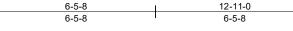
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:57 ID:0?DnAuaRja2sBWY9BeqnSAzkPbW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			L	6-5-8		12-11-0			19-3-8		4		
Scale = 1:66.1				6-5-8	l	6-5-8	I		6-4-8				
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Plate Grip DOL 1.	-11-4 .15 .15		CSI TC BC	0.44	DEFL Vert(LL) Vert(CT)		(loc) 20-23 20-23	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0* 10.0		ES RC2018	/TPI2014	WB Matrix-MSH	0.13	Horz(CT)	-0.01	2	n/a	n/a	Weight: 124 lb	FT = 20%
LUMBER			NO	TES	I				12) N/A			0	
TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 6, 8 (size) 2=0-3-8, 16=6-8-0, 24=6-8-0, 24=6-8-0, Max Horiz 2=199 (LC Max Uplift 2=-22 (LC 16=-56 (L 18=-5 (LC Max Grav 2=680 (LC 17=177 (L 24=235 (L	2 14), 15=-125 (LC 15), C 15), 17=-141 (LC 14), 3 15), 27=-5 (LC 15) C 5), 13=235 (LC 27), C 25), 16=196 (LC 25), C 1), 18=526 (LC 6), C 27), 27=526 (LC 6)	2) 3) 4) 5)	this design. Wind: ASCE Vasd=103my Cat. II; Exp E zone and C-C 2-1-8 to 6-5-4 12-7-12 to 17 cantilever lef right exposer for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 15 ; Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 J	roof live loads ha 7-16; Vult=130m bh; TCDL=6.0psf b; TCDL=6.0psf c Exterior(2E) -0. 8, Exterior(2E) -0. 8, Exterior(2R) 6- 7-2-0, Exterior(2E) t and right expose d; C-C for membe shown; Lumber I ned for wind load dids exposed to w d Industry Gable tailfied building dw 7-16; PT=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times on-concurrent wit	ph (3-sec ; BCDL=6 FRS (env 10-8 to 2 5-8 to 12 ;) 17-2-0 ed ; end v rs and foi DOL=1.60 s in the p ind (norm End Deta esigner a: sf (roof LL ; (Lum DC tt B; Fully been cor for great flat roof l	cond gust) .0psf; h=25ft; elope) exterior -1-8, Interior - .7-12, Interior or 20-2-0 zon- retrical left an ces & MWFR 0 plate grip ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps	; (1) (1) e; dd RS JSS JSS JSS JSS JSS JSS JSS JSS JSS	13) This Inte R8(14) Gra or t bot	s truss is rnationa 02.10.2 a phical p	Il Resid and ref urlin re tation o rd.	ferenced standard epresentation doe of the purlin along	ions R502.11.1 and I ANSI/TPI 1. s not depict the size
FORCES		25, 3-4=-210/43, 87/58, 9-10=-218/0,	8) 9) 10)	Gable studs This truss ha chord live loa * This truss h on the botton	2 2x4 MT20 unless spaced at 2-0-0 d is been designed ad nonconcurrent has been designe in chord in all are:	oc. for a 10. with any d for a liv as where) psf bottom other live loa e load of 20.0 a rectangle	Opsf		,	Contraction of the second second	SE/	
BOT CHORD	2-20=-137/533, 18-2 17-18=-80/246, 16-1 15-16=-80/246, 13-1 6-7=-25/39, 4-5=-69 10-17=-203/113, 11	20=-80/533, 17=-80/246, 15=-80/246 /28, 8-9=-176/78,		chord and an Provide mecl bearing plate	by 2-00-00 wide v by other members hanical connections capable of withes uplift at joint 18.	s, with BC on (by oth	DL = 10.0psf ers) of truss t	f. :O			1111111	N. ENGIN	EERER
	12-15=-119/108, 3-2											R.	MILLIN

January 19,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	C01	Common	2	1	Job Reference (optional)	163122466

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:58 ID:BAVIhIIxpR_1rFOLGf2a3byEObM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

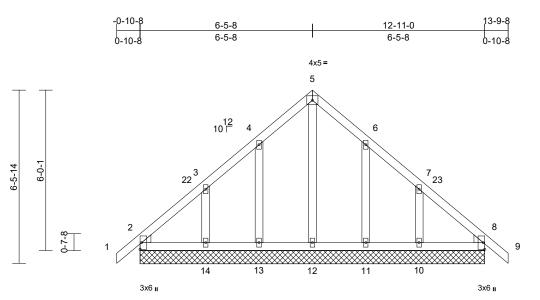
Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:46.9

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)	-0.09	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.13	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.03	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 57 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=0-3-8 C 12)	4) 5) d or	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th	7-16; Pr=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Cat =1.10 snow loads have I as been designed to psf or 1.00 times f on-concurrent with as been designed to ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members	(Lum DC t B; Fully been cor for greate lat roof k n other lin for a 10. with any d for a liv is where ill fit betv	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott	e 9; his f live sf on ads. 0psf om					
	Max Grav 2=686 (LC		8)	One H2.5A S	Simpson Strong-Ti	e conne	ctors						
FORCES	(lb) - Maximum Com Tension	pression/Maximum			ed to connect truss (s) 2 and 4. This c								
TOP CHORD	1-2=0/34, 2-3=-671/	145, 3-4=-671/145,		and does no	t consider lateral f	orces.		only					
BOT CHORD WEBS	4-5=0/34 2-6=-116/456, 4-6=- 3-6=0/374	41/456	9)	International	designed in accor Residential Code nd referenced star	sections	s R502.11.1 a	and				TH C	00
NOTES			LC	DAD CASE(S)	Standard							O Lutte	AD
1) Unbalance	ed roof live loads have	been considered for										"atr	01 11
f this design	n.										12	0.48	Size YNG The

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-5-8, Exterior(2R) 3-5-8 to 9-5-8, Interior (1) 9-5-8 to 10-9-8, Exterior(2E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	C02	Common Supported Gable	1	1	Job Reference (optional)	163122467

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:58 ID:C3Bkf_lbn?_9cX_Dk8gUOhyEOZV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

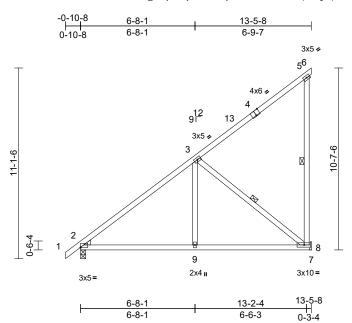
12-11-0

Loading		(psf)	Spacing	1-11-	4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	8	n/a	n/a			
BCLL		0.0*	Code	IRC2	018/TPI20)14 Matrix-MSH									
BCDL		10.0											Weight: 75 lb	FT = 20%	
LUMBER					2) Wind	: ASCE 7-16; Vult=130	mph (3-seo	cond aust)		13) This	s truss is	s desic	ned in accordan	ce with the 2018	
TOP CHORD	2x4 SP N	lo.2			. Vasd	=103mph; TCDL=6.0ps	sf; BCDL=6	6.0psf; h=25ft;	;					tions R502.11.1 an	d
BOT CHORD	2x4 SP N				Cat.	I; Exp B; Enclosed; MV	VFRS (env	elope) exterio	or	R80)2.10.2 a	and ret	ferenced standar	d ANSI/TPI 1.	
OTHERS	2x4 SP N	lo.3			zone	and C-C Corner(3E) -0	-10-8 to 2-	1-8, Exterior(2N)	LOAD	CASE(S) Sta	Indard		
WEDGE	Left: 2x4	SP No.3			2-1-8	to 3-5-8, Corner(3R) 3	-5-8 to 9-5	-8, Exterior(2)	N)		•	,			
	Right: 2x	4 SP No.3				to 10-9-8, Corner(3E)									
BRACING	÷					ever left and right expo									
TOP CHORD	Structura	al wood she	athing directly applie	d or		exposed;C-C for memb			RS						
	6-0-0 oc		5			actions shown; Lumber	DOL=1.6) plate grip							
BOT CHORD	Rigid cei	ling directly	applied or 10-0-0 oc	;	DOL										
	bracing.	0 ,				s designed for wind loa									
REACTIONS	(size)	2=12-11-0	0, 8=12-11-0, 10=12-	-11-0.		For studs exposed to									
	()		-0, 12=12-11-0,	-,		Standard Industry Gable									
			-0, 14=12-11-0,			nsult qualified building									
			-0, 19=12-11-0			: ASCE 7-16; Pr=20.0									
	Max Horiz	2=-139 (L	C 12), 15=-139 (LC	12)		DOL=1.15); Pf=20.0 p									
	Max Uplift	2=-20 (LC	C 10), 10=-108 (LC 1	5).		=1.15); ls=1.0; Rough C .00; Ct=1.10	at B; Fully	Exp.; Ce=0.9	9,						
		11=-66 (L	.C 15), 13=-65 (LC 1	4),		lanced snow loads hav	o boon coi	acidorod for th	aic						
		14=-112 ((LC 14), 15=-20 (LC	10)	desic				115						
	Max Grav	2=173 (L0	C 25), 8=169 (LC 1),			truss has been designe	d for areat	er of min roof	livo						
		10=221 (l	LC 22), 11=256 (LC 2	22),		of 12.0 psf or 1.00 time									
			LC 31), 13=256 (LC 2			angs non-concurrent w			51 011						
			LC 21), 15=173 (LC 2	25),		ates are 2x4 MT20 unle							, mmm	11111	
		19=169 (I	LC 1)			e requires continuous b							W'LHC	ARA	
FORCES	(lb) - Max	kimum Corr	npression/Maximum			e studs spaced at 2-0-0		a boaring.					"all		
	Tension					truss has been designe		0 psf bottom					0.258	Sid: Not	
TOP CHORD	1-2=0/33	, 2-3=-123/	85, 3-4=-108/85,			l live load nonconcurre			ds			5 :	Xaro K.	MART	-
			113/179, 6-7=-102/8	5,		s truss has been design							:0	K .	1
		48, 8-9=0/3				e bottom chord in all ar						2	-		-
BOT CHORD		/144, 13-14				00 tall by 2-00-00 wide			om			2	: SE	AL :	-
		,	12=-42/144,			and any other membe						The second second	023	501 :	-
		2/144, 8-10				de mechanical connect		ers) of truss t	0			=	023	594	Manufilling.
WEBS		1/47, 4-13=				ng plate capable of with						-	- A.		-
		,	1=-222/124,			Ib uplift at joint 13, 112						-	· ·	a : . :	-
	7-10=-17	0/163			uplift	at joint 11, 108 lb uplift	at joint 10	and 20 lb upl	ift at			1	A SNGI	IFE AS	ja i
NOTES					inint -	· ·	-					1	(),	ALL CAN	

NOTES

1) Unbalanced roof live loads have been considered for this design.

joint 2.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	D01	Monopitch	10	1	Job Reference (optional)	163122468

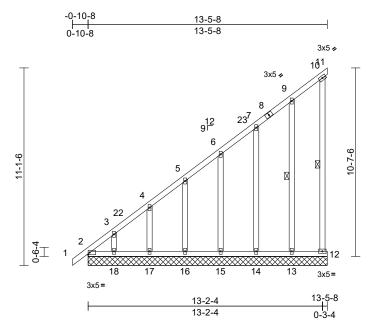
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:58 ID:Z0_dihojcXcRjIsBXhGf5kyEOZQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:67.2

Plate Offsets (X, Y): [2:Edge,0-0-3], [4:0-3-0,Edge]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.80	DEFL Vert(LL)	in -0.06	(loc) 8-9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.80	Vert(LL)	-0.00	8-9	>999	180	101120	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.22	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.22	11012(01)	0.01	-	n/a	n/u		
BCDL	10.0		110201	0/11/2011								Weight: 81 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=372 (LC Max Uplift 2=-24 (LC Max Grav 2=609 (LC	athing directly applic cept end verticals. applied or 10-0-0 or 5-8, 3-8 3= Mechanical C 13) C 14), 8=-162 (LC 14 C 21), 8=710 (LC 21	c 7) 8)) 9)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tail I chord and at Refer to gird Provide mec bearing plate joint 8. One RT8A M truss to bear connection is	I solve the set of the	flat roof k th other link of a 10.1 t with any d for a liv as where will fit betv s. truss conr n (by oth standing 1 recomme JPLIFT at	bad of 20.0 p re loads.) psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 62 lb uplift a nded to conn jt(s) 2. This	ads. Opsf rom to t					
FORCES	(lb) - Maximum Com Tension		10		designed in acco								
TOP CHORD	1-2=0/32, 2-3=-657/ 5-6=-17/0, 5-8=-299				Residential Code nd referenced sta			and					
BOT CHORD			10	DAD CASE(S)			101/1111.						
WEBS	3-9=0/306, 3-8=-558	,			Otanuaru								LLL.
NOTES													10 111
1) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 10 cantilever right expo	CE 7-16; Vult=130mph Brph; TCDL=6.0psf; Br p B; Enclosed; MWFR C-C Exterior(2E) -0-10 0-5-8, Exterior(2E) 10- left and right exposed sed;C-C for members ns shown; Lumber DO)	CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior 5-8 to 13-5-8 zone; ; end vertical left an and forces & MWFR	r (1) d									SE 023	•

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	163122469

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:59 ID:R3mZ6t3uf_FSkXzDGc8bSAyEOZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.8

FORCES

TOP CHORD

BOT CHORD

WEBS

Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.82	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 105 lb	FT = 20%
LUMBER				TES									others) of truss to
TOP CHORD	2x4 SP No.2		1)		7-16; Vult=130m		0,			01			ng 94 lb uplift at joint
BOT CHORD	2x4 SP No.2				ph; TCDL=6.0psf; 3; Enclosed; MWF			,					lift at joint 12, 82 lb 14, 67 lb uplift at joint
WEBS OTHERS	2x4 SP No.2 2x4 SP No.3				C Corner(3E) -0-1								t at joint 17, 102 lb
BRACING	2X4 OF NU.3				5-8 zone; cantileve							nd 94 lb uplift at jo	
TOP CHORD	Structural wood cho	athing directly applie	od or		eft and right expo							ned in accordanc	
TOP CHORD	6-0-0 oc purlins, ex			forces & MW	/FRS for reactions	shown;	Lumber		Ínte	rnationa	I Resid	dential Code sect	ions R502.11.1 and
BOT CHORD		applied or 10-0-0 o	с		late grip DOL=1.6				R80	2.10.2 a	and ref	ferenced standard	I ANSI/TPI 1.
	bracing.		2)	0	ned for wind loads				LOAD	CASE(S) Sta	ndard	
WEBS	1 Row at midpt	10-12, 9-13			ids exposed to wi								
REACTIONS	(size) 2=13-5-8	, 11=13-5-8, 12=13-	5-8,		d Industry Gable E alified building de								
		8, 14=13-5-8, 15=13	· · · · · · · · · · · · · · · · · · ·		7-16; Pr=20.0 ps								
		8, 17=13-5-8, 18=13	3-5-8, ⁰⁾		1.15); Pf=20.0 psf								
	19=13-5-				ls=1.0; Rough Ca								
	Max Horiz 2=360 (Lo	<i>,,</i>	,	Cs=1.00; Ct	=1.10		•						
	Max Uplift 2=-94 (LC	(LC 13), 13=-82 (LC 1			snow loads have	been cor	nsidered for th	nis					
		_C 14), 15=-67 (LC 1		design.		. .							
		_C 14), 17=-58 (LC 1			is been designed								
		(LC 14), 19=-94 (LC			psf or 1.00 times t			si on					
	Max Grav 2=243 (L	C 11), 11=157 (LC 1	3), 6)		on-concurrent wit 2x4 MT20 unles								
		LC 10), 13=246 (LC			es continuous bot							WH C	11111
	14=213 (LC 21), 15=164 (LC	24), 8)		spaced at 2-0-0 o		a zouring.					IN HC	ARO

14=213 (LC 21), 15=164 (LC 24), 16=166 (LC 24), 17=167 (LC 28), 0) This trues been designed for

18=162 (LC 28), 19=243 (LC 11)

(lb) - Maximum Compression/Maximum

1-2=0/31, 2-3=-348/474, 3-4=-306/422

7-9=-205/268, 9-10=-138/166,

9-13=-206/87, 7-14=-174/143,

6-15=-127/113, 5-16=-126/117, 4-17=-129/119, 3-18=-127/131

10-11=-160/94, 10-12=-256/180

2-18=-215/310, 17-18=-123/197,

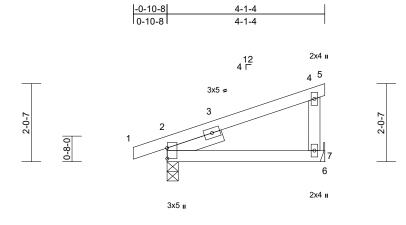
16-17=-123/197, 15-16=-123/197, 14-15=-123/197, 13-14=-123/197,

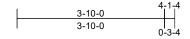
4-5=-270/382, 5-6=-235/341, 6-7=-215/299,

Tension

12-13=-123/197

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

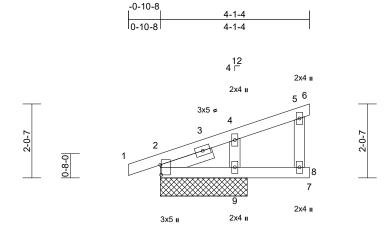
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	E01	Monopitch	3	1	I63122470 Job Reference (optional)	

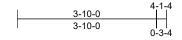
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:59 ID:GUeFxkLKF29C?3Ee6x3_t0yEOYk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

Plate Offsets (X, Y): [2:0-3-5,0-0-1]


Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.01	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and exposed ; members	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	athing directly applie cept end verticals. applied or 10-0-0 or 7= Mechanical 13) 2 10), 7=-32 (LC 14) 2 21), 7=231 (LC 21) pression/Maximum 49, 4-5=-8/0, 0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r fht exposed;C-C for for reactions shown.	chord li 6) * This ti on the l 3-06-00 chord a ed or 7) Refer to 8) Provide bearing 7. 9) One H2 recomm UPLIFT does no 10) This tru Internal R802.1 LOAD CAS	ss has been designed ve load nonconcurrent uss has been designed tall by 2-00-00 wide v nd any other members girder(s) for truss to t mechanical connection plate capable of withs .5A Simpson Strong-T tended to connect trus at jt(s) 2. This connex t consider lateral force ss is designed in acco ional Residential Code 0.2 and referenced sta E(S) Standard	with any d for a liv as where vill fit betv s. russ conin in (by oth tanding 3 rie conne s to bear stion is fo es. rdance we esections	other live loa e load of 20. a rectangle ween the bott nections. ers) of truss b2 lb uplift at ctors ing walls due r uplift only a ith the 2018 a R502.11.1 a	0psf tom joint ∋ to nd			and the second s		AROLU
Plate DOI DOL=1.15 Cs=1.00; 3) Unbalanc	CE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9);							THILD WARNING	SE 023	AL 594
load of 12	s has been designed for 2.0 psf or 1.00 times flat s non-concurrent with c	t roof load of 20.0 ps								CH.	Januar	VEEP. ER



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

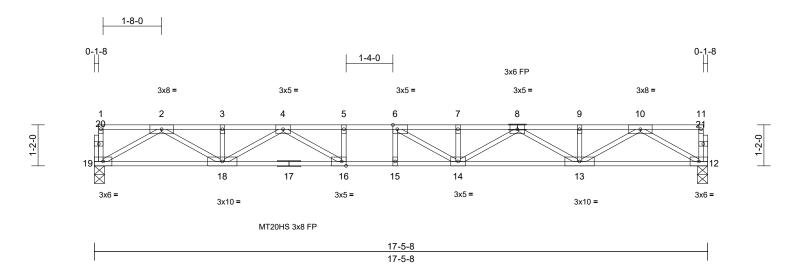
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	E02	Monopitch Structural Gable	1	1	Job Reference (optional)	163122471

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:59 ID:dSS8_ROT3bnU5q6bvUe9a4yEOYf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.7

Plate Offsets (X, Y): [2:0-3-5,0-0-5]

	(), []												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORE		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		Plate DOL=	CSI TC BC WB Matrix-MP 57-16; Pr=20.0 p	sf (Lum DC	L=1.15 Plate	e	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS SLIDER BRACING	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1	1-6-0	4) 5)	Cs=1.00; Ct Unbalanced design. This truss ha	snow loads have	e been cor d for great	nsidered for the	his f live					
TOP CHORD	4-1-4 oc purlins, ex	cept end verticals.	6)	overhangs n Gable studs This truss ha	psf or 1.00 times on-concurrent w spaced at 2-0-0 as been designed	ith other liv oc. d for a 10.0	ve loads.) psf bottom						
REACTIONS	•	C 10), 9=-72 (LC 11), C 10) 21), 9=431 (LC 21),	8)	* This truss on the botto 3-06-00 tall	ad nonconcurrer has been design m chord in all are by 2-00-00 wide ny other member	ed for a liv eas where will fit betv	e load of 20.0 a rectangle	0psf					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORE	1-2=0/25, 2-4=-153/ 5-6=-8/0, 5-8=-38/18	3			designed in acc Residential Coo			and					A.D.111
WEBS	4-9=-264/236				nd referenced st	andard AN	ISI/TPI 1.					"ATH U	AHOL
Vasd=10 Cat. II; E zone and exposed Lumber I 2) Truss de only. Foi see Stan	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) zone ; end vertical left and ri and forces & MWFRS 00L=1.60 plate grip DC usigned for wind loads in r studs exposed to wind dard Industry Gable En t qualified building desi	CDL=6.0psf, h=25ft; S (envelope) exterior; cantilever left and r ght exposed;C-C for for reactions shown; DL=1.60 n the plane of the tru I (normal to the face) d Details as applicat	r ight ss ,	AD CASE(S)	Stanuaro						and the second s	SE 023	



R. M M. M. MIL January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F01	Floor	6	1	Job Reference (optional)	163122472

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:45:59 ID:4KNJpGsJ_n2TG7ccYvWuoMyCO?7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.8

Plate Offsets (X, Y): [6:0-1-8,Edge], [16:0-1-8,Edge]

	x, i): [0:0 i 0,⊏ugo],	[10:0 1 0,Edg0]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.65	Vert(LL)	-0.31	14-15	>664	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.93	Vert(CT)	-0.43	14-15	>484	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.07	12	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 89 lb	FT = 20%F, 11%E
LUMBER			5) Recomme	nd 2x6 strongbacks		e snaced at						
TOP CHORD	2x4 SP No.2(flat)			c and fastened to e								
BOT CHORD	2x4 SP No.2(flat) *E	vcent* 17-12-2v4 SE		8") nails. Strongba			valls					
BOT ONOTED	No.1(flat)	11-12.2A+ 01		er ends or restraine								
WEBS	2x4 SP No.3(flat)		LOAD CASE(S		,							
OTHERS	2x4 SP No.3(flat)		(,								
BRACING	()											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	5-7-3 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	с									
	bracing, Except:											
	2-2-0 oc bracing: 14	-15.										
REACTIONS	· · ·	, 19=0-3-8										
	Max Grav 12=940 (I	_C 1), 19=940 (LC 1)									
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-19=-71/0, 11-12=-											
	2-3=-2561/0, 3-4=-2											
	5-6=-3837/0, 6-7=-3											
BOT CHORD	9-10=-2564/0, 10-11 18-19=0/1468, 16-1		2027									
BOTCHORD	14-15=0/3837, 13-1	,	,									
WEBS	10-12=-1697/0, 2-19										minin	11111
	2-18=0/1276, 9-13=	,	,								"TH C	ARO
	8-13=-892/0, 4-18=-		3								A	
	4-16=0/794, 7-14=-2	246/3, 5-16=-260/0,								5	OFFES	SIQ: VIA
	6-14=-469/299, 6-15	5=-149/74								5-	Strice !!	That?
NOTES										3	. A. A.	mar
1) Unbalance	ed floor live loads have	e been considered fo	or							2	SE	AI : =
Alada al a adam										-	. SE	AL i -

this design.

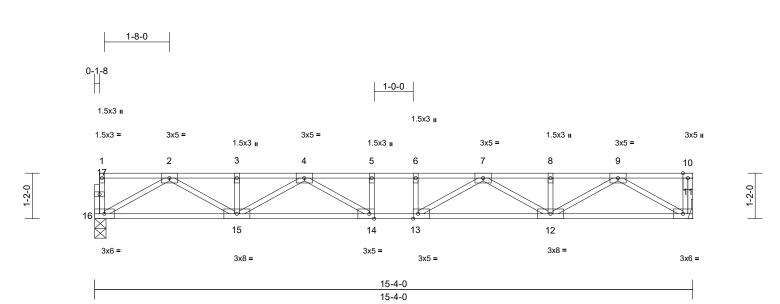
2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1


January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F02	Floor	3	1	Job Reference (optional)	163122473

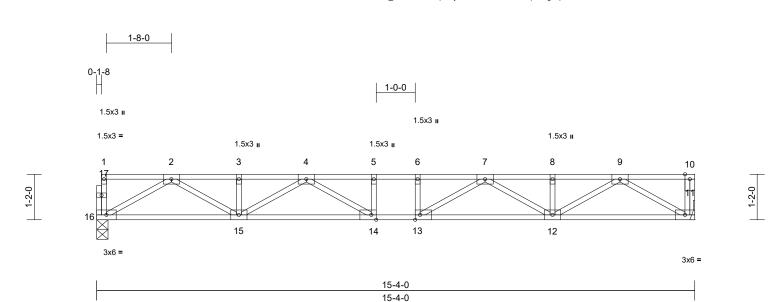
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:00 ID:a7vxgQMDhuaK3hnLXpjvYWyCNwb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.5

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.38	Vert(LL)		13-14	>990	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.79	Vert(CT)	-0.25	13-14	>723	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.05	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH	-						Weight: 79 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD												
BOT CHORD												
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING TOP CHORD	Structural wood she	othing directly appli	od or									
TOP CHORD	6-0-0 oc purlins, ex											
BOT CHORD			с									
REACTIONS	(size) 11= Meck Max Grav 11=830 (hanical, 16=0-3-8 LC 1), 16=823 (LC 1)									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD												
	2-3=-2171/0, 3-4=-2											
		2992/0, 7-8=-2171/0,										
BOT CHORD	8-9=-2171/0, 9-10= 15-16=0/1272, 14-1		2002									
BOTCHORD	12-13=0/2733, 11-1		2992,									
WEBS	9-11=-1473/0, 2-16		47,									
	2-15=0/1050, 8-12=	-162/0, 3-15=-164/0	,									111.
		-655/0, 7-13=-34/52									111110	AD 111
	4-14=-34/521, 5-14	=-186/0, 6-13=-186/	0								"ATH U	AHO
NOTES										5	OFEES	Sig
 Unbalance this design 	ced floor live loads have	e been considered to	or							2.	× in 1	Mary .
	girder(s) for truss to tru	ss connections								-	:0:	K . E
	s is designed in accord									Ξ	: OF	AL : E
	onal Residential Code s		ind							-	SE SE	
	2 and referenced stand									=	: 023	594 : =
	end 2x6 strongbacks, o									-	1	
	oc and fastened to each									-	1.	E
	(3") nails. Strongbacks		alis							South Charles and	X: SNO	IFER AN
	uter ends or restrained N, Do not erect truss ba									1	O	NEED ON
,	(S) Standard										INY P	MILLON
LUAD CASE	Stanuaru										2000 million	and the second s
												10.0004

January 19,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F03	Floor	2	1	Job Reference (optional)	163122474

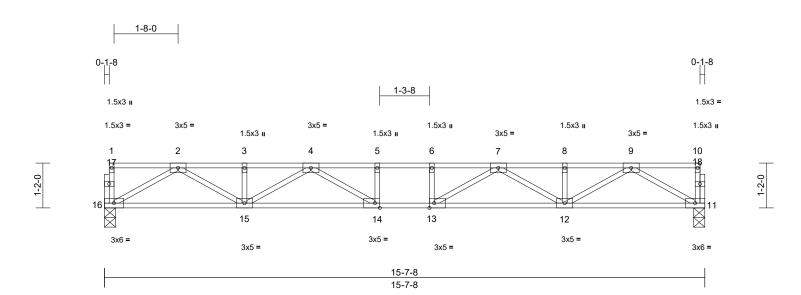
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Thu Jan 18 12:46:00 ID:PHGCxTR_GkLTncFUt4qJnnyCNwV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:29.5

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

	(, .). [],[
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.23	Vert(LL)	-0.12		>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.53	Vert(CT)	-0.17	13-14	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	0.03	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 79 lb	FT = 20%F, 11%E
											5	- ,
LUMBER												
TOP CHORD												
BOT CHORD												
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS	0	nanical, 16=0-3-8										
	Max Grav 11=553 (I	LC 1), 16=549 (LC 1)									
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD												
	2-3=-1448/0, 3-4=-1											
	5-6=-1995/0, 6-7=-1	, ,										
	8-9=-1447/0, 9-10=0											
BOT CHORD	,	,	995,									
	12-13=0/1822, 11-1											
WEBS	9-11=-982/0, 2-16=- 2-15=0/700, 8-12=-											
	7-12=-437/0, 4-15=-	, , ,	7									11111
	4-14=-22/347, 5-14=										ULL C	APO
NOTES	-122/0-1, 0-1	124/0, 0-10124/0	0								"a"	
	ed floor live loads have	heen considered fo	or							12	O'.EES	SIGN AV M
this desig									_	10	Sico C	Markie
	are 3x5 MT20 unless of	otherwise indicated							-	3	12	K :
	irder(s) for truss to trus									8		AL 1 E
	is designed in accorda									-	SE	AL E
	nal Residential Code s		ind							-	: 023	594 : =
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.								-	: 020	: :
	end 2x6 strongbacks, c									TITUTE AND A DESCRIPTION OF A DESCRIPTIO		1 2
10-00-00	oc and fastened to eac	ch truss with 3-10d								-	X. En	Rias
	3") nails. Strongbacks		alls							1	C VGI	VEFTICKS
at their ou	iter ends or restrained	by other means.									INV -	and Levis
6) CAUTION	I, Do not erect truss ba	ickwards.									11, R.	MIL
LOAD CASE	(S) Standard										1 min	mm
												40.0004

January 19,2024


Page: 1

TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F04	Floor	5	1	Job Reference (optional)	163122475

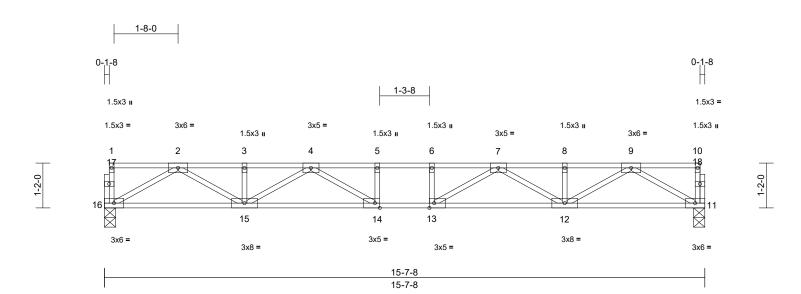
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:00 ID:mE35_BV75GzmtO7SgdQUUqyCNwQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

						-					-	
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.29	Vert(LL)	-0.13	13-14	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.55	Vert(CT)	-0.18	13-14	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.04	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 79 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD		eathing directly appli	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD		/ applied or 10-0-0 o	C									
	bracing.											
REACTIONS		, 16=0-3-8										
	Max Grav 11=560 (
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-16=-47/0. 10-11=	-47/0 1-2=-3/0										
	, -	1484/0, 4-5=-2068/0,										
		2068/0, 7-8=-1484/0,										
	8-9=-1484/0, 9-10=		,									
BOT CHORD	15-16=0/866, 14-15	5=0/1875, 13-14=0/2	068,									
	12-13=0/1875, 11-1	2=0/866										
WEBS	9-11=-999/0, 2-16=	-999/0, 9-12=0/721,										
	2-15=0/721, 8-12=-											1111.
		-457/0, 7-13=-9/381,									111110	AD 111
	4-14=-9/381, 5-14=	-140/0, 6-13=-140/0									N'STH U	ARO
NOTES										1	n yes	Star YAS 1/2
	ed floor live loads have	e been considered fo	or						-	70	A OFFE	Mills'
this desigr									-		age .	1) maine
	are 1.5x3 MT20 unles		d.							Ξ	.**	1 1 E
	is designed in accord									-	: SE	AL : :
	nal Residential Code s		and							-	•	
	2 and referenced stand									=	: 023	594 : :
	end 2x6 strongbacks, o oc and fastened to eac									-		1 2
	3") nails. Strongback		alle							-		a! 3
	ter ends or restrained		rans							In the transmission	N.SNGI	UFEN AS
	(S) Standard	sy calor mounts.								1	OA	150 8 8

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F05	Floor	6	1	Job Reference (optional)	163122476

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:00 ID:XPjh4oq7B3q94HXb7kOHy1yCNui-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

						1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.45	Vert(LL)	-0.20	13-14	>939	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.83	Vert(CT)	-0.27	13-14	>686	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.05	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 79 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	· · · /											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD		eathing directly appli	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 o	C									
REACTIONS	•	, 16=0-3-8										
REACTIONS	Max Grav 11=839 (,	I)									
FORCES	•	npression/Maximum										
FURCES	(ib) - Maximum Con Tension	npression/waximum										
TOP CHORD		-71/0 1-2=-4/0										
		2226/0, 4-5=-3102/0,										
		3102/0, 7-8=-2226/0,										
	8-9=-2226/0, 9-10=-											
BOT CHORD	15-16=0/1299, 14-1	5=0/2813, 13-14=0/	3102,									
	12-13=0/2813, 11-1											
WEBS		=-1498/0, 9-12=0/10										
		-165/0, 3-15=-165/0										11111
		-685/0, 7-13=-13/57									O Lutte	AD
	4-14=-13/371, 3-14	=-209/0, 6-13=-209/0	0								"atro	10/11/
NOTES	ad flear live leads is sur	a haan aanaldaa dif								N	OCEES	Sig. Min
1) Unbalance this desig	ed floor live loads have	e been considered to	זט						1	to	200	Mist
0	are 1.5x3 MT20 unles	s otherwise indicated	d						/	3	2	IN MARCH
	is designed in accord									I I I I I I I I I I I I I I I I I I I	. OF	AL 1 2
	nal Residential Code s		and							-	SE	
R802.10.2	2 and referenced stand	dard ANSI/TPI 1.								=	023	594 : =
	end 2x6 strongbacks, o									-		1 2
	oc and fastened to eac									1		1 3
	3") nails. Strongbacks		alls							-	X. SNO.	-ERIA S
	uter ends or restrained	by other means.								1	O, GI	NEE CON
LOAD CASE((S) Standard									1	1. WY D	All Lain

R. MILLIN January 19,2024 NGINEERING

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F06	Floor	6	1	Job Reference (optional)	163122477

1-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-8-0

0-1-8

1.5x3 II

24

23 X

1-2-0

Scale = 1:38.1

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS

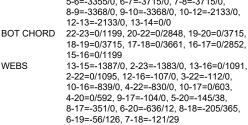
BRACING TOP CHORD

BOT CHORD

FORCES

TOP CHORD

REACTIONS (size)


LUMBER

TOP CHORD

BOT CHORD

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:46:00 ID:UnqRUUsNjg4tJbh_E9Ql1SyCNug-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 FP 1.5x3 =3x6 =1.5x3 u 3x5 =1.5x3 🛛 3x5 = 1.5x3 I 3x5 = 1.5x3 II 3x5 = 1.5x3 🛛 3x6 = 2 3 4 5 6 7 8 9 10 11 12 13 2 2 2 2 2 22 21 20 19 18 17 16 3x6 = 3x5 = 3x8 = 3x8 = 1.5x3 🛚 3x5 = 3x5 = MT20HS 3x8 FP 20-11-0 20-11-0 Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge] PLATES 1-4-0 CSI DEFL in l/defl L/d (psf) Spacing (loc) 40.0 Plate Grip DOL 1.00 TC 0.51 Vert(LL) -0.40 17-18 >621 480 MT20HS 10.0 Lumber DOL 1.00 BC 0.81 Vert(CT) -0.55 17-18 >449 360 MT20 0.0 Rep Stress Incr YES WB Horz(CT) 0.52 0.08 15 n/a n/a 5.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 107 lb FT = 20%F, 11%E 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d 2x4 SP No.2(flat) (0.131" X 3") nails. Strongbacks to be attached to walls 2x4 SP No.2(flat) *Except* 21-15:2x4 SP at their outer ends or restrained by other means. No.1(flat) 6) CAUTION, Do not erect truss backwards. 2x4 SP No.3(flat) 2x4 SP No.3(flat) LOAD CASE(S) Standard Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing 15=0-3-8, 23=0-3-8 Max Grav 15=758 (LC 1), 23=754 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-23=-48/0, 14-15=-49/0, 1-2=-3/0, 2-3=-2137/0, 3-4=-2137/0, 4-5=-3355/0, 5-6=-3355/0, 6-7=-3715/0, 7-8=-3715/0,

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated. 2)
- All plates are 1.5x3 MT20 unless otherwise indicated. 3)
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1

3x5 II

14

Î

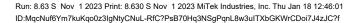
₿

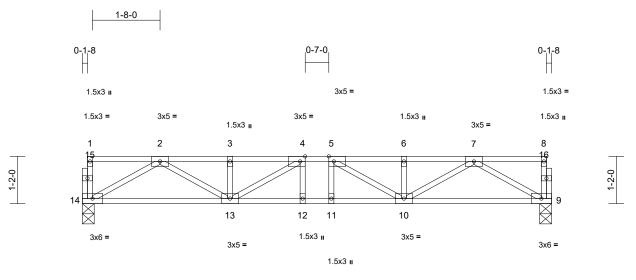
3x6 =

GRIP

187/143

244/190


818 Soundside Road


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a loss system: before use, the building design index very the applications of design had been properly incorporate and sessing into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F07	Floor	4	1	Job Reference (optional)	163122478
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.6	3 S Nov 1 2023 Print: 8	.630 S Nov 1	2023 MiTek Industries, Inc. Thu Jan 18 12:46:01	Page: 1

1	11-7-0
	11-7-0

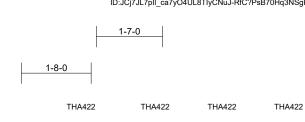
Scale = 1:28.4

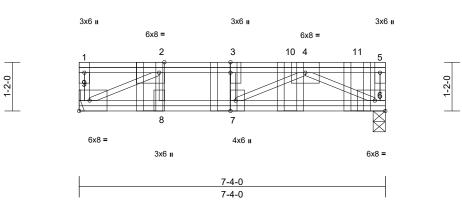
Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

		1										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.22	Vert(LL)	-0.06		>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.48	Vert(CT)	-0.09	11-12	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.02	9	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 61 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS	(size) 9=0-3-8,											
	Max Grav 9=617 (L	C 1), 14=617 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	1-14=-71/0, 8-9=-71											
	2-3=-1479/0, 3-4=-1		,									
	5-6=-1479/0, 6-7=-1											
BOT CHORD	13-14=0/917, 12-13	,	696,									
WEBS	10-11=0/1696, 9-10 7-9=-1056/0, 2-14=-											
WEBS	2-13=0/656, 6-10=-1		,									
	5-10=-369/2, 4-13=-											
	5-11=-69/79	000/2, 1 12 00/10,	1								minin	in the
NOTES											ORTH C	ARO
	ed floor live loads have	heen considered fo	or.								R	and the second
this design										S	U FES	Oriver
	are 1.5x3 MT20 unles	s otherwise indicated	d.							5	Tin -//	MAIL
3) This truss	is designed in accorda	ance with the 2018								2/	:07 10	
Internation	nal Residential Code s	ections R502.11.1 a	ind							2	: CF	ΔΙ : Ξ
R802.10.2	and referenced stand	lard ANSI/TPI 1.									: OL	

4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

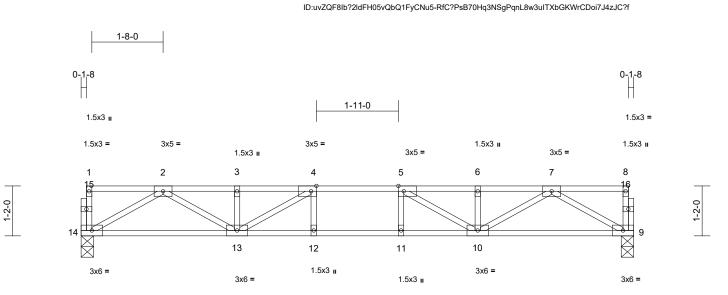

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F08	Floor Girder	1	1	Job Reference (optional)	163122479

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:01 ID:JCj7JI7pII_ca7yO4UL8TIyCNuJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:27.6


Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-3-0,Edge], [7:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.84	Vert(LL)	-0.11	6-7	>776	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.85	Vert(CT)	-0.15	6-7	>568	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.81	Horz(CT)	0.02	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 58 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, 9 Max Grav 6=2155 (I (lb) - Maximum Com Tension 1-9=0/151, 5-6=-510 3-4=-2962/0, 4-5=0/	athing directly applie cept end verticals. applied or 10-0-0 or 9= Mechanical _C 4), 9=1215 (LC 3 apression/Maximum 0/0, 1-2=0/0, 2-3=-25 0 2962, 6-7=0/3009 304/0, 4-7=-53/100,	1) Dead + F Plate Incr Uniform L Vert: 6 Concentra ed or Vert: 2 (F) c	loor Live (balanced ease=1.00 oods (lb/ft) -9=-10, 1-5=-100 ated Loads (lb) =-188 (F), 3=-745 (,							
this desig			pr									
3) This truss	girder(s) for truss to trus s is designed in accorda nal Residential Code s 2 and referenced stand	ance with the 2018 ections R502.11.1 a	nd								IN TH C	AROLA
10-00-00 (0.131" X	end 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks uter ends or restrained	to be attached to w	alls						/	AND	A POPES	March
5) Use Simp Truss) or 1-8-4 fron	oson Strong-Tie THA42 equivalent spaced at 1 n the left end to 6-7-15 of top chord.	2 (6-16d Girder, 6-1 -9-5 oc max. starting	g at							TITLE CONTRACTOR	SE 023	
 Fill all nail In the LO 	I holes where hanger is AD CASE(S) section, k ss are noted as front (F	oads applied to the f								inter.	N. ENGI	VEERER
	(S) Standard	J OF DACK (D).									Januar	MILL y 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type		Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F09	Floor		2	1	Job Reference (optional)	163122480
Carter Components (Sanford, NC	c), Sanford, NC - 27332,	Ru	n: 8.63 S Nov 12	023 Print: 8.6	30 S Nov 1	2023 MiTek Industries, Inc. Thu Jan 18 12:46:01	Page: 1

12-11-0 12-11-0

Scale = 1:26.9


Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

Leading (pd) TCDL Spacing (pd) TCDL 2-0-0 (pd) (pd) (pd) (pd) (pd) CSI (pd) (pd) (pd) (pd) DEFL (pd) (pd) (pd) Disc (pd) (pd) DEFL (pd) (pd) Disc (pd) DEFL (pd) Disc (pd)
TOP CHORD 244 SP No.2(flat) BOT CHORD 244 SP No.3(flat) WEBS 244 SP No.3(flat) BRACING Enclurat wood sheathing directly applied or 6-00 oc puritins, except end verticals, BOT CHORD BRACING Enclurat wood sheathing directly applied or 6-00 oc puritins, except end verticals, BOT CHORD REACTIONS Rigid ceiling directly applied or 10-0-0 bracing. REACTIONS 9:0-3-8, 14=0-3.8 Max Grav Image: Stratule of the point of
•j·

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

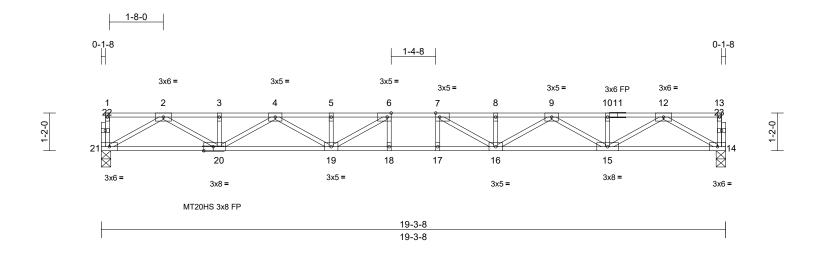
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F10	Floor	2	1	Job Reference (optional)	163122481

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:01 ID:ngpx5VL53HF3kuKs8GfMB5yCNu1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.6

Plate Offsets ((X, Y): [4:0-1-8,Edge],	[5:0-1-8,Edge], [12:0	0-1-8,Edge], [1	6:0-1-8,Edge], [21:0	-1-8,Edge]							
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.54 0.79 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.15 0.02		l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TF				0.02	17	n/a	n/a	Weight: 98 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 6-0-0 oc 17=0-3-8, 22=0-3-8 C 3) .C 4), 17=1282 (LC 1	4) Th In R 5) R 10 (0 d or at 6) C, LOAD	his truss is designed ternational Residenti 302.10.2 and referen ecommend 2x6 stron 0-00-00 oc and faster .131" X 3") nails. Str their outer ends or r AUTION, Do not erec CASE(S) Standar	in accordance w al Code sections ced standard AN gbacks, on edge ded to each truss ongbacks to be estrained by othe t truss backward	R502.11.1 a NSI/TPI 1. e, spaced at s with 3-10d attached to v er means.						. ,
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-22=-72/0, 13-14=- 2-3=-1509/0, 3-4=-1 5-6=-1126/0, 6-7=-1 8-9=0/967, 9-11=-35 12-13=-6/0	509/0, 4-5=-1678/0, 126/0, 7-8=0/967,	62,									
BOT CHORD	20-22=0/1678, 19-20 17-18=-72/352, 16-1 15-16=-162/359, 14-	7=-472/165,	678,								WITH C	ARO
WEBS	7-18=0/930, 2-21=0/ 3-21=-224/0, 5-18=- 4-20=-97/22, 5-19=0	727/0, 4-21=-312/17	,						,	Nº 0	SE	SION AL
 this design 2) All plates a 3) One H2.5/ recomment UPLIFT at 	ed floor live loads have	otherwise indicated connectors o bearing walls due t	0							11111111111111111	023	594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F11	Floor	10	1	Job Reference (optional)	163122482

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:01 ID:fR2SxtPc7VIUCWddN5kIMxyCNtz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.6

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge], [20:0-3-8,Edge]

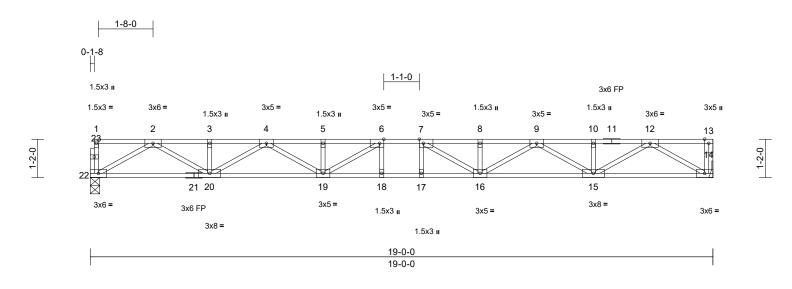
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.42	Vert(LL)	-0.33	17-18	>684	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.74	Vert(CT)	-0.46	17-18	>497	360	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.07	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 98 lb	FT = 20%F, 11%E
LUMBER				nd 2x6 strongbacks								
TOP CHORD	2x4 SP No.2(flat)			c and fastened to e								
BOT CHORD	2x4 SP No.2(flat) *E	xcept* 20-14:2x4 SF		3") nails. Strongbag			valls					
	No.1(flat)		at their out	er ends or restraine	ed by oth	er means.						
WEBS	2x4 SP No.3(flat)		LOAD CASE(S	 Standard 								
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	;									
	bracing.											
REACTIONS	(size) 14=0-3-8,	21=0-3-8										
	Max Grav 14=832 (I	LC 1), 21=832 (LC 1))									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-21=-57/0, 13-14=-	57/0, 1-2=-3/0,										
	2-3=-2321/0, 3-4=-2	321/0, 4-5=-3559/0,										
	5-6=-3559/0, 6-7=-3	802/0, 7-8=-3559/0,										
	8-9=-3559/0, 9-10=-	2321/0, 10-12=-232	1/0,									
	12-13=-3/0											
BOT CHORD	19-21=0/3057, 18-1	9=0/3802, 17-18=0/3	8802,									
	16-17=0/3802, 15-1	6=0/3057, 14-15=0/1	315									111.
WEBS	12-14=-1517/0, 2-21	1=-1517/0, 12-15=0/ ⁻	1174,									A
	2-20=0/1175, 10-15	=-134/0, 3-20=-135/0),								N'TH C	ARO
	9-15=-860/0, 4-20=-	859/0, 9-16=0/586,								1	R	Strack In 14
	4-19=0/585, 8-16=-1	182/20, 5-19=-182/20),							5	USFES	SIQN: M
	7-16=-569/110, 6-19									5	Vind 1	Martin -
	6-18=-96/118, 7-17=	-96/117								2	:2:2:	11 X Y 3
NOTES										- Internet	: 05	AL 594
1) Unbalance	ed floor live loads have	e been considered fo	r							-	SE.	AL : :
, this design	n.									=	: 023	594 : =
2) All plates a	are MT20 plates unles	s otherwise indicated	ł.							-	: 020	1 2

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the preventione applicable from the Structure Building Component Advance international truss properties and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty		Ply	DRB GROUP - 102 FaNC	
23120151	F12	Floor	3	1	Job Reference (optional)	163122483

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:02 ID:JCj7JL7pII_ca7yO4UL8TIyCNuJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.2

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge]

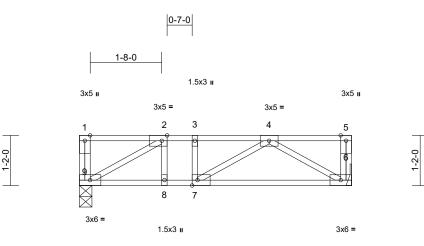
	(x, 1): [0:0 1 0,⊵ugo],	[r.o r o,=ugo]										
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00	CSI TC	0.38	DEFL Vert(LL)	in -0.31	(loc) 17-18	l/defl >715	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.69	Vert(CT)	-0.43	17-18	>520	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.07	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 98 lb	FT = 20%F, 11%E
LUMBER				mend 2x6 strongbacks								
TOP CHORD BOT CHORD	()	xcept* 21-14:2x4 SF		0 oc and fastened to e X 3") nails. Strongba			valls					
201 0110112	No.1(flat)		at their	outer ends or restraine								
WEBS	2x4 SP No.3(flat)			N, Do not erect truss	backward	ds.						
OTHERS												
BRACING												
TOP CHORD	P CHORD Structural wood sheathing directly applied or											
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		_									
BOT CHORD	bracing.	applied of 10-0-0 of	j.									
REACTIONS	0	anical, 22=0-3-8										
REACTIONS	Max Grav 14=824 (L											
FORCES	(lb) - Maximum Compression/Maximum											
	Tension	•										
TOP CHORD												
	2-3=-2278/0, 3-4=-2											
	5-6=-3474/0, 6-7=-3 8-9=-3474/0, 9-10=-		7/0									
	12-13=0/0	221110, 10-12-221	770,									
BOT CHORD		0=0/2993, 18-19=0/3	3692,									
	17-18=0/3692, 16-1	7=0/3692, 15-16=0/2	2993,									110.
	14-15=0/1295											A
WEBS	12-14=-1498/0, 2-22										"THU	ARO
	2-20=0/1151, 10-15		D,							-	07.00	Sim Ant
	9-15=-835/0, 4-20=- 4-19=0/562, 8-16=-1	, ,	n							3.	Sale 7	Nila
	7-16=-520/120, 6-19	· · · · · · · · · · · · · · · · · · ·	σ,							30	:0	
	6-18=-93/113, 7-17=									2		. 1. 1
NOTES	,									-	SE/	AL : E
1) Unbalance	ed floor live loads have	been considered fo	r							in and a state of the state of	023	AL 594
this design										-	•	1 2
	are 1.5x3 MT20 unless								=	A	1 1 3	
	irder(s) for truss to trus									1	X SNOI	IFER A S
	is designed in accorda		nd							1	OA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	2 and referenced stand										YR	MILLIN
									"Innin	un un		

- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

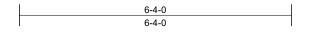
818 Soundside Road Edenton, NC 27932

R. Minin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component component component for the prevention and the fabrication of the stability of the size of the fabrication of the stability of the size of the size of the stability of the size of the stability of the size of the stability of the size of the size of the stability of the size of and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



January 19,2024


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	F13	Floor	1	1	Job Reference (optional)	163122484

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:02 ID:JCj7JL7pII_ca7yO4UL8TIyCNuJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

3x5 =

Scale = 1:26.8

Plate Offsets (X, Y): [2:0-1-8,Edge], [7:0-1-8,Edge]

Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.19	Vert(LL)	-0.02	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.21	Vert(CT)	-0.03	6-7	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 35 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD												
WEBS	2x4 SP No.3(flat)											
BRACING	. ,											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	C									
	bracing.											
REACTIONS	(size) 6= Mecha	nical, 9=0-3-8										
Max Grav 6=267 (LC 1), 9=267 (LC 1)												
FORCES	(lb) - Maximum Com	pression/Maximum										

FURCES	(ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-9=-62/0, 5-6=-55/0, 1-2=0/0, 2-3=-375/0,
	3-4=-375/0, 4-5=0/0
BOT CHORD	8-9=0/375, 7-8=0/375, 6-7=0/342
WEBS	4-6=-396/0, 2-9=-430/0, 4-7=-10/101,
	2-8=-11/56, 3-7=-16/0

NOTES

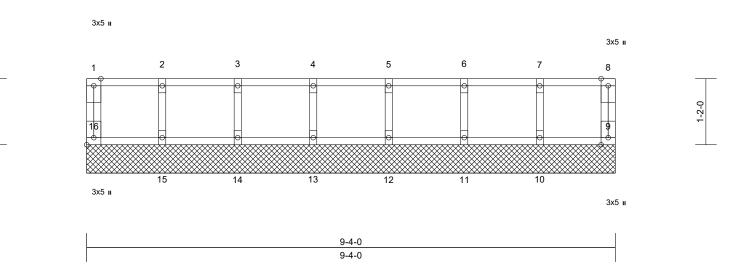
1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

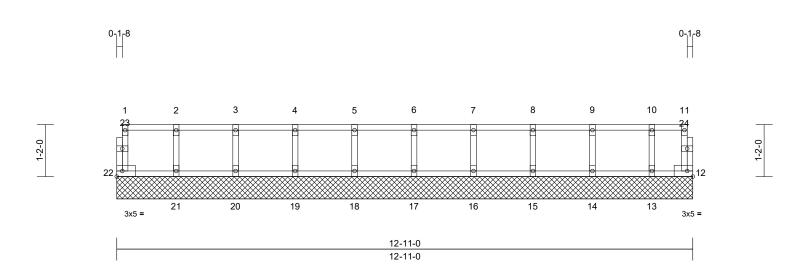
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	FW09	Floor Supported Gable	1	1	Job Reference (optional)	163122485
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	Page: 1			

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:02 ID: cApLBcSAdEj88 tnLztoiNHyCNsc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffter the second state of the

Scale = 1:20.3

1-2-0

Plate Offsets (X. V): [16:Edge 0-1-8]

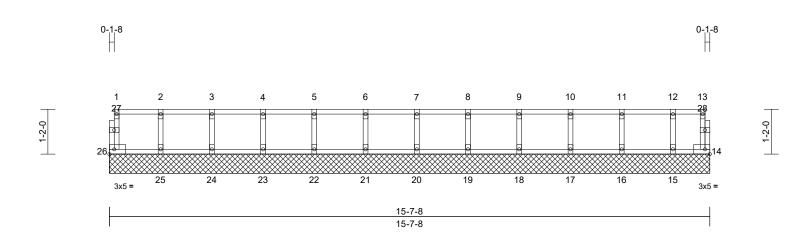

Plate Offsets ((X, Y): [16:Edge,0-1-8]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.22 0.02 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	12=9-4-0, 15=9-4-0, Max Grav 9=149 (LC 11=350 (L 13=346 (L	cept end verticals. applied or 10-0-0 oc 10=9-4-0, 11=9-4-0, 13=9-4-0, 14=9-4-0 C 1), 10=336 (LC 1), C 1), 12=346 (LC 1) LC 1), 14=350 (LC 1)	10-00-00 o (0.131" X 3 at their out LOAD CASE(S 1) Dead + Fi vd or Plate Incre Uniform L Vert: 9-	d 2x6 strongbacks c and fastened to e ") nails. Strongbac er ends or restraine) Standard oor Live (balanced) ease=1.00 oads (lb/ft) 16=-10, 1-8=-250	ach truss ks to be d by othe	s with 3-10d attached to w er means.						
FORCES	15=336 (L (lb) - Maximum Com Tension	LC 1), 16=149 (LC 1) pression/Maximum)									
TOP CHORD	1-16=-142/0, 8-9=-1- 2-3=-25/0, 3-4=-25/0 6-7=-25/0, 7-8=-25/0), 4-5=-25/0, 5-6=-25	i/0,									
BOT CHORD	15-16=0/25, 14-15=0 12-13=0/25, 11-12=0 9-10=0/25										IN ATH C	ARO
WEBS	2-15=-325/0, 3-14=- 5-12=-333/0, 6-11=-									i.	N. OFFS	SIGNIE
 Gable required Truss to be braced age Gable studies This truss Internation 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement ds spaced at 1-4-0 oc. is designed in accorda nal Residential Code so 2 and referenced stand	m chord bearing. one face or securely t (i.e. diagonal web). ance with the 2018 ections R502.11.1 ar								CONTRACTOR OF STREET, ST	SE 023	594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		DRB GROUP - 102 FaNC	100 / 00 / 00
23120151	FW12	Floor Supported Gable	1	1	Job Reference (optional)	163122486
Carter Components (Sanford, NC), Sanford, NC - 27332,		Run: 8.63 S Nov 1 2	Page: 1			

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:02 ID:Vy2r1_VhhTDadV56CjseY7yCNsY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

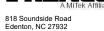
4.05.0


Scale = 1:25.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	12	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 55 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=12-11	cept end verticals.	d or LOAD CASE(\$	is designed in acco al Residential Cod and referenced str nd 2x6 strongbacks or and fastened to 3") nails. Strongba er ends or restrain 5) Standard	e sections andard AN s, on edge each truss icks to be	R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to w						
	16=12-11 18=12-11 20=12-11 22=12-11 12=32 (LC 14=152 (L 16=147 (L 18=147 (L	-0, 17=12-11-0, -0, 19=12-11-0, -0, 21=12-11-0, -0 C 1), 13=117 (LC 1), .C 1), 15=145 (LC 1), .C 1), 17=147 (LC 1) .C 1), 19=147 (LC 1) .C 1), 21=147 (LC 1)	,									
FORCES	(lb) - Maximum Com Tension	,										110.
TOP CHORD	1-22=-49/0, 11-12=- 3-4=-7/0, 4-5=-7/0, 5 7-8=-7/0, 8-9=-7/0, 9	5-6=-7/0, 6-7=-7/0,	,							A	URTH C	AROLIN
BOT CHORD	21-22=0/7, 20-21=0/ 17-18=0/7, 16-17=0/ 13-14=0/7, 12-13=0/	/7, 19-20=0/7, 18-19 /7, 15-16=0/7, 14-15	=0/7,						-	ŽO	A CHOYES	MARIE
WEBS	2-21=-132/0, 3-20=- 5-18=-133/0, 6-17=- 8-15=-132/0, 9-14=-	133/0, 7-16=-134/0,									SE 023	•
 Gable required Truss to be braced again 	are 1.5x3 MT20 unless uires continuous bottoi e fully sheathed from c ainst lateral movemen ds spaced at 1-4-0 oc.	m chord bearing. one face or securely								(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Januar	ALLENN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	FW15	Floor Supported Gable	1	1	Job Reference (optional)	163122487
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2	2023 MiTek Industries, Inc. Thu Jan 18 12:46:03	Page: 1		

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:03 ID:RKAcSgXxD4TItoEVK7v6dYyCNsW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

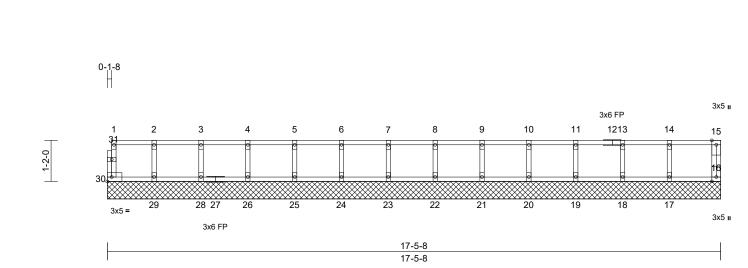

Scale = 1:30

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL BCLL	10.0	Lumber DOL	1.00 YES		BC WB	0.01	Vert(TL)	n/a	-	n/a	999		
BCDL	0.0 5.0	Rep Stress Incr Code		8/TPI2014	Matrix-MR	0.03	Horiz(TL)	0.00	14	n/a	n/a	Weight: 66 lb	FT = 20%F, 11%E
BODL	5.0	Code	11(0201	0/1712014	Wattix-Wit							weight. 00 ib	FT - 2070F, TT70E
LUMBER			4)		spaced at 1-4-0 o								
TOP CHORD	()		5)		designed in accor								
BOT CHORD	()				Residential Code nd referenced star			d					
WEBS OTHERS	2x4 SP No.3(flat) 2x4 SP No.3(flat)		6)		2x6 strongbacks,								
BRACING	2X4 OF NO.3(IIAL)		0)		and fastened to ea								
TOP CHORD	Structural wood she	athing directly applie	d or		nails. Strongbacl			lls					
	6-0-0 oc purlins, ex				ends or restraine	d by othe	er means.						
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc LOAD CASE(S) Standard bracing.													
REACTIONS		8, 15=15-7-8, 16=15-											
		8, 18=15-7-8, 19=15-											
		8, 21=15-7-8, 22=15-	,										
	23=15-7-8	3, 24=15-7-8, 25=15- 3	7-0,										
	Max Grav 14=34 (L0												
		_C 1), 17=145 (LC 1)	,										
		_C 1), 19=147 (LC 1)											
		_C 1), 21=147 (LC 1)											
		_C 1), 23=147 (LC 1) _C 1), 25=147 (LC 1)											
	24=147 (L 26=53 (LC		,										
FORCES	(lb) - Maximum Com	,											
	Tension												UULL.
TOP CHORD	, -		7/0,									"HC	ARO
	3-4=-7/0, 4-5=-7/0, 5	, ,	_									atting	w. Lings
	, , ,	9-10=-7/0, 10-11=-7/0),								- Y	Q. FES	810 N/
BOT CHORD	11-12=-7/0, 12-13=- 25-26=0/7, 24-25=0/		=0/7								3/	appl.	Martis
BOT CHORD	,	/7, 19-20=0/7, 18-19:	,								-	:27	X . 2
		/7, 15-16=0/7, 14-15									-	: SE	AI : E
WEBS	2-25=-132/0, 3-24=-										-		E04 : E
	5-22=-133/0, 6-21=-										=	023	594 : =
	8-19=-133/0, 9-18=- 11-16=-138/0, 12-15	134/0, 10-17=-132/0	,								=	A	1 S
NOTES	11-10130/0, 12-13										HILLING WARNEN	N. En.	AL 594
	are 1.5x3 MT20 unless	otherwise indicated									14	O VGI	VEE CAN
, ,	uires continuous botto		•									INY -	MILLIN
, ,	e fully sheathed from o	0										Min R.	Within
	ainst lateral movemen												
												Januar	/ 19.2024

NGINEERING

January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



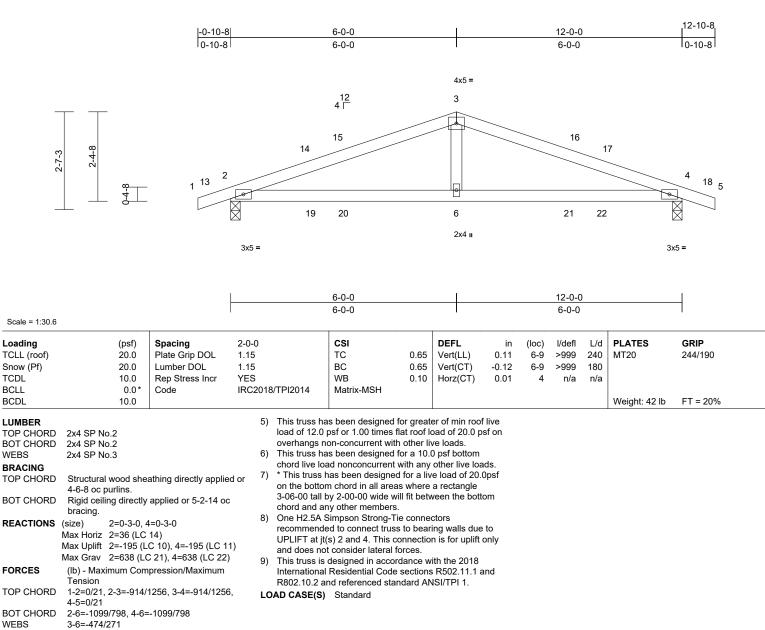
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	FW17	Floor Supported Gable	1	1	Job Reference (optional)	163122488

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:03 ID: K6Q7 I1aSHJz jLQYGZzz2nOyCNsS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffter the second strain of the secon

1-2-0

Scale = 1.32.8

Scale = 1:32.8													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	16	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI	2014	Matrix-MR							Weight: 73 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 16=17-5-6 22=17-5-6 29=17-5-6 29=17-5-6 Max Grav 16=69 (LC 18=145 (L 20=147 (L 22=147 (L 24=147 (L 26=146 (L 29=141 (L	athing directly applied cept end verticals. applied or 10-0-0 oc 3, 17=17-5-8, 18=17 3, 20=17-5-8, 21=17 3, 26=17-5-8, 24=17 3, 30=17-5-8, 28=17 3, 30=17-5-8, 28=17 2, 3, 30=17-5-8, 28=17 2, 3, 30=17-5-8, 28=17 2, 1, 17=152 (LC 1), LC 1), 21=147 (LC 1), LC 1), 25=147 (LC 1), LC 1), 25=147 (LC 1), LC 1), 28=148 (LC 1), LC 1), 30=58 (LC 1)	2) Gat 3) Tru: bra: 4) Gat 5) This Inte d or R8(6) Rec 10-1 (0.1 5-8, 7) CAI 5-8, 7) CAI 5-8, LOAD (ble require ss to be fu ced again ble studs s s truss is of 02.10.2 ar commend 00-00 oc a 31" X 3") heir outer JTION, D	es continuous bo ully sheathed fro st lateral moven spaced at 1-4-0 designed in acco Residential Cod dr deferenced st 2x6 strongback: and fastened to nails. Strongba ends or restrain o not erect truss Standard	m one fac nent (i.e. d oc. ordance w e sections andard AN s, on edge each truss cks to be ed by othe	e or securely liagonal web). ith the 2018 & R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means.	nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											000
TOP CHORD	,), 4-5=-12/0, 5-6=-12/), 8-9=-12/0, 9-10=-12	,								in the second se	OFES	AROLIT
BOT CHORD	29-30=0/12, 28-29=(25-26=0/12, 24-25=(22-23=0/12, 21-22=(19-20=0/12, 18-19=(16-17=0/12 2-29=-129/0, 3-28=-	0/12, 23-24=0/12, 0/12, 20-21=0/12, 0/12, 17-18=0/12,									The second second	SE 023	
NOTES	5-25=-133/0, 6-24=- 8-22=-133/0, 9-21=-	133/0, 7-23=-133/0, 133/0, 10-20=-133/0, 3=-132/0, 14-17=-137	/0								ALL ALL	WY R.	ELENN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Scherulter and properting and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Camponet to the prevent collapse with possible for the North Plating Platin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	G01		4	1	Job Reference (optional)	163122489

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:46:03

ID:F1q0Yn0 Jh kWBy6xzpESIzu7Om-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES

TCDL

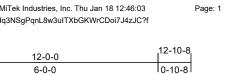
BCLL

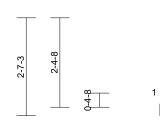
BCDL

1) Unbalanced roof live loads have been considered for this design

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-0-0, Exterior(2R) 3-0-0 to 9-0-0, Interior (1) 9-0-0 to 9-10-8, Exterior(2E) 9-10-8 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.

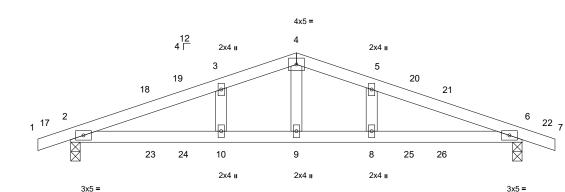
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	G02		1	1	Job Reference (optional)	163122490


6-0-0

6-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:03 ID:0aJ2DW6?R8?cUQZfPez6m_zu7Oe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8

0-10-8

				6-0-0					12-0-0			_
Scale = 1:30.6				6-0-0		I			6-0-0			Ι
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 3CLL 0.0* 3CDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.58 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.13 0.01	(loc) 10-13 10-13 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
UMBER OP CHORD 2x4 SP No.2 OT CHORD 2x4 SP No.2 /EBS 2x4 SP No.3 ITHERS 2x4 SP No.3 RACING OP CHORD Structural wood shea 5-5-7 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-0, 6 Max Horiz 2=35 (LC Max Grav 2=618 (LC	applied or 5-0-7 oc =0-3-0 14) C 10), 6=-188 (LC 11	5) d or 6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss ha on the bottor	snow loads have I is been designed f psf or 1.00 times f on-concurrent with spaced at 2-0-0 of is been designed ad nonconcurrent has been designed n chord in all area	(Lum DO B; Fully peen con for greate lat roof lo o other liv c. for a 10.0 with any I for a live s where	IL=1.15 Plate Exp.; Ce=0.9 Isidered for the or of min roof pad of 20.0 p: re loads. 0 psf bottom other live loa e load of 20.0 a rectangle	e 9; f live sf on ds. 0psf					
ORCES (lb) - Maximum Comp Tension 'OP CHORD 1-2=0/21, 2-3=-879/1 4-5=-837/1238, 5-6=- OT CHORD 2-10=-1083/794, 9-1(8-9=-1083/794, 6-8=- VEBS 4-9=-487/286, 3-10=-	pression/Maximum 221, 3-4=-837/1238 -879/1221, 6-7=0/21 0=-1083/794, -1083/794	, , 11)	chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is	by 2-00-00 wide winy other members. Simpson Strong-Ti ed to connect truss (s) 2 and 6. This co t consider lateral for designed in accord Residential Code	e connection to beari onnection orces. dance wi	ctors ng walls due n is for uplift o th the 2018	to only					
 NOTES Unbalanced roof live loads have I this design. Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC Cat. II; Exp B; Enclosed; MWFRS zone and C-C Exterior(2E) -0-10-2-1-8 to 3-0-0, Exterior(2E) 9-10; cantilever left and right exposed; porch left and right exposed; porch left and right members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig 	been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) exterior 8 to 2-1-8, Interior (1 to 9-0, Interior (1) 0-8 to 12-10-8 zone; end vertical left and t exposed; C-C for for reactions shown; =1.60 the plane of the trus (normal to the face), I Details as applicable	L0 !) :s ie,		nd referenced star					1	ALC INTERNATION	SE 023	VEER.ER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the preventione applicable from the Structure Building Component Advance international truss properties and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	V1	Valley	1	1	Job Reference (optional)	163122491

Scale = 1:43.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

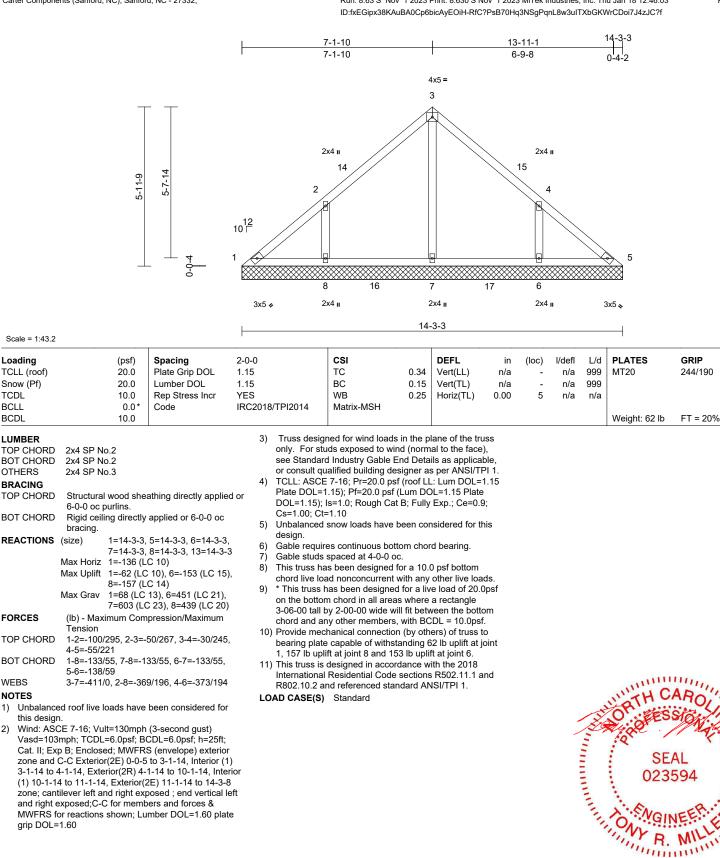
BOT CHORD

this design

WEBS

NOTES

2)


TCDL

BCLL

BCDL

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Jan 18.12:46:03

Page: 1

January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	V2	Valley	1	1	Job Reference (optional)	163122492

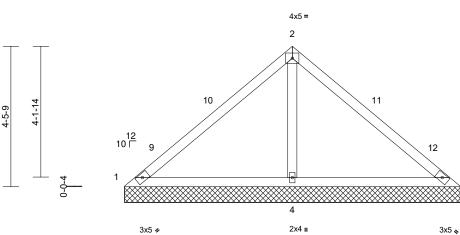
5-4-0

5-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:04 ID:PwkSKQ9lklZIUun8rGrrs2yEOe8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-3-14


4-11-14

Page: 1

12 3

10-8-0

0-4-2

10-8-0

Scale = 1:36.6

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.56	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.50	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.25	Horiz(TL)	0.01	4	n/a	n/a		
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-MSH								FT 00%
BCDL		10.0											Weight: 41 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	10-0-0 oc	wood shea	athing directly applied applied or 6-0-0 oc	or	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss has 	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Ca =1.10 snow loads have es continuous boi spaced at 4-0-0 c as been designed ad nonconcurrent	(Lum DC t B; Fully been cor ttom chor bc. for a 10.1	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom); nis					
REACTIONS	Max Horiz Max Uplift Max Grav	1=-100 (L 1=-70 (LC 4=-133 (L	21), 3=-70 (LC 20),		 9) * This truss I on the bottor 3-06-00 tall I chord and ar 10) Provide mec 	nas been designe m chord in all area by 2-00-00 wide w hy other members chanical connection e capable of withs	d for a liv as where vill fit betw s. vn (by oth	e load of 20.0 a rectangle veen the botto ers) of truss t)psf om o					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum		1, 70 lb uplifi	t at joint 3 and 13 designed in acco	3 lb uplift	at joint 4.	oint					
TOP CHORD	1-2=-139/4	440, 2-3=-	139/440			Residential Code			nd					
BOT CHORD	1-4=-255/	194, 3-4=-2	255/194			nd referenced sta			ilia ilia					
WEBS	2-4=-695/3	306			LOAD CASE(S)									
NOTES						olandara								
this desigr	n.		been considered for (3-second gust)										TH C	ARO

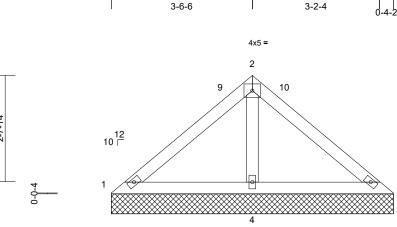
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-8-5, Exterior(2E) 7-8-5 to 10-8-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 102 FaNC	
23120151	V3	Valley	1	1	Job Reference (optional)	163122493

3-6-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

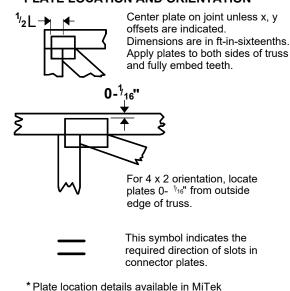

2-11-9

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Jan 18 12:46:04 ID:PwkSKQ9lklZIUun8rGrrs2yEOe8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-11

9 10 2-7-14 12 10 ∟ 3 -0-0 4 2x4 🖌 2x4 II 2x4 💊 7-0-13 Contraction of the SEAL 23594 R. M M. M. Million January 19,2024

Scale = 1:28.9


Loading	(psf)	Spacing	2-0-0		SI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		C	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL	1.15 YES		SC VB	0.25	Vert(TL)	n/a	-	n/a	999		
BCLL	10.0	Rep Stress Incr Code	IRC2018/TP		vв /atrix-MP	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2010/1F	12014 IV								Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3	athing directly applie	Pla DC Cs 5) Un dor de 6) Ga	CLL: ASCE 7- ate DOL=1.15 OL=1.15); Is= s=1.00; Ct=1.1 hbalanced sno ssign. able requires of	5); Pf=20.0 p 1.0; Rough C 10 ow loads hav continuous b	sf (Lùm DC Cat B; Fully re been cor rottom chor	DL=1.15 Plate Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	8) Th	able studs spa nis truss has b	een designe	d for a 10.0							
REACTIONS	(size) 1=7-0-13, Max Horiz 1=65 (LC Max Uplift 1=-14 (LC 4=-70 (LC Max Grav 1=104 (LC 4=513 (LC	; 21), 3=-14 (LC 20), ; 14) ; 20), 3=104 (LC 21)	9) * T on 3-(chi 10) Pro	nord live load r This truss has in the bottom c 06-00 tall by 2 nord and any c rovide mechar earing plate ca	been design hord in all an 2-00-00 wide other membe nical connect	ned for a liv eas where will fit betw ers. tion (by oth	e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1,	14 lb uplift at 15 truss is des	joint 3 and 7	'0 lb uplift a	it joint 4.	oint					
TOP CHORD BOT CHORD	, -		ÍInt	ternational Re 802.10.2 and	esidential Co	de sections	R502.11.1 a	nd					
WEBS	2-4=-363/192		LOAD	CASE(S) S	Standard								
NOTES													
1) Unbalance	ed roof live loads have	been considered for											11111

- this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-1-2, Exterior(2E) 4-1-2 to 7-1-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

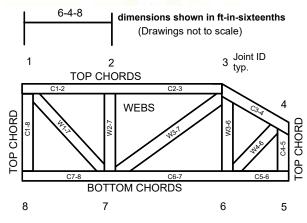
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.