

RE: 23030004-01 Abby plan Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: CRH HomesProject Name: 23030004-01Lot/Block:Model:Address:Subdivision:City:State: NC

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 58 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | 157188459 | A1         | 3/16/2023 | 21  | 157188479 | C4         | 3/16/2023 |
| 2   | 157188460 | A1E        | 3/16/2023 | 22  | 157188480 | C5         | 3/16/2023 |
| 3   | 157188461 | A2         | 3/16/2023 | 23  | 157188481 | C6         | 3/16/2023 |
| 4   | 157188462 | A2GR       | 3/16/2023 | 24  | 157188482 | C7         | 3/16/2023 |
| 5   | 157188463 | B1GR       | 3/16/2023 | 25  | 157188483 | CJ1        | 3/16/2023 |
| 6   | 157188464 | B2         | 3/16/2023 | 26  | 157188484 | CJ2        | 3/16/2023 |
| 7   | 157188465 | B3         | 3/16/2023 | 27  | 157188485 | CJ2T       | 3/16/2023 |
| 8   | 157188466 | B4         | 3/16/2023 | 28  | 157188486 | D1         | 3/16/2023 |
| 9   | 157188467 | B5         | 3/16/2023 | 29  | 157188487 | E1GR       | 3/16/2023 |
| 10  | 157188468 | B6         | 3/16/2023 | 30  | 157188488 | F1         | 3/16/2023 |
| 11  | 157188469 | B7         | 3/16/2023 | 31  | 157188489 | G1         | 3/16/2023 |
| 12  | 157188470 | B8         | 3/16/2023 | 32  | 157188490 | H1         | 3/16/2023 |
| 13  | 157188471 | B9         | 3/16/2023 | 33  | 157188491 | J1         | 3/16/2023 |
| 14  | 157188472 | B10        | 3/16/2023 | 34  | 157188492 | J2         | 3/16/2023 |
| 15  | 157188473 | C1         | 3/16/2023 | 35  | 157188493 | J2GR       | 3/16/2023 |
| 16  | 157188474 | C1E        | 3/16/2023 | 36  | 157188494 | J3         | 3/16/2023 |
| 17  | 157188475 | C2G2       | 3/16/2023 | 37  | 157188495 | J3T        | 3/16/2023 |
| 18  | 157188476 | C2G3       | 3/16/2023 | 38  | 157188496 | J4         | 3/16/2023 |
| 19  | 157188477 | C2G4       | 3/16/2023 | 39  | 157188497 | J4T        | 3/16/2023 |
| 20  | 157188478 | C3         | 3/16/2023 | 40  | 157188498 | J5         | 3/16/2023 |
|     |           |            |           |     |           |            |           |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

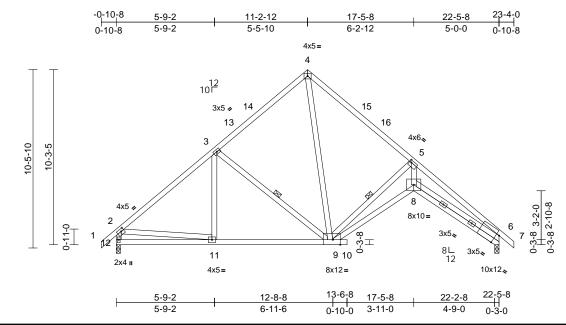


RE: 23030004-01 - Abby plan

Trenco 818 Soundside Rd Edenton, NC 27932

### Site Information:

Project Customer: CRH Homes Project Name: 23030004-01 Lot/Block: Subdivision: Address: City, County: State: NC


| No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|
| 41  | 157188499 | J5T        | 3/16/2023 |
| 42  | 157188500 | K1         | 3/16/2023 |
| 43  | 157188501 | L1         | 3/16/2023 |
| 44  | 157188502 | L2         | 3/16/2023 |
| 45  | 157188503 | PB1        | 3/16/2023 |
| 46  | 157188504 | PB2        | 3/16/2023 |
| 47  | 157188505 | PB2-2      | 3/16/2023 |
| 48  | 157188506 | PB2-3      | 3/16/2023 |
| 49  | 157188507 | PB2GE      | 3/16/2023 |
| 50  | 157188508 | V1         | 3/16/2023 |
| 51  | 157188509 | V2         | 3/16/2023 |
| 52  | 157188510 | V3         | 3/16/2023 |
| 53  | 157188511 | V4         | 3/16/2023 |
| 54  | 157188512 | V5         | 3/16/2023 |
| 55  | 157188513 | V10        | 3/16/2023 |
| 56  | 157188514 | V11        | 3/16/2023 |
| 57  | 157188515 | V12        | 3/16/2023 |
| 58  | 157188516 | V13        | 3/16/2023 |

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | A1    | Roof Special | 3   | 1   | Job Reference (optional) | 157188459 |

Scale = 1:67.6

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:23:46 ID:oR\_jh3bKfcGye3j1uLNzBezaLQW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Plate Offsets (X, Y): [2:0-2-0,0-1-12], [5:0-1-4,0-1-8], [6:0-2-0,Edge], [9:0-5-4,Edge]

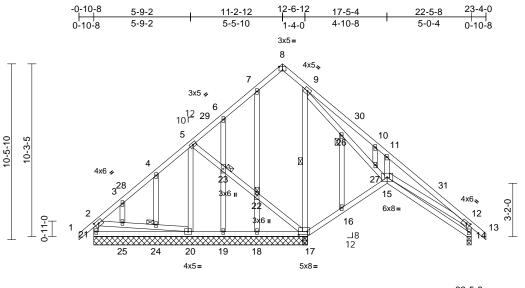
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                  | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 3/TPI2014                                                                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                       | 0.74<br>0.91<br>0.81                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                | in<br>-0.23<br>-0.44<br>0.39                   | (loc)<br>8<br>8<br>6 | l/defl<br>>999<br>>619<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 149 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.3 *Excep<br>Right 2x4 SP No.3<br>Structural wood she<br>2-11-0 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt | - 6-0-5<br>athing directly applie<br>xcept end verticals.<br>applied or 10-0-0 or<br>3-9, 5-9<br>12=0-3-0<br>LC 12)<br>5 15), 12=-79 (LC 14 | ed or<br>c 3)                           | Vasd=103mp<br>Cat. II; Exp E<br>zone and C-<br>2-1-8 to 8-2-<br>(1) 14-2-12 tr<br>zone; cantile<br>and right exp<br>MWFRS for<br>grip DOL=1.6<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct= | 7-16; Pr=20.0 ps<br>.15); Pf=20.0 psf<br>s=1.0; Rough Cat                                                                        | BCDL=6<br>RS (env<br>10-8 to 2<br>2-12 to<br>2E) 20-4<br>xposed<br>hbers ar<br>Lumber I<br>(roof LI<br>(Lum DC<br>B; Fully | .0psf; h=25ft;<br>elope) exterior<br>-1-8, Interior -<br>14-2-12, Inter<br>-0 to 23-4-0<br>; end vertical<br>d forces &<br>DOL=1.60 pla<br>:: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.5 | or<br>(1)<br>rior<br>left<br>ate<br>1.15<br>9; |                      |                               |                          |                                  |                                    |
| FORCES                                                                                                       | (lb) - Maximum Com<br>Tension                                                                                                                                 | pression/Maximum                                                                                                                            | 5)                                      | This truss ha<br>load of 12.0                                                                                                                                                              | s been designed f<br>osf or 1.00 times f<br>on-concurrent with                                                                   | at roof l                                                                                                                  | oad of 20.0 ps                                                                                                                                                                          |                                                |                      |                               |                          |                                  |                                    |
| TOF CHORD                                                                                                    | 4-5=-942/196, 5-6=-<br>2-12=-952/130                                                                                                                          |                                                                                                                                             |                                         | This truss ha                                                                                                                                                                              | s been designed f                                                                                                                | or a 10.                                                                                                                   | ) psf bottom                                                                                                                                                                            | ds.                                            |                      |                               |                          |                                  |                                    |
| BOT CHORD                                                                                                    | 11-12=-242/384, 9-1<br>8-9=-64/3130, 6-8=-                                                                                                                    |                                                                                                                                             | /0, 7)                                  |                                                                                                                                                                                            | as been designed                                                                                                                 |                                                                                                                            |                                                                                                                                                                                         | Opsf                                           |                      |                               |                          |                                  | unin,                              |
| WEBS                                                                                                         | 3-11=0/228, 3-9=-39<br>5-8=0/3230, 2-11=0/                                                                                                                    | 97/188, 4-9=-104/57                                                                                                                         |                                         | 3-06-00 tall b                                                                                                                                                                             | n chord in all area<br>y 2-00-00 wide wi<br>y other members.                                                                     | ll fit betv                                                                                                                |                                                                                                                                                                                         | m                                              |                      |                               | - SI                     | ORTHUR                           | ROUT                               |
| NOTES<br>1) Unbalanc<br>this desig                                                                           | ed roof live loads have<br>n.                                                                                                                                 | been considered for                                                                                                                         | 9)                                      | using ANSI/I<br>designer sho<br>Provide mec<br>bearing plate                                                                                                                               | nt(s) 6 considers<br>PI 1 angle to grai<br>uld verify capacity<br>nanical connection<br>at joint(s) 12, 6.<br>nanical connection | n formul<br>of bear<br>n (by oth                                                                                           | a. Building<br>ing surface.<br>ers) of truss t                                                                                                                                          | 0                                              |                      | June 1                        |                          | SEA<br>0363                      | • -                                |

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 12 and 74 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G


minin March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type                    | Qty | Ply | Abby plan                |           |
|-------------|-------|-------------------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | A1E   | Roof Special Structural Gable | 1   | 1   | Job Reference (optional) | 157188460 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:48 ID:KEQLUjbiuI851v8rKeskfQzaLQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                | 5-9-2 | 12-8-8 | ر 17-5-8 I | 22-2-8 22-5-8 |  |
|----------------|-------|--------|------------|---------------|--|
|                | 5-9-2 | 6-11-6 | 4-9-0      | 4-9-0 0-3-0   |  |
| Scale = 1:68.5 |       |        |            | 000           |  |
|                |       |        |            |               |  |

#### Plate Offsets (X, Y): [2:0-2-14,0-2-0], [8:0-2-8,Edge], [12:0-2-12,0-1-8], [17:0-6-4,0-2-4]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL | (psf)<br>20.0<br>20.0<br>10.0                                                                                                                                                                                                                                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES                                            | 20044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                         | 0.41<br>0.24<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                             |                         | (loc)<br>14-15<br>14-15<br>14                                                                                                                                     | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                 | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                           | PLATES<br>MT20                                                                                                                                                                                                                                                                                                                                                                     | <b>GRIP</b><br>244/190                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BCLL<br>BCDL                                | 0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                            | Code                                                                                                                                               | IRC2018/T                                                               | 12014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                         |                                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    | Weight: 185 lb                                                                                                                                                                                                                                                                                                                                                                     | FT = 20%                                                                                                                                                                                                                                                                                                                     |
|                                             | 2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing, Except:<br>10-0-0 oc bracing: 2<br>1 Row at midpt<br>1 Brace at Jt(s): 22,<br>23, 24, 26<br>(size) 14=0-3-0,<br>19=12-8-6<br>Max Horiz 21=262 (L<br>Max Uplift 17=-215 (<br>20=-48 (L<br>Max Grav 14=338 (L<br>18=390 (L | applied or 6-0-0 oc<br>0-21,14-15.<br>9-17<br>17=12-8-8, 18=12-8<br>3, 20=12-8-8, 21=12-<br>IC 13)<br>IC 15), 19=-88 (LC 1<br>C 14), 21=-6 (LC 10) | NOTE<br>1) U<br>tr<br>2) W<br>8, V<br>3-8 Z<br>4), (2<br>2), Z<br>1), M | S<br>hbalanced<br>is design.<br>ind: ASCE<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=103m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=100m<br>asd=10 | 5-20=-174/43, 5-2<br>22-23=-118/114, '<br>9-17=-667/35, 9-2<br>15-27=0/536, 11-'<br>2-25=-296/254, 2<br>20-24=-309/264, '<br>7-22=-331/14, 18-<br>6-23=-105/110, 19<br>4-24=-73/58, 3-25<br>10-27=-124/34<br>roof live loads har<br>7-16; Vult=130m,<br>oh; TCDL=6.0psf;<br>3; Enclosed; MWF<br>C Corner(3E) -0-1<br>12, Corner(3E) 8-<br>to 20-4-0, Corne<br>ver left and right 6<br>cossed; C-C for mei<br>reactions shown; | 17-22=-1<br>6=0/659<br>15=-246/3<br>1-25=-29<br>12-15=-1<br>22=-329<br>3-23=-10<br>=-16/13,<br>we been we been | 17/111,<br>26-27=0/625<br>266,<br>3/255,<br>46/483,<br>17,<br>7/105,<br>16-26=0/71,<br>considered fo<br>cond gust)<br>.0psf; h=25ft;<br>elope) exteric<br>1-8, Exterior(:<br>4-2-12, Exter<br>4-0 to 23-4-0<br>; end vertical<br>d forces & | r<br>2N)<br>ior<br>left | bra<br>9) Gal<br>10) This<br>cho<br>11) * Th<br>on 1<br>3-0<br>cho<br>12) Bee<br>usir<br>des<br>13) Pro<br>bea<br>21.<br>14) Ont<br>rec<br>UP<br>upli<br>15) This | ced aga<br>ble studs<br>s truss h<br>ord live lc<br>nis truss<br>the botto<br>6-00 tall<br>ord and a<br>aring at j<br>ng ANSI,<br>signer sh<br>wide me<br>aring pla<br>e MECH<br>ommeno<br>LIFT at j<br>fft only a<br>s truss is<br>ernationa | inst late<br>s space<br>as bee<br>bad not<br>has be<br>orm cho<br>by 2-0<br>by 2-0<br>by 2-0<br>iny oth<br>ouny oth<br>ouny oth<br>ouny oth<br>chanic<br>te capa<br>ANICA<br>led to o<br>t(s) 17,<br>nd doe<br>s desig<br>al Resid | eral movement (i<br>ed at 2-0-0 oc.<br>an designed for a<br>nconcurrent with<br>een designed for<br>rd in all areas wh<br>0-00 wide will fit<br>er members.<br>14 considers par<br>angle to grain for<br>erify capacity of t<br>al connection (by<br>able of withstandi<br>AL connector (BY<br>connect truss to t<br>, 20, and 19. This<br>is not consider la<br>ned in accordance | any other live loads.<br>a live load of 20.0ps<br>here a rectangle<br>between the bottom<br>rallel to grain value<br>mula. Building<br>pearing surface.<br>others) of truss to<br>ng 6 lb uplift at joint<br>OTHERS)<br>pearing walls due to<br>a connection is for<br>teral forces.<br>with the 2018<br>tions R502.11.1 and |
| FORCES                                      | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                    | · g<br>3) 1                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ned for wind loads                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                         |                                                                                                                                                                   |                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                 | TH CA                                                                                                                                                                                                                                                                                                                                                                              | ROUT                                                                                                                                                                                                                                                                                                                         |
| TOP CHORD                                   | 1-2=0/39, 2-3=-141/<br>4-5=-76/188, 5-6=-5<br>7-8=-42/105, 8-9=-2                                                                                                                                                                                                                                                                                       | 4/182, 6-7=-13/237,<br>0/119, 9-10=-463/0,<br>2=-528/0, 12-13=0/39<br>4=-390/89                                                                    | s<br>o<br>4) T<br>P<br>D                                                | e Standard<br>consult qu<br>CLL: ASCE<br>ate DOL=1<br>OL=1.15);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ids exposed to wi<br>d Industry Gable B<br>Ialified building de<br>7-16; Pr=20.0 ps<br>1.15); Pf=20.0 psf<br>Is=1.0; Rough Ca                                                                                                                                                                                                                                                                                                 | End Deta<br>signer as<br>f (roof LI<br>(Lum DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ils as applical<br>s per ANSI/TF<br>.: Lum DOL=<br>0L=1.15 Plate                                                                                                                                                                            | ble,<br>PI 1.<br>1.15   |                                                                                                                                                                   | G                                                                                                                                                                                                                                             | Ì                                                                                                                                                                                                                                  | SEA<br>0363                                                                                                                                                                                                                                                                                                                                                                        | L                                                                                                                                                                                                                                                                                                                            |
|                                             | 20-21=-24//353, 19-<br>18-19=-165/198, 17-<br>16-17=-259/350, 15-<br>14-15=-53/215                                                                                                                                                                                                                                                                      | -18=-165/198,                                                                                                                                      | 5) U<br>di<br>6) T<br>lo<br>o'                                          | esign.<br>his truss ha<br>ad of 12.0<br>rerhangs n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =1.10<br>snow loads have<br>as been designed<br>psf or 1.00 times i<br>on-concurrent with<br>a 2x4 MT20 unless                                                                                                                                                                                                                                                                                                                | for great<br>flat roof le<br>n other li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er of min roof<br>bad of 20.0 ps<br>ve loads.                                                                                                                                                                                               | live                    |                                                                                                                                                                   | 100                                                                                                                                                                                                                                           | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                              | SEA<br>0363                                                                                                                                                                                                                                                                                                                                                                        | EER. KIN                                                                                                                                                                                                                                                                                                                     |

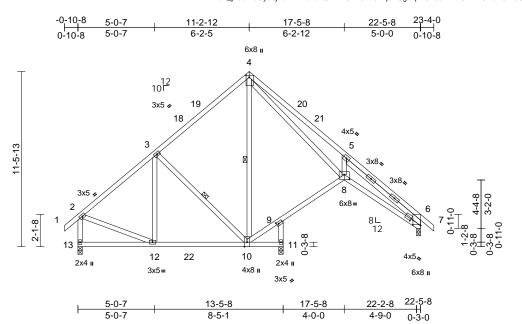
### March 16,2023

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job                             | Truss               | Truss Type                    | Qty           | Ply         | Abby plan                                       |           |
|---------------------------------|---------------------|-------------------------------|---------------|-------------|-------------------------------------------------|-----------|
| 23030004-01                     | A1E                 | Roof Special Structural Gable | 1             | 1           | Job Reference (optional)                        | 157188460 |
| Carter Components (Sanford), Sa | anford, NC - 27332, | Run: 8.53 S Mar 9 2           | 023 Print: 8. | 530 S Mar 9 | 2023 MiTek Industries, Inc. Wed Mar 15 08:23:48 | Page: 2   |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:48 ID:KEQLUjbiuI851v8rKeskfQzaLQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job  |          | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|------|----------|-------|--------------|-----|-----|--------------------------|-----------|
| 2303 | 30004-01 | A2    | Roof Special | 2   | 1   | Job Reference (optional) | 157188461 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:23:49 ID:oR\_jh3bKfcGye3j1uLNzBezaLQW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = | 1:75.5 |
|---------|--------|
|---------|--------|

#### Plate Offsets (X, Y): [4:0-1-8,0-2-8], [6:0-0-9,0-6-0], [6:0-9-0,0-1-8], [8:0-4-0,0-3-12], [9:0-1-13,0-1-8]

| Loading<br>TCLL (roof)<br>Snow (Pf)                                                                          | (psf)<br>20.0<br>20.0                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL                                                                                                                                              | 2-0-0<br>1.15<br>1.15 |                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.56                                                                                                                                                                   | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)                                                                                                                                                                                                              | in<br>-0.17<br>-0.29                                   | (loc)<br>8<br>8 | l/defl<br>>660<br>>384 | L/d<br>240<br>180 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|------------------------|-------------------|----------------|------------------------|
| TCDL                                                                                                         | 10.0                                                                                                                                                                                                                                                                    | Rep Stress Incr                                                                                                                                                                      | YES                   |                                                                                                                                                                                                                                                                 | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.69                                                                                                                                                                   | Horz(CT)                                                                                                                                                                                                                                         | 0.27                                                   | 6               | n/a                    | n/a               |                |                        |
| BCLL<br>BCDL                                                                                                 | 0.0*<br>10.0                                                                                                                                                                                                                                                            | Code                                                                                                                                                                                 | IRC2018               | 3/TPI2014                                                                                                                                                                                                                                                       | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                        |                 |                        |                   | Weight: 161 lb | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.1 *Excep<br>11-9:2x4 SP No.3<br>2x4 SP No.3 *Excep<br>Right 2x4 SP No.3 -<br>Structural wood she<br>4-11-0 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 6=0-3-0,<br>Max Horiz 13=-285<br>Max Uplift 6=-92 (LC<br>13=-74 (L | eathing directly applied<br>except end verticals.<br>v applied or 2-2-0 oc<br>3-10, 4-10<br>11=0-3-8, 13=0-3-8<br>(LC 12)<br>C 15), 11=-1 (LC 14),<br>C 14)<br>C 25), 11=568 (LC 24) | or<br>3)<br>4)<br>5)  | Vasd=103m<br>Cat. II; Exp B<br>zone and C-<br>3-6-14 to 9-8<br>15-8-2 to 21<br>cantilever lef<br>right expose<br>for reactions<br>DOL=1.60<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 | 7-16; Vult=130mp<br>oh; TCDL=6.0psf; J<br>3; Enclosed; MWF<br>C Exterior(2E) 0-6<br>3-2, Exterior(2E) 2<br>t and right expose<br>d;C-C for members<br>shown; Lumber D<br>57-16; Pr=20.0 psf<br>(1.15); Pf=20.0 psf<br>(1 | BCDL=6<br>RS (env<br>-14 to 3-<br>8-2 to 1<br>21-9-6 tc<br>d; end v<br>s and fo<br>OL=1.6(<br>G<br>(roof LL<br>Lum DC<br>B; Fully<br>been cor<br>or great<br>at roof h | .0psf; h=25ft;<br>elope) exteric<br>6-14, Interior<br>5-8-2, Interior<br>24-9-6 zone<br>erertical left an<br>rces & MWFR<br>) plate grip<br>.: Lum DOL=:<br>L=1.15 Plate<br>Exp.; Ce=0.\$<br>nsidered for th<br>er of min roof<br>pad of 20.0 ps | or<br>(1)<br>;<br>d<br>8.S<br>1.15<br>;<br>his<br>live | LOAD            | CASE(S                 | ) Sta             | ndard          |                        |
| FORCES                                                                                                       | (lb) - Maximum Con<br>Tension                                                                                                                                                                                                                                           | npression/Maximum                                                                                                                                                                    | 6)                    |                                                                                                                                                                                                                                                                 | as been designed f<br>ad nonconcurrent v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                  | ds.                                                    |                 |                        |                   |                |                        |
| TOP CHORD                                                                                                    | 1-2=0/39, 2-3=-772,<br>4-5=-1941/344, 5-6<br>2-13=-806/133                                                                                                                                                                                                              | /139, 3-4=-539/217,<br>=-579/152, 6-7=0/34,                                                                                                                                          | 7)                    | on the bottor<br>3-06-00 tall b                                                                                                                                                                                                                                 | nas been designed<br>m chord in all areas<br>by 2-00-00 wide wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s where<br>Il fit betv                                                                                                                                                 | a rectangle                                                                                                                                                                                                                                      | ,<br>om                                                |                 |                        |                   | TH CA          | Rojin                  |
| BOT CHORD                                                                                                    | 8-9=-50/395, 6-8=-8                                                                                                                                                                                                                                                     | =-537/0, 9-10=0/719,<br>35/1690                                                                                                                                                      | 8)                    | Bearing at jo<br>using ANSI/                                                                                                                                                                                                                                    | ny other members,<br>int(s) 6 considers<br>ITPI 1 angle to grain<br>build verify capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | parallel<br>n formul                                                                                                                                                   | o grain value<br>a. Building                                                                                                                                                                                                                     |                                                        |                 | 4                      | i                 | OFESS          | Mart                   |
| WEBS                                                                                                         |                                                                                                                                                                                                                                                                         | -39/180, 3-10=-414/203<br>-285/324, 4-8=-188/16                                                                                                                                      |                       |                                                                                                                                                                                                                                                                 | hanical connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                                                                                                  | 0                                                      |                 | -                      |                   | SEA            | L 1 E                  |
| NOTES                                                                                                        | -                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      | - /                   | bearing plate                                                                                                                                                                                                                                                   | e capable of withst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                        |                 | =                      |                   |                | • –                    |
| <ol> <li>Unbalance<br/>this design</li> </ol>                                                                | ed roof live loads have<br>n.                                                                                                                                                                                                                                           | been considered for                                                                                                                                                                  | 10                    | connect trus                                                                                                                                                                                                                                                    | on Strong-Tie con<br>s to bearing walls<br>connection is for u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | due to U                                                                                                                                                               | PLIFT at jt(s)                                                                                                                                                                                                                                   | 13                                                     |                 | 1111                   |                   | 0363           | 1                      |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties.

11) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

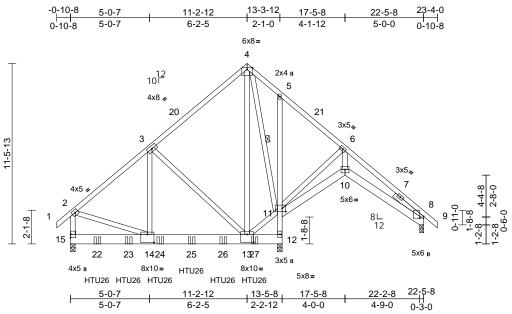
consider lateral forces.

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GILB

March 16,2023


C

| Job         | Truss | Truss Type          | Qty | Ply | Abby plan                |           |
|-------------|-------|---------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | A2GR  | Roof Special Girder | 1   | 2   | Job Reference (optional) | 157188462 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:23:50 ID:HifpAfRcPpy9QfUIQK69UBzaLPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:73.3

### Plate Offsets (X, Y): [8:0-1-5,0-2-15], [11:0-2-12,0-2-8], [13:0-5-0,0-6-0], [14:0-5-0,0-6-4]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>NO | 8/TPI2014                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                 | 0.64<br>0.77<br>0.93                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                   | in<br>-0.08<br>-0.13<br>0.01 | (loc)<br>13-14<br>13-14<br>8                                                                                                      | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                            | L/d<br>240<br>180<br>n/a                                                                                                                                             | PLATES<br>MT20                                                                                                                                                                                                                                                                                               | <b>GRIP</b><br>244/190                                                                                                                                                                                                                                     |                                      |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| BCDL                                                | 10.0                                                                                                                                                                                           | Code                                                                                                                                                                                                                       | IKC201                      | 0/1812014                                                                                                                                                                                                                                                                          | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                                                                            |                              |                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                      | Weight: 407 lb                                                                                                                                                                                                                                                                                               | FT = 20%                                                                                                                                                                                                                                                   |                                      |
|                                                     | 5-9-8 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 8=0-3-0, 1<br>Max Horiz 15=-281 (<br>Max Uplift 8=-112 (L<br>15=-355 (<br>Max Grav 8=529 (L0<br>15=5266 | lo.3<br>t* 13-4:2x4 SP No.2<br>- 2-5-0<br>athing directly applie<br>cept end verticals.<br>applied or 4-3-4 oc<br>4-11<br>12=0-3-8, 15=0-3-8<br>(LC 10)<br>.C 13), 12=-284 (LC<br>LC 13)<br>C 23), 12=4667 (LC 2<br>(LC 5) | ed or 2)<br>3)<br>12), 4)   | (0.131"x3") r<br>Top chords o<br>oc.<br>Bottom chorr<br>staggered at<br>rows stagger<br>Web connec<br>All loads are<br>except if note<br>CASE(S) see<br>provided to o<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=103mg<br>Cat. II; Exp E<br>zone; cantile | b be connected tog<br>hails as follows:<br>connected as follow<br>ds connected as follow<br>ds connected as follow<br>ds connected as follows:<br>0.6-0 oc, 2x4 - 1 i<br>red at 0-9-0 oc.<br>ted as follows: 2x4<br>considered equall<br>ed as front (F) or b<br>ction. Ply to ply co<br>distribute only load<br>wise indicated.<br>roof live loads hav<br>7-16; Vult=130mp<br>ph; TCDL=6.0psf;<br>3; Enclosed; MWF | ws: 2x4<br>bollows: 2<br>row at 0<br>4 - 1 row<br>ly applie<br>pack (B)<br>nnection<br>s noted<br>re been<br>boh (3-see<br>BCDL=6<br>BCDL=6<br>RS (env<br>exposed | - 1 row at 0-9<br>x8 - 2 rows<br>9-0 oc, 2x6 -<br>at 0-9-0 oc.<br>d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>cond gust)<br>0.0psf; h=25ft;<br>elope) exteric<br>; end vertical | 2<br>DAD<br>r<br>;<br>pr     | usi<br>des<br>11) Pro<br>bee<br>8.<br>12) LG<br>cor<br>and<br>cor<br>13) Thi<br>Inte<br>R8<br>14) Usi<br>11-<br>spa<br>end<br>bot | ng ANSI<br>signer sh<br>ovide me<br>aring plat<br>T2 Simp<br>nnect trus<br>d 12. Thi<br>nsider lat<br>s truss is<br>ernationa<br>02.10.2 a<br>e Simpso<br>10dx1 1,<br>aced at 2<br>d to 13-1<br>tom choi | /TPI 1<br>nould v<br>chanic<br>te capa<br>son St<br>ss to b<br>s conn<br>teral fo<br>s desig<br>al Resi<br>and ref<br>on Stro<br>/2 Trus<br>2-0-0 o<br>-14 to<br>rd. | angle to grain foi<br>erify capacity of I<br>al connection (by<br>able of withstand<br>rong-Tie connect<br>earing walls due<br>ection is for uplif<br>rces.<br>Ined in accordand<br>dential Code sec<br>ferenced standar<br>ong-Tie HTU26 (2<br>ss, Single Ply Gir<br>c max. starting al<br>connect truss(es | pearing surface.<br>y others) of truss to<br>ng 112 lb uplift at ji<br>ors recommended<br>to UPLIFT at jt(s)<br>only and does no<br>pe with the 2018<br>tions R502.11.1 ard<br>d ANSI/TPI 1.<br>10-10d Girder,<br>der) or equivalent<br>3-1-14 from the le | o<br>joint<br>d to<br>15<br>ot<br>nd |
| FORCES                                              | (lb) - Maximum Corr<br>Tension                                                                                                                                                                 | pression/Maximum                                                                                                                                                                                                           |                             | and right exp<br>DOL=1.60                                                                                                                                                                                                                                                          | bosed; Lumber DO                                                                                                                                                                                                                                                                                                                                                                                                    | L=1.60                                                                                                                                                            | plate grip                                                                                                                                                                                                                 |                              | 16) LG                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              | studs in line belo                                                                                                                                                                                                                                         |                                      |
| TOP CHORD                                           | 1-2=0/39, 2-3=-4277<br>4-5=-366/292, 5-6=-<br>8-9=0/34, 2-15=-395                                                                                                                              | 321/182, 6-8=-1116/                                                                                                                                                                                                        |                             | Plate DOL=1<br>DOL=1.15);                                                                                                                                                                                                                                                          | E 7-16; Pr=20.0 psf<br>I.15); Pf=20.0 psf (<br>Is=1.0; Rough Cat                                                                                                                                                                                                                                                                                                                                                    | (Lum DC                                                                                                                                                           | DL=1.15 Plate                                                                                                                                                                                                              | •                            |                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                      | OR TH CA                                                                                                                                                                                                                                                                                                     | RO                                                                                                                                                                                                                                                         |                                      |
| BOT CHORD                                           | 14-15=-253/370, 13-<br>12-13=-184/7, 11-12<br>5-11=-392/148, 10-1                                                                                                                              |                                                                                                                                                                                                                            | 6)<br>)/970                 | Cs=1.00; Ct=<br>Unbalanced<br>design.                                                                                                                                                                                                                                              | =1.10<br>snow loads have b                                                                                                                                                                                                                                                                                                                                                                                          | been coi                                                                                                                                                          | nsidered for th                                                                                                                                                                                                            | nis                          |                                                                                                                                   | 4                                                                                                                                                                                                        | i                                                                                                                                                                    | O' FES                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            |                                      |
| WEBS                                                | 3-14=-189/3744, 4-1<br>3-13=-3209/375, 6-1<br>11-13=-159/1554, 4                                                                                                                               | 13=-369/4034,<br>10=0/973, 6-11=-903                                                                                                                                                                                       | 7)<br>/134,                 | This truss ha<br>load of 12.0<br>overhangs n                                                                                                                                                                                                                                       | as been designed f<br>psf or 1.00 times fl<br>on-concurrent with                                                                                                                                                                                                                                                                                                                                                    | lat roof l<br>o other li                                                                                                                                          | oad of 20.0 p:<br>ve loads.                                                                                                                                                                                                |                              |                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                      | SEA                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                          | Marina Marina                        |
| NOTES                                               | 2-14=-202/3269                                                                                                                                                                                 |                                                                                                                                                                                                                            | 8)<br>9)                    | chord live loa<br>* This truss h                                                                                                                                                                                                                                                   | as been designed f<br>ad nonconcurrent v<br>nas been designed<br>m chord in all area                                                                                                                                                                                                                                                                                                                                | with any<br>I for a liv                                                                                                                                           | other live loa<br>e load of 20.0                                                                                                                                                                                           |                              |                                                                                                                                   | 1111                                                                                                                                                                                                     |                                                                                                                                                                      | 0363                                                                                                                                                                                                                                                                                                         | 22<br>- cRik S                                                                                                                                                                                                                                             | IIIII.                               |

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GILB

A. GILDIN March 16,2023

C

| Job                             | Truss               | Truss Type          |             | Qty                                             | Ply     | Abby plan                |           |
|---------------------------------|---------------------|---------------------|-------------|-------------------------------------------------|---------|--------------------------|-----------|
| 23030004-01                     | A2GR                | Roof Special Girder |             | 1                                               | 2       | Job Reference (optional) | 157188462 |
| Carter Components (Sanford), Sa | Run: 8.53 S Mar 9 2 | 023 Print: 8.       | 530 S Mar 9 | 2023 MiTek Industries, Inc. Wed Mar 15 08:23:50 | Page: 2 |                          |           |

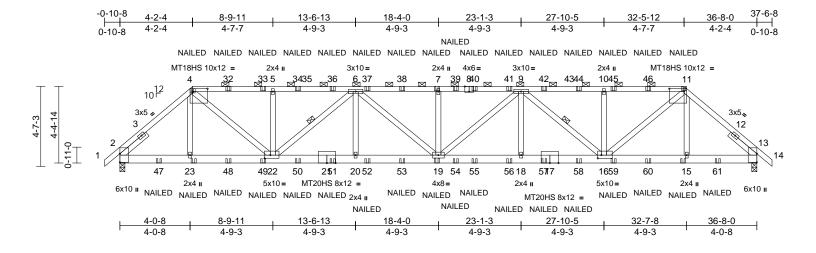
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:50 ID:HifpAfRcPpy9QfUIQK69UBzaLPR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

#### LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
  - Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-4=-60, 4-9=-60, 12-15=-20, 10-11=-20, 10-16=-20

Concentrated Loads (lb)


Vert: 22=-1686 (B), 23=-1701 (B), 24=-1230 (B), 25=-1230 (B), 26=-1230 (B), 27=-1230 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B1GR  | Hip Girder | 1   | 1   | Job Reference (optional) | 157188463 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:54 ID:OCxjv5bmLobJUf\_ohZrCWxzaLPE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:66.3

| Plate Offsets | (X, Y): [4:0-10-4,0-2-0                      | ], [8:0-3-0,Edge], [1 | 1:0-10-4, | 0-2-0], [16:0-2-8                                                           | 8,0-2-4], [22:0-4-0,0                  | 0-2-4]     |                 |        |                                                                        |                                                                                                                 |         |                                       |                        |  |
|---------------|----------------------------------------------|-----------------------|-----------|-----------------------------------------------------------------------------|----------------------------------------|------------|-----------------|--------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|------------------------|--|
| Loading       | (psf)                                        | Spacing               | 2-0-0     |                                                                             | csi                                    |            | DEFL            | in     | (loc)                                                                  | l/defl                                                                                                          | L/d     | PLATES                                | GRIP                   |  |
| TCLL (roof)   | 20.0                                         | Plate Grip DOL        | 1.15      |                                                                             | тс                                     | 0.84       | Vert(LL)        | -0.41  | <b>1</b> 9                                                             | >999                                                                                                            | 240     | MT20                                  | 244/190                |  |
| Snow (Pf)     | 20.0                                         | Lumber DOL            | 1.15      |                                                                             | BC                                     | 0.54       | Vert(CT)        | -0.63  | 19                                                                     | >701                                                                                                            | 180     | MT20HS                                | 187/143                |  |
| TCDL          | 10.0                                         | Rep Stress Incr       | NO        |                                                                             | WB                                     | 0.80       | Horz(CT)        | 0.12   | 13                                                                     | n/a                                                                                                             | n/a     | MT18HS                                | 244/190                |  |
| BCLL          | 0.0*                                         | Code                  | IRC20     | )18/TPI2014                                                                 | Matrix-MSH                             |            |                 |        |                                                                        |                                                                                                                 |         |                                       |                        |  |
| BCDL          | 10.0                                         |                       |           |                                                                             |                                        |            |                 |        |                                                                        |                                                                                                                 |         | Weight: 243 lb                        | FT = 20%               |  |
| LUMBER        |                                              |                       |           | WEBS                                                                        | 4-23=-102/119, 4-                      | 22=-108    | 7/3265,         |        | 10) H10                                                                | )A Simp                                                                                                         | son St  | rong-Tie connect                      | ors recommended to     |  |
| TOP CHORD     | 2x4 SP No.1 *Excep<br>2.0E                   | t* 4-8,8-11:2x4 SP    | 2400F     | 5-22=-755/307, 6-22=-1914/661, 6-20=0/282,<br>6-19=-287/727, 7-19=-736/338, |                                        |            |                 |        |                                                                        | connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not |         |                                       |                        |  |
| BOT CHORD     | 2x6 SP 2400F 2.0E                            |                       |           |                                                                             | 9-19=-269/676, 9-                      |            | ,               | 3/675, |                                                                        | sider lat                                                                                                       |         |                                       |                        |  |
| WEBS          | 2x4 SP No.3 *Excep                           |                       |           |                                                                             | 10-16=-743/301, 1                      | 11-16=-1   | 093/3275,       |        |                                                                        |                                                                                                                 |         | ned in accordance                     |                        |  |
| _             | 22-4,22-6,19-6,19-9,                         |                       |           |                                                                             | 11-15=-104/119                         |            |                 |        |                                                                        |                                                                                                                 |         | dential Code sect<br>erenced standard | ions R502.11.1 and     |  |
| SLIDER        | Left 2x4 SP No.3 2                           | 2-0-0, Right 2x4 SP   |           | NOTES                                                                       |                                        |            |                 |        |                                                                        |                                                                                                                 |         |                                       | s not depict the size  |  |
|               | 2-0-0                                        |                       |           |                                                                             | d roof live loads ha                   | ve been    | considered fo   | or     |                                                                        |                                                                                                                 |         |                                       |                        |  |
| BRACING       | <b>o</b> , , , , , , ,                       |                       |           | this design.                                                                |                                        | nh (2 aa   |                 |        | or the orientation of the purlin along the top and/or<br>bottom chord. |                                                                                                                 |         |                                       |                        |  |
| TOP CHORD     | Structural wood she<br>2-4-15 oc purlins, ex |                       | ed or     |                                                                             | E 7-16; Vult=130m<br>nph; TCDL=6.0psf; |            |                 |        | 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d                      |                                                                                                                 |         |                                       |                        |  |
|               | 2-0-0 oc purlins (2-4                        |                       |           |                                                                             | B; Enclosed; MWF                       |            |                 |        | (0.148"x3.25") toe-nails per NDS guidlines.                            |                                                                                                                 |         |                                       |                        |  |
| BOT CHORD     |                                              |                       | )C        |                                                                             | ever left and right e                  |            |                 |        | 14) İn t                                                               | he LOAI                                                                                                         | D ĆAS   | E(S) section, load                    | Is applied to the face |  |
| BOT ONORD     | bracing.                                     |                       |           |                                                                             | posed; Lumber DC                       |            |                 |        | of the truss are noted as front (F) or back (B).                       |                                                                                                                 |         |                                       |                        |  |
| WEBS          | 0                                            | 6-22, 9-16            |           | DOL=1.60                                                                    |                                        |            |                 |        | LOAD                                                                   | CASE(S                                                                                                          | ) Sta   | ndard                                 |                        |  |
| REACTIONS     |                                              | ,                     |           |                                                                             | E 7-16; Pr=20.0 ps                     |            |                 |        |                                                                        |                                                                                                                 |         |                                       | 11                     |  |
|               | Max Horiz 2=100 (LC                          |                       |           |                                                                             | =1.15); Pf=20.0 psf                    |            |                 |        |                                                                        |                                                                                                                 |         | "" CA                                 | Dille                  |  |
|               | Max Uplift 2=-969 (L                         |                       | : 13)     |                                                                             | ; Is=1.0; Rough Ca                     | t B; Fully | Exp.; Ce=0.9    | 9;     |                                                                        |                                                                                                                 | - 8     | THUA                                  | ROM                    |  |
|               | Max Grav 2=3016 (L                           | _C 19), 13=3025 (L0   | C 20)     | Cs=1.00; C<br>4) Unbalanced                                                 | d snow loads have                      | haan aa    | ocidorod for t  | hio    |                                                                        | /                                                                                                               | S       | ONJESS                                | ich i'r                |  |
| FORCES        | (lb) - Maximum Com                           | pression/Maximum      |           | design.                                                                     | a show loads have                      | been coi   | Isidered for ti | 115    |                                                                        | 4                                                                                                               | è è     | 12                                    | No. Ti                 |  |
|               | Tension                                      |                       |           | 0                                                                           | as been designed                       | for areat  | er of min roof  | live   |                                                                        | -                                                                                                               | Z       |                                       | num                    |  |
| TOP CHORD     | 1-2=0/59, 2-4=-3787                          | 7/1247, 4-5=-5300/1   |           |                                                                             | ) psf or 1.00 times                    |            |                 |        |                                                                        | -                                                                                                               |         |                                       | 1 1 1 I I I            |  |
|               | 5-6=-5300/1733, 6-7                          |                       |           |                                                                             | non-concurrent wit                     |            |                 |        |                                                                        | _                                                                                                               |         | SEA                                   | L ; =                  |  |
|               | 7-9=-7268/2397, 9-1                          |                       |           | 6) Provide ade                                                              | equate drainage to                     | prevent    | water ponding   | q.     |                                                                        | =                                                                                                               |         | 0363                                  | 22 E                   |  |
|               | 10-11=-5317/1739, <sup>-</sup><br>13-14=0/59 | 11-13=-3799/1244,     |           | 7) All plates are MT20 plates unless otherwise indicated.                   |                                        |            |                 |        |                                                                        |                                                                                                                 |         | . 0000                                | : : :                  |  |
| BOT CHORD     |                                              | 22 040/2040           |           |                                                                             | as been designed                       |            |                 |        |                                                                        |                                                                                                                 | -       | 10 C                                  | 1 2                    |  |
| BOTCHORD      | 20-22=-2218/6737, 22-                        |                       |           |                                                                             | oad nonconcurrent                      |            |                 |        |                                                                        |                                                                                                                 | 21      | N. ENG                                | ERIX S                 |  |
|               | 18-19=-2215/6777,                            |                       |           |                                                                             | has been designe                       |            |                 | Opsf   |                                                                        |                                                                                                                 | 1       | S, GIN                                | EL AN                  |  |
|               | 15-16=-877/2850, 13                          |                       |           | <ul> <li>(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</li></ul>       |                                        |            |                 |        | 1                                                                      | CA C                                                                                                            | II BEIN |                                       |                        |  |
|               | ,                                            |                       |           |                                                                             | any other members                      |            |                 |        |                                                                        |                                                                                                                 |         | 1, A. G                               | L'IIII                 |  |
|               |                                              |                       |           |                                                                             |                                        | •          |                 |        |                                                                        |                                                                                                                 |         | A. G                                  | 16 2022                |  |

March 16,2023

Page: 1

| Continued on page 2                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                     |
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                         |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                            |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                     |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)                                               |



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B1GR  | Hip Girder | 1   | 1   | Job Reference (optional) | 157188463 |

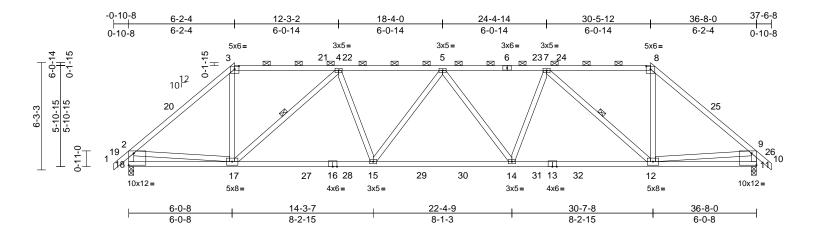
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-11=-60, 11-14=-60, 24-28=-20 Concentrated Loads (lb)

- Vert: 23=-20 (F), 4=-143 (F), 19=-20 (F), 7=-143 (F), vert: 23=-20 (F), 4=-143 (F), 19=-20 (F), 7=-143 (F), 11=-143 (F), 15=-20 (F), 32=-143 (F), 33=-143 (F), 34=-143 (F), 36=-143 (F), 37=-143 (F), 38=-143 (F), 39=-143 (F), 40=-143 (F), 41=-143 (F), 42=-143 (F), 44=-143 (F), 45=-143 (F), 46=-143 (F), 47=-181 (F), 48=-20 (F), 51=-20 (F), 50=-20 (F), 51=-20 (F), 52=-20 (F), 53=-20 (F), 55=-20 (F), 56=-20 (F), 56=-20 (F), 56=-20 (F), 56=-20 (F), 59=-20 (F), 60=-20 (F), 61=-181 (F)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:23:54 ID:OCxjv5bmLobJUf\_ohZrCWxzaLPE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B2    | Нір        | 1   | 1   | Job Reference (optional) | 157188464 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:23:56 ID:gCEEXQerjrmO7g0o7BRvMUzaLQS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



#### Scale = 1:67.3

| bading             | (psf)                                        | Spacing                       | 2-0-0                                              |               | CSI                                                                                                   | 0.05         | DEFL                 | in            | (loc)       | l/defl    | L/d | PLATES         | GRIP      |
|--------------------|----------------------------------------------|-------------------------------|----------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------|--------------|----------------------|---------------|-------------|-----------|-----|----------------|-----------|
| CLL (roof)         | 20.0                                         | Plate Grip DOL                | 1.15                                               |               | TC                                                                                                    | 0.85         | Vert(LL)             |               | 14-15       | >999      | 240 | MT20           | 244/190   |
| now (Pf)<br>CDL    | 20.0<br>10.0                                 | Lumber DOL<br>Rep Stress Incr | 1.15<br>YES                                        |               | BC<br>WB                                                                                              | 0.96<br>0.58 | Vert(CT)<br>Horz(CT) | -0.39<br>0.10 | 15-17<br>11 | >999      | 180 |                |           |
| CLL                | 0.0*                                         |                               |                                                    | 8/TPI2014     |                                                                                                       | 0.58         | Horz(CT)             | 0.10          | 11          | n/a       | n/a |                |           |
| CDL                | 10.0                                         | Code                          | IRC201                                             | 8/1912014     | Matrix-MSH                                                                                            |              |                      |               |             |           |     | Weight: 214 lb | FT = 20%  |
|                    | 10.0                                         |                               |                                                    |               | <b></b>                                                                                               | (0)          |                      |               |             |           |     | Weight. 214 lb | 11 = 2070 |
| JMBER              | 0.40DN 0                                     |                               | 2)                                                 |               | 7-16; Vult=130mp<br>oh; TCDL=6.0psf; E                                                                |              |                      |               |             |           |     |                |           |
| OP CHORD           |                                              | ** 40 40.0v4 00 No            | 4                                                  |               | 3; Enclosed; MWFF                                                                                     |              |                      |               |             |           |     |                |           |
| OT CHORD<br>EBS    |                                              |                               |                                                    |               | C Exterior(2E) -0-1                                                                                   |              |                      |               |             |           |     |                |           |
|                    | 2x4 SP No.3 *Excep                           | 1 10-2,11-9.2X4 SP            | N0.2                                               |               | -8, Interior (1) 11-4                                                                                 |              |                      | . ,           |             |           |     |                |           |
| RACING<br>OP CHORD | 10                                           |                               |                                                    |               | 10-8, Exterior(2E)                                                                                    |              |                      |               |             |           |     |                |           |
|                    | 3-0-12 oc purlins, except end verticals, and |                               |                                                    |               | t and right exposed                                                                                   | l; end \     | ertical left ar      | nd            |             |           |     |                |           |
|                    | 2-0-0 oc purlins (2-9                        |                               | d;C-C for members                                  |               |                                                                                                       | RS           |                      |               |             |           |     |                |           |
| OT CHORD           | Rigid ceiling directly                       |                               |                                                    |               | shown; Lumber Do                                                                                      | DL=1.60      | ) plate grip         |               |             |           |     |                |           |
|                    | bracing.                                     | DOL=1.60                      |                                                    |               |                                                                                                       |              |                      |               |             |           |     |                |           |
| EBS                | 1 Row at midpt                               |                               | CLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 |               |                                                                                                       |              |                      |               |             |           |     |                |           |
|                    |                                              |                               |                                                    |               | late DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br>OL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; |              |                      |               |             |           |     |                |           |
|                    | Max Horiz 18=160 (L                          | .C 13)                        |                                                    | Cs=1.00; Ct   |                                                                                                       | D, I uny     | Exp., 00=0.          | σ,            |             |           |     |                |           |
|                    | Max Uplift 11=-172 (                         | <i>,,</i>                     | ý <del>4</del> )                                   |               | snow loads have b                                                                                     | een cor      | nsidered for th      | his           |             |           |     |                |           |
|                    | Max Grav 11=1684 (                           | (LC 44), 18=1684 (L           | .C 44)                                             | design.       |                                                                                                       |              |                      |               |             |           |     |                |           |
| ORCES              | (lb) - Maximum Com                           | pression/Maximum              | 5)                                                 |               | is been designed fo                                                                                   |              |                      |               |             |           |     |                |           |
|                    | Tension                                      |                               |                                                    |               | psf or 1.00 times fla                                                                                 |              |                      | sf on         |             |           |     |                |           |
| OP CHORD           | 1-2=0/67, 2-3=-2129                          |                               | 4,                                                 |               | on-concurrent with                                                                                    |              |                      |               |             |           |     |                |           |
|                    | 4-5=-2765/290, 5-7=                          | ,                             | 6)<br>57 7)                                        |               | quate drainage to p                                                                                   |              |                      | g.            |             |           |     |                |           |
|                    | 7-8=-1598/223, 8-9=<br>2-18=-1597/201, 9-1   |                               | 67, 7)                                             |               | is been designed fo<br>ad nonconcurrent w                                                             |              |                      | do            |             |           |     |                |           |
| OT CHORD           | 17-18=-250/600, 15-                          |                               | 8)                                                 |               | as been designed                                                                                      |              |                      |               |             |           |     | 11111 01       | 1111      |
|                    | 14-15=-342/2860, 12                          | ,                             | 0)                                                 |               | n chord in all areas                                                                                  |              |                      | opsi          |             |           |     | "TH UA         | ROUL      |
|                    | 11-12=-184/491                               |                               |                                                    |               | by 2-00-00 wide wil                                                                                   |              |                      | om            |             |           | 1.  | A              | the last  |
| EBS                | 3-17=-50/1028, 4-17                          | =-1361/243,                   |                                                    |               | ny other members,                                                                                     |              |                      |               |             | 4         | 22  | 2015-          | Visit     |
|                    | 4-15=-12/546, 5-15=                          |                               | 9)                                                 | H10A Simps    | on Strong-Tie conr                                                                                    | ectors       | recommende           | d to          |             | -         |     | in a           | 2         |
|                    | 5-14=-272/136, 7-14                          |                               |                                                    |               | s to bearing walls o                                                                                  |              |                      |               |             | -         |     |                |           |
|                    | 7-12=-1361/242, 8-1                          |                               |                                                    |               | connection is for u                                                                                   | plift onl    | y and does n         | ot            |             |           | :   | SEA            | L : =     |
| -                  | 2-17=-191/1401, 9-1                          | 2=-198/1401                   | 4.0                                                | consider late |                                                                                                       |              |                      |               |             | =         |     | 0363           | 22 : =    |
| OTES               |                                              |                               |                                                    |               | designed in accord<br>Residential Code                                                                |              |                      | nd            |             |           |     | 0303           |           |
|                    | ed roof live loads have                      | been considered to            | r                                                  |               | nd referenced stan                                                                                    |              |                      | anu           |             |           | -   |                | 1 2       |
| this desigr        | 1.                                           |                               | 11                                                 |               | rlin representation                                                                                   |              |                      | size          |             |           | 2.  | N. En          | Rik S     |
|                    |                                              |                               |                                                    |               | ation of the purlin a                                                                                 |              |                      |               |             |           | 21  | S, GIN         | EF. A.S   |
|                    |                                              |                               |                                                    | bottom chore  |                                                                                                       | 5            |                      |               |             | CHILLING. | 1   | CA O           | II BEIN   |
|                    |                                              |                               | LC                                                 | DAD CASE(S)   | Standard                                                                                              |              |                      |               |             |           |     | 11, A. G       | IL III    |
|                    |                                              |                               |                                                    | (-)           |                                                                                                       |              |                      |               |             |           |     | 201111         | 1111      |
|                    |                                              |                               |                                                    |               |                                                                                                       |              |                      |               |             |           |     | March          | 16,2023   |

### or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B3    | Нір        | 1   | 1   | Job Reference (optional) | 157188465 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:57 ID:ZzTINoiMm3HpcHKZM1WrWKzaLQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

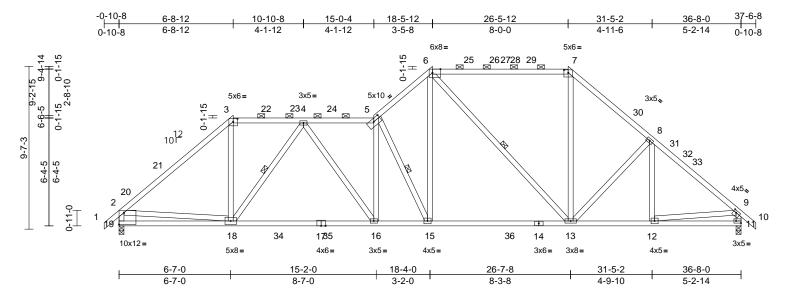
37-6-8 0-10-8 4-2-14 8-2-4 14-10-13 21-9-3 28-5-12 32-5-2 36-8-0 4-2-14 3-11-6 6-8-9 6-10-5 6-8-9 3-11-6 4-2-14 3x5= 3x8= 5x6= 3x6= 5x6= 0-1-15 H 15 4 2324 5 25 4 6 7 2627 8 5  $\boxtimes$ 7-8-12 10 4x5、 4x5 🖌 3 9 7-6-15 7-11-3 7-6-15 22 28 3x5 II 21 29 3x5 II 30 10 2<sup>20</sup> 0-11-0 Æ 1 11 19 12 П m Ø 18 17 16 31 15 14 13 3x6= 3x6= 3x8= 4x6= 3x5= 2x4 II 4x6= 3x8= 14-10-13 28-7-8 8-0-8 21-9-3 36-8-0 6-10-5 6-10-5 8-0-8 6-10-5 8-0-8

Scale = 1:67.5

Plate Offsets (X, Y): [4:0-3-0,0-2-1], [8:0-3-0,0-2-1]

|                                                             |                                                                                         | 1                                                                                                                                                                       |                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                                                                          |                              |                               |                               |                                       | i                                |                                    |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|---------------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201    | 8/TPI2014                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90<br>0.90<br>0.54                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                 | in<br>-0.16<br>-0.29<br>0.11 | (loc)<br>15-16<br>15-16<br>12 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a              | PLATES<br>MT20<br>Weight: 238 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                             | 2-0-0 oc purlins (2-2<br>Rigid ceiling directly<br>bracing.                             | athing directly applie<br>except end verticals,<br>-0 max.): 4-8.<br>applied or 10-0-0 oc<br>5-18, 7-16, 7-13, 3-1<br>9-12<br>19=0-3-8<br>LC 12)<br>LC 15), 19=-167 (LC | d or<br>and<br>9, 3)<br>14) <sup>4)</sup> | Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>2-9-8 to 132<br>(2R) 23-3-8<br>zone; cantile<br>and right exp<br>MWFRS for<br>grip DOL=1.<br>TCLL: ASCE<br>Plate DOL=:<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design. | 7-16; Pr=20.0 ps<br>1.15); Pf=20.0 psf<br>Is=1.0; Rough Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BCDL=6<br>RS (env<br>10-8 to 2<br>4-8 to 2<br>4-8 to 2<br>(2E) 33<br>xposed<br>nbers ar<br>Lumber I<br>f (roof LL<br>(Lum DC<br>B; Fully<br>been cor | .0psf; h=25ft<br>elope) exterii<br>-9-8, Exterioi<br>-30-8, Exterioi<br>-10-8 to 37-6;<br>; end vertical<br>d forces &<br>DOL=1.60 pla<br>.: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.1<br>asidered for t | or<br>r(2R)<br>              |                               |                               |                                       |                                  |                                    |
| FORCES                                                      | (lb) - Maximum Com<br>Tension                                                           | pression/Maximum                                                                                                                                                        |                                           |                                                                                                                                                                                                                             | psf or 1.00 times f<br>on-concurrent with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                          | sf on                        |                               |                               |                                       |                                  |                                    |
| TOP CHORD                                                   | 1-2=0/39, 2-3=-517/<br>4-5=-1528/236, 5-7=<br>7-8=-1533/236, 8-9=                       | -2236/248,                                                                                                                                                              | 6)<br>7)<br>30, 8)                        | Provide ade<br>This truss ha<br>chord live los<br>* This truss l                                                                                                                                                            | quate drainage to<br>as been designed f<br>ad nonconcurrent<br>nas been designed<br>m chord in all area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prevent<br>for a 10.0<br>with any<br>I for a liv                                                                                                     | water ponding<br>opsf bottom<br>other live loa<br>e load of 20.1                                                                                                                                         | ads.                         |                               |                               |                                       | WITH CA                          | Bound                              |
| BOT CHORD                                                   | 18-19=-220/1446, 10<br>15-16=-200/2246, 13                                              |                                                                                                                                                                         |                                           | 3-06-00 tall I<br>chord and ar                                                                                                                                                                                              | by 2-00-00 wide wind with the wind the second states of the second state | ill fit betw<br>with BC                                                                                                                              | veen the bott<br>DL = 10.0ps                                                                                                                                                                             | f.                           |                               | 6                             | i                                     | FESS                             | DA NA                              |
| WEBS<br>NOTES<br>1) Unbalance<br>this design                | 7-15=0/367, 7-13=-1<br>9-13=-177/216, 3-19<br>9-12=-1635/120<br>ed roof live loads have | 16=0/350, 7-16=-106/<br>1043/192, 8-13=-26/9<br>9=-1629/120,                                                                                                            | 39,<br>10                                 | connect trus<br>and 12. This<br>consider late<br>) This truss is<br>International<br>R802.10.2 a                                                                                                                            | designed in accor<br>Residential Code<br>nd referenced star<br>Irlin representation<br>ation of the purlin a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | due to U<br>uplift onl<br>dance w<br>sections<br>ndard AN                                                                                            | PLIFT at jt(s)<br>y and does n<br>ith the 2018<br>; R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s                                                                                                         | ) 19<br>ot<br>and            |                               |                               | A A A A A A A A A A A A A A A A A A A | SEA<br>0363                      | • –                                |

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B4    | Roof Special | 1   | 1   | Job Reference (optional) | 157188466 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:58 ID:O7q0drm6Mv1zKCnjiHdFmbzaLQI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = | 1:67.9 |
|---------|--------|
|---------|--------|

| Plate Offsets (                                                                                    | X, Y): [3:0-3-0,0-2-1],                                                                                                                                                                                                                                                   | , [5:0-5-0,0-2-0], [6:0-5                                                 | -11,Edg                                | e], [7:0-3-0,0-2                                                                                                                                                                                                                  | -1], [9:0-2-0,0-1-8                                                                                                                                                                                                                                                                                                                              | ], [11:Ed                                                                                                                                                            | ge,0-1-8], [19                                                                                                                                                                                                  | :Edge,0-                                            | 8-6]                          |                               |                          |                                  |                                    |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                        | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                              | 0.97<br>0.77<br>0.66                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                        | in<br>-0.26<br>-0.45<br>0.07                        | (loc)<br>16-18<br>16-18<br>11 | l/defl<br>>999<br>>966<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 250 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2 *Excep<br>2.0E<br>2x4 SP No.1<br>2x4 SP No.3 *Excep<br>No.2<br>Structural wood she<br>except end verticals<br>(2-20 max.): 3-5, 6-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 11=0-3-8,<br>Max Horiz 19=-239 (<br>Max Uplift 11=-82 (L | 4-18, 5-15, 6-13<br>, 19=0-3-8<br>(LC 12)                                 | ,<br>3)<br>4) 4)                       | Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>2-9-8 to 10-2<br>(2R) 15-0-4<br>Exterior(2R)<br>33-10-8, Ext<br>left and right<br>exposed;C-C<br>reactions sh<br>DOL=1.60<br>TCLL: ASCE<br>Plate DOL=<br>DOL=1.15);<br>Cs=1.00; Ct: | 7-16; Vult=130mp<br>ph; TCDL=6.0psf;<br>3; Enclosed; MWF<br>C Exterior(2E) -0-<br>i-12, Interior (1) 11<br>to 22-1-12, Interio<br>22-9-12 to 30-1-1<br>erior(2E) 33-10-8<br>exposed; end ve<br>for members and<br>wm; Lumber DOL<br>7-16; Pr=20.0 psf<br>I.15); Pf=20.0 psf<br>I.15); Pf=20.0 psf<br>I.15); Rough Ca<br>=1.10<br>snow loads have | BCDL=6<br>RS (env<br>10-8 to 2<br>0-4-12 to<br>r (1) 22-'<br>2, Interic<br>to 37-6-8<br>rtical left<br>d forces 6<br>=1.60 pl<br>f (roof LL<br>(Lum DC<br>t B; Fully | .0psf; h=25ft<br>elope) exterid<br>-9-8, Exterion<br>15-0-4, Exter<br>-12 to 22-9-1<br>r (1) 30-1-12<br>2 zone; cantild<br>and right<br>& MWFRS for<br>ate grip<br>:: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.9 | ;<br>(2R)<br>rior<br>2,<br>to<br>ever<br>1.15<br>9; | LOAD                          | CASE(S)                       | ) Sta                    |                                  | r 1 = 20 <i>7</i> 6                |
| FORCES                                                                                             | (lb) - Maximum Com<br>Tension<br>1-2=0/67, 2-3=-2144<br>4-5=-2610/322, 5-6=<br>6-7=-1429/280, 7-8=<br>8-9=-2033/230, 9-10                                                                                                                                                 | hpression/Maximum<br>4/228, 3-4=-1595/240,<br>=-2431/353,                 | 5)<br>6)<br>7)<br>0,                   | This truss ha<br>load of 12.0<br>overhangs n<br>Provide ade<br>This truss ha<br>chord live loa                                                                                                                                    | as been designed<br>psf or 1.00 times f<br>on-concurrent with<br>quate drainage to<br>as been designed<br>ad nonconcurrent                                                                                                                                                                                                                       | flat roof len<br>n other lin<br>prevent<br>for a 10.1<br>with any                                                                                                    | bad of 20.0 p<br>ve loads.<br>water ponding<br>psf bottom<br>other live loa                                                                                                                                     | sf on<br>g.<br>ds.                                  |                               |                               |                          | TH CA                            | ROL                                |
| BOT CHORD                                                                                          | 9-11=-1603/214<br>18-19=-345/756, 16<br>15-16=-130/2601, 1<br>12-13=-43/1498, 11<br>3-18=-12/1110, 4-18                                                                                                                                                                   | 3-15=-42/1845,<br>-12=-72/261                                             | 8)<br>9)                               | on the bottor<br>3-06-00 tall I<br>chord and ar                                                                                                                                                                                   | nas been designed<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members<br>on Strong-Tie cor                                                                                                                                                                                                                                           | is where<br>ill fit betw<br>, with BC                                                                                                                                | a rectangle<br>veen the bott<br>DL = 10.0ps                                                                                                                                                                     | om                                                  |                               | U                             | ìà                       | SEA                              | Day 1                              |
| NOTES                                                                                              | 4-16=-27/691, 5-16=<br>5-15=-1531/231, 6-1<br>6-13=-620/107, 7-13<br>8-13=-328/182, 8-12<br>2-18=-107/1347, 9-1<br>ed roof live loads have                                                                                                                                | =-373/90,<br>15=-135/1600,<br>3=-33/792,<br>2=-91/57,<br>12=-26/1273      |                                        | connect trus<br>and 11. This<br>consider late<br>) This truss is<br>International<br>R802.10.2 a                                                                                                                                  | s to bearing walls<br>connection is for<br>real forces.<br>designed in accor<br>Residential Code<br>nd referenced star<br>irlin representation<br>ation of the purlin                                                                                                                                                                            | due to U<br>uplift onl<br>dance w<br>sections<br>ndard AN                                                                                                            | PLIFT at jt(s)<br>y and does no<br>ith the 2018<br>s R502.11.1 at<br>ISI/TPI 1.<br>ot depict the s                                                                                                              | 19<br>ot<br>ind                                     |                               | 1111AA.                       |                          | SEA<br>0363<br>MGINI<br>A. G     | 22<br>EREALITY                     |



818 Soundside Road Edenton, NC 27932

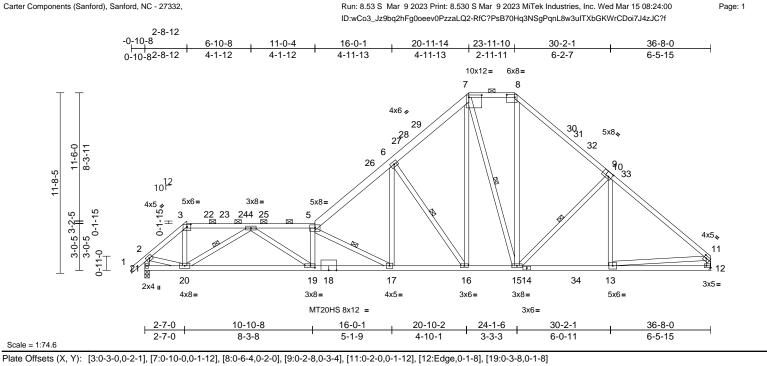
March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B5    | Roof Special | 1   | 1   | Job Reference (optional) | 157188467 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:23:59 ID:DHCHuurtxIn627Ft3Ykf?szaLQC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

37-6-8 0-10-8 4-8-12 8-10-8 13-0-4 20-5-12 24-5-12 30-5-2 36-8-0 4-1-12 7-5-8 4-8-12 4-1-12 4-0-0 5-11-6 6-2-14 5x6= 5x6= 27 27 27 4 0-1-15 6 7 11-0-3x6、 8 10-10-15 6-0-10 28 26 3x5、 5x10 🍫 29 12 10Γ 25 9 3x5= 11-3-3 5x6= 30 0-1-15 H 0-1-15 4-10-5 3 21 22 \_234 24 5 20 4-8-5 4-8-5 2 10 0-11-0 1 11 12 19 ₿ 8 18 17 16 15 31 13 14 10x12= 10x12= 5x8= 3x6= 3x6= 5x8= 4x5= 3x5= 4-7-0 13-2-0 20-4-0 24-7-8 30-5-2 36-8-0 4 4-7-0 8-7-0 7-2-0 4-3-8 5-9-10 6-2-14 Scale = 1:72 Plate Offsets (X, Y): [3:0-3-0,0-2-1], [5:0-5-4,0-2-0], [6:0-3-0,0-2-1], [7:0-3-0,0-2-1], [12:Edge,0-8-6], [14:0-3-0,0-3-0], [19:Edge,0-8-6] 2-0-0 CSI DEFL L/d PLATES GRIP Loading (psf) Spacing in (loc) l/defl TC Plate Grip DOL TCLL (roof) 20.0 1.15 0.95 Vert(LL) -0.22 16-18 >999 240 MT20 244/190 40.40


| Snow (Pf)<br>TCDL                        | 20.0<br>10.0                                                                                                    | Lumber DOL<br>Rep Stress Incr        | 1.15<br>YES          |                                                                 | BC<br>WB                                                                                                  | 0.92<br>0.80                                             | Vert(CT)<br>Horz(CT)                                                    | -0.43<br>0.09         | 16-18<br>12 | >999<br>n/a          | 180<br>n/a    |                                                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------|----------------------|---------------|--------------------------------------------------------------------------------------|
| BCLL                                     | 0.0*                                                                                                            | Code                                 | IRC201               | 8/TPI2014                                                       | Matrix-MSH                                                                                                |                                                          |                                                                         |                       |             |                      |               |                                                                                      |
| BCDL                                     | 10.0                                                                                                            |                                      |                      |                                                                 |                                                                                                           |                                                          |                                                                         |                       |             |                      |               | Weight: 250 lb FT = 20%                                                              |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2 *Excep<br>2.0E<br>2x4 SP No.2 *Excep<br>2x4 SP No.3 *Excep                                          | t* 17-14:2x4 SP No.1                 | 2)                   | this design.<br>Wind: ASCE<br>Vasd=103m<br>Cat. II; Exp E       | roof live loads ha<br>7-16; Vult=130n<br>ph; TCDL=6.0pst<br>3; Enclosed; MW                               | nph (3-seo<br>; BCDL=6<br>FRS (env                       | cond gust)<br>5.0psf; h=25ft;<br>elope) exterio                         | r                     | or th       | ne orient<br>om chor | ation c<br>d. | presentation does not depict the size<br>of the purlin along the top and/or<br>ndard |
| BRACING<br>TOP CHORD                     | No.2<br>Structural wood shear<br>except end verticals,<br>(2-9-12 max.): 3-5, 6                                 | , and 2-0-0 oc purlins               |                      | 2-9-8 to 8-4-<br>(2R) 16-9-12<br>Exterior(2E)<br>right expose   | C Exterior(2E) -0<br>12, Interior (1) 8-<br>2 to 28-1-12, Inter<br>33-10-8 to 37-6-<br>d; end vertical le | 4-12 to 16<br>rior (1) 28-<br>8 zone; ca<br>eft and righ | 6-9-12, Exterio<br>-1-12 to 33-10<br>antilever left an<br>at exposed;C- | or<br>)-8,<br>nd<br>C |             |                      |               |                                                                                      |
| BOT CHORD                                | Rigid ceiling directly<br>bracing, Except:<br>2-2-0 oc bracing: 16                                              |                                      | 3)                   | Lumber DOL<br>TCLL: ASCE                                        | and forces & M<br>==1.60 plate grip<br>7-16; Pr=20.0 p                                                    | DOL=1.60<br>sf (roof LL                                  | )<br>.: Lum DOL=1                                                       | 1.15                  |             |                      |               |                                                                                      |
| WEBS                                     |                                                                                                                 | 4-18, 5-15, 6-14, 9-1                | 4                    |                                                                 | 1.15); Pf=20.0 ps<br>Is=1.0; Rough Ca                                                                     |                                                          |                                                                         |                       |             |                      |               |                                                                                      |
| REACTIONS                                | (size) 12=0-3-8,<br>Max Horiz 19=278 (L<br>Max Uplift 12=-97 (L<br>Max Grav 12=1771 (                           | .C 13)<br>C 15), 19=-170 (LC 1       | ,                    | Cs=1.00; Ct<br>Unbalanced<br>design.                            |                                                                                                           | e been cor                                               | nsidered for th                                                         | nis                   |             |                      |               |                                                                                      |
| FORCES                                   | (lb) - Maximum Com<br>Tension                                                                                   | pression/Maximum                     | , 0,                 | load of 12.0                                                    | psf or 1.00 times                                                                                         | flat roof lo                                             | bad of 20.0 ps                                                          |                       |             |                      |               |                                                                                      |
| TOP CHORD                                | 1-2=0/68, 2-3=-2060<br>4-5=-3213/335, 5-6=<br>6-7=-1305/284, 7-9=<br>9-10=-2156/214, 10-<br>2-19=-1699/190, 10- | -2113/287,<br>-1877/298,<br>11=0/39, | 6)<br>7)<br>8)<br>9) | Provide adeo<br>The Fabricat<br>This truss ha<br>chord live loa | quate drainage to<br>tion Tolerance at<br>as been designed<br>ad nonconcurren<br>has been designed        | prevent<br>joint 5 = 8<br>for a 10.0<br>t with any       | water ponding<br>3%<br>0 psf bottom<br>other live load                  | ds.                   |             |                      | A LINE        | H CARO                                                                               |
| BOT CHORD                                | 18-19=-281/445, 16-<br>15-16=-279/3195, 13<br>12-13=-115/334                                                    | 18=-274/2438,                        | 3)                   | on the bottor<br>3-06-00 tall b                                 | m chord in all are<br>by 2-00-00 wide when the member                                                     | as where<br>will fit betv                                | a rectangle<br>veen the botto                                           | om                    |             | N. III               |               | SEAL E                                                                               |
| WEBS                                     | 3-18=-20/1037, 4-18<br>4-16=-62/1175, 5-16<br>5-15=-2004/314, 6-1<br>6-14=-509/130, 7-14                        | =-642/146,<br>5=-97/1260,            | 10                   | ) H10A Simps<br>connect trus                                    | son Strong-Tie co<br>s to bearing walls<br>connection is for                                              | nnectors<br>s due to U                                   | recommendeo<br>PLIFT at jt(s)                                           | d to<br>19            |             | THE DEST             |               | 036322                                                                               |
| NOTES                                    | 9-14=-470/210, 9-13<br>10-13=0/1315                                                                             |                                      | 95, 11               | ) This truss is<br>International                                | designed in acco<br>Residential Cod<br>nd referenced sta                                                  | e sections                                               | 8 R502.11.1 a                                                           | nd                    |             |                      |               | A. GILBERT                                                                           |

March 16,2023

Page: 1

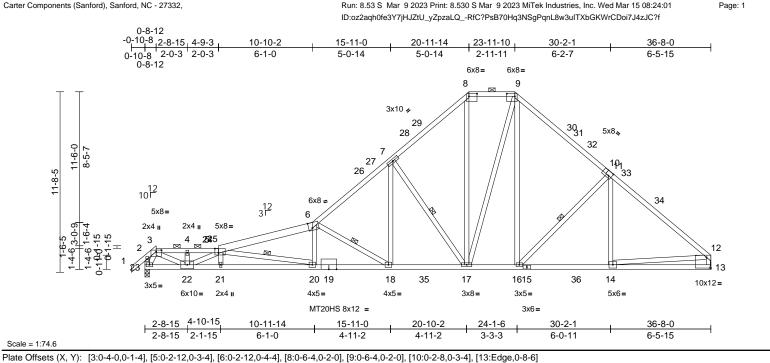
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B6    | Piggyback Base | 1   | 1   | Job Reference (optional) | 157188468 |



|             |                        |                                                   |        |                  |                       | 1, 1          |                  |       |         |             |              |                     |                        |
|-------------|------------------------|---------------------------------------------------|--------|------------------|-----------------------|---------------|------------------|-------|---------|-------------|--------------|---------------------|------------------------|
| Loading     | (psf)                  | Spacing                                           | 2-0-0  |                  | csi                   |               | DEFL             | in    | (loc)   | l/defl      | L/d          | PLATES              | GRIP                   |
| TCLL (roof) | 20.0                   | Plate Grip DOL                                    | 1.15   |                  | TC                    | 0.94          | Vert(LL)         | -0.30 |         | >999        | 240          | MT20                | 244/190                |
| Snow (Pf)   | 20.0                   | Lumber DOL                                        | 1.15   |                  | BC                    | 0.89          | Vert(CT)         | -0.56 |         | >786        | 180          | MT20HS              | 187/143                |
| TCDL        | 10.0                   | Rep Stress Incr                                   | YES    |                  | WB                    | 0.89          | Horz(CT)         | 0.50  | 19-20   | >780<br>n/a | n/a          | 101120113           | 10//143                |
|             |                        | 1 '                                               |        |                  |                       | 0.75          |                  | 0.11  | 12      | n/a         | n/a          |                     |                        |
| BCLL        | 0.0*                   | Code                                              | IRC201 | 8/TPI2014        | Matrix-MSH            |               |                  |       |         |             |              |                     |                        |
| BCDL        | 10.0                   |                                                   |        |                  |                       |               |                  |       |         |             |              | Weight: 269 lb      | FI = 20%               |
| LUMBER      |                        |                                                   | 1      | Unbalanced       | roof live loads ha    | ve been       | considered for   | r     | 13) Thi | s truss is  | s desig      | ned in accordance   | ce with the 2018       |
| TOP CHORD   | 2x4 SP No.2 *Excep     | ot* 5-7:2x6 SP No 2                               |        | this design.     |                       |               |                  | •     |         |             |              |                     | tions R502.11.1 and    |
| BOT CHORD   | 2x4 SP No.1            | N 0 1.2X0 01 110.2                                | 2      |                  | 7-16; Vult=130m       | ph (3-sec     | cond aust)       |       |         |             |              | erenced standar     |                        |
| WEBS        |                        | ot* 16-7,15-7,15-8:2x4                            |        |                  | ph; TCDL=6.0psf;      |               |                  |       |         |             |              |                     | es not depict the size |
| WEbb        | No.2                   | x 101,101,100.2x1                                 | 01     |                  | B; Enclosed; MWF      |               |                  |       |         |             |              | of the purlin along |                        |
| BRACING     | 110.2                  |                                                   |        |                  | C Exterior(2E) -0-    |               |                  |       |         | tom cho     |              |                     | g the top and of       |
| TOP CHORD   |                        | مناميم والمعملان مصعالهما                         |        |                  | to 6-4-12, Interior   |               |                  |       |         | CASE(S      |              | ndard               |                        |
| TOP CHORD   |                        | athing directly applied<br>, and 2-0-0 oc purlins | ,      |                  | 17-3-14 to 27-7-1     |               |                  |       | LUAD    | SASE(S      | <b>)</b> 31a | nuaru               |                        |
|             | (2-4-2 max.): 3-5, 7-  |                                                   |        |                  | terior(2E) 32-10-4    |               |                  |       |         |             |              |                     |                        |
|             | ( , ,                  |                                                   |        |                  | t exposed ; end ve    |               |                  |       |         |             |              |                     |                        |
| BOT CHORD   | Rigid ceiling directly | applied or 6-0-0 oc                               |        |                  | C for members an      |               |                  | r     |         |             |              |                     |                        |
|             | bracing.               |                                                   | -      | reactions sh     | own; Lumber DOI       | L=1.60 pl     | ate grip         |       |         |             |              |                     |                        |
| WEBS        | 1 Row at midpt         | 4-20, 6-16, 7-15, 10-1<br>5-17                    | 5,     | DOL=1.60         |                       |               |                  |       |         |             |              |                     |                        |
|             |                        |                                                   | 3      | TCLL: ASCE       | E 7-16; Pr=20.0 ps    | sf (roof Ll   | .: Lum DOL=1     | 1.15  |         |             |              |                     |                        |
| REACTIONS   | · /                    | nanical, 21=0-3-8                                 |        | Plate DOL=       | 1.15); Pf=20.0 psf    | (Lum DC       | L=1.15 Plate     | •     |         |             |              |                     |                        |
|             | Max Horiz 21=284 (I    |                                                   |        |                  | Is=1.0; Rough Ca      |               |                  |       |         |             |              |                     |                        |
|             |                        | .C 15), 21=-171 (LC 14                            |        | Cs=1.00; Ct      | =1.10                 |               | •                |       |         |             |              |                     |                        |
|             | Max Grav 12=1761       | (LC 53), 21=1736 (LC                              | 53) 4  | Unbalanced       | snow loads have       | been cor      | nsidered for th  | nis   |         |             |              |                     |                        |
| FORCES      | (lb) - Maximum Corr    | pression/Maximum                                  |        | design.          |                       |               |                  |       |         |             |              |                     |                        |
|             | Tension                |                                                   | 5      | This truss ha    | as been designed      | for great     | er of min roof   | live  |         |             |              |                     |                        |
| TOP CHORD   | 1-2=0/69, 2-3=-1932    | 2/159, 3-4=-1398/151,                             |        | load of 12.0     | psf or 1.00 times     | flat roof le  | bad of 20.0 ps   | sf on |         |             |              |                     |                        |
|             | 4-5=-4735/373, 5-6=    | -3095/301,                                        |        | overhangs n      | on-concurrent wit     | h other li    | ve loads.        |       |         |             |              | minin               | 11111                  |
|             | 6-7=-2036/316, 7-8=    | -1317/284,                                        | 6      | Provide ade      | quate drainage to     | prevent       | water ponding    | q.    |         |             |              | White CA            | Dalle                  |
|             | 8-10=-1905/293, 10     | -11=-2221/205,                                    | 7      | All plates ar    | e MT20 plates unl     | ess othei     | wise indicated   | d.    |         |             |              | "aTH OF             | no y                   |
|             | 2-21=-1766/157, 11     | -12=-1655/159                                     | 8      | This truss ha    | as been designed      | for a 10.     | 0 psf bottom     |       |         |             | 1            | OFFESS              | K. An                  |
| BOT CHORD   | 20-21=-280/272, 19     |                                                   |        | chord live lo    | ad nonconcurrent      | with any      | other live load  | ds.   |         |             |              | OFLOY               | A T                    |
|             | 17-19=-439/4777, 1     | 6-17=-185/2356,                                   | 9      | * This truss     | has been designe      | d for a liv   | e load of 20.0   | Opsf  |         |             | 1)           |                     | 1 ng mg                |
|             | 15-16=-8/1440, 13-1    | 15=-51/1641,                                      |        |                  | m chord in all area   |               |                  | •     |         |             |              |                     |                        |
|             | 12-13=-83/272          |                                                   |        | 3-06-00 tall     | by 2-00-00 wide w     | vill fit betw | veen the botto   | om    |         | -           |              | SEA                 | 1 1 2                  |
| WEBS        | 3-20=-24/1035, 4-20    | )=-2183/229,                                      |        | chord and a      | ny other members      | s, with BC    | DL = 10.0psf.    | i.    |         | =           |              | 0000                |                        |
|             | 4-19=-60/1814, 5-19    |                                                   | 1      | 0) Refer to gird | ler(s) for truss to t | russ conr     | nections.        |       |         |             |              | 0363                | 22 : 3                 |
|             | 6-16=-1563/304, 7-1    |                                                   | 1      | 1) Provide med   | chanical connectio    | n (by oth     | ers) of truss to | 0     |         | -           |              | <b>.</b>            | 1 S                    |
|             | 7-15=-457/109, 8-15    |                                                   |        |                  | e capable of withs    |               |                  |       |         |             | -            | 1. A.               | - 1 S -                |
|             | 10-15=-543/224, 10     | ,                                                 |        | 12.              |                       | 5             | ,                |       |         |             | 11           |                     | -FR. A S               |
|             | 2-20=-38/1476, 11-1    |                                                   | 1      | 2) H10A Simps    | son Strong-Tie cor    | nnectors      | recommended      | d to  |         |             | 1            | S. GIN              | EF R N                 |
|             | 6-17=-88/1514, 5-17    | 7=-2801/289                                       |        |                  | s to bearing walls    |               |                  |       |         |             | 1            | C A                 | BEN                    |
| NOTES       |                        |                                                   |        |                  | tion is for uplift on |               |                  |       |         |             |              | 11, A. G            | 11-111                 |
|             |                        |                                                   |        | lateral forces   |                       |               |                  |       |         |             |              | 11111               |                        |
|             |                        |                                                   |        |                  |                       |               |                  |       |         |             |              |                     | 40.0000                |

March 16,2023


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B7    | Piggyback Base | 1   | 1   | Job Reference (optional) | 157188469 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08;24:01

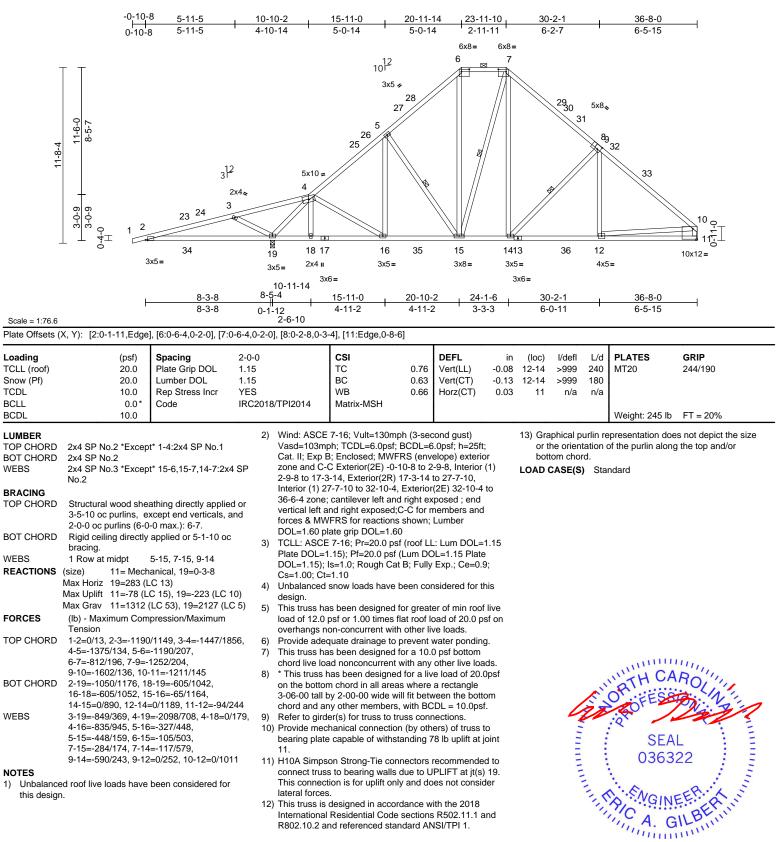
Carter Components (Sanford), Sanford, NC - 27332,



| - 1000 0110010 ()                                                                                                                                                                                                                                                                                                                                                                          | (, , )): [ele : ele : i];                                                                                                                                | [0:0 2 :2;0 0 :]; [0:0                                             | 2 .2,0], [0                                                            |                                                                                            |                                                                                                                                                                       | 2 0,0 0 1], [10                                                | ago,a                        | 0 01                                                               |                                                                                      |                                                                                                      |                                                                                                                                                |                                                               |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2                           | 2014 CSI<br>TC<br>BC<br>WB<br>Matr                                                         | 0.97<br>0.85<br>0.79<br>ix-MSH                                                                                                                                        | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                | in<br>-0.41<br>-0.72<br>0.13 | (loc)<br>20-21<br>20-21<br>13                                      | l/defl<br>>999<br>>609<br>n/a                                                        | L/d<br>240<br>180<br>n/a                                                                             | PLATES<br>MT20<br>MT20HS<br>Weight: 261 lb                                                                                                     | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20%                 |                                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD                                                                                                                                                                                                                                                                                                                           | No.1<br>2x4 SP No.3 *Excep<br>17-8,17-9,16-9,22-3<br>23-2:2x4 SP No.1                                                                                    | *Except* 19-15:2x4 \$<br>ot*<br>,22-5:2x4 SP No.2,                 |                                                                        | 6-18=-<br>7-17=-<br>9-17=-<br>11-16=<br>12-14=<br>4-22=-<br>3-23=-                         | /161, 5-20=-1400/23<br>3017/489, 7-18=-17<br>1563/361, 8-17=-20<br>118/482, 9-16=-106,<br>-548/226, 11-14=-3<br>-41/1434, 3-22=-50<br>263/73, 5-22=-3001,<br>1508/211 | D/1608,<br>1/1052,<br>/544,<br>D/213,<br>2/3234,               |                              | on t<br>3-00<br>cho<br>10) Ref<br>11) Pro<br>bea<br>13.<br>12) H10 | he botto<br>6-00 tall<br>rd and a<br>er to girc<br>vide meo<br>ring plat<br>0A Simps | m cho<br>by 2-0<br>ny oth<br>der(s) f<br>chanic<br>e capa<br>son St                                  | rd in all areas w<br>10-00 wide will fit<br>er members, wit<br>for truss to truss<br>al connection (b<br>able of withstanc<br>rong-Tie connect | y others) of truss<br>ling 80 lb uplift at<br>tors recommende | tom<br>sf.<br>to<br>joint<br>ed to       |
| TOP CHORDStructural wood sheathing directly applied,<br>except end verticals, and 2-0-0 cc purlins<br>(2-8-14 max.): 3-5, 8-9.BOT CHORDRigid ceiling directly applied or 7-10-10 oc<br>bracing.WEBS1 Row at midpt5-20, 6-18, 7-17, 11-16 <b>REACTIONS</b> (size)13= Mechanical, 23=0-3-8<br>Max HorizMax Uplift13=-80 (LC 15), 23=-171 (LC 14)<br>Max Grav13=1787 (LC 57), 23=1776 (LC 57) |                                                                                                                                                          |                                                                    | 1) Unb<br>this<br>c 2) Win<br>Vas<br>16 Cat.<br>zon<br>4-4-<br>4) Inte | 1) Unbalanced roof live loads have been considered for this design.                        |                                                                                                                                                                       |                                                                |                              |                                                                    |                                                                                      | nd does not consid<br>ce with the 2018<br>titions R502.11.1 a<br>rd ANSI/TPI 1.<br>es not depict the | der<br>and                                                                                                                                     |                                                               |                                          |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                     | (lb) - Maximum Com<br>Tension                                                                                                                            | pression/Maximum                                                   | forc                                                                   |                                                                                            | or reactions shown;                                                                                                                                                   |                                                                |                              | 20/12 (                                                            | . ,                                                                                  |                                                                                                      |                                                                                                                                                |                                                               |                                          |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                  | 1-2=0/70, 2-3=-293/<br>4-5=-3710/604, 5-6=<br>6-7=-3161/540, 7-8=<br>8-9=-1458/446, 9-11<br>11-12=-2258/381, 2:<br>12-13=-1681/322<br>22-23=-232/919, 21 | =-5227/775,<br>=-2064/499,<br>I=-1938/466,<br>-23=-358/162,        | 3) TCL<br>Plat<br>DOI<br>Cs=<br>4) Unb<br>desi                         | L: ASCE 7-16;<br>e DOL=1.15); F<br>_=1.15); Is=1.0<br>1.00; Ct=1.10<br>alanced snow<br>gn. | Pr=20.0 psf (roof LL<br>Pf=20.0 psf (Lum DC<br>; Rough Cat B; Fully<br>loads have been cor                                                                            | DL=1.15 Plate<br>Exp.; Ce=0.9<br>Insidered for the             | ;<br>is                      |                                                                    | 4                                                                                    | ÌÌ                                                                                                   | ORTH CA                                                                                                                                        | ROLINI                                                        | N                                        |
| BOT CHOKD                                                                                                                                                                                                                                                                                                                                                                                  | 22-23=-232/919, 21<br>20-21=-872/6375, 1<br>17-18=-211/2401, 1<br>14-16=-148/1670, 1                                                                     | 8-20=-642/5038,<br>6-17=0/1359,                                    | load<br>over<br>6) Prov<br>7) All p                                    | of 12.0 psf or<br>hangs non-cor<br>vide adequate o<br>lates are MT20                       | n designed for greate<br>1.00 times flat roof lo<br>neurrent with other lind<br>drainage to prevent to<br>plates unless other<br>n designed for a 10.0                | oad of 20.0 ps<br>ve loads.<br>water ponding<br>wise indicated | if on                        |                                                                    |                                                                                      |                                                                                                      | SEA<br>0363                                                                                                                                    |                                                               | ann ann an |

chord live load nonconcurrent with any other live loads.

## Unin GILLIN March 16,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

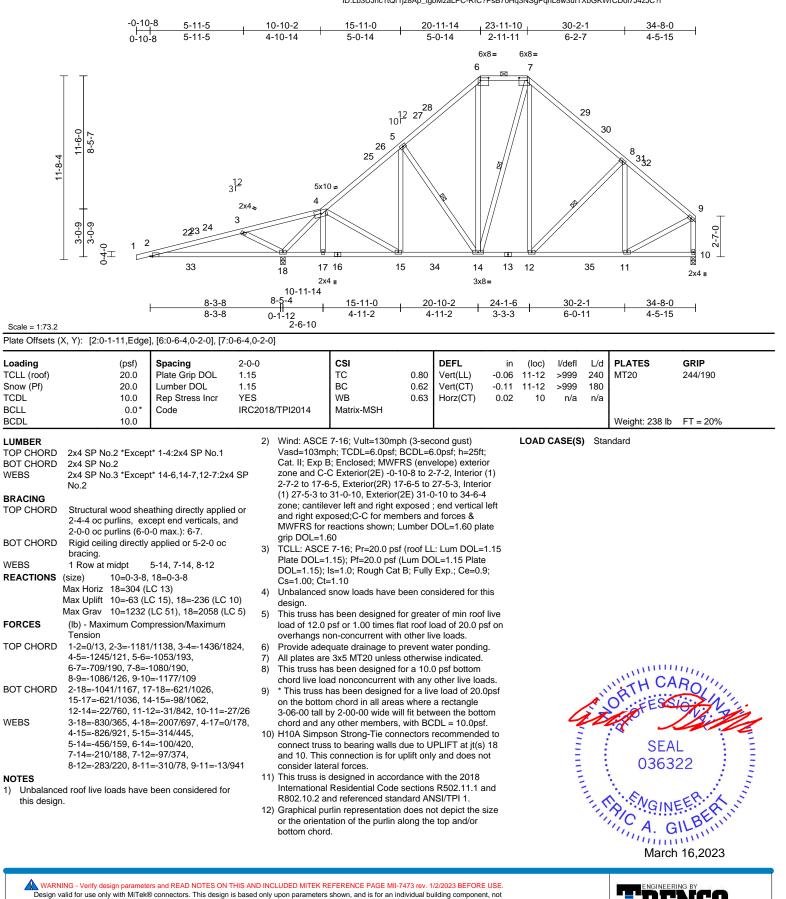
C

| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B8    | Piggyback Base | 4   | 1   | Job Reference (optional) | 157188470 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:02 ID:DYjjSi2Yx\_wiak28YcXfBRzaLPx-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1



March 16,2023

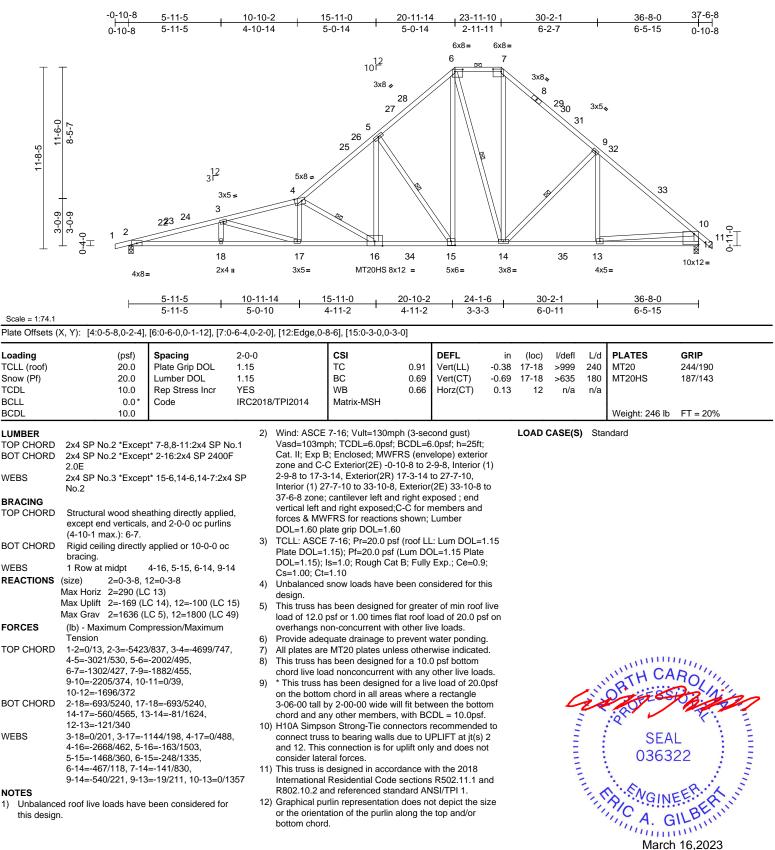

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affilian 818 Soundside Road

Edenton, NC 27932

| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B9    | Piggyback Base | 4   | 1   | Job Reference (optional) | 157188471 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:03 ID:Lb3UJnc1tQr1jz8Ap\_tgbMzaLPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



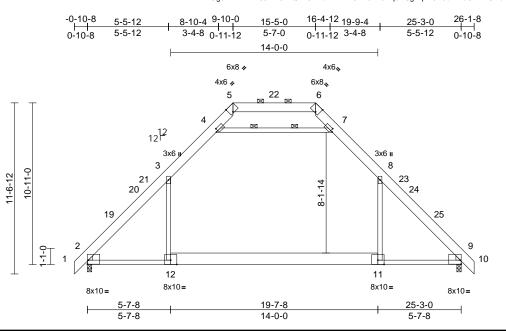

a truss system. Before úse, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | B10   | Piggyback Base | 7   | 1   | Job Reference (optional) | 157188472 |

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:04 ID:S5LO2DmApPUBnzdg3Dcjd5zaLP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1




1)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C1    | Attic      | 3   | 1   | Job Reference (optional) | 157188473 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:05 ID:OgutmTBRLMJ8PROFiQEE8mzaLPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



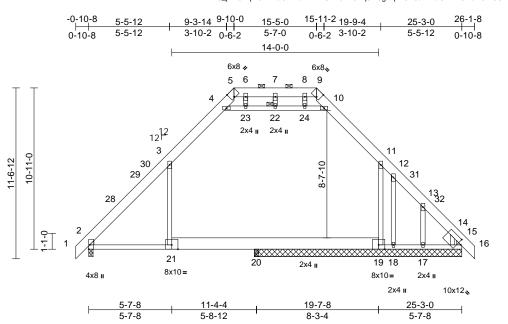


| Plate Offsets (X, Y): | [2:Edge,0-3-4], | [4:0-1-9,0-2-4], [5:0-2- | -14,Edge], [6:0-2-14,Ec | lge], [7:0-1-9,0-2-4], [9: | Edge,0-3-4] |  |
|-----------------------|-----------------|--------------------------|-------------------------|----------------------------|-------------|--|
|                       |                 |                          |                         |                            |             |  |

|             |                         | I                      |                                                                                                      |                | r                                        |           |                 |       |       |        |       |                |           |
|-------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------|----------------|------------------------------------------|-----------|-----------------|-------|-------|--------|-------|----------------|-----------|
| Loading     | (psf)                   | Spacing                | 2-0-0                                                                                                |                | csi                                      |           | DEFL            | in    | (loc) | l/defl | L/d   | PLATES         | GRIP      |
| TCLL (roof) | 20.0                    | Plate Grip DOL         | 1.15                                                                                                 |                | тс                                       | 0.36      | Vert(LL)        | -0.39 | 11-12 | >775   | 240   | MT20           | 244/190   |
| Snow (Pf)   | 20.0                    | Lumber DOL             | 1.15                                                                                                 |                | BC                                       | 0.85      | Vert(CT)        | -0.57 | 11-12 | >536   | 180   |                |           |
| TCDL        | 10.0                    | Rep Stress Incr        | YES                                                                                                  |                | WB                                       | 0.46      | Horz(CT)        | 0.03  | 2     | n/a    | n/a   |                |           |
| BCLL        | 0.0*                    | Code                   | IRC201                                                                                               | 8/TPI2014      | Matrix-MSH                               |           | Attic           | -0.31 | 11-12 | >546   | 360   |                |           |
| BCDL        | 10.0                    |                        |                                                                                                      |                |                                          |           |                 |       |       |        |       | Weight: 215 lb | FT = 20%  |
| LUMBER      |                         |                        | 2)                                                                                                   | Wind: ASCE     | 7-16; Vult=130mp                         | h (3-seo  | cond aust)      |       | LOAD  | CASE(S | ) Sta | ndard          |           |
| TOP CHORD   | 2x8 SP 2400F 2.0E       |                        | ,                                                                                                    | Vasd=103m      | oh; TCDL=6.0psf;                         | BCDL=6    | .0psf; h=25ft;  |       |       | •      |       |                |           |
| BOT CHORD   | 2x4 SP No.1 *Excep      | ot* 12-11:2x10 SP 24   | 100F                                                                                                 | Cat. II; Exp I | B; Enclosed; MWF                         | RS (env   | elope) exterio  | or    |       |        |       |                |           |
|             | 2.0E                    |                        |                                                                                                      | zone and C-    | C Exterior(2E) -0-1                      | 0-8 to 2  | -1-8, Interior  | (1)   |       |        |       |                |           |
| WEBS        | 2x4 SP No.3 *Excep      | ot* 4-7:2x4 SP No.2    |                                                                                                      |                | 15, Exterior(2R) 5-                      |           |                 | rior  |       |        |       |                |           |
| WEDGE       | Left: 2x4 SP No.3       |                        |                                                                                                      |                | o 23-1-8, Exterior(                      |           |                 |       |       |        |       |                |           |
|             | Right: 2x4 SP No.3      |                        |                                                                                                      |                | ver left and right e                     |           |                 | left  |       |        |       |                |           |
| BRACING     |                         |                        |                                                                                                      |                | osed;C-C for men                         |           |                 |       |       |        |       |                |           |
| TOP CHORD   | Structural wood she     | athing directly applie | ed or                                                                                                | grip DOL=1.    | reactions shown; L                       | umber i   | DOL=1.60 pla    | ate   |       |        |       |                |           |
|             | 6-0-0 oc purlins, exc   |                        | 2)                                                                                                   | 01             |                                          | (roof L   |                 | 1 1 5 |       |        |       |                |           |
|             | 2-0-0 oc purlins (6-0   |                        | ,                                                                                                    |                | 7-16; Pr=20.0 psf                        |           |                 |       |       |        |       |                |           |
| BOT CHORD   | Rigid ceiling directly  | applied or 10-0-0 or   | Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; |                |                                          |           |                 |       |       |        |       |                |           |
|             | bracing.                |                        |                                                                                                      | Cs=1.00; Ct    |                                          | D, I uliy | Exp., 00=0.0    | ,     |       |        |       |                |           |
| WEBS        | 2 Rows at 1/3 pts       |                        | 4)                                                                                                   |                | snow loads have b                        | been cor  | nsidered for th | nis   |       |        |       |                |           |
| REACTIONS   | ( )                     |                        | -,                                                                                                   | design.        |                                          |           |                 |       |       |        |       |                |           |
|             | Max Horiz 2=254 (LC     |                        | 5)                                                                                                   |                | as been designed f                       | or great  | er of min roof  | live  |       |        |       |                |           |
|             | Max Grav 2=1671 (I      |                        | 46)                                                                                                  | load of 12.0   | psf or 1.00 times fl                     | at roof l | oad of 20.0 p   | sf on |       |        |       |                |           |
| FORCES      | (lb) - Maximum Corr     | pression/Maximum       |                                                                                                      | overhangs n    | on-concurrent with                       | other li  | ve loads.       |       |       |        |       |                |           |
|             | Tension                 |                        | 6)                                                                                                   |                | quate drainage to p                      |           |                 | g.    |       |        |       |                |           |
| TOP CHORD   | 1-2=0/37, 2-3=-1945     |                        |                                                                                                      |                | as been designed f                       |           |                 |       |       |        |       |                |           |
|             | 4-5=-239/563, 5-6=-     |                        | ,                                                                                                    |                | ad nonconcurrent v                       |           |                 |       |       |        |       | munn           | UIII.     |
|             | 7-8=-1184/138, 8-9=     | =-1944/0, 9-10=0/37    | 8)                                                                                                   |                | nas been designed                        |           |                 | Opsf  |       |        |       | W'TH CA        | Roll      |
| BOT CHORD   | 2-9=-86/1218            |                        |                                                                                                      |                | n chord in all area                      |           |                 |       |       |        | N     | R              | Line .    |
| WEBS        | 3-12=0/949, 8-11=0      | /949, 4-7=-1935/82     |                                                                                                      |                | by 2-00-00 wide wi                       |           | veen the botto  | om    |       | /      | 5.    | O FESS         | De VII    |
| NOTES       |                         |                        | 0)                                                                                                   |                | ny other members.<br>load (5.0 psf) on r |           | (a) 2 4 7 9 4   | 4 7.  |       | 4      | Ø     |                | and L     |
|             | ed roof live loads have | been considered for    | r 9)                                                                                                 |                | ad (5.0psf) on mer                       |           |                 | +-7,  |       |        |       | :2             | K : 3     |
| this desigr | ٦.                      |                        | 10                                                                                                   |                | d live load (40.0 ps                     |           |                 | om    |       | -      |       | SEA            | 1 1 2     |
|             |                         |                        |                                                                                                      |                | oad (5.0 psf) appli                      |           |                 |       |       |        | :     | SEA            | • -       |
|             |                         |                        | 11                                                                                                   |                | designed in accord                       |           |                 | -     |       |        | :     | 0363           | 22 : =    |
|             |                         |                        |                                                                                                      |                | Residential Code                         |           |                 | ind   |       | -      | 6     |                | 1 2       |
|             |                         |                        |                                                                                                      |                | nd referenced star                       |           |                 | -     |       |        | -     | 8              | - 1 - S - |
|             |                         |                        | 12                                                                                                   |                | Irlin representation                     |           |                 | size  |       |        | 10    | N. SNOW        | -FRIX S   |
|             |                         |                        |                                                                                                      |                | ation of the purlin a                    |           |                 |       |       |        | 1     | S. GIN         | E. A.S    |
|             |                         |                        |                                                                                                      | bottom chore   | j.                                       | 5         | -               |       |       |        | 1     | SEA<br>0363    | II BEIN   |
|             |                         |                        |                                                                                                      |                |                                          |           |                 |       |       |        |       |                |           |

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.




G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type             | Qty | Ply | Abby plan                |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C1E   | Attic Structural Gable | 1   | 1   | Job Reference (optional) | 157188474 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:06 ID:1i5\_jm7JXqhrJfVIvte3RizaLPr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                       |                                      | 5-7-8                  | 11-4        |
|-----------------------|--------------------------------------|------------------------|-------------|
|                       |                                      | 5-7-8                  | 5-8-        |
| Scale = 1:78          |                                      |                        |             |
| Plate Offsets (X, Y): | [2:Edge,0-0-12], [5:0-2-14,Edge], [9 | ):0-2-14,Edge], [15:0- | -2-8,0-3-9] |

|             |                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             | -                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading     | (psf)                                                                                                                 | Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-0-0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSI                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                          | (loc)                                                                                                                                                    | l/defl                                                                                                                                                                                                | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLATES                                                                                                                                                                                                                                                                                                                               | GRIP                                                                                                                                                                                                                                                                                                                                                                    |
| TCLL (roof) | 20.0                                                                                                                  | Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.15                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TC                                                                                                                                                     | 0.17                                                                                                                                                                                                                                                                                                                                             | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | 21-27                                                                                                                                                    | >999                                                                                                                                                                                                  | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MT20                                                                                                                                                                                                                                                                                                                                 | 244/190                                                                                                                                                                                                                                                                                                                                                                 |
| Snow (Pf)   | 20.0                                                                                                                  | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.15                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BC                                                                                                                                                     | 0.41                                                                                                                                                                                                                                                                                                                                             | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | 21-27                                                                                                                                                    | >886                                                                                                                                                                                                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| TCDL        | 10.0                                                                                                                  | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                     | YES                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WB                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                             | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                        | 2                                                                                                                                                        | n/a                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| BCLL        | 0.0*                                                                                                                  | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                | IRC201                                                                                                                                | 18/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix-MSH                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | Attic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.08                                                                                       | 20-21                                                                                                                                                    | >999                                                                                                                                                                                                  | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| BCDL        | 10.0                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight: 228 lb                                                                                                                                                                                                                                                                                                                       | FT = 20%                                                                                                                                                                                                                                                                                                                                                                |
|             | 18=14-0-8<br>Max Horiz 2=255 (LC<br>Max Uplift 2=-42 (LC<br>17=-127 (<br>19=-401 (<br>Max Grav 2=1107 (L<br>17=219 (L | t* 4-10:2x4 SP No.2<br>athing directly applie<br>pept<br>-0 max.): 5-9.<br>applied or 10-0-0 oc<br>15=14-0-8, 17=14-0-<br>3, 19=14-0-8, 20=0-3<br>C 13)<br>C 14), 15=-76 (LC 11<br>LC 15), 18=-121 (LC<br>LC 15), 18=-121 (LC<br>LC 42)<br>LC 40), 15=904 (LC 4-<br>LC 50), 18=277 (LC 4-<br>LC 51), 20=1121 (LC<br>apression/Maximum<br>0/35, 3-4=-877/182,<br>269/418, 9-10=-451/<br>-12=-1123/246,<br>3-14=-988/145,<br>5-16=0/34<br>20=-99/735, | 00F<br>N<br>1)<br>2)<br>d or<br>3)<br>-8<br>3)<br>-8<br>3)<br>-14),<br>40),<br>40),<br>21)<br>5)<br>18,<br>6,<br>7)<br>8)<br>9)<br>9) | OTES<br>) Unbalanced<br>this design.<br>) Wind: ASCE<br>Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>2-1-8 to 5-4-<br>(1) 19-10-11<br>zone; cantile<br>and right exp<br>MWFRS for<br>grip DOL=1.<br>) Truss design<br>only. For st<br>see Standar<br>or consult qu<br>) TCLL: ASCE<br>Plate DOL=<br>DOL=1.15);<br>Cs=1.00; Ct<br>) Unbalanced<br>design.<br>) This truss ha<br>load of 12.0<br>overhangs m<br>) Provide ade<br>) All plates ard<br>) Gable studs<br>0) This truss ha | ned for wind loads<br>uds exposed to wir<br>d Industry Gable E<br>ualified building de<br>5 7-16; Pr=20.0 ps<br>1.15); Pf=20.0 ps<br>Is=1.0; Rough Cat | 12-23=-11<br>10-24=-<br>=-6/69, 8<br>I-17=-23<br>We been of<br>BCDL=6<br>RS (env)<br>10-8 to 2<br>-4-15 to<br>(22) 23-1<br>exposed<br>nbers an<br>Lumber I<br>is in the p<br>nd (norm<br>End Deta<br>signer as<br>f (roof LL<br>(Lum DC<br>is B; Fully)<br>been cor<br>for great<br>lat roof k<br>in other lin<br>prevent is<br>s otherwit<br>c. | 050/356,<br>1052/357,<br>1-24=-16/92,<br>7/131<br>considered fo<br>considered fo<br>considered fo<br>considered fo<br>considered fo<br>considered fo<br>considered fo<br>considered fo<br>table the<br>elope) exterio<br>-1-8, Interior<br>-1-8, Inter | or<br>(1)<br>ior<br>left<br>uss<br>),<br>ble,<br>Pl 1.<br>1.15<br>);<br>live<br>sf on<br>g. | on<br>3-0<br>cho<br>12) Ce<br>4-2<br>me<br>13) Bor<br>cho<br>19-<br>14) Pro<br>bee<br>15.<br>15) H1<br>cor<br>Thi<br>latte<br>16) On<br>rec<br>UP<br>upl | the botto<br>6-00 tall<br>ord and a<br>illing dea<br>(3, 22-23)<br>mber(s),<br>ttom cho<br>ord dead<br>20<br>ovide me<br>aring pla<br>0A Simp<br>nect tru<br>s conne<br>e MECH<br>ommeno<br>LIFT at j | om cho<br>by 2-0<br>ny oth<br>d load<br>d, 22-22<br>3-21, 1<br>rd live<br>load (f<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chanic<br>chan | rd in all areas wh<br>0-00 wide will fit<br>er members.<br>(5.0 psf) on mem<br>4, 10-24; Wall de<br>11-19<br>load (40.0 psf) an<br>5.0 psf) applied o<br>al connection (by<br>able of withstandi<br>rong-Tie connect<br>earing walls due<br>for uplift only an<br>AL connect rruss to b<br>1, 18, and 17. This<br>is not consider la | a live load of 20.0psf<br>here a rectangle<br>between the bottom<br>here(s). 3-4, 10-11,<br>had load (5.0psf) on<br>and additional bottom<br>nly to room. 20-21,<br>or others) of truss to<br>ng 76 lb uplift at joint<br>ors recommended to<br>to UPLIFT at jt(s) 2.<br>d does not consider<br>OTHERS)<br>bearing walls due to<br>a connection is for<br>teral forces. |



Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information available from the Structural Building Component Association (www.stearonponent.scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 16,2023

| Job         | Truss | Truss Type             | Qty | Ply | Abby plan                |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C1E   | Attic Structural Gable | 1   | 1   | Job Reference (optional) | 157188474 |

17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

19) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:06 ID:1i5\_jm7JXqhrJfVlvte3RizaLPr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | russ Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                            | Qty                                                                                                                                                                                                                                                                                            | Ply                                                                                                                                                                                                                                                                         | Abby plan                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23030004-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ttic Girder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                           | Job Refere                                                                                                                                                                                | nce (on                                                                                                                                                                                                              | tional)                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           | 157188475                                                                                                                                                                                                                                                                                                                                                |
| Carter Components (Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ford), Sanford, NC - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7332,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run: 8.53 S Mar 9 202                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                | 30 S Mar 9                                                                                                                                                                                                                                                                  | 2023 MiTek Ir                                                                                                                                                                             | ndustries,                                                                                                                                                                                                           | Inc. We                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           | Page: 1                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID:K20dB9CitzZsekXepr<br>10-4 9-10-0 15-5-0<br>5-8 0-11-12 5-7-0<br>14-0-0<br>6x8 ≠<br>4x6 ≠<br>5 ≥ 25 ∞<br>4                                                                                                                                | 16-4-1<br>0-11-1<br>4xt<br>6x8&<br>6                                                                                                                                                                                                                                                           | 19-10-4<br>2 3-5-8                                                                                                                                                                                                                                                          | 22-2-0 25                                                                                                                                                                                 | 26-                                                                                                                                                                                                                  | 1-8<br>⊣                                                                                                                                          | rcDoi7J4zJC?f                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |
| Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                             | 036322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>1<br>16 28 15 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 31 32 33 34<br>HHUS46 HH<br>2 II HHUS46 HHUS46<br>46 HHUS46 HHUS46                                                                                                                                                                        | 35 14<br>MT20HS 8<br>IUS46                                                                                                                                                                                                                                                                     | 36 37 1<br>3x12 =<br>6 MT18F<br>1US46 HHU<br>HUS46                                                                                                                                                                                                                          | 9                                                                                                                                                                                         | 39<br>8x10=<br>0US46                                                                                                                                                                                                 | 0                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |
| Scale = 1:86.3<br>Plate Offsets (X, Y):                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:0-5-0,Edge], [4:0-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9,0-2-4], [5:0-2-14,E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dge], [6:0-2-14,Edge], [7                                                                                                                                                                                                                    | /:0-1-9,0-                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                      | ),0-0-1                                                                                                                                           | 2], [12:0-6-0,0-6-                                                                                                                                                                                                                                                                                                        | 12],                                                                                                                                                                                                                                                                                                                                                     |
| BOT CHORD         2x10           WEBS         2x4 S           NO.2         NO.2           BRACING         Structory           TOP CHORD         Structory           BOT CHORD         Rigid           DOT CHORD         Rigid           BRACTIONS         (size)           REACTIONS         (lb) -<br>Tens           TOP CHORD         1-2=-<br>1-2=-<br>10-11           BOT CHORD         1-2=-<br>10-11           BOT CHORD         1-3=-<br>13-14           WEBS         2-16-<br>3-15= | 20.0 Piz<br>20.0 Lu<br>20.0 Lu<br>10.0 Re<br>0.0* Cc<br>10.0 Cc<br>SP 2400F 2.0E<br>SP 240F 2.0E<br>SP 240 | ate Grip DOL 1.1<br>Imber DOL 1.1<br>ap Stress Incr NC<br>bde IR(<br>-15,8-13:2x6 SP<br>-15,8-13:2x6 | <ol> <li>All loads are of except if note CASE(S) sect provided to di unless otherw</li> <li>Unbalanced ri this design.</li> <li>Unbalanced ri this design.</li> <li>Wind: ASCE Ti Vasd=103mpl Cat. II; Exp Bi zone; cantilev and right expo DOL=1.60</li> <li>TCLL: ASCE Plate DOL=1.5); Is CS=1.00; Ct=</li> <li>Unbalanced si design.</li> <li>This truss has load of 12.0 p overhangs no</li> <li>Provide adeqi</li> <li>All plates are 10) This truss has chord live load</li> <li>* This truss has not design.</li> </ol> | oof live loads have beer<br>7-16; Vult=130mph (3-si<br>h; TCDL=6.0psf; BCDL=<br>Enclosed; MWFRS (er<br>er left and right exposed<br>bsed; Lumber DOL=1.60<br>7-16; Pr=20.0 psf (roof I<br>15); Pf=20.0 psf (Lum E<br>s=1.0; Rough Cat B; Ful | Vert(i<br>Horz(<br>Attic<br>ed to all<br>) face in<br>ons have<br>d as (F) of<br>n consider<br>econd gu<br>e6.0psf; h<br>velope) d<br>; end vo<br>0 plate gr<br>ULL: Lum<br>ODL=1.15<br>ly Exp.; (<br>onsidered<br>t water p<br>erwise in<br>.0 psf bo<br>yy other li<br>ive load<br>e a recta | L) -0<br>CT) -0<br>CT) 0<br>-0.<br>Plies,<br>the LOAD<br>been<br>or (B),<br>ered for<br>est)<br>==25ft;<br>exterior<br>ertical left<br>ip<br>DOL=1.15<br>5 Plate<br>Ce=0.9;<br>d for this<br>in roof live<br>20.0 psf on<br>s.<br>onding.<br>dicated.<br>of 20.0psf<br>ngle | 18 13-15<br>14) LGT<br>recc<br>UPL<br>doe<br>15) This<br>Inte<br>R8C<br>16) Gra<br>or tt<br>bott<br>17) Use<br>16-<br>con<br>18) Use<br>Trus<br>oc r<br>con<br>19) Fill<br>20) LGT<br>the | ommend<br>LIFT at jt<br>s not coos<br>s truss is<br>rnationa<br>22.10.2 a<br>phical pri-<br>ne orient<br>om chor<br>s Simpso<br>3 Simpso<br>ss, Singl<br>nax, star<br>nect trus<br>all nail h<br>T3 Hurrio<br>truss. | ed to c<br>(s) 1<br>nsider<br>desig<br>I Resid<br>urlin re-<br>cation c<br>d.<br>on Stro<br>e Ply (<br>cting at<br>ss(es) =<br>oles w<br>cane tio | This connection is<br>lateral forces.<br>ned in accordance<br>dential Code sect<br>erenced standarc<br>apresentation doe<br>of the purlin along<br>ng-Tie HGUS21C<br>aquivalent at 4-6-1<br>to front face of bc<br>ng-Tie HHUS46 i<br>Girder) or equival<br>t 5-5-12 from the<br>to front face of bc<br>here hanger is in | earing walls due to<br>s for uplift only and<br>e with the 2018<br>ions R502.11.1 and<br>ANSI/TPI 1.<br>s not depict the size<br>the top and/or<br>-2 (46-10d Girder,<br>0 from the left end to<br>thom chord.<br>[14-10d Girder, 6-10d<br>ent spaced at 1-4-0<br>left end to 23-9-4 to<br>thom chord.<br>contact with lumber.<br>se studs in line below |
| follows: 2x8 - 2 ro<br>Bottom chords co<br>screws as follows<br>Web chords conr                                                                                                                                                                                                                                                                                                                                                                                                             | ected with 10d (0.13<br>ws staggered at 0-6<br>nnected with Simps<br>: 2x10 - 3 rows stag<br>ected with 10d (0.1<br>w at 0-6-0 oc, 2x6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-0 oc.<br>son SDS 1/4 x 4-1/2<br>ggered at 0-4-0 oc.<br>31"x3") nails as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12) Ceiling dead<br>Wall dead loa<br>13) Bottom chord                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y other members.<br>oad (5.0 psf) on member<br>d (5.0psf) on member(s<br>live load (40.0 psf) and<br>ad (5.0 psf) applied only                                                                                                               | ).3-15, 8<br>addition                                                                                                                                                                                                                                                                          | -13<br>al bottom                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                          |

### March 16,2023

CO

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

REN

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C2G2  | Attic Girder | 2   | 3   | Job Reference (optional) | 157188475 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:07 ID:K20dB9CitzZsekXeprGiDBzaLPk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

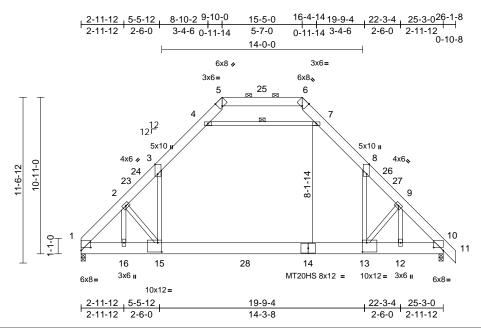
#### LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
  - Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-4=-70, 4-5=-60, 5-6=-60, 6-7=-60, 7-8=-70, 8-11=-60, 15-17=-20, 13-15=-30, 13-20=-20, 4-7=-10 Drag: 3-15=-10, 8-13=-10

Concentrated Loads (lb)

Vert: 14=-72 (F), 15=-143 (F), 13=-551 (F), 12=-276 (F), 28=-6706 (F), 29=-72 (F), 30=-72 (F), 31=-72 (F), 32=-72 (F), 33=-72 (F), 34=-72 (F), 35=-72 (F), 36=-72 (F), 37=-72 (F), 38=-276 (F), 39=-276 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C2G3  | Attic Girder | 1   | 2   | Job Reference (optional) | 157188476 |

Scale = 1:80.3

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:08 ID:DqF80WFCxC3I7MrP2hLeN1zaLPg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



|                       |                                  | 15 0 0 4 4 E 1 1 10 0 0 4 4 E 1 1  |                                    |                                      |
|-----------------------|----------------------------------|------------------------------------|------------------------------------|--------------------------------------|
| Plate ()tteete (X Y). | 11.0-8-0 0-7-81 13.0-8-7 Eddel   | 15.0-2-14 Eddel 16.0-2-14 Eddel    | 18.0-8-7 Eddel 110.0-8-0 0-7-81    | [13:0-3-8,0-7-12], [15:0-3-8,0-7-12] |
|                       | 11.0 0 0,0 2 0, 10.0 0 2, Eugel, | 10.0 Z 14, Eugel, 10.0 Z 14, Eugel | , 10.0 0 2, 2000, 110.0 0 0,0 2 0, | 10.0 0 0,0 1 12, 110.0 0 0,0 1 12    |
|                       |                                  |                                    |                                    |                                      |

|                                                                  |                                                                                                                                                            | 1                                                                                                         |                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                                                                                                 |                         |                                                                                                              |                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading                                                          | (psf)                                                                                                                                                      | Spacing                                                                                                   | 2-0-0                                                                                |                                                                                                                                                                                           | csi                                                                                                                                                                                                                                                                                                                           |                                                                                                                | DEFL                                                                                                                                                                                            | in                      | (loc)                                                                                                        | l/defl                                                                                                                                                         | L/d                                                                                                                                  | PLATES                                                                                                                                                                                                                   | GRIP                                                                                                                                                                                                           |
| TCLL (roof)                                                      | 20.0                                                                                                                                                       | Plate Grip DOL                                                                                            | 1.15                                                                                 |                                                                                                                                                                                           | тс                                                                                                                                                                                                                                                                                                                            | 0.74                                                                                                           | Vert(LL)                                                                                                                                                                                        | -0.46                   | 13-15                                                                                                        | >663                                                                                                                                                           | 240                                                                                                                                  | MT20                                                                                                                                                                                                                     | 244/190                                                                                                                                                                                                        |
| Snow (Pf)                                                        | 20.0                                                                                                                                                       | Lumber DOL                                                                                                | 1.15                                                                                 |                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                            | 0.79                                                                                                           | Vert(CT)                                                                                                                                                                                        | -0.68                   | 13-15                                                                                                        | >449                                                                                                                                                           | 180                                                                                                                                  | MT20HS                                                                                                                                                                                                                   | 187/143                                                                                                                                                                                                        |
| TCDL                                                             | 10.0                                                                                                                                                       | Rep Stress Incr                                                                                           | NO                                                                                   |                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                            | 0.66                                                                                                           | Horz(CT)                                                                                                                                                                                        | 0.01                    | 1                                                                                                            | n/a                                                                                                                                                            | n/a                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                |
| BCLL                                                             | 0.0*                                                                                                                                                       | Code                                                                                                      | IRC2018/TP                                                                           | I2014                                                                                                                                                                                     | Matrix-MSH                                                                                                                                                                                                                                                                                                                    |                                                                                                                | Attic                                                                                                                                                                                           | -0.30                   | 13-15                                                                                                        | >564                                                                                                                                                           | 360                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                |
| BCDL                                                             | 10.0                                                                                                                                                       | -                                                                                                         |                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                                                                                                 |                         |                                                                                                              |                                                                                                                                                                |                                                                                                                                      | Weight: 508 lb                                                                                                                                                                                                           | FT = 20%                                                                                                                                                                                                       |
|                                                                  | No.2<br>Structural wood she<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins (10-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                      | athing directly applie<br>sept<br>-0-0 max.): 5-6.<br>- applied or 10-0-0 oc<br>4-7<br>10=0-3-8<br>.C 10) | SP pro<br>SP pro<br>and or this<br>d or 4) Wi<br>Va<br>Ca<br>Zor<br>an<br>C<br>S) TC | cept if note<br>SE(S) sec<br>voided to c<br>less other<br>balanced<br>s design.<br>nd: ASCE<br>sd=103mp<br>t. II; Exp E<br>ne; cantile<br>d right exp<br>DL=1.60<br>LL: ASCE<br>ate DOL=1 | considered equally<br>ed as front (F) or ba-<br>ction. Ply to ply con<br>listribute only loads<br>wise indicated.<br>roof live loads have<br>7-16; Vult=130mpt<br>bh; TCDL=6.0psf; E<br>3; Enclosed; MWFF<br>ver left and right ex-<br>bosed; Lumber DOL<br>57-16; Pr=20.0 psf<br>.15); Pf=20.0 psf (L<br>Is=1.0; Rough Cat I | ack (B)<br>nection<br>noted<br>been<br>(3-sec<br>3CDL=6<br>8S (env<br>cposed<br>L=1.60 p<br>(roof LL<br>Lum DC | face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>cond gust)<br>.opsf; h=25ft;<br>elope) exterio<br>; end vertical<br>plate grip<br>.: Lum DOL= <sup>-</sup><br>DL=1.15 Plate | r<br>or<br>left<br>1.15 | Inte<br>R8(<br>16) Gra<br>or t<br>bott<br>17) LG<br>18) Har<br>pro<br>lb d<br>132<br>sele<br>res<br>19) Atti | ernationa<br>02.10.2 a<br>uphical p<br>he orien<br>tom choi<br>T2 Hurrie<br>truss.<br>nger(s) c<br>vided su<br>lown and<br>t b up at<br>ection of<br>ponsibili | I Resid<br>and ref<br>urlin re<br>tation of<br>cane ti<br>cane ti<br>fficient<br>2 210 II<br>2 15-9<br>such of<br>ty of ot<br>checke | erenced standard<br>spresentation doe<br>of the purlin along<br>es must have two<br>r connection devic<br>to support conce<br>b up at 11-5-8, a<br>-8 on bottom choi<br>connection device<br>hers.<br>d for L/360 deflec | ions R502.11.1 and<br>d ANSI/TPI 1.<br>is not depict the size<br>g the top and/or<br>o studs in line below<br>ce(s) shall be<br>entrated load(s) 2317<br>nd 1462 lb down and<br>rd. The design/<br>a(s) is the |
| FORCES                                                           | Max Grav 1=3418 (I<br>(Ib) - Maximum Com                                                                                                                   | 1. (                                                                                                      | 48) Cs                                                                               | =1.00; Ct=                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               | -                                                                                                              | -                                                                                                                                                                                               |                         | 1) De                                                                                                        | ead + Sr                                                                                                                                                       | ,<br>now (ba                                                                                                                         |                                                                                                                                                                                                                          | Increase=1.15, Plate                                                                                                                                                                                           |
|                                                                  | Tension                                                                                                                                                    |                                                                                                           | ,                                                                                    | sign.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                               | 0000.                                                                                                          |                                                                                                                                                                                                 |                         |                                                                                                              | crease="<br>niform Lo                                                                                                                                          |                                                                                                                                      | h /f+)                                                                                                                                                                                                                   |                                                                                                                                                                                                                |
| TOP CHORD                                                        | 6-7=-23/1777, 7-8=-                                                                                                                                        | =-20/1745, 5-6=-43/2                                                                                      | 7) Th<br>618, loa<br>ove                                                             | is truss ha<br>id of 12.0<br>erhangs n                                                                                                                                                    | s been designed for<br>psf or 1.00 times fla<br>on-concurrent with<br>quate drainage to p                                                                                                                                                                                                                                     | at roof le<br>other liv                                                                                        | oad of 20.0 ps<br>ve loads.                                                                                                                                                                     | sf on                   | U                                                                                                            |                                                                                                                                                                | `                                                                                                                                    | TH CA                                                                                                                                                                                                                    |                                                                                                                                                                                                                |
| BOT CHORD                                                        | 1-16=-188/3062, 15<br>13-15=-80/3352, 12<br>10-12=-32/3040                                                                                                 | -16=-176/3062,                                                                                            | 9) All<br>10) Th                                                                     | plates are<br>is truss ha                                                                                                                                                                 | MT20 plates unles<br>s been designed fo<br>ad nonconcurrent w                                                                                                                                                                                                                                                                 | ss other<br>or a 10.0                                                                                          | wise indicate<br>0 psf bottom                                                                                                                                                                   | d.                      |                                                                                                              |                                                                                                                                                                |                                                                                                                                      | OFFESS                                                                                                                                                                                                                   | N. N. T.                                                                                                                                                                                                       |
| WEBS                                                             | 2-16=-3361/279, 2-1<br>3-15=-217/4901, 8-1<br>9-13=-233/558, 9-12<br>4-7=-5883/321                                                                         | 13=-232/5076,                                                                                             | 11) * T<br>on<br>3-(                                                                 | his truss h<br>the bottor<br>)6-00 tall b                                                                                                                                                 | has been designed<br>n chord in all areas<br>by 2-00-00 wide will<br>ny other members.                                                                                                                                                                                                                                        | for a liv<br>where                                                                                             | e load of 20.0<br>a rectangle                                                                                                                                                                   | )psf                    |                                                                                                              |                                                                                                                                                                |                                                                                                                                      | SEA                                                                                                                                                                                                                      | L                                                                                                                                                                                                              |
| (0.131"x3"<br>Top chords<br>staggered<br>Bottom cho<br>staggered | to be connected toge<br>) nails as follows:<br>s connected as follows<br>at 0-9-0 oc.<br>ords connected as foll<br>at 0-7-0 oc.<br>ected as follows: 2x4 - | s: 2x8 - 2 rows<br>ows: 2x10 - 4 rows                                                                     | Wa<br>13) Bo<br>chi<br>14) LG<br>coi<br>an                                           | all dead lo<br>ttom chord<br>ord dead lo<br>T2 Simps<br>nnect trus<br>d 10. This                                                                                                          | load (5.0 psf) on m<br>ad (5.0psf) on mem<br>d live load (40.0 psf<br>oad (5.0 psf) applie<br>on Strong-Tie conn<br>s to bearing walls d<br>connection is for u<br>ral forces.                                                                                                                                                | hber(s).<br>) and a<br>d only the<br>ectors<br>ue to U                                                         | 3-15, 8-13<br>dditional botto<br>to room. 13-19<br>recommended<br>PLIFT at jt(s)                                                                                                                | om<br>5<br>d to<br>1    |                                                                                                              | LINE                                                                                                                                                           |                                                                                                                                      | SEA<br>0363                                                                                                                                                                                                              |                                                                                                                                                                                                                |

March 16,2023

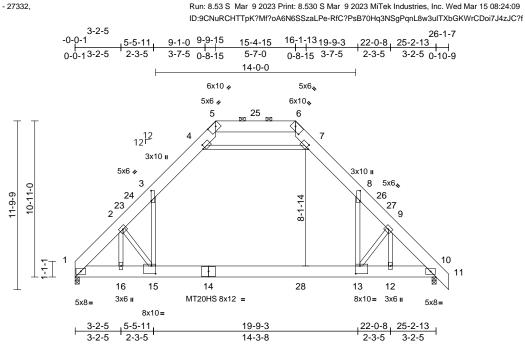


Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Association) (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C2G3  | Attic Girder | 1   | 2   | Job Reference (optional) | 157188476 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:08 ID:DqF80WFCxC3I7MrP2hLeN1zaLPg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


Vert: 1-3=-60, 3-4=-70, 4-5=-60, 5-6=-60, 6-7=-60, 7-8=-70, 8-11=-60, 15-17=-20, 13-15=-30, 13-20=-20, 4-7=-10 Drag: 3-15=-10, 8-13=-10 Concentrated Loads (lb) Vert: 14=-836 (F), 28=-1325 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPTI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C2G4  | Attic Girder | 1   | 2   | Job Reference (optional) | 157188477 |

Scale = 1:80.6



| Plate Offsets (                                                                                                                                                                                                                                                                                             | X, Y): [3:0-8-8,0-0-4]                                                                                                                                        | , [4:0-1-13,0-3-0], [5:0                                                                                                                 | -6-7,0-3-                             | 0], [6:0-6-7,0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0], [7:0-1-13,0-3-                                                                                                                                                                                                                                              | 0], [8:0-8                                                                                                           | 8-8,0-0-4], [13                                                                                                                                               | 3:0-3-8,0                         | -6-8], [15                                                                                        | 5:0-3-8,0                                                                                                                                           | )-6-8]                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                       | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                              | 0.34<br>0.40<br>0.74                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Attic                                                                                                             | -0.31<br>0.01                     | (loc)<br>13-15<br>13-15<br>10<br>13-15                                                            | l/defl<br>>999<br>>991<br>n/a<br>>999                                                                                                               | L/d<br>240<br>180<br>n/a<br>360                                                                                                   | PLATES<br>MT20<br>MT20HS<br>Weight: 568 I                                                                                                                                                     | <b>GRIP</b><br>244/190<br>187/143<br>b FT = 20%                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                             | 2x10 SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins (10<br>Rigid ceiling directly<br>bracing.        | E<br>ot* 4-7:2x4 SP No.2<br>eathing directly applied<br>cept<br>-0-0 max.): 5-6.<br>applied or 10-0-0 oc<br>10=0-3-8<br>.C 10)<br>.C 13) | 4)                                    | except if not<br>CASE(S) see<br>provided to c<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=103m<br>Cat. II; Exp E<br>zone; cantile<br>and right exp<br>DDL=1.60<br>TCLL: ASCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | considered equal<br>ed as front (F) or l<br>ction. Ply to ply co<br>distribute only load<br>wise indicated.<br>roof live loads har<br>7-16; Vult=130m<br>ph; TCDL=6.0psf;<br>3; Enclosed; MWF<br>ever left and right o<br>bosed; Lumber DC<br>E 7-16; Pr=20.0 ps | back (B)<br>prinection<br>ds noted<br>we been<br>ph (3-sec<br>BCDL=6<br>RS (env<br>exposed<br>DL=1.60<br>if (roof LI | face in the Liss have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>5.0psf; h=25f<br>elope) exteri<br>; end vertical<br>plate grip<br>L: Lum DOL= | br<br>t;<br>or<br>I left<br>:1.15 | Inte<br>R8(<br>16) Gra<br>or t<br>bot<br>17) Hai<br>pro<br>lb c<br>des<br>res<br>18) Atti<br>LOAD | ernationa<br>02.10.2<br>aphical p<br>he orier<br>tom cho<br>nger(s) o<br>vided su<br>down an<br>sign/sele<br>ponsibili<br>c room o<br><b>CASE(S</b> | al Resi<br>and rel<br>purlin re-<br>tation<br>rd.<br>or othe<br>ufficient<br>d 132 l<br>ection c<br>ity of of<br>checke<br>c) Sta | dential Code se<br>ierenced standa<br>spresentation d<br>of the purlin alo<br>r connection de<br>t to support con<br>b up at 15-9-8<br>if such connect<br>ihers.<br>d for L/360 defl<br>ndard | nce with the 2018<br>ctions R502.11.1 and<br>ard ANSI/TPI 1.<br>bes not depict the siz<br>ng the top and/or<br>vice(s) shall be<br>centrated load(s) 146<br>on bottom chord. The<br>on device(s) is the<br>ection.<br>er Increase=1.15, Pla |  |
| FORCES                                                                                                                                                                                                                                                                                                      | (lb) - Maximum Com                                                                                                                                            |                                                                                                                                          | 40)                                   | Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate<br>DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;<br>Uniform Loads (lb/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                                                                                                               |                                   |                                                                                                   |                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |  |
| TOP CHORD                                                                                                                                                                                                                                                                                                   | Tension<br>HORD 1-2=-2648/0, 2-3=-3648/37, 3-4=-1830/145,<br>4-5=-8/917, 5-6=0/1491, 6-7=0/1053,<br>7-8=-1710/134, 8-9=-4046/73,<br>9-10=-3090/17, 10-11=0/37 |                                                                                                                                          |                                       | <ul> <li>Cs=1.00; Ct=1.10</li> <li>6) Unbalanced snow loads have been considered for this design.</li> <li>7) This truss has been designed for greater of min roof live</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                                                                                                               |                                   |                                                                                                   | Vert: 1-3=-60, 3-4=-70, 4-5=-60, 5-6=-60, 6-7=-60,<br>7-8=-70, 8-11=-60, 15-17=-20, 13-15=-30,<br>13-20=-20, 4-7=-10<br>Drag: 3-15=-10, 8-13=-10    |                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |  |
| BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                           | 1-16=-100/1955, 15<br>13-15=0/2089, 12-1<br>2-16=-1668/101, 2-1                                                                                               | -16=-64/1955,<br>3=0/2113, 10-12=0/2<br>15=-235/574,<br>-23/3240, 9-13=-448/                                                             | 9                                     | <ul> <li>load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.</li> <li>8) Provide adequate drainage to prevent water ponding.</li> <li>9) All plates are MT20 plates unless otherwise indicated.</li> <li>10) This truss has been designed for a 10.0 psf bottom</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                                                                                                               |                                   |                                                                                                   | Concentrated Loads (lb)                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |  |
| NOTES<br>1) 2-ply truss to be connected together with 10d<br>(0.131"x3") nails as follows:<br>Top chords connected as follows: 2x10 - 2 rows<br>staggered at 0-9-0 oc.<br>Bottom chords connected as follows: 2x10 - 2 rows<br>staggered at 0-7-0 oc.<br>Web connected as follows: 2x4 - 1 row at 0-9-0 oc. |                                                                                                                                                               |                                                                                                                                          |                                       | <ul> <li>chord live load nonconcurrent with any other live loads.</li> <li>11) * This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle<br/>3-06-00 tall by 2-00-00 wide will fit between the bottom<br/>chord and any other members.</li> <li>12) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-7;<br/>Wall dead load (5.0 psf) on member(s). 3-15, 8-13</li> <li>13) Bottom chord live load (40.0 psf) and additional bottom<br/>chord dead load (5.0 psf) applied only to room. 13-15</li> <li>14) One H2.5A Simpson Strong-Tie connectors<br/>recommended to connect truss to bearing walls due to<br/>UPLIFT at jt(s) 10. This connection is for uplift only and<br/>does not consider lateral forces.</li> </ul> |                                                                                                                                                                                                                                                                  |                                                                                                                      |                                                                                                                                                               |                                   | SEAL<br>036322<br>A. GILBER<br>March 16,2023                                                      |                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                             |  |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information available from the Structural Building Component Association (www.stearonponent.scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

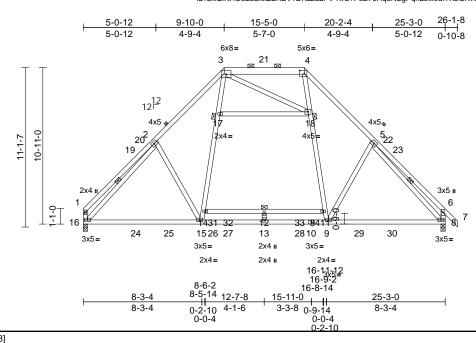
Page: 1



| Job                         | Truss                                                                                                            | Truss Type   |  | Qty | Ply     | Abby plan                |           |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|--------------|--|-----|---------|--------------------------|-----------|
| 23030004-01                 | C2G4                                                                                                             | Attic Girder |  | 1   | 2       | Job Reference (optional) | 157188477 |
| Carter Components (Sanford) | Sanford, NC - 27332, Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:09 |              |  |     | Page: 2 |                          |           |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:09 ID:9CNuRCHTTpK?Mf?oA6N6SSzaLPe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 28=-836 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type     | Qty | Ply | Abby plan                |           |
|-------------|-------|----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C3    | Piggyback Base | 7   | 1   | Job Reference (optional) | 157188478 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:10 ID:OxQIKHO6LaSkx2BXBV1DKLzaLPV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

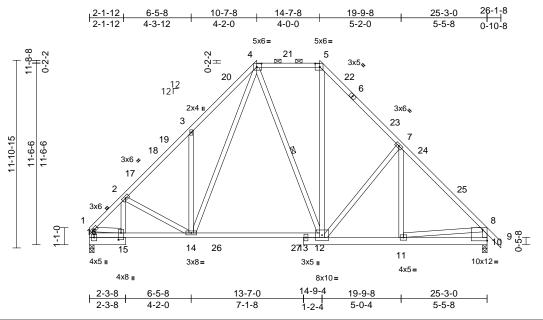


#### Scale = 1:80.4 Plate Offsets (X, Y): [4:0-3-12,0-2-8]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                       | /TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                | 0.62<br>0.98<br>0.57                                                                                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in<br>-0.34<br>-0.63<br>0.04                                                                              | (loc)<br>12<br>12<br>8 | l/defl<br>>879<br>>478<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 199 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS                    | Structural wood she<br>3-7-4 oc purlins, ex<br>2-0-0 oc purlins, (ex<br>2-0-0 oc purlins, (ex-<br>Rigid ceiling directly<br>bracing. Except:<br>6-0-0 oc bracing: 11<br>1 Row at midpt<br>1 Brace at Jt(s): 17,<br>18<br>(size) 8=0-3-8,<br>Max Horiz 16=-273 (<br>Max Grav 8=1623 (L<br>(Ib) - Maximum Com<br>Tension<br>1-2=-384/167, 2-3=-<br>4-5=-1698/31, 5-6=-<br>1-16=-345/148, 6-8=<br>15-16=-2/1302, 13-1<br>8-9=0/1164, 12-14=-<br>2-15=-245/286, 5-9=<br>5-8=-1510/0, 14-15=<br>3-17=0/915, 4-18=00<br>9-11=-7/761, 12-13=<br>3-18=-161/159<br>d roof live loads have | t* 14-11:2x4 SP No.2<br>t* 15-3,9-4:2x4 SP No.2<br>t* 15-3,9-4:2x4 SP N<br>athing directly applied<br>cept end verticals, an<br>-0 max.): 3-4.<br>applied or 2-2-0 oc<br>-14<br>2-16, 5-8<br>16=0-3-8<br>LC 12)<br>_C 45), 16=1571 (LC<br>pression/Maximum<br>1704/31, 3-4=-989/1*<br>440/212, 6-7=0/43,<br>=-449/203<br>15=0/1024, 9-13=0/10<br>6/10, 11-12=-6/10<br>=-236/285, 2-16=-154<br>=-9/772, 14-17=0/922<br>(858, 11-18=-0912,<br>=-127/1, 17-18=-65/68 | 2.<br>5.2<br>1 or<br>d<br>3)<br>4)<br>45)<br>5)<br>6)<br>7)<br>24,<br>9)<br>9/0,<br>3,<br>10) | Vasd=103mp<br>Cat. II; Exp E<br>zone and C-1<br>(1) 19.7-15 ti<br>zone; cantile<br>and right exp<br>MWFRS for 1<br>Grip DOL=1.0<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15); I<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs n<br>200.0lb AC u<br>from left end<br>Provide adec<br>This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>chord and ar<br>This truss f<br>international<br>R802.10.2 ar | 7-16; Pr=20.0 ps<br>.15); Pf=20.0 psf<br>s=1.0; Rough Cat | BCDL=6<br>RS (env-<br>-12 to 3-<br>-7-1 to 1<br>2E) 23-1<br>exposed<br>hbers an<br>_umber I<br>(Lum DC<br>B; Fully<br>been cor<br>for great<br>lat roof lu<br>othe bott<br>points, 3<br>prevent<br>or a 10.0<br>with any<br>d for a liv<br>s where<br>all fit betw<br>, with BC<br>dance w<br>sections<br>hadre Au | .0psf; h=25ft<br>elope) exterio<br>1-12, Interior<br>-8 to 26-1-8<br>; end vertical<br>d forces &<br>DOL=1.60 pla<br>:: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.5<br>asidered for the<br>er of min roof<br>bad of 20.0 pic<br>to do 20.0 pic<br>e loads of 20.0 pic<br>e loads of 20.0 pic<br>e load of 20.0 pic<br>e load of 20.0 pic<br>e load of 20.0 pic<br>e load of 20.0 pic<br>set load of 20.0 pic<br>e load of 20.0 pic<br>set load of 20.0 pic<br>for a rectangle<br>veen the botto<br>DL = 10.0psf<br>ith the 2018<br>is R502.11.1 a<br>SI/TP11. | or<br>(1)<br>or<br>left<br>ate<br>1.15<br>9;<br>flive<br>sf on<br>2-7-8<br>g.<br>dds.<br>0psf<br>om<br>f. |                        | (Netronoments)                | S                        | SEA<br>0363                      | L                                  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LO                                                                                            | bottom chord<br>AD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                        |                               | the state                | A. G                             | BEIN                               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

G١ A. GIL March 16,2023

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C4    | Нір        | 1   | 1   | Job Reference (optional) | 157188479 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:11 ID:s2tzGNa47?0EPIZemwKV6DzaLQY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:73.2 Plate Offsets (X, Y): [4:0-3-9,0-2-8], [5:0-3-9,0-2-8], [10:Edge,0-8-9], [15:0-5-4,0-2-0]

|             |                                            |                       | -       |                                  | -                                     |           |                |       |       |        |     |                |          |
|-------------|--------------------------------------------|-----------------------|---------|----------------------------------|---------------------------------------|-----------|----------------|-------|-------|--------|-----|----------------|----------|
| Loading     | (psf)                                      | Spacing               | 2-0-0   |                                  | CSI                                   |           | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof) | 20.0                                       | Plate Grip DOL        | 1.15    |                                  | TC                                    | 0.48      | · · ·          |       | 12-14 | >999   | 240 | MT20           | 244/190  |
| Snow (Pf)   | 20.0                                       | Lumber DOL            | 1.15    |                                  | BC                                    | 0.68      | Vert(CT)       | -0.24 | 12-14 | >999   | 180 |                |          |
| TCDL        | 10.0                                       | Rep Stress Incr       | YES     |                                  | WB                                    | 0.69      | Horz(CT)       | 0.04  | 10    | n/a    | n/a |                |          |
| BCLL        | 0.0*                                       | Code                  | IRC201  | 8/TPI2014                        | Matrix-MSH                            |           |                |       |       |        |     |                |          |
| BCDL        | 10.0                                       |                       |         |                                  |                                       |           |                |       |       |        |     | Weight: 208 lb | FT = 20% |
| LUMBER      |                                            |                       | 2)      | Wind: ASCE                       | 7-16; Vult=130m                       | oh (3-se  | cond gust)     |       |       |        |     |                |          |
| TOP CHORD   | 2x4 SP No.2                                |                       | ,       | Vasd=103m                        | ph; TCDL=6.0psf;                      | BCDL=6    | 6.0psf; h=25ft | ;     |       |        |     |                |          |
| BOT CHORD   | 2x6 SP No.2 *Excep                         | t* 15-2:2x4 SP No.3,  |         |                                  | B; Enclosed; MWF                      |           |                |       |       |        |     |                |          |
|             | 16-12:2x4 SP No.2                          |                       |         |                                  | C Exterior(2E) 0-1                    |           |                |       |       |        |     |                |          |
| WEBS        | 2x4 SP No.3 *Excep                         | t* 14-4,12-4,12-5:2x4 | 4 SP    |                                  | 1-9, Exterior(2R) 6                   |           |                | or    |       |        |     |                |          |
|             | No.2                                       |                       |         |                                  | o 23-1-8, Exterior                    |           |                |       |       |        |     |                |          |
| BRACING     |                                            |                       |         |                                  | ever left and right e                 |           |                | left  |       |        |     |                |          |
| TOP CHORD   | Structural wood she                        |                       |         |                                  | posed;C-C for mer<br>reactions shown; |           |                | ato   |       |        |     |                |          |
|             | 4-5-11 oc purlins, e                       |                       | and     | grip DOL=1.                      |                                       | Lumber    | DOL-1.00 pie   | ale   |       |        |     |                |          |
|             | 2-0-0 oc purlins (6-0                      |                       | 3)      |                                  | E 7-16; Pr=20.0 ps                    | f (roof L |                | 1 15  |       |        |     |                |          |
| BOT CHORD   | Rigid ceiling directly                     | applied or 10-0-0 oc  | 0)      |                                  | 1.15); Pf=20.0 psf                    |           |                |       |       |        |     |                |          |
|             | bracing.                                   |                       |         |                                  | Is=1.0; Rough Cat                     |           |                |       |       |        |     |                |          |
| WEBS        |                                            | 4-12                  |         | Cs=1.00; Ct                      |                                       | , ,       | ,              | - ,   |       |        |     |                |          |
|             | (size) 10=0-3-8,                           |                       | 4)      | Unbalanced                       | snow loads have                       | been co   | nsidered for t | his   |       |        |     |                |          |
|             | Max Horiz 16=-287 (                        | ,                     |         | design.                          |                                       |           |                |       |       |        |     |                |          |
|             | Max Uplift 10=-90 (L                       |                       |         |                                  | as been designed                      |           |                |       |       |        |     |                |          |
|             | Max Grav 10=1284                           |                       | 5 45)   |                                  | psf or 1.00 times f                   |           |                | sf on |       |        |     |                |          |
| ORCES       | (lb) - Maximum Com                         | pression/Maximum      |         |                                  | on-concurrent with                    |           |                |       |       |        |     |                |          |
|             | Tension                                    |                       | 6)      |                                  | quate drainage to                     |           |                | g.    |       |        |     |                |          |
| OP CHORD    |                                            |                       | 7)      |                                  | as been designed                      |           |                |       |       |        |     |                |          |
|             | 3-4=-1499/366, 4-5=                        | ,                     |         |                                  | ad nonconcurrent                      |           |                |       |       |        |     | , uninnin      | 11111    |
|             | 5-7=-1204/227, 7-8=<br>1-16=-1171/90, 8-10 | ,                     | , 8)    |                                  | has been designed                     |           |                | Opsf  |       |        |     | WAH CA         | Rollin   |
| BOT CHORD   | 15-16=-251/297, 14-                        |                       |         |                                  | m chord in all area                   |           |                | ~ m   |       |        | N   | ORIEE89        | 2114     |
|             | 12-14=-68/799, 11-1                        |                       | 231     |                                  | by 2-00-00 wide w<br>ny other members |           |                |       |       | /      | 5.  | U FEOS         | C. Vin   |
|             | 2-15=-285/48                               | 2-0,000, 10 11= 01/   | 201, 9) |                                  | ion Strong-Tie con                    |           |                |       |       | 4      | ÌŊ  | 181 -          | KAU      |
| NEBS        | 2-14=-66/142, 4-14=                        | -288/817 4-12=-96/    | - /     |                                  | s to bearing walls                    |           |                |       |       | 4      |     | 2.6            |          |
|             | 5-12=-81/522, 7-12=                        |                       |         |                                  | connection is for                     |           |                |       |       | -      |     | SEA            | 1 : -    |
|             | 8-11=0/731, 1-15=-4                        | ,                     | ,       | consider late                    |                                       |           | ,              |       |       | =      | :   |                | • •      |
| NOTES       |                                            | -,,                   |         |                                  | designed in accor                     | dance w   | ith the 2018   |       |       |        |     | 0363           | 22 ; =   |
|             | ed roof live loads have                    | been considered for   |         |                                  | Residential Code                      |           |                | and   |       | -      |     |                |          |
| this design |                                            | been considered for   |         | R802.10.2 a                      | nd referenced star                    | ndard Al  | ISI/TPI 1.     |       |       |        | 2   | A              | - 1 - E  |
| the design  |                                            |                       | 11      | <ol> <li>Graphical pι</li> </ol> | Irlin representation                  | n does n  | ot depict the  | size  |       |        | 20  | N. SNOW        | -ERIX S  |

- 11) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



Unummini

March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C5    | Нір        | 1   | 1   | Job Reference (optional) | 157188480 |

Scale = 1:69

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

WEBS

FORCES

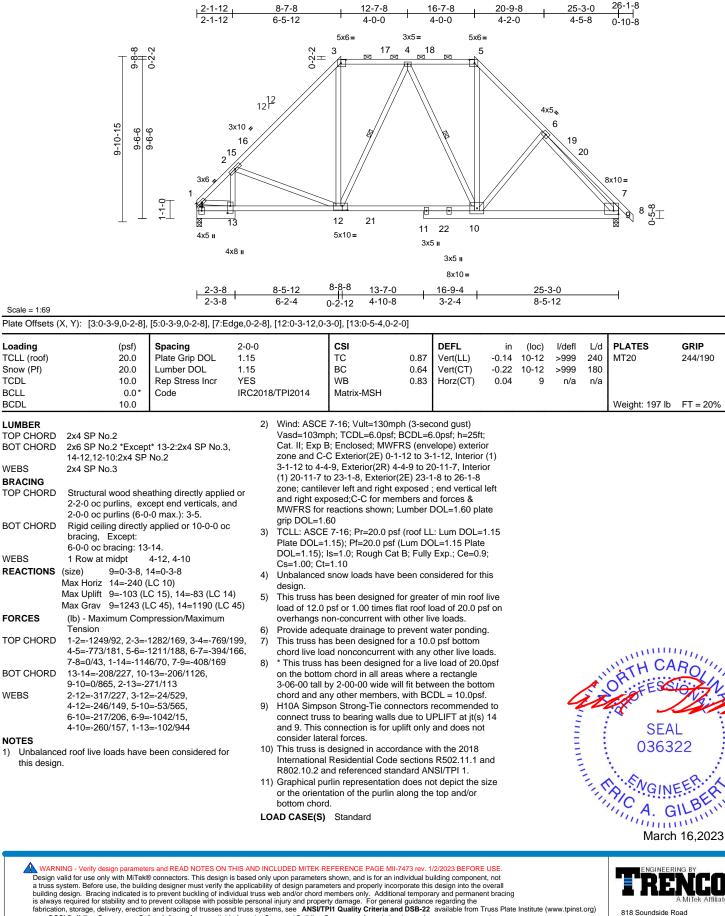
WEBS

NOTES

1)

BRACING

TCDL


BCLL

BCDL

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:12 ID:vglDrhYqbNmWARPGfVI11ozaLQa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

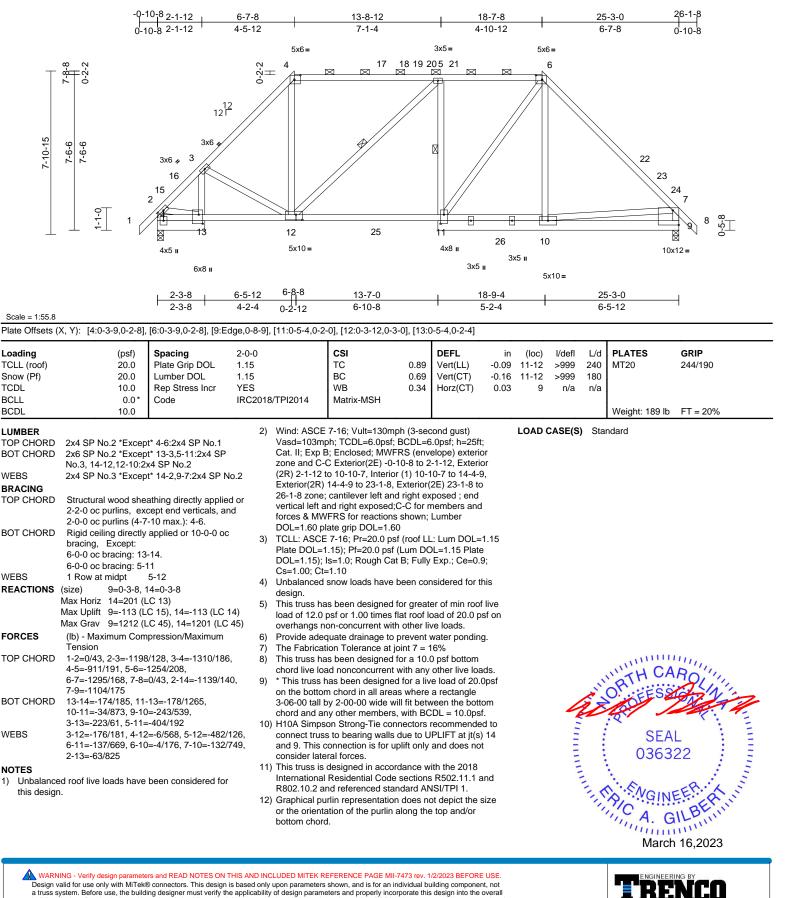
Page: 1

Edenton, NC 27932



and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C6    | Нір        | 1   | 1   | Job Reference (optional) | 157188481 |


1)

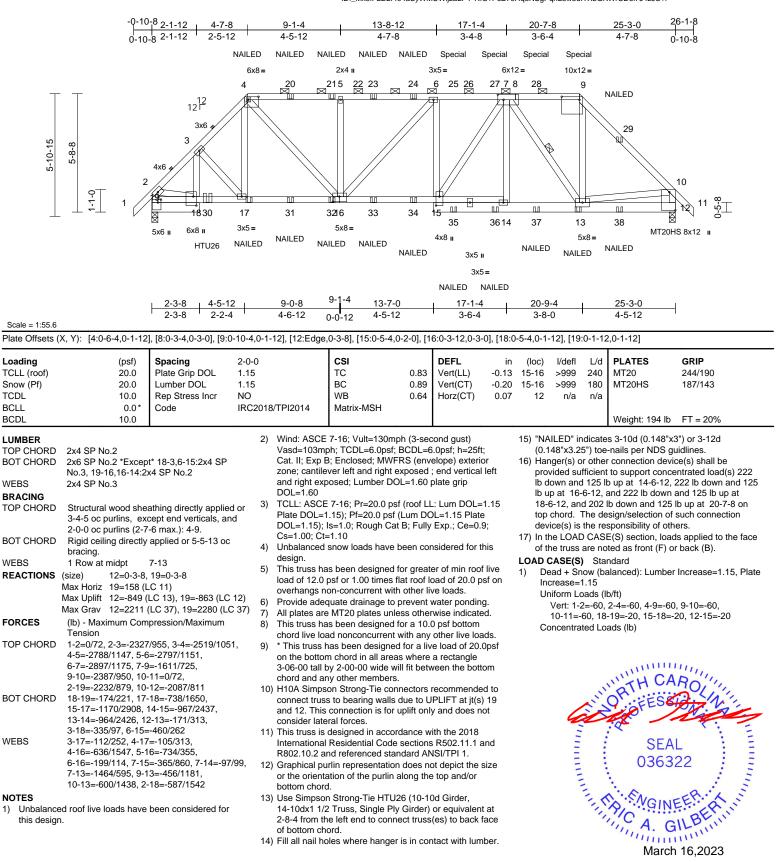
Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:12 ID:V534DfWxISOxJ\_hhzNIKP9zaLQd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932




bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C7    | Hip Girder | 1   | 1   | Job Reference (optional) | 157188482 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:15 ID:\_Mk9iFLD2f494aSyWMUWijzaLPY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

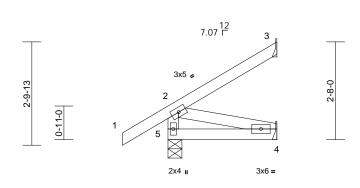


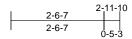
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPI1 Quality Ortheria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association, com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | C7    | Hip Girder | 1   | 1   | Job Reference (optional) | 157188482 |

Vert: 9=-174 (B), 17=-55 (B), 4=-143 (B), 13=-25 (B), 20=-143 (B), 21=-143 (B), 23=-143 (B), 24=-143 (B), 25=-174 (B), 27=-174 (B), 28=-174 (B), 29=-34 (B), 30=-246 (B), 31=-55 (B), 32=-55 (B), 33=-55 (B), 34=-55 (B), 35=-25 (B), 36=-25 (B), 37=-25 (B), 38=-160 (B) Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:15 ID:\_Mk9iFLD2f494aSyWMUWijzaLPY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | CJ1   | Jack-Open  | 2   | 1   | Job Reference (optional) | 157188483 |

-1-2-14 1-2-14

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:16 ID:Ck8RIGRYyJVxzveL3P7hdhzaLQk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



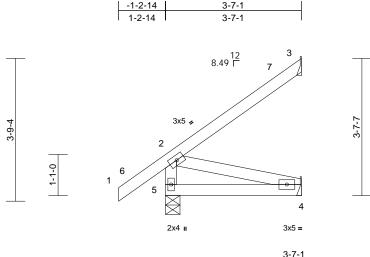


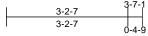
2-11-10

2-11-10

#### Scale = 1:31.4

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                             | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018      | 8/TPI2014                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                  | 0.21<br>0.09<br>0.06                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                           | in<br>0.00<br>-0.01<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 17 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                           | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>2-11-10 oc purlins,<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-4-9<br>Max Horiz 5=77 (LC<br>Max Uplift 3=-41 (LC<br>(LC 14)<br>Max Grav 3=99 (LC     | C 14), 4=-3 (LC 14), 5                                                                                                                                                                                                                                                                | 6)<br>ed or 7)<br>5 8)<br>II, 9)<br>5=-17 LC | chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate<br>5, 41 lb uplift<br>This truss is<br>International | s been designed for<br>ad nonconcurrent w<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>y other members.<br>er(s) for truss to tru-<br>hanical connection<br>of capable of withsta<br>at joint 3 and 3 lb<br>designed in accorc<br>Residential Code s<br>and referenced stam<br>Standard | vith any<br>for a liv<br>s where<br>Il fit betw<br>uss conr<br>(by oth<br>anding 1<br>uplift at<br>dance w<br>sections | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>nections.<br>ers) of truss t<br>7 lb uplift at j<br>joint 4.<br>ith the 2018<br>i R502.11.1 a | Opsf<br>om<br>o<br>oint     |                          |                               |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASI                                                                                                                    | Tension<br>2-5=-297/125, 1-2=                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                                                                    |                             |                          |                               |                          |                                 |                                    |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members<br>Lumber D<br>2) TCLL: AS<br>Plate DOI<br>DOL=1.15<br>Cs=1.00;<br>3) Unbalanc<br>design.<br>4) This truss<br>load of 12 | 3mph; TCDL=6.0psf; B<br>cp B; Enclosed; MWFR<br>C-C Corner (3) zone;<br>and vertical left and ri<br>and forces & MWFRS<br>OL=1.60 plate grip DC<br>GCE 7-16; Pr=20.0 psf<br>L=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat I | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>D=1.60<br>(roof LL: Lum DOL=1.<br>Lum DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9<br>even considered for th<br>or greater of min roof<br>t roof load of 20.0 ps | r<br>ht<br>.15<br>;<br>is<br>live            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                                                                    |                             |                          | A CHINE                       |                          | SEA<br>0363                     | L<br>L<br>22<br>EER                |





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | CJ2   | Jack-Open  | 1   | 1   | Job Reference (optional) | 157188484 |

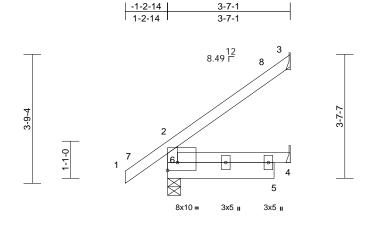
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:17 ID:gxipycRBjcdob3DXd6ew9uzaLQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

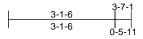
Page: 1





Scale = 1:30.4


| Scale = 1:30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |                              |                          |                               |                          |                                 |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacing2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018                                                                                                                                                                                                                                                                                     | T<br>B<br>W                                                                                                                                                                                                                | CSI<br>IC 0.<br>3C 0.<br>WB 0.<br>Matrix-MP                                                                                                                     | 4 Vert(CT)                                                                                                                                                      | in<br>-0.01<br>-0.02<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 20 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>WEBS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural wood shear<br>3-7-1 oc purlins, exc<br>BOT CHORD Rigid ceiling directly<br>bracing.<br>REACTIONS (size) 3= Mecha<br>5=0-4-9<br>Max Horiz 5=107 (LC<br>Max Uplift 3=-63 (LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6)<br>athing directly applied or<br>sept end verticals. 7)<br>applied or 10-0-0 oc 8)<br>nical, 4= Mechanical, 9)<br>14)<br>14), 4=-8 (LC 14)                                                                                                                                                                                                                 | chord live load r<br>* This truss has<br>on the bottom cl<br>3-06-00 tall by 2<br>chord and any o<br>Refer to girder(s<br>Provide mechan<br>bearing plate ca<br>3 and 8 lb uplift<br>This truss is des<br>International Re | s) for truss to truss of<br>nical connection (by<br>apable of withstandii<br>at joint 4.<br>signed in accordance<br>esidential Code sect<br>referenced standard | iny other live load of 20.<br>Free a rectangle<br>etween the both<br>connections.<br>others) of truss<br>g 63 lb uplift at<br>e with the 2018<br>cons R502.11.1 | Opsf<br>tom<br>to<br>joint   |                          |                               |                          |                                 |                                    |
| <ul> <li>(LC 21)</li> <li>FORCES (Ib) - Maximum Com<br/>Tension</li> <li>TOP CHORD 2-5=-321/116, 1-2=0</li> <li>BOT CHORD 4-5=-267/57</li> <li>WEBS 2-4=-58/275</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vult=130mph<br/>Vasd=103mph; TCDL=6.0psf; BC<br/>Cat. II; Exp B; Enclosed; MWFRS<br/>zone and C-C Corner (3) -1-2-14</li> <li>3-0-1 to 3-6-5 zone; cantilever le<br/>end vertical left and right expose<br/>forces &amp; MWFRS for reactions sl<br/>DOL=1.60 plate grip DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=20.0 psf (LI<br/>DOL=1.15); Is=1.0; Rough Cat B<br/>Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have be<br/>design.</li> <li>4) This truss has been designed for<br/>load of 12.0 psf or 1.00 times flat<br/>overhangs non-concurrent with or</li> </ul> | pression/Maximum<br>/73, 2-3=-113/66<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>to 3-0-1, Exterior(2R)<br>ft and right exposed ;<br>d;C-C for members and<br>hown; Lumber<br>roof LL: Lum DOL=1.15<br>Jm DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9;<br>en considered for this<br>greater of min roof live<br>roof load of 20.0 psf on |                                                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |                              |                          | A statistics                  |                          | 11111                           | L<br>22<br>EERH                    |




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | CJ2T  | Jack-Open  | 1   | 1   | Job Reference (optional) | 157188485 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:17 ID:Ck8RIGRYyJVxzveL3P7hdhzaLQk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





Scale = 1:33.7

| Plate Offsets (X, Y): | [6:Edge.0-2-12] |
|-----------------------|-----------------|
|                       | [0.2090,0 2 .2] |

| Plate Olisets                                                                                                                                                                                                                                                                                            | (X, Y): [6:Edge,0-2-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .]                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                                                 |                                          |                          |                               |                          | -                                 |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|-------------------------------|--------------------------|-----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                          | 8/TPI2014                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                                                                                                                                                                                              | 0.50<br>0.06<br>0.00                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                        | in<br>0.00<br>0.00<br>-0.01              | (loc)<br>4-6<br>4-6<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 22 lb   | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: AS:<br>Vasd=100<br>Cat. II; Ex<br>zone and<br>3-0-1 to 3<br>end vertic<br>forces & M<br>DOL=1.6(<br>2) TCLL: AS<br>Plate DOI<br>DOL=1.11<br>Cs=1.00; | 2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>3-7-1 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>6=0-4-9<br>Max Horiz 6=109 (LC<br>Max Uplift 3=-64 (LC<br>(LC 14)<br>Max Grav 3=137 (LC<br>(LC 21)<br>(lb) - Maximum Com<br>Tension<br>2-6=-332/172, 1-2=(<br>4-6=-9/0<br>CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; Bi<br>cp B; Enclosed; MWFR<br>C-C Corner (3) -1-2-14<br>6-5 zone; cantilever le<br>and left and right expose<br>WWFRS for reactions s<br>0 plate grip DOL=1.60<br>GC 7-16; Pr=20.0 psf (L=<br>1-1.15); Pf=20.0 psf (L= | athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>anical, 4= Mechanica<br>C 14)<br>C 14), 4=-5 (LC 14), 6<br>C 21), 4=68 (LC 7), 6<br>Dression/Maximum<br>D/73, 2-3=-119/59<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>t to 3-0-1, Exterior(2)<br>fit and right exposed<br>di;C-C for members<br>hown; Lumber<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>8; Fully Exp.; Ce=0.9 | rR)<br>;<br>and or 6)<br>(I, 7)<br>8)<br>(B)<br>(B)<br>(B)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate<br>6, 64 lb upliff<br>This truss is<br>International | Is been designed f<br>psf or 1.00 times fl<br>on-concurrent with<br>is been designed f<br>ad nonconcurrent was<br>been designed f<br>n chord in all areas<br>y 2-00-00 wide wi<br>hy other members.<br>er(s) for truss to tri<br>hanical connectior<br>e capable of withst<br>t at joint 3 and 5 lb<br>designed in accord<br>Residential Code<br>nd referenced stan<br>Standard | at roof le<br>other lir<br>or a 10.1<br>with any<br>l for a liv<br>s where<br>Il fit betw<br>uss conr<br>h (by oth<br>anding 1<br>uplift at<br>dance w<br>sections | bad of 20.0 p<br>ve loads.<br>) psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss i<br>lb uplift at jo<br>joint 4.<br>ith the 2018<br>is R502.11.1 a | sfon<br>ads.<br>Opsf<br>om<br>to<br>pint |                          |                               |                          | ORTH CA<br>ORTHESS<br>SEA<br>0363 | L<br>EEER. AL                      |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                                                 |                                          |                          |                               |                          |                                   | 16 2023                            |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) March 16,2023



| Job         | Truss | Truss Type  | Qty | Ply | Abby plan                |           |
|-------------|-------|-------------|-----|-----|--------------------------|-----------|
| 23030004-01 | D1    | Jack-Closed | 4   | 1   | Job Reference (optional) | 157188486 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:17 ID:RCfP4XKXqrV4?g1objzpI?zaLQs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-8 2x4 🛛 2<sup>3</sup> ø 12 12 ⊏ 5-5-8 5-5-8 3x6 🖌 7 1-1-0 F\$ 6 5 X 4 2x4 II 4x5 =



#### Scale = 1:39.9

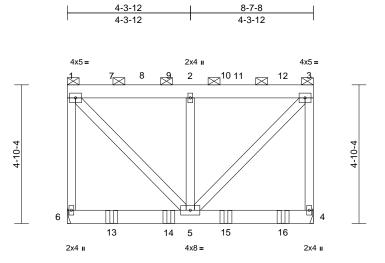
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 3/TPI2014                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                        | 0.53<br>0.19<br>0.04                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                       | in<br>-0.01<br>-0.03<br>0.00          | (loc)<br>5-6<br>5-6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 30 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>4-4-8 oc purlins, exc<br>Rigid ceiling directly<br>bracing. | ept end verticals.<br>applied or 10-0-0 od<br>c 13)<br>C 11), 6=-16 (LC 10<br>C 20), 6=218 (LC 20<br>pression/Maximum<br>48/118, 2-3=-20/0, | c 8)<br>)) 9)                           | on the botton<br>3-06-00 tall li<br>chord and an<br>Refer to gird<br>Provide mec<br>bearing plate<br>joint 5.<br>H10A Simps<br>connect trus<br>This connect<br>lateral forces<br>This truss is<br>International | designed in acco<br>Residential Code<br>nd referenced sta | as where<br>vill fit betv<br>s.<br>russ conr<br>on (by oth<br>tanding 1<br>nnectors<br>due to U<br>ily and do<br>rdance w<br>e sections | a rectangle<br>ween the bott<br>nections.<br>ers) of truss<br>02 lb uplift a<br>recommende<br>PLIFT at jt(s<br>bes not consi<br>ith the 2018<br>\$ R502.11.1 a | to<br>to<br>t<br>ed to<br>) 6.<br>der |                          |                               |                          | wegnit. 30 ib                   | 1 1 - 2078                         |
| NOTES                                                                                                                                  | E 7-16: Vult=130mph                                                                                                              | (3-second gust)                                                                                                                             |                                         |                                                                                                                                                                                                                 |                                                           |                                                                                                                                         |                                                                                                                                                                |                                       |                          |                               |                          |                                 |                                    |

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



March 16,2023

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type  | Qty | Ply | Abby plan                |           |
|-------------|-------|-------------|-----|-----|--------------------------|-----------|
| 23030004-01 | E1GR  | Flat Girder | 1   | 2   | Job Reference (optional) | 157188487 |

#### Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:18 ID:MpfOXNxzDgjfCT6AtkaZKxzB\_qz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:40.4

|                                                                                    |       |                 |                 | _         |      |          |       |       |                 |                |                |          |
|------------------------------------------------------------------------------------|-------|-----------------|-----------------|-----------|------|----------|-------|-------|-----------------|----------------|----------------|----------|
| Loading                                                                            | (psf) | Spacing         | 2-0-0           | csi       |      | DEFL     | in    | (loc) | l/defl          | L/d            | PLATES         | GRIP     |
| TCLL (roof)                                                                        | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.62 | Vert(LL) | -0.02 | 4-5   | >999            | 240            | MT20           | 244/190  |
| Snow (Pf)                                                                          | 20.0  | Lumber DOL      | 1.15            | BC        | 0.22 | Vert(CT) | -0.03 | 4-5   | >999            | 180            |                |          |
| TCDL                                                                               | 10.0  | Rep Stress Incr | NO              | WB        | 0.55 | Horz(CT) | 0.00  | 4     | n/a             | n/a            |                |          |
| BCLL                                                                               | 0.0*  | Code            | IRC2018/TPI2014 | Matrix-MP |      |          |       |       |                 |                |                |          |
| BCDL                                                                               | 10.0  |                 |                 |           |      |          |       |       |                 |                | Weight: 149 lb | FT = 20% |
| LUMBER 3) Wind: ASCE 7-16; Vult=130mph (3-second gust) 15) Hanger(s) or other conn |       |                 |                 |           |      |          |       |       | connection devi | ce(s) shall be |                |          |

- TOP CHORD
   2x6 SP No.2

   BOT CHORD
   2x6 SP No.2

   WEBS
   2x4 SP No.3

   BRACING
   2-0-0 oc purlins (6-0-0 max.): 1-3, except end verticals.

   BOT CHORD
   2-0-0 oc purlins (6-0 or max.): 1-3, except end verticals.

   BOT CHORD
   Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS
   (size)
   4= Mechanical, 6= Mechanical Max Horiz
   6=-151 (LC 8)

   Max Uplift
   4=-331 (LC 9), 6=-302 (LC 8)
   Max Grav
   4=3505 (LC 1), 6=3241 (LC 1)

   FORCES
   (lb) - Maximum Compression/Maximum Tension
   TOP CHORD
   1-6=-3021/253, 1-2=-1487/165,
- TOP CHORD
   1-6=-3021/253, 1-2=-148//165, 2-3=-1487/165, 3-4=-3221/255

   BOT CHORD
   5-6=-132/118, 4-5=-56/43

   WEBS
   1-5=-288/2161, 2-5=-2423/107, 3-5=-288/2161
- NOTES
- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows
- staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 3) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 302 lb uplift at joint 6 and 331 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-6-12 from the left end to 7-6-12 to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 878 lb down and 11 lb up at 0-1-12, 867 lb down and 5 lb up at 1-6-12, 867 lb down and 5 lb up at 3-6-12, 867 lb down and 5 lb up at 5-6-12, and 868 lb down and 6 lb up at 7-6-12, and 878 lb down and 13 lb up at 8-5-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

# LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

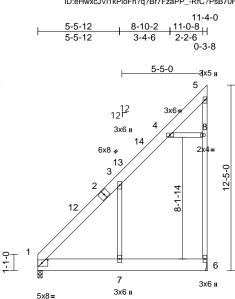
- Uniform Loads (lb/ft)
  - Vert: 1-3=-60, 4-6=-20
- Concentrated Loads (lb)
- Vert: 1=-859, 3=-859, 7=-827, 9=-827, 10=-827, 12=-829, 13=-263 (F), 14=-263 (F), 15=-263 (F),
- 12=-829, 13= 16=-264 (F)
  - SEAL 036322 March 16,2023

March 10,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



818 Soundside Road


Edenton, NC 27932

| Job         | Truss | Truss Type Qty Ply Abby plan |   | Abby plan |                          |           |
|-------------|-------|------------------------------|---|-----------|--------------------------|-----------|
| 23030004-01 | F1    | Roof Special                 | 3 | 1         | Job Reference (optional) | 157188488 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:18 ID:eHwxcJVi1kPloFh?q?Br7FzaPP\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

Page: 1

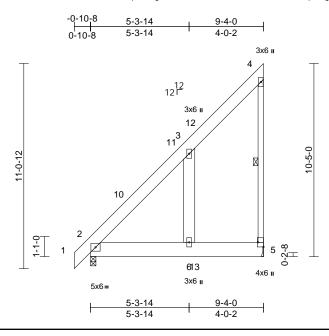


12-5-0

#### <u>5-5-12</u><u>11-4-0</u> 5-5-12<u>5-10-4</u>

Scale = 1:77.1

Plate Offsets (X, Y): [1:0-4-12,0-2-8]


| Fiale Olisels (                                                                                 | (,, 1). [1.0-4-12,0-2-0                                                                                                                                                                                  | ]                                                                                                                |                                  |                                                                                                               |                           |                 |         |                                 |                                       |                                 |                                  |                                    |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|---------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|--|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD | 2x10 SP 2400F 2.0E                                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                               | on the bo<br>3-06-00             | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH<br>ss has been designe<br>ttom chord in all area<br>all by 2-00-00 wide w | as where<br>vill fit betv | a rectangle     | •       | (loc)<br>6-7<br>6-7<br>1<br>6-7 | l/defl<br>>999<br>>866<br>n/a<br>>999 | L/d<br>240<br>180<br>n/a<br>360 | PLATES<br>MT20<br>Weight: 123 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |  |
| WEBS<br>BRACING                                                                                 | 2x4 SP No.2                                                                                                                                                                                              |                                                                                                                  |                                  | d any other members<br>ead load (5.0 psf) on                                                                  |                           | (s). 3-4. 4-8:  | Wall    |                                 |                                       |                                 |                                  |                                    |  |  |
| TOP CHORD                                                                                       |                                                                                                                                                                                                          | 0 7 11                                                                                                           | ed or dead loa                   | d (5.0psf) on member                                                                                          | r(s).3-7                  |                 |         |                                 |                                       |                                 |                                  |                                    |  |  |
| BOT CHORD                                                                                       | COT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.                                                                                                                                           |                                                                                                                  |                                  |                                                                                                               |                           |                 |         |                                 |                                       |                                 |                                  |                                    |  |  |
| REACTIONS                                                                                       | 0                                                                                                                                                                                                        | C 11)                                                                                                            | bearing p<br>6.<br>10) This trus | late capable of withs<br>s is designed in acco                                                                | tanding f                 | 10 Ib uplift at | t joint |                                 |                                       |                                 |                                  |                                    |  |  |
| FORCES                                                                                          | (lb) - Maximum Com                                                                                                                                                                                       |                                                                                                                  | / Internatio                     | nal Residential Code<br>2 and referenced sta                                                                  |                           |                 | and     |                                 |                                       |                                 |                                  |                                    |  |  |
| TOP CHORD                                                                                       | Tension<br>1-3=-676/390, 3-4=-3<br>6-8=-362/238, 5-8=-3                                                                                                                                                  |                                                                                                                  | 010 <sup>′</sup>                 | n checked for L/360 (<br><b>(S)</b> Standard                                                                  | deflectior                | 1.              |         |                                 |                                       |                                 |                                  |                                    |  |  |
|                                                                                                 | 1-7=-412/294, 6-7=-                                                                                                                                                                                      |                                                                                                                  |                                  |                                                                                                               |                           |                 |         |                                 |                                       |                                 |                                  |                                    |  |  |
| WEBS                                                                                            | 3-7=-357/406, 4-8=-2                                                                                                                                                                                     | 219/135                                                                                                          |                                  |                                                                                                               |                           |                 |         |                                 |                                       |                                 |                                  |                                    |  |  |
| NOTES                                                                                           |                                                                                                                                                                                                          | ( <b>a</b> )                                                                                                     |                                  |                                                                                                               |                           |                 |         |                                 |                                       |                                 |                                  | 10.                                |  |  |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>3-0-0 to 1<br>end vertica<br>forces & M                  | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B(<br>p B; Enclosed; MWFR3;<br>C-C Exterior(2E) 0-0-0<br>1-2-4 zone; cantilever I<br>al left and right expose<br>MWFRS for reactions sl<br>plate grip DOL=1.60 | CDL=6.0psf; h=25ft<br>S (envelope) exterio<br>to 3-0-0, Interior (1<br>eft and right expose<br>d;C-C for members | or<br>)<br>ed ;                  |                                                                                                               |                           |                 |         |                                 | 4                                     | in i                            | OPTESS<br>OPTESS<br>SEA          | ROUN                               |  |  |
| Plate DOL                                                                                       | CE 7-16; Pr=20.0 psf (<br>=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat B<br>Ct=1.10                                                                                                                   | um DOL=1.15 Plate                                                                                                | 9                                |                                                                                                               |                           |                 |         |                                 |                                       |                                 | 0363                             | 22                                 |  |  |
| 3) Unbalance                                                                                    | ed snow loads have be                                                                                                                                                                                    | en considered for th                                                                                             | his                              |                                                                                                               |                           |                 |         |                                 |                                       | 3.5                             | NGIN                             | FERMAN                             |  |  |
| design.                                                                                         | has been designed for                                                                                                                                                                                    | a 10.0 pef bottom                                                                                                |                                  |                                                                                                               |                           |                 |         |                                 |                                       | 11                              | 210                              | BELIN                              |  |  |
|                                                                                                 | load nonconcurrent wi                                                                                                                                                                                    |                                                                                                                  | ds.                              |                                                                                                               |                           |                 |         |                                 |                                       |                                 | 111111                           | 16,2023                            |  |  |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | G1    | Roof Special | 5   | 1   | Job Reference (optional) | 157188489 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:19 ID:qlkEm7gwQEV7J?1RS9vM0VzaPNU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

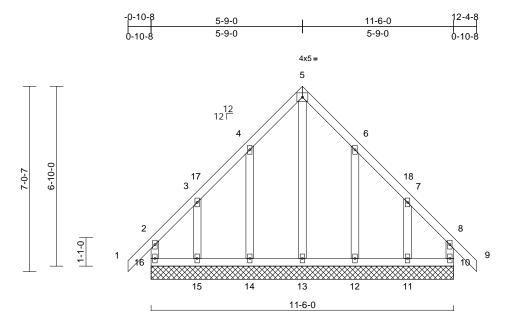


Scale = 1:62.2 Plate Offsets (X, Y): [5:Edge.0-3-8]

| Plate Offsets                                                                                                                        | (X, Y): [5:Edge,0-3-8]                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                                                                           |                                              |                          |                               |                          | -                                |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                     | 0.92<br>0.13<br>0.03                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                  | in<br>0.04<br>-0.06<br>0.01                  | (loc)<br>6-9<br>6-9<br>2 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 112 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                   | 2x10 SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>2.0E<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                                                 | t* 3-6:2x8 SP 2400F<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>4-5<br>5= Mechanical<br>C 13)<br>C 11)                                                                           | 6)<br>d or<br>: 7)<br>8)<br>9)         | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate<br>joint 5.<br>This truss is<br>International | as been designed fi<br>psf or 1.00 times fl<br>on-concurrent with<br>as been designed fi<br>ad nonconcurrent w<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide wi<br>by other members,<br>er(s) for truss to tru<br>hanical connection<br>thanical connection<br>e capable of withsta<br>designed in accord<br>Residential Code<br>ind referenced stan | at roof I<br>other Ii<br>or a 10.<br>vith any<br>for a Iiv<br>s where<br>Il fit betw<br>with BC<br>uss conu<br>(by oth<br>anding 1<br>dance w<br>sections | bad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live loa<br>re load of 20.1<br>a rectangle<br>veen the bott<br>CDL = 10.0psi<br>hections.<br>ers) of truss t<br>159 lb uplift at<br>ith the 2018<br>$\pm$ R502.11.1 a | sf on<br>lds.<br>0psf<br>om<br>f.<br>to<br>t |                          |                               |                          |                                  |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                     | 4-5=-249/105<br>2-6=-210/163, 5-6=-                                                                                                                                                                                                                                     | 186, 3-4=-187/151,                                                                                                                                                                                               |                                        | )) Attic room ch<br>DAD CASE(S)                                                                                                                                                                                                    | necked for L/360 de<br>Standard                                                                                                                                                                                                                                                                                                                                         | eflectior                                                                                                                                                 | 1.                                                                                                                                                                                                                        |                                              |                          |                               |                          |                                  |                                    |
| WEBS<br>NOTES                                                                                                                        | 3-6=-287/263<br>CE 7-16; Vult=130mph                                                                                                                                                                                                                                    | (2 cocord quet)                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                                                                           |                                              |                          |                               |                          | TH CA                            | ROUT                               |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>2-1-8 to 4<br>cantilever<br>right expo<br>for reactic<br>DOL=1.6(<br>2) TCLL: AS<br>Plate DOI | 3mph; TCDL=6.0psf; Bi<br>xp B; Enclosed; MWFR<br>C-C Exterior(2E) -0-10<br>I-11-5, Exterior(2R) 4-1<br>I left and right exposed<br>based;C-C for members<br>ons shown; Lumber DC<br>0<br>GCE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>I-8 to 2-1-8, Interior (<br>1-5 to 9-2-4 zone;<br>; end vertical left anc<br>and forces & MWFR:<br>IL=1.60 plate grip<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate | 1)<br>J<br>S<br>.15                    |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                                                                                           |                                              |                          | Martin Martin                 |                          | SEA<br>0363                      | • –                                |

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2)
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

GI


March 16,2023

mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type             | Qty | Ply | Abby plan                |           |
|-------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | H1    | Common Supported Gable | 1   | 1   | Job Reference (optional) | 157188490 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:19 ID:5WOxbeU30X?NSWy6IFBdnXzaLQg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale | - 1 | 120 |
|-------|-----|-----|
|       |     |     |

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                          |                                    | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20 | 18/TPI2014                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                                           | 0.20<br>0.08<br>0.31                                                                                           | ( )                                                                                                                                                       | in<br>n/a<br>n/a<br>0.00        | (loc)<br>-<br>-<br>10                   | l/defl<br>n/a<br>n/a<br>n/a                                            | L/d<br>999<br>999<br>n/a                                      | PLATES<br>MT20<br>Weight: 76 I                                                                                                 | <b>GRIP</b><br>244/190<br>lb FT = 20                                                 |                                                          |
|------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 6-0-0 oc<br>Rigid ceil<br>bracing. | o.2<br>o.3<br>o.3<br>I wood she<br>purlins, ex<br>ing directly<br>10=11-6-       | eathing directly applied<br>cept end verticals.<br>/ applied or 6-0-0 oc<br>0, 11=11-6-0, 12=11-6 | 6-0, <sup>3</sup>                     | Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>2-1-8 to 2-9-<br>8-9-0 to 9-4-<br>cantilever let<br>right expose<br>for reactions<br>DOL=1.60<br>Truss desig | 7-16; Vult=130m<br>bh; TCDL=6.0psf;<br>3; Enclosed; MWI<br>C Corner(3E) -0-<br>0, Corner(3R) 2-6<br>8, Corner(3R) 9-4<br>t and right exposed<br>d;C-C for membe<br>shown; Lumber I<br>ned for wind load<br>dds exposed to wi | BCDL=6<br>FRS (env<br>10-8 to 2-<br>0-0 to 8-9<br>8 to 12<br>ed ; end v<br>rs and fo<br>DOL=1.60<br>s in the p | 0.0psf; h=25ft;<br>elope) exterio<br>1-8, Exterior(2<br>0, Exterior(2<br>4-8 zone;<br>vertical left and<br>cces & MWFR<br>) plate grip<br>lane of the tru | r<br>2N)<br>V)<br>d<br>S<br>Ss  | reco<br>UPI<br>upli<br>15) This<br>Inte | IFT at j<br>IFT at j<br>ft only a<br>truss is<br>rnationa<br>02.10.2 a | led to o<br>t(s) 14<br>nd doe<br>desig<br>al Resig<br>and ref | L connector (<br>connect truss<br>, 15, 12, and<br>s not conside<br>ned in accord<br>dential Code s<br>ierenced stand<br>ndard | to bearing wa<br>11. This conner<br>Iateral force<br>lance with the<br>sections R502 | Alls due to<br>ection is for<br>s.<br>2018<br>2.11.1 and |
|                                                                                                      | ·                                  | 16=11-6-<br>16=-186<br>10=-76 (l<br>12=-90 (l<br>15=-148<br>10=168 (<br>12=287 ( |                                                                                                   | 5),<br>),<br>0)<br>5), g              | see Standar<br>or consult qu<br>) TCLL: ASCE<br>Plate DOL=<br>DOL=1.15);<br>Cs=1.00; Ct:<br>) Unbalanced<br>design.                                        | d Industry Gable<br>ialified building de<br>7-16; Pr=20.0 ps<br>1.15); Pf=20.0 psf<br>Is=1.0; Rough Ca                                                                                                                       | End Deta<br>esigner as<br>of (roof LI<br>(Lum DC<br>t B; Fully<br>been cor                                     | ils as applicat<br>s per ANSI/TF<br>.: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th                                                      | ble,<br>Pl 1.<br>.15<br>;<br>is |                                         |                                                                        |                                                               |                                                                                                                                |                                                                                      |                                                          |
| FORCES                                                                                               | (lb) - Max<br>Tension              | 16=180 (<br>timum Cor                                                            | LC 25)<br>npression/Maximum                                                                       | _                                     | load of 12.0 overhangs n                                                                                                                                   | psf or 1.00 times<br>on-concurrent wit                                                                                                                                                                                       | flat roof le<br>h other li                                                                                     | oad of 20.0 ps<br>/e loads.                                                                                                                               |                                 |                                         |                                                                        |                                                               |                                                                                                                                | 1000                                                                                 |                                                          |
| TOP CHORD                                                                                            | 2-16=-14<br>3-4=-88/2              | 205, 4-5=-<br>205, 7-8=-                                                         | =0/43, 2-3=-121/117,<br> 56/340, 5-6=-156/340<br> 04/102, 8-9=0/43,                               | ), g                                  | <ul> <li>Gable requir</li> <li>Truss to be f</li> <li>braced again</li> </ul>                                                                              | 2x4 MT20 unles<br>es continuous bo<br>fully sheathed from<br>st lateral movem<br>spaced at 2-0-0 c                                                                                                                           | ttom chor<br>n one fac<br>ent (i.e. c                                                                          | d bearing.<br>e or securely                                                                                                                               |                                 |                                         | L                                                                      | zin                                                           | ORTHO                                                                                                                          | SARO                                                                                 | N                                                        |
| BOT CHORD                                                                                            | 15-16=-9<br>13-14=-9               | 0/125, 14-<br>0/125, 12-                                                         | 15=-90/125,<br>13=-90/125,<br>11=-90/125                                                          | 1                                     | 1) This truss ha                                                                                                                                           | spaced at 2-0-0 o<br>as been designed<br>ad nonconcurrent<br>nas been designe                                                                                                                                                | for a 10.<br>with any                                                                                          | other live load                                                                                                                                           |                                 |                                         | 1111                                                                   |                                                               | SE                                                                                                                             | EAL                                                                                  | A IN                                                     |
| WEBS                                                                                                 | 5-13=-39                           | 1/113, 4-1                                                                       | 4=-246/167,                                                                                       |                                       |                                                                                                                                                            | n chord in all area                                                                                                                                                                                                          |                                                                                                                |                                                                                                                                                           | P31                             |                                         | Ξ                                                                      |                                                               | 036                                                                                                                            | 5322                                                                                 | ÷ Ξ.                                                     |

3-15=-144/194, 6-12=-246/167, 7-11=-144/194

# NOTES

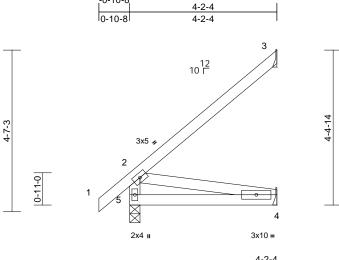
- 1) Unbalanced roof live loads have been considered for this design.
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 16 and 76 lb uplift at joint 10.

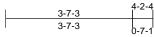
Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J1    | Jack-Open  | 16  | 1   | Job Reference (optional) | 157188491 |


-0-10-8


Carter Components (Sanford), Sanford, NC - 27332,

### Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:19 ID:gxipycRBjcdob3DXd6ew9uzaLQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

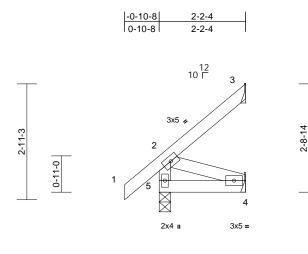






#### Scale = 1:32.8

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                             | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2                                                 | 014                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                              | 0.51<br>0.20<br>0.08                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                           | in<br>-0.02<br>-0.03<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 23 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| 1                                                                                                                                                                                                       | 4-2-4 oc purlins, ex<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                                                                                                                     | v applied or 10-0-0 oc<br>anical, 4= Mechanica<br>C 14)<br>C 14), 4=-1 (LC 14)                                                                                                                                                                                                                                    | chor<br>6) * Th<br>on th<br>d or<br>7) Refe<br>8) Prov<br>bear<br>I, 9) This<br>Inter<br>R80 | d live loa<br>s truss h<br>e bottor<br>00 tall h<br>d and ar<br>r to gird<br>ide mec<br>ing plate<br>d 1 lb up<br>truss is<br>national<br>2.10.2 a | is been designed fr<br>ad nonconcurrent w<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>er(s) for truss to tru<br>hanical connection<br>a capable of withsta-<br>blift at joint 4.<br>designed in accord<br>Residential Code<br>ind referenced stam<br>Standard | with any<br>I for a liv<br>s where<br>II fit betv<br>uss conr<br>n (by oth<br>anding 9<br>dance w<br>sections | other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>14 lb uplift at<br>ith the 2018<br>s R502.11.1 a | Opsf<br>com<br>to<br>joint   |                          |                               |                          |                                 |                                    |
| Vasd=103n<br>Cat. II; Exp<br>zone and C<br>exposed; e<br>members a<br>Lumber DC<br>2) TCLL: ASC<br>Plate DOL=<br>DOL=1.15)<br>Cs=1.00; C<br>3) Unbalanced<br>design.<br>4) This truss h<br>load of 12.0 | (lb) - Maximum Con<br>Tension<br>2-5=-280/46, 1-2=0,<br>4-5=-273/79<br>2-4=-80/278<br>E 7-16; Vult=130mpt<br>mph; TCDL=6.0psf; B<br>B; Enclosed; MWFRS<br>C-Exterior(2E) zone<br>end vertical left and ri<br>and forces & MWFRS<br>DL=1.60 plate grip DC<br>E 7-16; Pr=20.0 psf (L<br>; Is=1.0; Rough Cat B<br>(t=1.15); Pf=20.0 psf (L<br>; Is=1.0; Rough Cat B<br>(t=1.10)<br>d snow loads have be<br>has been designed fo<br>0 psf or 1.00 times fla<br>non-concurrent with | (39, 2-3=-132/103<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown;<br>DL=1.60<br>(roof LL: Lum DOL=1<br>.15 Plate<br>B; Fully Exp.; Ce=0.9<br>een considered for th<br>r greater of min roof<br>t roof load of 20.0 ps | ight<br>.15<br>;<br>is                                                                       |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                    |                              |                          |                               |                          | SEA<br>0363                     | 22<br>EER C                        |


March 16,2023

AMITEK AMMINE B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J2    | Jack-Open  | 2   | 1   | Job Reference (optional) | 157188492 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:20 ID:Ck8RIGRYyJVxzveL3P7hdhzaLQk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





#### Scale = 1:29.2

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                       | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI20                                                                            | TO<br>BO<br>W                                                                                                                                              |                                                                                                                                                                                                                                                                                         | 0.12<br>0.04<br>0.06                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                           | in<br>0.00<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 13 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                        | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>2-2-4 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-3-8<br>Max Horiz 5=78 (LC<br>Max Uplift 3=-39 (LC<br>Max Grav 3=70 (LC                                                                              | cept end verticals.<br>applied or 10-0-0 oc<br>anical, 4= Mechanica<br>14)<br>2 14), 4=-16 (LC 14)                                                                                                                                                                                                                   | chord<br>6) * This<br>on th<br>3-06-<br>chord<br>7) Refer<br>8) Provi<br>beari<br>3 and<br>II, 9) This<br>Interr<br>R802 | live load n<br>truss has<br>bottom ch<br>00 tall by 2<br>and any o<br>to girder(s<br>le mechan<br>g plate ca<br>16 lb upliff<br>russ is des<br>ational Res | een designed for<br>nonconcurrent wi<br>been designed fi<br>hord in all areas '<br>2-00-00 wide will'<br>other members.<br>s) for truss to trus<br>nical connection (<br>apable of withstar<br>ft at joint 4.<br>signed in accorda<br>sidential Code se<br>referenced stand<br>Standard | ith any<br>for a liv<br>where<br>fit betw<br>ss conr<br>(by oth<br>nding 3<br>ance w<br>ections | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ections.<br>ers) of truss t<br>9 lb uplift at j<br>th the 2018<br>R502.11.1 a | Opsf<br>om<br>o<br>oint    |                          |                               |                          |                                 |                                    |  |
| Vasd=10<br>Cat. II; Ex<br>zone and<br>exposed<br>members<br>Lumber D<br>Plate DO<br>DOL=1.1:<br>Cs=1.00;<br>3) Unbalanc<br>design.<br>4) This truss<br>load of 12 | 4-5=-197/39<br>2-4=-41/208<br>CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>gp B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>; end vertical left and riu<br>and forces & MWFRS<br>0OL=1.60 plate grip DC<br>CCE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>55); Is=1.0; Rough Cat E | 63, 2-3=-77/44<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown;<br>J=1.60<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9<br>sen considered for th<br>r greater of min roof<br>t roof load of 20.0 ps | r<br>ight<br>.15<br>;<br>is<br>live                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                 |                                                                                                                                                    |                            |                          | M. CONTRACTOR                 |                          | SEA<br>0363                     | ER A I                             |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 16,2023

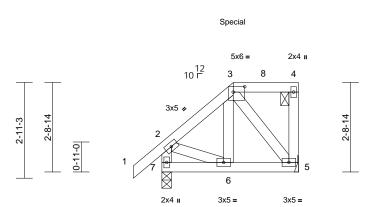
| Job         | Truss | Truss Type      | Qty | Ply | Abby plan                |           |
|-------------|-------|-----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J2GR  | Half Hip Girder | 2   | 1   | Job Reference (optional) | 157188493 |

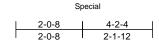
2-2-4

2-2-4

-0-10-8

0-10-8


Carter Components (Sanford), Sanford, NC - 27332,


Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:20 ID:9xrTtO4oTbAQq2CXg1Z7GszaLPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-2-4

2-0-0

Page: 1



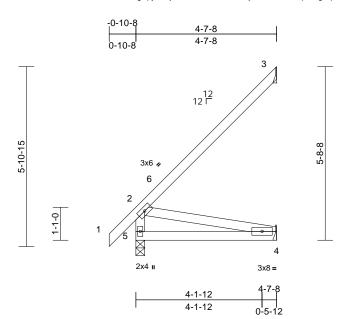


Scale = 1:35.3

# Plate Offsets (X, Y): [3:0-4-4,0-2-0]

|                                                                                            | ,,,,,): [0:0 1 1,0 2 0]                                                                                                                  |                                                                                                        |                                                 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                                                    |                                                  |                        |                               |                          |                                 |                                    |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                     | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2018          | 8/TPI2014                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                | 0.14<br>0.05<br>0.04                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                           | in<br>0.00<br>0.00<br>0.00                       | (loc)<br>6<br>5-6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 29 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>4-2-4 oc purlins, ex<br>2-0-0 oc purlins: 3-4<br>Rigid ceiling directly<br>bracing. | cept end verticals, ar<br>,<br>applied or 10-0-0 oc<br>anical, 7=0-3-8<br>C 11)<br>C 9), 7=-65 (LC 12) | 6)<br>7)<br>d or<br>nd 8)<br>:<br>:<br>9)<br>10 | load of 12.0<br>overhangs n<br>Provide adee<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Refer to gird<br>0) Provide mec<br>bearing plate<br>5. | as been designed<br>psf or 1.00 times f<br>psf or 1.00 times f<br>on-concurrent with<br>quate drainage to<br>as been designed<br>ad nonconcurrent<br>nas been designed<br>m chord in all area<br>by 2-00-00 wide w<br>by other members<br>er(s) for truss to tr<br>hanical connection<br>e capable of withst<br>on Strong-Tie con | flat roof I<br>h other li<br>prevent<br>for a 10.<br>with any<br>d for a liv<br>as where<br>rill fit betv<br>russ coni<br>n (by oth<br>tanding 8 | oad of 20.0 p<br>ve loads.<br>water pondin<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss i<br>44 lb uplift at j | sf on<br>g.<br>ads.<br>Opsf<br>om<br>to<br>joint |                        |                               |                          | ads (lb)<br>), 6=-1 (B)         |                                    |
| FORCES<br>TOP CHORD                                                                        |                                                                                                                                          | 68, 3-4=-31/24,                                                                                        |                                                 | connect trus                                                                                                                                                                                                  | s to bearing walls<br>tion is for uplift onl                                                                                                                                                                                                                                                                                      | due to L                                                                                                                                         | PLIFT at jt(s)                                                                                                                                                                     | ) 7.                                             |                        |                               |                          |                                 |                                    |
| ,                                                                                          | 3-6=-26/76, 3-5=-15<br>ed roof live loads have                                                                                           | /103<br>7/87, 2-6=-49/132                                                                              | 13                                              | International<br>R802.10.2 a<br>Graphical pu<br>or the orienta                                                                                                                                                | designed in accor<br>Residential Code<br>nd referenced star<br>Irlin representation<br>ation of the purlin                                                                                                                                                                                                                        | sections<br>ndard Al                                                                                                                             | s R502.11.1 a<br>NSI/TPI 1.<br>ot depict the s                                                                                                                                     |                                                  |                        |                               |                          | WH CA                           | Route                              |
| Vasd=103<br>Cat. II; Ex<br>zone; can<br>and right e<br>DOL=1.60                            | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Bi<br>p B; Enclosed; MWFR<br>tilever left and right exp<br>exposed; Lumber DOL                 | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>posed ; end vertical I<br>=1.60 plate grip             | eft                                             | provided suf-<br>lb down and<br>down and 48<br>design/selec<br>responsibility                                                                                                                                 | other connection<br>ficient to support of<br>89 lb up at 2-2-4<br>8 lb up at 2-2-4 or<br>tion of such connection                                                                                                                                                                                                                  | concentra<br>on top c<br>bottom<br>ection de                                                                                                     | ated load(s) 1<br>hord, and 42<br>chord. The<br>vice(s) is the                                                                                                                     | lb                                               |                        | 4                             | i.                       | OR FESS<br>SEA<br>0363          | • -                                |
| Plate DOL<br>DOL=1.15<br>Cs=1.00;                                                          | =1.15); Pf=20.0 psf (L<br>i); Is=1.0; Rough Cat E                                                                                        | um DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9                                                             | ; LC<br>1)                                      | of the truss are noted as front (F) or back (B).<br>LOAD CASE(S) Standard<br>1) Dead + Snow (balanced): Lumber Increase=1.15, Plate<br>Increase=1.15                                                          |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                                                    |                                                  |                        |                               |                          | EER. KIN                        |                                    |

March 16,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J3    | Jack-Open  | 4   | 1   | Job Reference (optional) | 157188494 |

### Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:21 ID:gxipycRBjcdob3DXd6ew9uzaLQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

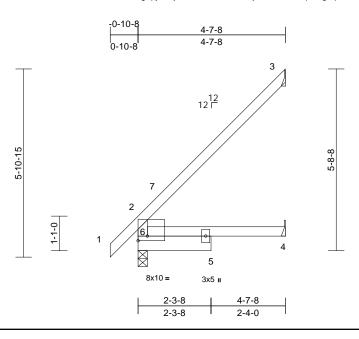
Page: 1



#### Scale = 1:37.9

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                        | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                           | 0.67<br>0.25<br>0.11                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                 | in<br>-0.02<br>-0.05<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190                 |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|----------------|----------------------------------------|
| BCDL                                                                                       | 10.0                                                                                                                                                                                              |                                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               |                          | Weight: 26 lb  | FT = 20%                               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | bracing.                                                                                                                                                                                          | cept end verticals.<br>applied or 9-7-15 or<br>anical, 4= Mechanica<br>C 14)<br>C 14), 4=-10 (LC 14                             | chord liv<br>6) * This tru<br>on the bo<br>3-06-00<br>chord an<br>7) Refer to<br>8) Provide i<br>bearing i<br>joint 3 ar<br>II, 9) This trus<br>Internatic<br>R802.10 | s has been designed<br>e load nonconcurrent<br>ss has been designed<br>tom chord in all are<br>all by 2-00-00 wide v<br>d any other members<br>girder(s) for truss to 1<br>nechanical connectic<br>late capable of withs<br>d 10 lb uplift at joint<br>s is designed in acco<br>nal Residential Code<br>2 and referenced sta<br>(S) Standard | with any<br>ed for a liv<br>as where<br>vill fit betv<br>s.<br>aruss coni<br>on (by oth<br>standing 1<br>4.<br>wrdance w<br>e sections | other live load<br>re load of 20.0<br>a rectangle<br>veen the botto<br>nections.<br>ers) of truss tr<br>30 lb uplift at<br>ith the 2018<br>s R502.11.1 a | Opsf<br>om<br>o               |                          |                               |                          |                |                                        |
| FORCES                                                                                     | (lb) - Maximum Com                                                                                                                                                                                | pression/Maximum                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               |                          |                |                                        |
| TOP CHORD<br>BOT CHORD<br>WEBS                                                             | Tension<br>2-5=-282/0, 1-2=0/4<br>4-5=-364/105<br>2-4=-107/371                                                                                                                                    | 3, 2-3=-196/131                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               |                          |                |                                        |
| NOTES                                                                                      | 2                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               |                          |                |                                        |
| 1) Wind: ASC<br>Vasd=103<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members<br>Lumber D    | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>p B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>end vertical left and rig<br>and forces & MWFRS<br>OL=1.60 plate grip DC<br>CE 7-16; Pr=20.0 psf ( | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown<br>DL=1.60 | r<br>ight<br>;                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          | 4                             |                          | OR FESE        | ROLL                                   |
| Plate DOL                                                                                  | =1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E                                                                                                                                                 | um DOL=1.15 Plate                                                                                                               |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          | 11111                         |                          | SEA<br>0363    | • -                                    |
| 3) Unbalance                                                                               | ed snow loads have be                                                                                                                                                                             | en considered for th                                                                                                            | is                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               | -                        | . A.           | a                                      |
| load of 12                                                                                 | has been designed fo<br>.0 psf or 1.00 times fla<br>s non-concurrent with o                                                                                                                       | t roof load of 20.0 ps                                                                                                          |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                          |                               |                          |                               |                          | A. C           | EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

March 16,2023

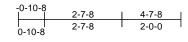
| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J3T   | Jack-Open  | 5   | 1   | Job Reference (optional) | 157188495 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:21 ID:gxipycRBjcdob3DXd6ew9uzaLQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

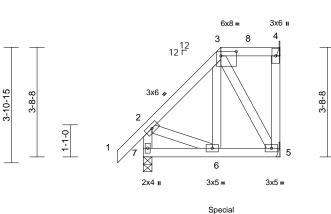


Scale = 1:36.2

Plate Offsets (X, Y): [6:Edge,0-1-12]


| Plate Olisets                                                                                                                                                                        | (A, T). [6.Euge,0-1-12                                                                                                                                                                                                                                                                                                                                    | .]                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                   |                              |                          |                               |                          |                                 |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI20                                                                   | CSI<br>TC<br>BC<br>WB<br>014 Matrix-MR                                                                                                                                                                                                                                                                                                                                                                      | 0.94<br>0.32<br>0.00                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                          | in<br>0.03<br>-0.03<br>-0.03 | (loc)<br>4-6<br>4-6<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 25 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD                                                       | 2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>4-7-8 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>6=0-3-8<br>Max Horiz 6=184 (LC<br>Max Uplift 3=-118 (L<br>Max Grav 3=203 (LC<br>(LC 21)<br>(lb) - Maximum Com<br>Tension<br>2-6=-313/73, 1-2=0/                                               | athing directly applie<br>cept end verticals.<br><sup>a</sup> applied or 6-0-0 oc<br>anical, 4= Mechanica<br>C 14)<br>C 14), 4=-19 (LC 14<br>C 21), 4=90 (LC 7), 6<br>apression/Maximum                                                                                          | chore<br>6) * Thi<br>on th<br>3.06<br>chore<br>7) Refe<br>8) Prov<br>beari<br>al, 9) This<br>Inter<br>R802<br>) | truss has been designed<br>i live load nonconcurrent<br>is truss has been designed<br>be bottom chord in all are<br>of tall by 2-00-00 wide v<br>and any other members<br>to girder(s) for truss to i<br>de mechanical connection<br>g plate capable of withs<br>1 19 lb uplift at joint 4.<br>truss is designed in acco<br>national Residential Cod.<br>.10.2 and referenced sta<br><b>ASE(S)</b> Standard | t with any<br>ed for a liv<br>as where<br>will fit betv<br>s.<br>truss coni<br>on (by oth<br>standing 1<br>ordance w<br>e sections | other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>18 lb uplift a<br>ith the 2018<br>s R502.11.1 a | 0psf<br>.om<br>to<br>t joint |                          |                               |                          | weight: 25 lb                   | FT = 20%                           |
| Vasd=100<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members<br>Lumber D<br>2) TCLL: AS<br>Plate DOI<br>DOL=1.10<br>Cs=1.00;<br>3) Unbalanc<br>design.<br>4) This truss<br>load of 12 | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>qp B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>; end vertical left and ri<br>and forces & MWFRS<br>OCL=1.60 plate grip DC<br>SCE 7-16; Pr=20.0 psf (L<br>5); Is=1.0; Rough Cat E<br>Ct=1.10<br>sed snow loads have be<br>a has been designed fo<br>2.0 psf or 1.00 times fla<br>s non-concurrent with o | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown<br>bL=1.60<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9<br>even considered for th<br>r greater of min roof<br>t roof load of 20.0 ps | r<br>ight<br>;<br>1.15<br>;<br>is<br>live                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                   |                              |                          | 10                            | S.                       | SEA<br>0363                     | L<br>22<br>EEER H                  |




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type      | Qty | Ply | Abby plan                |           |
|-------------|-------|-----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J4    | Half Hip Girder | 1   | 1   | Job Reference (optional) | 157188496 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:21 ID:hIH5g23AiH2ZCudK6K2ukfzaLPw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff



Special

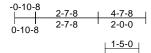


#### 2-5-12 4-7-8 2-1-12 2-5-12

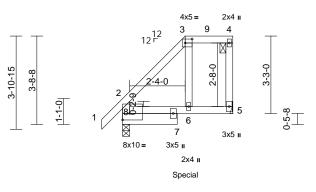
Scale = 1:39

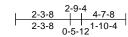
Plate Offsets (X, Y): [3:0-6-4,0-1-12]

|             | () / [ /-                                    |                        |                 |                                                                                                                                           |              |                 |            |       |           |       |                 |                        |  |  |
|-------------|----------------------------------------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|------------|-------|-----------|-------|-----------------|------------------------|--|--|
| Loading     | (psf)                                        | Spacing                | 2-0-0           | csi                                                                                                                                       |              | DEFL            | in         | (loc) | l/defl    | L/d   | PLATES          | GRIP                   |  |  |
| TCLL (roof) | 20.0                                         | Plate Grip DOL         | 1.15            | TC                                                                                                                                        | 0.15         | Vert(LL)        | 0.00       | 6     | >999      | 240   | MT20            | 244/190                |  |  |
| Snow (Pf)   | 20.0                                         | Lumber DOL             | 1.15            | BC                                                                                                                                        | 0.05         | Vert(CT)        | 0.00       | 6-7   | >999      | 180   | -               |                        |  |  |
| TCDL        | 10.0                                         | Rep Stress Incr        | NO              | WB                                                                                                                                        | 0.07         | Horz(CT)        | 0.00       | 4     | n/a       | n/a   |                 |                        |  |  |
| BCLL        | 0.0*                                         | Code                   | IRC2018/TPI2    |                                                                                                                                           |              |                 |            |       |           |       |                 |                        |  |  |
| BCDL        | 10.0                                         |                        | 11(02010/11/12  |                                                                                                                                           |              |                 |            |       |           |       | Weight: 36 lb   | FT = 20%               |  |  |
| LUMBER      |                                              |                        | 4) Unba         | lanced snow loads hav                                                                                                                     | a been co    | nsidered for th | nie        | 1) D  | and ± Sr  | ow (b | , ,             | r Increase=1.15, Plate |  |  |
| TOP CHORD   | 2x4 SP No.2                                  |                        | desi            |                                                                                                                                           |              |                 | 115        | '     | crease=   | ``    |                 |                        |  |  |
| BOT CHORD   |                                              |                        |                 | truss has been designe                                                                                                                    | d for areat  | er of min roof  | live       |       | niform Lo |       | b/ft)           |                        |  |  |
| WEBS        | 2x4 SP No.3                                  |                        |                 | of 12.0 psf or 1.00 time                                                                                                                  |              |                 |            | -     |           | `     | 2-3=-60, 3-4=-6 | 0. 5-7=-20             |  |  |
| BRACING     |                                              |                        | over            | nangs non-concurrent w                                                                                                                    | ith other li | ve loads.       |            | C     | oncentra  | ,     | ,               | -,                     |  |  |
| TOP CHORD   | Structural wood she                          | athing directly applie | dor 6) Prov     | de adequate drainage t                                                                                                                    | o prevent    | water ponding   | <b>]</b> . |       |           |       | B), 6=-11 (B)   |                        |  |  |
|             | 4-7-8 oc purlins, ex                         |                        |                 | truss has been designe                                                                                                                    | d for a 10.  | 0 psf bottom    |            |       |           | ```   | ,, ()           |                        |  |  |
|             | 2-0-0 oc purlins: 3-4                        |                        | chor            | d live load nonconcurrer                                                                                                                  |              |                 |            |       |           |       |                 |                        |  |  |
| BOT CHORD   | Rigid ceiling directly                       | applied or 10-0-0 o    | , ,             | s truss has been design                                                                                                                   |              |                 | Opsf       |       |           |       |                 |                        |  |  |
|             | bracing.                                     |                        |                 | e bottom chord in all ar                                                                                                                  |              |                 |            |       |           |       |                 |                        |  |  |
| REACTIONS   | (size) 4= Mecha                              | nical, 5= Mechanica    |                 | 00 tall by 2-00-00 wide                                                                                                                   |              | veen the botto  | om         |       |           |       |                 |                        |  |  |
|             | 7=0-3-8                                      |                        |                 | d and any other membe                                                                                                                     |              | tion o          |            |       |           |       |                 |                        |  |  |
|             | Max Horiz 7=137 (LO                          | C 9)                   |                 | r to girder(s) for truss to                                                                                                               |              |                 | ~          |       |           |       |                 |                        |  |  |
|             | Max Uplift 4=-23 (LC                         | 8), 5=-125 (LC 9),     |                 | <ol> <li>Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 23 lb uplift at joint</li> </ol> |              |                 |            |       |           |       |                 |                        |  |  |
|             | (LC 12)                                      |                        | 4 an            | 4 and 125 lb uplift at joint 5.                                                                                                           |              |                 |            |       |           |       |                 |                        |  |  |
|             | Max Grav 4=93 (LC                            |                        |                 | Simpson Strong-Tie c                                                                                                                      | onnectors    | recommende      | d to       |       |           |       |                 |                        |  |  |
|             | 7=392 (L0                                    | ,                      |                 | ect truss to bearing wal                                                                                                                  |              |                 |            |       |           |       |                 |                        |  |  |
| FORCES      | (lb) - Maximum Corr                          | pression/Maximum       |                 | connection is for uplift of                                                                                                               |              |                 |            |       |           |       |                 |                        |  |  |
|             | Tension                                      |                        | later           | al forces.                                                                                                                                |              |                 |            |       |           |       |                 |                        |  |  |
| TOP CHORD   | ,                                            | 103, 3-4=-44/33, 4-5   | i=0/0, 12) This | truss is designed in acc                                                                                                                  | ordance w    | ith the 2018    |            |       |           |       |                 |                        |  |  |
|             | 2-7=-372/93                                  | 7/100                  |                 | national Residential Coo                                                                                                                  |              |                 | nd         |       |           |       | minin           | 1111                   |  |  |
| BOT CHORD   | ,                                            |                        |                 | 2.10.2 and referenced st                                                                                                                  |              |                 |            |       |           |       | WAH CA          | Rollin                 |  |  |
| WEBS        | 3-6=-39/107, 3-5=-2                          | 33/150, 2-6=-70/158    | 10) 010         | hical purlin representati                                                                                                                 |              |                 | size       |       |           | - 2   | R               | · · · · · · ·          |  |  |
| NOTES       |                                              |                        |                 | e orientation of the purli                                                                                                                | n along the  | e top and/or    |            |       |           | 1.    | O FESS          | Olivin                 |  |  |
|             | ed roof live loads have                      | been considered fo     |                 | m chord.                                                                                                                                  |              | and Cont        |            |       |           | 22    |                 | 12 In                  |  |  |
| this design |                                              | ( <b>0</b> ) )         |                 | between inside of top c                                                                                                                   |              |                 |            |       |           | -     | 27 -            |                        |  |  |
|             | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B |                        | 0               | onal or vertical web shal<br>ger(s) or other connection                                                                                   |              |                 |            |       | -         |       | SEA             | 1 1 1                  |  |  |
|             | p B; Enclosed; MWFR                          |                        |                 | ded sufficient to suppor                                                                                                                  |              |                 | 77         |       | =         | :     | SL/             |                        |  |  |
|             | tilever left and right ex                    |                        |                 | wn and 135 lb up at 2-3                                                                                                                   |              |                 |            |       | =         |       | 0363            | 22 : =                 |  |  |
|             | exposed; Lumber DOL                          |                        |                 | and 62 lb up at 2-7-8                                                                                                                     |              |                 |            |       |           |       |                 | 1 E                    |  |  |
| DOL=1.60    |                                              | P 3 P                  |                 | n/selection of such con                                                                                                                   |              |                 |            |       | Sanna San | 1     | N               | - A 1 - E              |  |  |
|             | -<br>CE 7-16; Pr=20.0 psf (                  | roof LL: Lum DOL=      |                 | onsibility of others.                                                                                                                     |              |                 |            |       |           | 2.0   | S. SNOW         | EEM AN                 |  |  |
|             | _=1.15); Pf=20.0 psf (L                      |                        |                 | e LOAD CASE(S) section                                                                                                                    | n, loads a   | pplied to the f | ace        |       |           | 1     | PL              | 5. 64 1                |  |  |
| DOL=1.15    | 5); Is=1.0; Rough Cat E                      | 3; Fully Exp.; Ce=0.9  | ; of th         | e truss are noted as fror                                                                                                                 | it (F) or ba | ck (B).         |            |       |           | 1     | A C             | BEN                    |  |  |
| Cs=1.00;    | Ct=1.10                                      |                        | LOAD C          | ASE(S) Standard                                                                                                                           |              |                 |            |       |           |       | in the second   |                        |  |  |
|             |                                              |                        |                 |                                                                                                                                           |              |                 |            |       |           |       | Morel           | 16 2023                |  |  |


March 16,2023

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


| Job         | Truss | Truss Type      | Qty | Ply | Abby plan                |           |
|-------------|-------|-----------------|-----|-----|--------------------------|-----------|
| 23030004-01 | J4T   | Half Hip Girder | 1   | 1   | Job Reference (optional) | 157188497 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:22 ID:9xrTt04oTbAQq2CXg1Z7GszaLPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



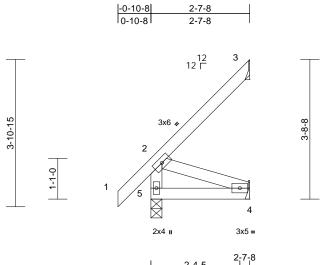


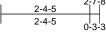




Scale = 1:48.4

| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0 | Plate Grip DOL1.Lumber DOL1.Rep Stress IncrNo                                                                                                                                                                                                                                                                                                                                                                       | 0-0<br>15<br>15<br>0<br>2C2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                                                                                                                                                           | 0.32<br>0.37<br>0.03                                                                                                                                                                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                              | in<br>0.03<br>-0.03<br>0.01                                                                     | (loc)<br>6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 31 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 4-7-8 oc purlins, exc<br>2-0-0 oc purlins: 3-4.<br>3OT CHORD Rigid ceiling directly<br>bracing.                                                                               | athing directly applied or<br>pept end verticals, and<br>applied or 10-0-0 oc<br>nical, 8=0-3-8<br>(29), 8=-78 (LC 12)<br>(29), 8=391 (LC 34)<br>pression/Maximum<br>35, 3-4=-64/55,<br>15/77<br>65<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft;<br>6 (envelope) exterior<br>osed ; end vertical left<br>=1.60 plate grip<br>coof LL: Lum DOL=1.15<br>Jm DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9; | <ul> <li>load of 12.0<br/>overhangs n</li> <li>6) Provide ader</li> <li>7) This truss has<br/>chord live loc</li> <li>8) * This truss I<br/>on the botton<br/>3-06-00 tall I<br/>chord and au</li> <li>9) Refer to gird</li> <li>10) Provide mechanism</li> <li>10) Provide mechanism</li> <li>11) H10A Simps<br/>connect truss<br/>This connect truss<br/>This connect truss<br/>This connect truss<br/>and the truss is<br/>International<br/>R802.10.2 a</li> <li>13) Graphical pu<br/>or the orients<br/>bottom chord</li> <li>14) Hanger(s) on<br/>provided suff<br/>Ib down and<br/>down and 52<br/>design/selec<br/>responsibility</li> <li>15) In the LOAD<br/>of the truss as</li> <li>LOAD CASE(S)</li> <li>1) Dead + Snot<br/>Increase=1<br/>Uniform Lo</li> </ul> | designed in accord<br>Residential Code :<br>nd referenced stan<br>irlin representation<br>ation of the purlin a<br>d.<br>to ther connection of<br>ficient to support or<br>142 lb up at 2-7-8<br>lb up at 2-7-8 on<br>tion of such conner<br>of others.<br>CASE(S) section,<br>are noted as front (I<br>Standard<br>bw (balanced): Lun<br>15 | at roof lo<br>other liv<br>revent v<br>for a 10.0<br>where<br>fit betw<br>ss conr<br>(by othen<br>nding 1<br>ectors r<br>ue to U<br>and do<br>ance wi<br>sections<br>dard AN<br>does no<br>long the<br>levice(s<br>on contra<br>on top<br>bottom<br>ction de<br>tion de<br>bottom<br>ction de<br>bottom<br>ction de<br>bottom | ad of 20.0 p<br>re loads.<br>vater ponding<br>of psf bottom<br>other live load<br>e load of 20.1<br>a rectangle<br>recen the botth<br>ections.<br>ers) of truss f<br>45 lb uplift at<br>ecommende<br>PLIFT at jt(s)<br>es not consid<br>th the 2018<br>R502.11.1 a<br>SI/TPI 1.<br>t depict the s<br>top and/or<br>) shall be<br>ted load(s) 1<br>chord, and 55<br>chord. The<br><i>vice</i> (s) is the<br>uplied to the f<br>ck (B). | sf on<br>g.<br>dds.<br>Dpsf<br>om<br>to<br>to<br>d to<br>a.<br>der<br>der<br>size<br>64<br>9 lb |                 |                               | -91 (F)                  | ads (lb)<br>), 6=-25 (F)<br>(H CA<br>(G)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES)<br>(FES | L<br>22<br>EER. A                  |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |  |
|-------------|-------|------------|-----|-----|--------------------------|-----------|--|
| 23030004-01 | J5    | Jack-Open  | 1   | 1   | Job Reference (optional) | 157188498 |  |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:22 ID:Ck8RIGRYyJVxzveL3P7hdhzaLQk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





2-7-8

#### Scale = 1:30.6

|                                                                                                                                                                                                                                                                 | L (roof)<br>w (Pf)<br>L                                                             |                                                                                         | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                             | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201  | 8/TPI2014                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                       | 0.13<br>0.07<br>0.09                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                               | in<br>0.00<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 16 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| TOP<br>BOT<br>WEE<br>BRA<br>TOP<br>BOT                                                                                                                                                                                                                          | CHORD<br>CHORD<br>CHORD                                                             | 2-7-8 oc p<br>Rigid ceilir<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | .2<br>wood she<br>urlins, exi<br>ng directly<br>3= Mecha<br>5=0-3-8<br>5=110 (LC<br>3=-63 (LC<br>3=101 (LC | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>nical, 4= Mechanical<br>2 14)<br>14), 4=-26 (LC 14)<br>2 21), 4=50 (LC 7), 5 | 6)<br>d or 7)<br>8)<br><sup>1,</sup> 9) | chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Refer to girdd<br>Provide meci<br>bearing plate<br>3 and 26 lb u<br>This truss is a<br>International | s been designed for<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>er(s) for truss to tru-<br>nanical connection<br>capable of withsta<br>plift at joint 4.<br>designed in accord<br>Residential Code s<br>d referenced stand<br>Standard | vith any<br>for a liv<br>s where<br>I fit betv<br>uss conr<br>(by oth<br>anding 6<br>lance w<br>sections | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>nections.<br>ers) of truss t<br>3 lb uplift at j<br>ith the 2018<br>: R502.11.1 a | Opsf<br>om<br>o<br>oint    |                          |                               |                          |                                 |                                    |
| (LC 21)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 2-5=-249/5, 1-2=0/74, 2-3=-106/64<br>BOT CHORD 4-5=-278/59                                                                                                                         |                                                                                     |                                                                                         |                                                                                                            |                                                                                                                                                       |                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                        |                            |                          |                               |                          |                                 |                                    |
| 2<br>2<br>6                                                                                                                                                                                                                                                     | ES<br>Wind: ASC<br>Vasd=103<br>Cat. II; Exp<br>zone and C<br>exposed ;<br>members a | mph; TCDL=<br>b B; Enclose<br>C-C Exterior<br>end vertical                              | t=130mph<br>=6.0psf; B0<br>d; MWFR<br>(2E) zone<br>left and rig<br>MWFRS                                   | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and ri<br>ht exposed;C-C for<br>for reactions shown;<br>L=1 60     | ght                                     |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                        |                            |                          | 4                             |                          | ORTH CA                         | ROLL                               |
| 2) -<br>I<br>I                                                                                                                                                                                                                                                  | TCLL: ASC<br>Plate DOL                                                              | CE 7-16; Pr=<br>=1.15); Pf=2<br>); Is=1.0; Ro                                           | 20.0 psf (<br>0.0 psf (L                                                                                   | roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9;                                                                                      |                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                        |                            |                          | 11111                         |                          | SEA<br>0363                     | • -                                |
| <ol> <li>Unbalanced snow loads have been considered for this design.</li> <li>This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.</li> </ol> |                                                                                     |                                                                                         |                                                                                                            |                                                                                                                                                       |                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                        |                            |                          | <b>J</b> , (11) (11)          |                          | 111111                          | EER. KINN                          |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

March 16,2023

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |  |
|-------------|-------|------------|-----|-----|--------------------------|-----------|--|
| 23030004-01 | J5T   | Jack-Open  | 1   | 1   | Job Reference (optional) | 157188499 |  |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:22 ID: Ck8RIGRYyJVxzveL3P7hdhzaLQk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1



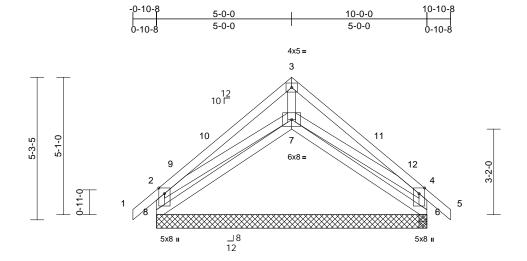
2-3-8 0-4-0 2-3-8

2-7-8

Scale = 1:30.7

Plate Offsets (X, Y): [6:Edge,0-3-0]

| Plate Olisets                                                                                                                                                                                                                                                                               | (X, Y): [6:Edge,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                      |                             |                          |                               |                          |                                                                                                        |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2                                                                                               | CSI<br>TC<br>BC<br>WB<br>2014 Matrix-MR                                                                                                                                                                                                                                                                                                                       | 0.47<br>0.06<br>0.00                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                             | in<br>0.00<br>0.00<br>-0.01 | (loc)<br>4-6<br>4-6<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 17 lb                                                                        | <b>GRIP</b><br>244/190<br>FT = 20% |
| BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: AS<br>Vasd=10<br>Cat. II; E:<br>zone and<br>exposed<br>members<br>Lumber I<br>2) TCLL: AS<br>Plate DO | 10.0<br>2x4 SP No.2<br>2x6 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>2-7-8 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>6=0-3-8<br>Max Horiz 6=111 (LC<br>Max Uplift 3=-68 (LC<br>Max Uplift 3=-68 (LC<br>Max Grav 3=97 (LC<br>(LC 21)<br>(lb) - Maximum Com<br>Tension<br>0 2-6=-254/80, 1-2=0/<br>0 4-6=-15/2<br>SCE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; Br<br>xp B; Enclosed; MWFR<br>SOL = 1.60 plate grip DC<br>SCE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E | t* 6-4:2x4 SP No.2<br>athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>inical, 4= Mechanica<br>C 14)<br>2 1), 4=-18 (LC 14)<br>2 1), 4=49 (LC 7), 6=<br>pression/Maximum<br>74, 2-3=-120/56<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>is cantilever left and 1<br>pht exposed;C-C for<br>for reactions shown<br>vL=1.60<br>roof LL: Lum DOL=1 | 5) This<br>cho<br>6) * Th<br>on t<br>3-00<br>ed or 7) Ref<br>8) Pro<br>bea<br>3 ar<br>3 ar<br>9) This<br>Inte<br>R80<br>=273 LOAD (<br>115 | truss has been desi<br>rd live load nonconcu<br>is truss has been de<br>he bottom chord in a<br>5-00 tall by 2-00-00 w<br>rd and any other mer<br>er to girder(s) for trus<br>vide mechanical com<br>ring plate capable of<br>rd 18 lb uplift at joint<br>is truss is designed in<br>rnational Residential<br>2.10.2 and reference<br><b>CASE(S)</b> Standard | gned for a 10.<br>Irrent with any<br>signed for a liv<br>II areas where<br>vide will fit betw<br>nbers.<br>is to truss com-<br>nection (by oth<br>withstanding 6<br>4.<br>accordance w<br>Code sections | other live load<br>re load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>88 lb uplift at<br>ith the 2018<br>\$ R502.11.1 a | .0psf<br>tom<br>to<br>joint |                          |                               |                          | Weight: 17 Ib<br>WHICH CA<br>ORTH CA<br>ORTH CA<br>ORTH CA<br>ORTH CA<br>ORTH CA<br>ORTH CA<br>ORTH CA |                                    |
| design.<br>4) This truss<br>load of 12                                                                                                                                                                                                                                                      | ced snow loads have be<br>s has been designed fo<br>2.0 psf or 1.00 times fla<br>ps non-concurrent with o                                                                                                                                                                                                                                                                                                                                                                                                                                           | r greater of min roof<br>t roof load of 20.0 ps                                                                                                                                                                                                                                                                                                                                                  | live                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                      |                             |                          |                               |                          |                                                                                                        | EER.<br>HLBERTIN<br>n 16,2023      |


| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                         |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                            |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                     |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)                                               |



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | К1    | Scissor    | 1   | 1   | Job Reference (optional) | 157188500 |

# Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:23 ID:hQwHqCzz4B0MeEzu8MdhxVzVjcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| Scale = 1:42.6                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                                        | 0-3-0                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                        | -                                            | 0-、                      | 5-0                           |                          |                                 |                                    |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>3CLL<br>3CDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                           | 0.65<br>0.20<br>0.13                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                               | in<br>-0.02<br>-0.04<br>0.00                 | (loc)<br>7-8<br>7-8<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 62 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS                    | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(size) 6=10-0-0,<br>Max Horiz 8=-140 (L<br>Max Uplift 6=-107 (L<br>Max Grav 6=345 (LC<br>8=345 (LC<br>(Ib) - Maximum Com<br>Tension<br>1-2=0/39, 2-3=-260/<br>4-5=0/39, 2-8=-473/2<br>7-8=-195/344, 6-7=-<br>3-7=-186/0, 2-7=-21 | cept end verticals.<br>applied or 10-0-0 oc<br>C 12)<br>C 15), 8=-86 (LC 15<br>C 22), 7=415 (LC 21)<br>C 21)<br>pression/Maximum<br>145, 3-4=-260/145,<br>294, 4-6=-473/294<br>123/344 | 2<br>8)<br>), 9)<br>L(                 | load of 12.0<br>overhangs<br>This truss f<br>chord live live<br>* This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>Provide me<br>bearing pla<br>8 and 107 1<br>This truss i<br>International | has been designed<br>by psf or 1.00 times i<br>non-concurrent with<br>as been designed<br>bad nonconcurrent<br>has been designed<br>or chord in all area<br>by 2-00-00 wide w<br>any other members<br>bachanical connectio<br>te capable of withs<br>b uplift at joint 6.<br>s designed in accord<br>al Residential Code<br>and referenced sta<br>b) Standard | flat roof I<br>h other li<br>for a 10.<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>a<br>n (by oth<br>tanding &<br>rdance w<br>e sections | oad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live load<br>re load of 20.<br>a rectangle<br>ween the bott<br>sers) of truss<br>36 lb uplift at<br>with the 2018<br>s R502.11.1 a | osf on<br>ads.<br>Opsf<br>tom<br>to<br>joint |                          |                               |                          |                                 |                                    |
| this desigr                                                 | ed roof live loads have<br>n.<br>CE 7-16; Vult=130mph                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                        |                                              |                          |                               |                          | TH CA                           | ROUT                               |

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 7-10-8, Exterior(2E) 7-10-8 to 10-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.



SEAL

036322

AND DUDING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

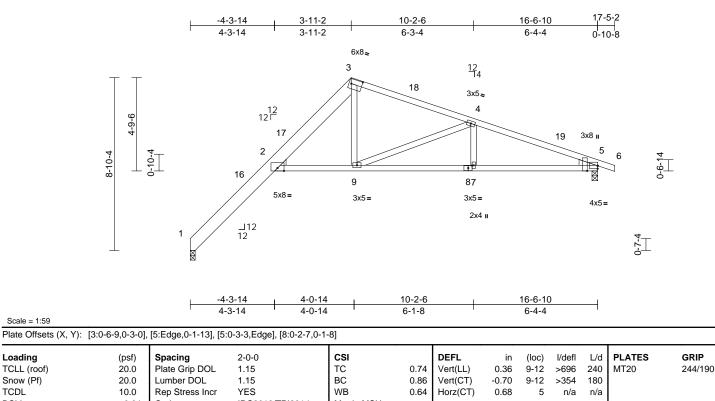
| Job         | Truss | Truss Type   | Qty | Ply | Abby plan                |           |
|-------------|-------|--------------|-----|-----|--------------------------|-----------|
| 23030004-01 | L1    | Roof Special | 4   | 1   | Job Reference (optional) | 157188501 |

Scale = 1:59

Loading

TCLL (roof)

zone and C-C Exterior(2E) 0-1-8 to 3-1-8, Interior (1) 3-1-8 to 5-3-0, Exterior(2R) 5-3-0 to 11-3-0, Interior (1) 11-3-0 to 18-9-0, Exterior(2E) 18-9-0 to 21-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


DOL=1.60

Snow (Pf)

TCDL

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:23 ID:DWqklLDhVDnPiMjTBG1CyFzB\_KL-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



| BCLL                                                             | 0.0*                                                                                   | Code                           | IRC2018/TPI2014                                   | Matrix-MSH                                                                                                                                      |                                   |                |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|
| BCDL                                                             | 10.0                                                                                   |                                |                                                   |                                                                                                                                                 |                                   | Weight: 104 lb |
| LUMBER<br>TOP CHORD                                              | 2x8 SP 2400F 2.0E<br>No.2                                                              | *Except* 3-6:2x4 SP            | Plate DOL=<br>DOL=1.15);                          | 57-16; Pr=20.0 psf (roof Ll<br>I.15); Pf=20.0 psf (Lum DC<br>Is=1.0; Rough Cat B; Fully                                                         | DL=1.15 Plate                     |                |
| BOT CHORD<br>WEBS<br>WEDGE                                       | 2x4 SP No.1 *Excep<br>2x4 SP No.3<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3           | t* 8-5:2x4 SP No.2             | design.<br>5) This truss ha                       | snow loads have been cor<br>as been designed for great                                                                                          | er of min roof live               |                |
| BRACING<br>TOP CHORD                                             | Structural wood she 3-4-13 oc purlins.                                                 | athing directly applie         | d or overhangs n<br>6) This truss ha              | psf or 1.00 times flat roof lo<br>on-concurrent with other li<br>as been designed for a 10.                                                     | ve loads.<br>0 psf bottom         |                |
| BOT CHORD                                                        | Rigid ceiling directly<br>bracing.                                                     | applied or 9-8-12 oc           | 7) * This truss I                                 | ad nonconcurrent with any<br>nas been designed for a liv                                                                                        | /e load of 20.0psf                |                |
| REACTIONS                                                        | (size) 1=0-3-0, 9<br>Max Horiz 1=216 (LC<br>Max Uplift 1=-19 (LC<br>Max Grav 1=887 (LC | C 14)<br>C 11), 5=-122 (LC 11) | 3-06-00 tall l<br>chord and a<br>8) Bearing at jo | m chord in all areas where<br>by 2-00-00 wide will fit betw<br>hy other members.<br>hint(s) 1 considers parallel<br>TPI 1 angle to grain formul | ween the bottom<br>to grain value |                |
| FORCES                                                           | (lb) - Maximum Com<br>Tension                                                          | pression/Maximum               | designer sho                                      | build verify capacity of bear<br>chanical connection (by oth                                                                                    | ing surface.                      |                |
| TOP CHORD                                                        | 1-2=-601/95, 2-3=-1<br>4-5=-1908/471, 5-6=                                             | 711/516, 3-4=-1189/<br>₌0/17   |                                                   | e capable of withstanding 1                                                                                                                     | ,                                 |                |
| BOT CHORD                                                        | 2-9=-383/1162, 7-9=<br>5-7=-361/1765                                                   | -361/1765,                     |                                                   | on Strong-Tie connectors<br>s to bearing walls due to U                                                                                         |                                   | HUNTH CA       |
| WEBS<br>NOTES                                                    | 4-9=-773/175, 4-7=0                                                                    | )/214, 3-9=-42/514             |                                                   | tion is for uplift only and do                                                                                                                  |                                   | HUNTH CA       |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC</li> </ol> | ed roof live loads have<br>n.<br>CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B          | (3-second gust)                | International                                     | designed in accordance w<br>Residential Code sections<br>nd referenced standard AN<br>Standard                                                  | s R502.11.1 and                   | SEA            |
|                                                                  | p B; Enclosed; MWFR                                                                    |                                |                                                   | Clandara                                                                                                                                        |                                   | - 0363         |



FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type                    | Qty | Ply | Abby plan                |           |
|-------------|-------|-------------------------------|-----|-----|--------------------------|-----------|
| 23030004-01 | L2    | Roof Special Structural Gable | 2   | 1   | Job Reference (optional) | 157188502 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:24 ID:8ZOn?9LfxtnQ9EMNMcZ0WGzB\_8Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-5-2 0-10-8 10-2-6 16-6-10 -4-3-14 3-11-2 4-3-14 3-11-2 6-3-4 6-4-4 6x8 🕿 3 12 14 4 27 3x5 **≈** 5 12 12∟ 6 4-9-6 7 26 828 3x8 II 9 2 8-10-4 D-10-4 10 0-6-14 17 ø 25 16 15 12 143 11 5x8= 3x5= 3x5= 4x5= ∟12 12 0-7-4

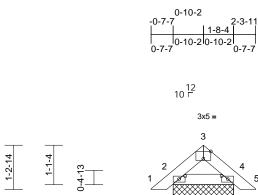
| -4-3-14 | 4-0-14 | 10-2-6 | 16-6-10 | 1 |
|---------|--------|--------|---------|---|
| 4-3-14  | 4-0-14 | 6-1-8  | 6-4-4   | ٦ |

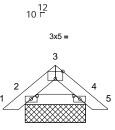
# Scale = 1:59 Plate Offsets (X, Y): [3:0-6-9,0-3-0], [9:Edge,0-1-13], [9:0-3-3,Edge], [14:0-2-7,0-1-8]

| Leading                | (nof)                         | Creating                  | 2.0.0         |                           | csi                                                                                                             |             | DEFL              | i.e.       | (10.0)         | l/defl      | L/d   | PLATES           | GRIP                                     |
|------------------------|-------------------------------|---------------------------|---------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------------------|------------|----------------|-------------|-------|------------------|------------------------------------------|
| Loading<br>TCLL (roof) | (psf)<br>20.0                 | Spacing<br>Plate Grip DOL | 2-0-0<br>1.15 |                           | TC                                                                                                              | 0.74        | Vert(LL)          | in<br>0.36 | (loc)<br>16-21 | >700        | 240   | MT20             | 244/190                                  |
| Snow (Pf)              | 20.0                          | Lumber DOL                | 1.15          |                           | BC                                                                                                              | 0.74        | Vert(CT)          | -0.70      | 16-21          | >355        | 180   | WIT20            | 244/190                                  |
| TCDL                   | 10.0                          | Rep Stress Incr           | YES           |                           | WB                                                                                                              | 0.30        | Horz(CT)          | 0.68       | 9              | >355<br>n/a | n/a   |                  |                                          |
| BCLL                   |                               |                           |               | 8/TPI2014                 | Matrix-MSH                                                                                                      | 0.54        | 11012(01)         | 0.00       | 9              | n/a         | n/a   |                  |                                          |
| BCDL                   | 0.0*<br>10.0                  | Code                      | IRC201        | 8/1912014                 |                                                                                                                 |             |                   |            |                |             |       | Weight: 115 lb   | FT = 20%                                 |
| -                      |                               |                           |               |                           | 7.40.1/                                                                                                         |             | L                 |            | (0) Thi        | - 4 1-      |       | Ŭ                |                                          |
| LUMBER<br>TOP CHORD    | 2x8 SP 2400F 2.0E             | *Excont* 2 10.2v1 SI      |               |                           | 7-16; Vult=130m<br>oh; TCDL=6.0psf;                                                                             | • •         | 0 /               |            | ,              |             |       | ned in accordant | tions R502.11.1 and                      |
|                        | No.2                          | Except 5-10.2x4 51        |               |                           | B; Enclosed; MWI                                                                                                |             |                   |            |                |             |       | ferenced standar |                                          |
| BOT CHORD              | 2x4 SP No.1 *Excep            | ot* 14-9:2x4 SP No.2      |               | zone and C-               | C Exterior(2E) 0-                                                                                               | 1-8 to 3-1  | -8, Interior (1)  | )          | LOAD           | CASE(S      | ) Sta | ndard            |                                          |
| WEBS                   | 2x4 SP No.3                   |                           |               |                           | 0, Exterior(2R) 5-                                                                                              |             |                   |            |                | •           | ,     |                  |                                          |
| OTHERS                 | 2x4 SP No.3                   |                           |               |                           | 9-0, Exterior(2E)                                                                                               |             |                   |            |                |             |       |                  |                                          |
| WEDGE                  | Left: 2x4 SP No.3             |                           |               |                           | t and right expos                                                                                               |             |                   |            |                |             |       |                  |                                          |
|                        | Right: 2x4 SP No.3            |                           |               |                           | d;C-C for membe                                                                                                 |             |                   | S          |                |             |       |                  |                                          |
| BRACING                |                               |                           |               | for reactions<br>DOL=1.60 | shown; Lumber I                                                                                                 | DUL=1.6     | o piate grip      |            |                |             |       |                  |                                          |
| TOP CHORD              |                               | athing directly applie    | dor 3         |                           | ned for wind load                                                                                               | c in the n  | lana of the tr    | 100        |                |             |       |                  |                                          |
|                        | 4-0-6 oc purlins.             |                           | - 1           |                           | ids exposed to wi                                                                                               |             |                   |            |                |             |       |                  |                                          |
| BOT CHORD              |                               | applied or 9-10-12 o      | C             |                           | d Industry Gable                                                                                                |             |                   |            |                |             |       |                  |                                          |
|                        | bracing.                      |                           |               |                           | alified building de                                                                                             |             |                   |            |                |             |       |                  |                                          |
| JOINTS                 | 1 Brace at Jt(s): 17,         |                           | 4             |                           | 7-16; Pr=20.0 ps                                                                                                |             |                   |            |                |             |       |                  |                                          |
|                        | 18                            |                           |               |                           | .15); Pf=20.0 psf                                                                                               |             |                   |            |                |             |       |                  |                                          |
| REACTIONS              |                               |                           |               |                           | ls=1.0; Rough Ca                                                                                                | at B; Fully | Exp.; Ce=0.9      | );         |                |             |       |                  |                                          |
|                        | Max Horiz 1=216 (LC           |                           |               | Cs=1.00; Ct=              |                                                                                                                 |             |                   |            |                |             |       |                  |                                          |
|                        | Max Uplift 1=-19 (LC          |                           | 5)            |                           | snow loads have                                                                                                 | been co     | nsidered for th   | nis        |                |             |       |                  |                                          |
| 500050                 | Max Grav 1=887 (LC            | ,. , ,                    | <b>C</b> 1    | design.                   | a haan daalamad                                                                                                 |             |                   | live       |                |             |       |                  |                                          |
| FORCES                 | (lb) - Maximum Com<br>Tension | pression/Maximum          | 6             |                           | is been designed<br>psf or 1.00 times                                                                           |             |                   |            |                |             |       |                  | 17.5                                     |
| TOP CHORD              | 1-2=-601/95, 2-3=-1           | 713/507 3-4-1102/         | 122           |                           | on-concurrent wit                                                                                               |             |                   | 51 011     |                |             |       |                  | 1111                                     |
|                        | 4-5=-1138/405, 5-6=           |                           |               |                           | e 2x4 MT20 unles                                                                                                |             |                   |            |                |             |       | WATH CA          | Roit                                     |
|                        | 6-7=-1841/481, 7-8=           | ,                         |               |                           | spaced at 2-0-0 c                                                                                               |             | se mulcaleu.      |            |                |             | 15    | A                | in the second                            |
|                        | 8-9=-1881/439, 9-10           |                           | 9             |                           | is been designed                                                                                                |             | 0 psf bottom      |            |                |             | 22    | CEES S           | NON ST                                   |
| BOT CHORD              |                               |                           | 0,            |                           | ad nonconcurrent                                                                                                |             |                   | ds.        |                | Z           | 2     |                  | Mill                                     |
|                        | 13-15=-356/1747, 12           |                           | 10            |                           | nas been designe                                                                                                |             |                   |            |                | -           |       | ie -             |                                          |
|                        | 11-12=-356/1747, 9            |                           |               |                           | n chord in all area                                                                                             |             |                   |            |                | -           |       | SEA              | 1 E E                                    |
| WEBS                   | 3-16=-83/586, 16-17           | /=-758/175,               |               |                           | by 2-00-00 wide w                                                                                               |             |                   | om         |                | =           |       |                  |                                          |
|                        | 17-18=-741/165, 6-1           | 8=-733/170,               |               | chord and ar              | y other members                                                                                                 | 5.          |                   |            |                | Ξ           |       | 0363             | 22                                       |
|                        |                               | -46/31, 5-18=-135/7       |               |                           | int(s) 1 considers                                                                                              |             |                   |            |                |             | - B   | <b>1</b>         | 1 E -                                    |
|                        | 15-18=-113/84, 7-12           | 2=-42/43, 8-11=-42/4      |               |                           | FPI 1 angle to gra                                                                                              |             |                   |            |                |             | 1     | ·                | A 1. 5                                   |
| NOTES                  |                               |                           |               |                           | ould verify capacit                                                                                             |             |                   |            |                |             | 2.0   | S. SNGINI        | L 22<br>EER A                            |
| 1) Unbalance           | ed roof live loads have       | been considered for       | 1:            |                           | Simpson Strong-T                                                                                                |             |                   |            |                |             | 1     | No. GIN          | the first of the                         |
| this desigr            | n.                            |                           |               |                           | ed to connect trus                                                                                              |             |                   |            |                |             |       | SEA<br>0363      | IL BY IN                                 |
|                        |                               |                           |               |                           | (s) 1 and 9. This of the second se |             | n is for uplift o | only       |                |             |       | A. C             | un u |
|                        |                               |                           |               | and does no               | t consider lateral                                                                                              | iorces.     |                   |            |                |             |       | Morek            | 16 2022                                  |

- this design.
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 9. This connection is for uplift only and does not consider lateral forces.




Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | PB1   | Piggyback  | 17  | 1   | Job Reference (optional) | 157188503 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:24 ID:gxipycRBjcdob3DXd6ew9uzaLQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





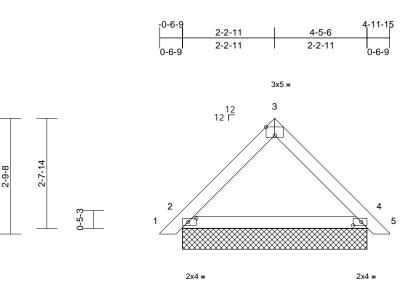
2x4 = 2x4 =

1-8-4

Scale = 1:32.3

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [4:0-2-1,0-1-0]

| Fiale Olisels                                                                                                                                                       | (A, T). [2.0-2-1,0-1-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , [3.0-2-8,Euge], [4.0-                                                                                                                                                                                    | 2-1,0-1-0]                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                                          |                      |                             |                          |                                |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                         | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 3/TPI2014                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>0.02<br>0.00                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                     | in<br>n/a<br>n/a<br>0.00                 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 8 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES                                     | <ul> <li>2x4 SP No.2</li> <li>Structural wood she<br/>2-11-11 oc purlins.</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>(size) 2=1-8-4,<br/>10=1-8-4</li> <li>Max Horiz 2=-24 (LC<br/>Max Uplift 2=-13 (LC<br/>6=-13 (LC<br/>6=-13 (LC<br/>6=-13 (LC<br/>6=113 (LC<br/>6</li></ul> | C 12), 6=-24 (LC 12)<br>C 14), 4=-10 (LC 15),<br>C 14), 10=-10 (LC 15)<br>C 21), 4=118 (LC 22),<br>C 21), 10=118 (LC 22)                                                                                   | 8)<br>9)<br>10<br>21                    | load of 12.0<br>overhangs n<br>Gable requir<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>One MECHA<br>recommende<br>UPLIFT at jtt<br>and does no<br>) This truss is<br>International<br>R802.10.2 a<br>) See Standar<br>Detail for Co<br>consult qualit | as been designed<br>psf or 1.00 times t<br>on-concurrent with<br>es continuous bot<br>as been designed<br>ad nonconcurrent<br>nas been designed<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members<br>ANICAL connector<br>ed to connect trus;<br>(s) 2 and 4. This c<br>t consider lateral f<br>designed in accor<br>Residential Code<br>nd referenced stat<br>d Industry Piggyb<br>nnection to base t<br>fied building desig | flat roof lich<br>h other lic<br>tom choo<br>for a 10.1<br>with any<br>d for a lich<br>as where<br>vill fit betw.<br>fr (BY OT)<br>s to bear<br>forces.<br>rdance w<br>e sections<br>ndard AN<br>ack Truss as a | bad of 20.0 ps<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>HERS)<br>ing walls due<br>n is for uplift of<br>s R502.11.1 a<br>SI/TPI 1.<br>s Connection | sf on<br>ds.<br>Dpsf<br>om<br>to<br>only |                      |                             |                          |                                |                                    |
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h                                                                                                                                                                                                          | LC                                      | DAD CASE(S)                                                                                                                                                                                                                                                                                                           | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                                          |                      |                             |                          |                                | 11                                 |
| <ol> <li>Unbalance<br/>this designed</li> </ol>                                                                                                                     | ced roof live loads have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | been considered for                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                                          |                      |                             |                          | TH CA                          | D                                  |
| <ol> <li>Wind: AS<br/>Vasd=10:<br/>Cat. II; E:<br/>zone and<br/>exposed<br/>members<br/>Lumber E</li> <li>TCLL: AS<br/>Plate DO<br/>DOL=1.1<br/>Cs=1.00;</li> </ol> | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>; end vertical left and ri<br>and forces & MWFRS<br>DOL=1.60 plate grip DC<br>SCE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>DL=1.60<br>(roof LL: Lum DOL=1.<br>um DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9; | .15                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                                          |                      |                             |                          | SEA<br>0363                    | EEP. PLUT                          |


mmm March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | PB2   | Piggyback  | 10  | 1   | Job Reference (optional) | 157188504 |

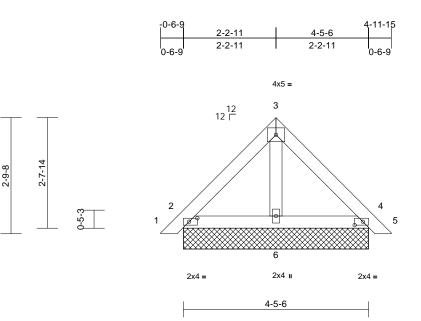
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:24 ID:5WOxbeU30X?NSWy6IFBdnXzaLQg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



I

4-5-6

| Scale = 1:27.8                                                         |  |
|------------------------------------------------------------------------|--|
| Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0] |  |


| TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                               | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>2014 Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13<br>0.13<br>0.00                                                                                                                                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                         | in<br>n/a<br>n/a<br>0.00                               | (loc)<br>-<br>-<br>2 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 18 lb       | <b>GRIP</b><br>244/190<br>FT = 20% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>BRACING<br>TOP CHORD Structural wood she:<br>5-7-0 oc purlins.<br>BOT CHORD Rigid ceiling directly<br>bracing.<br>REACTIONS (size) 2=4-5-6, 4<br>Max Horiz 2=-60 (LC<br>Max Uplift 2=-17 (LC<br>6=-17 (LC<br>Max Grav 2=258 (LC | <ul> <li>=4-5-6, 6=4-5-6, 9=4-12), 6=-60 (LC 12)</li> <li>14), 4=-17 (LC 15), 14), 9=-17 (LC 15)</li> <li>21), 4=258 (LC 22), 21), 9=258 (LC 22)</li> <li>pression/Maximum</li> <li>72, 3-4=-151/72,</li> <li>been considered for</li> <li>(3-second gust)</li> <li>CDL=6.0psf; h=25ft;</li> <li>S (envelope) exterior cantilever left and riging the exposed; C-C for for reactions shown; L=1.60</li> <li>the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI 1.</li> <li>un DOL=1.15 Plate</li> </ul> | desi<br>6) This<br>Ioac<br>or over<br>7) Gab<br>8) Gab<br>9) This<br>2) This<br>10) * Th<br>on t<br>3-06<br>choo<br>11) One<br>recc<br>UPL<br>and<br>12) This<br>Inte<br>R80<br>13) See<br>Deta<br>cons<br>LOAD C<br>ht | palanced snow loads have<br>ign.<br>5 truss has been designer<br>d of 12.0 psf or 1.00 times<br>frhangs non-concurrent w<br>ble requires continuous bo<br>le studs spaced at 4-0-0<br>is truss has been designer<br>the bottom chord in all are<br>5-00 tall by 2-00-00 wide<br>of and any other member<br>be MECHANICAL connect<br>ommended to connect tru<br>.IFT at jt(s) 2 and 4. This<br>does not consider lateral<br>a truss is designed in accor<br>rnational Residential Cod<br>12.10.2 and referenced st<br>Standard Industry Piggy<br>ail for Connection to base<br>sult qualified building des<br><b>CASE(S)</b> Standard | d for great<br>s flat roof Ir<br>ith other Ir<br>ottom chor<br>oc.<br>d for a 10.<br>t with any<br>ed for a liv<br>ass where<br>will fit betw<br>'s.<br>or (BY OTI<br>ss to bear<br>connectio<br>I forces.<br>ordance w<br>le sections<br>andard AN<br>back Truss as a | er of min roof<br>pad of 20.0 ps<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the bottot<br>HERS)<br>ing walls due<br>n is for uplift of<br>ith the 2018<br>s R502.11.1 a<br>SI/TPI 1.<br>s Connection | live<br>sf on<br>ds.<br>)psf<br>om<br>to<br>only<br>nd |                      |                             |                          | Weight: 18 Ib<br>OFESS<br>SEA<br>0363 | L 22                               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

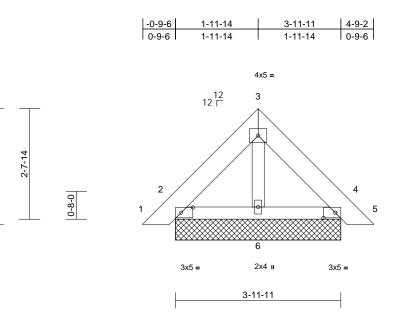
A MITek Affil 818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | PB2-2 | Piggyback  | 2   | 2   | Job Reference (optional) | 157188505 |

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:25 ID:5WOxbeU30X?NSWy6IFBdnXzaLQg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:27.7


| TCLL (roof)         20           Snow (Pf)         20           TCDL         10                                                                                                                                                                                                                                                     | .0 Lumber DC<br>.0 Rep Stress<br>.0* Code                                                                                                                                                                                                                                                                                                                                                                      | DL 1.15<br>Incr YES                                                                                                                                  | 018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04<br>0.05<br>0.01                                                                                                                                                                                                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>n/a<br>n/a<br>0.00                                                             | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 42 lb           | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|-------------------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>OTHERS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural woo<br>5-7-0 oc purlin<br>BOT CHORD Rigid ceiling di<br>bracing.<br>REACTIONS (size) 2=4<br>7=4<br>Max Horiz 2=60<br>Max Uplift 2=-2<br>7=-2<br>Max Grav 2=18<br>6=14<br>10=1<br>FORCES (lb) - Maximum<br>Tension | I sheathing directl<br>ectly applied or 10<br>5-6, 4=4-5-6, 6=4-<br>5-6, 10=4-5-6<br>1 (LC 13), 7=60 (L1<br>1 (LC 15), 10=-26<br>7 (LC 21), 4=-26<br>7 (LC 22), 7=187<br>87 (LC 22)<br>Compression/Ma<br>117/80, 3-4=-117<br>=-13/59<br>together as follow<br>10d (0.131"x3") n<br>oc.<br>ith 10d (0.131"x3") n<br>oc.<br>ually applied to all<br>or back (B) face in<br>connections have<br>pads noted as (F) | 2)-0-0 oc<br>5-6,<br>C 13)<br>LC 15),<br>(LC 15),<br>(LC 22),<br>(LC 21),<br>ximum<br>/80,<br>// nails as<br>plies,<br>the LOAD<br>9 been<br>or (B), | <ul> <li>Vasd=103mp<br/>Cat. II; Exp E<br/>zone and C-1<br/>exposed; er<br/>members an<br/>Lumber DOL</li> <li>Truss design<br/>only. For stu-<br/>see Standard<br/>or consult qu</li> <li>TCLL: ASCE<br/>Plate DOL=1<br/>DOL=1.15;<br/>Cs=1.00; Cts</li> <li>Unbalanced<br/>design.</li> <li>This truss ha<br/>load of 12.0<br/>overhangs n</li> <li>Gable requir</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss ha<br/>chord live loa</li> <li>Cable requir</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loa</li> <li>One MECHA<br/>recommende<br/>UPLIFT at jfd<br/>and does no</li> <li>This truss is<br/>International<br/>R802.10.2 ai</li> <li>See Standar<br/>Detail for Co</li> </ul> | 7-16; Vult=130mp<br>bh; TCDL=6.0psf; I<br>; Enclosed; MWF<br>C Exterior(2E) zon<br>d vertical left and<br>d forces & MWFR<br>=1.60 plate grip D<br>ed for wind loads<br>ds exposed to win<br>d Industry Gable E<br>alified building det<br>7-16; Pr=20.0 psf<br>(15); Pf=20.0 psf<br>(15); Pf=20.0 psf<br>(15); Pf=20.0 psf<br>(15); Pf=20.0 psf<br>(15); Offer 20.0 psf<br>(15); Offer | BCDL=6<br>RS (env.<br>e; cantil<br>right exp<br>S for read<br>OL=1.60<br>in the p<br>d (norm<br>nd Deta<br>signer at<br>gigner at<br>f (roof LL<br>Lum DC<br>B; Fully<br>been cor<br>or great<br>at roof LC<br>other lin<br>om chor<br>cor a 10.0<br>with any<br>f or a liv<br>s where<br>ll fit betw<br>(BY OTH<br>to bear<br>onnectio<br>orces.<br>dance w<br>sections<br>dard AN<br>tck Trus | .0psf; h=25ft;<br>elope) exterio<br>ever left and r<br>isosed;C-C for<br>ctions shown;<br>ane of the tru<br>al to the face)<br>is as applicate<br>per ANSI/TF<br>.: Lum DOL=1<br>bl=1.15 Plate<br>Exp.; Ce=0.9<br>isidered for th<br>er of min roof<br>pad of 20.0 ps<br>e loads.<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the bottoc<br>HERS)<br>ng walls due<br>n is for uplift c<br>ist the 2018<br>nsf02.11.1 ai<br>SCONNECTION | ight<br>ss<br>,<br>le,<br>ll 1.<br>.15<br>;<br>is<br>live<br>f on<br>ds.<br>psf<br>m | LOAD C               |                             |                          | ndard<br>ORTH CA<br>ORTEES<br>SEA<br>0363 | ROL<br>22<br>EER-H                 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty Ply Abby plan |   | Abby plan                |           |
|-------------|-------|------------|-------------------|---|--------------------------|-----------|
| 23030004-01 | PB2-3 | Piggyback  | 2                 | 3 | Job Reference (optional) | 157188506 |

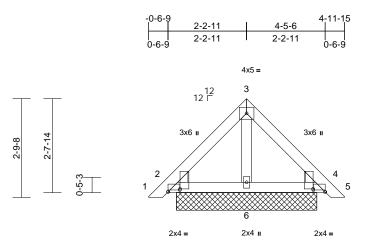
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:25 ID:dJqZNITRFEtWqMNwkXgOFJzaLQh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

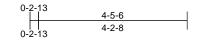


Scale = 1:27.7

2-9-8

| oading         (psf)         Spacing           CLL (roof)         20.0         Plate Grip DOL           now (Pf)         20.0         Lumber DOL           CDL         10.0         Rep Stress Incr           CLL         0.0*         Code           CDL         10.0         Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSI           TC         0.01           BC         0.01           WB         0.00           Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFLinVert(LL)n/aVert(CT)n/aHorz(CT)0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATES<br>MT20<br>Weight: 81 lb           | <b>GRIP</b><br>244/190<br>FT = 20% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|
| UMBER<br>OP CHORD 2x6 SP No.2<br>OT CHORD 2x4 SP No.2<br>THERS 2x4 SP No.3<br>RACING<br>OP CHORD Structural wood sheathing directly applied<br>5-7-0 oc purlins.<br>OT CHORD Rigid ceiling directly applied or 10-0-0 or<br>bracing.<br>EACTIONS (size) 2=3-11-11, 4=3-11-11, 6=3-1:<br>7=3-11-11, 10=3-11-11<br>Max Horiz 2=-58 (LC 12), 7=-58 (LC 12)<br>Max Uplift 2=-29 (LC 15), 4=-34 (LC 15)<br>7=-29 (LC 15), 4=-34 (LC 15)<br>7=-29 (LC 15), 10=-34 (LC 15)<br>Max Grav 2=193 (LC 21), 4=-193 (LC 21)<br>(b) - Maximum Compression/Maximum<br>Tension<br>OP CHORD 1-2=0/32, 2-3=-90/86, 3-4=-90/86, 4-5=0<br>OT CHORD 2-6=-32/53, 4-6=-11/53<br>/EBS 3-6=-47/0<br>OTES<br>) 3-ply truss to be connected together as follows:<br>Top chords connected with 10d (0.131"x3") nails as<br>follows: 2x4 - 1 row at 0-9-0 oc.<br>Bottom chords connected with 10d (0.131"x3") nails<br>follows: 2x4 - 1 row at 0-9-0 oc.<br>All loads are considered equally applied to all plies,<br>except if noted as front (F) or back (B) face in the LC<br>CASE(S) section. Ply to ply connections have been<br>provided to distribute only loads noted as (F) or (B),<br>unless otherwise indicated.<br>Unbalanced roof live loads have been considered fo<br>this design. | <ul> <li>Vasd=103n<br/>Cat. II; Exp<br/>zone and C</li> <li>exposed; e</li> <li>members a<br/>Lumber DC</li> <li>5) Truss designing</li> <li>6) TCLL: ASC</li> <li>Plate DOL=</li> <li>DOL=1.15)</li> <li>Cs=1.00; C</li> <li>7) Unbalancer</li> <li>design.</li> <li>8) This truss h</li> <li>load of 12.C</li> <li>overhangs</li> <li>32</li> <li>9) Gable requination</li> <li>10) Gable studs</li> <li>11) This truss h</li> <li>chord live le</li> <li>12) * This truss h</li> <li>chord live le</li> <li>31) One MECH</li> <li>413) One MECH</li> <li>AD</li> <li>AD</li> <li>AD</li> <li>AD</li> <li>AD</li> <li>See Standa</li> <li>R802.10.2 a</li> <li>15) See Standa</li> <li>Detail for C</li> </ul> | E 7-16; Vult=130mph (3-sec<br>pnb; TCDL=6.0psf; BCDL=6<br>B; Enclosed; MWFRS (env<br>-C Exterior(2E) zone; cantil<br>and vertical left and right exp<br>nd forces & MWFRS for rea<br>gined for wind loads in the p<br>tuds exposed to wind (norm<br>rd Industry Gable End Deta<br>jualified building designer z<br>F 7-16; Pr=20.0 psf (roof LL<br>f.1.15); Pf=20.0 psf (conf LL<br>f.1.15); Pf=20.0 psf (conf LL<br>f.1.15); Pf=20.0 psf (conf LL<br>f.1.15); Pf=20.0 psf (conf LL<br>f.1.15); Oregon (Lum DC<br>gis=1.0; Rough Cat B; Fully<br>t=1.10<br>d snow loads have been con<br>that been designed for great<br>0 psf or 1.00 times flat roof I<br>non-concurrent with other lin<br>irres continuous bottom chor<br>is spaced at 4-0-0 oc.<br>that been designed for a 10.<br>that been designed for a 10. | :.0psf; h=25ft;<br>elope) exterior<br>ever left and right<br>isosed;C-C for<br>ctions shown;<br>ane of the truss<br>al to the face),<br>ils as applicable,<br>s per ANS/ITPI 1.<br>.: Lum DOL=1.15<br>DL=1.15 Plate<br>Exp.; Ce=0.9;<br>insidered for this<br>er of min roof live<br>bad of 20.0 psf on<br>vel loads.<br>d bearing.<br>D psf bottom<br>other live loads.<br>e load of 20.0psf<br>a rectangle<br>ween the bottom<br>HERS)<br>ing walls due to<br>n is for uplift only<br>ith the 2018<br>is R502.11.1 and<br>ISI/TPI 1.<br>s Connection | LOAD                 |                             | In the second seco | ndard<br>ORTH CA<br>OREESS<br>SEA<br>0363 | EER. AL                            |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type | Qty Ply Abby plan |   | Abby plan                |           |
|-------------|-------|------------|-------------------|---|--------------------------|-----------|
| 23030004-01 | PB2GE | Piggyback  | 1                 | 1 | Job Reference (optional) | 157188507 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:26 ID:87GBAySpUwlfCDojBq99i6zaLQi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:32.6

# Plate Offsets (X, Y): [2:0-4-0,0-0-10], [2:0-1-0,0-4-1], [4:0-4-0,0-0-10], [4:0-1-0,0-4-1]

| Plate Offsets (                                                                                       | (X, Y): [2:0-4-0,0-0-10                                                                                                                                                                                                                                                         | )], [2:0-1-0,0-4-1], [4:0                                                                                                                                                      | J-4-0,0-0-1                                                      | 0], [4:0-1-0,0-                                                                                                                                                                                                                                                                                              | 4-1]                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |         |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|---------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                          | 3/TPI2014                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                      | 0.11<br>0.11<br>0.08                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                           | in<br>n/a<br>n/a<br>0.00                                                            | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 22 lb | <b>GRIP</b><br>244/190<br>FT = 20% |         |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.3<br>Left: 2x4 SP 2400F<br>Right: 2x4 SP 2400F<br>Structural wood she<br>5-7-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=3-11-1<br>10=3-11-<br>Max Horiz 2=-60 (LC<br>Max Uplift 2=-1 (LC<br>(LC 14),<br>21)<br>Max Grav 2=2 (LC 2 | F 2.0E<br>eathing directly applie<br>v applied or 6-0-0 oc<br>1, 4=3-11-11, 6=3-11<br>11, 11=3-11-11<br>C 12), 10=-60 (LC 12)<br>14), 4=-98 (LC 21), 6<br>10=-1 (LC 14), 11=-9 | d or 5)<br>-11, 6)<br>-11, 7)<br>j=-34<br>8 (LC 9)<br>515<br>(LC | only. For sti<br>see Standarr<br>or consult qu<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0  <br>overhangs n<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss ha<br>on the bottor<br>3-06-00 tall b<br>chord and ar | ned for wind load<br>dis exposed to w<br>d Industry Gable<br>ialified building d<br>: 7-16; Pr=20.0 ps<br>I.5); Pf=20.0 ps<br>Is=1.0; Rough Ci<br>=1.10<br>snow loads have<br>as been designed<br>ps for 1.00 times<br>on-concurrent wi<br>spaced at 2-0-0<br>is been designed<br>ad nonconcurren<br>has been designed<br>n chord in all are<br>by 2-00-00 wide v<br>hy other member<br>NICAL connector | rind (norm<br>End Deta<br>esigner a<br>signer a<br>signer a<br>signer a<br>to be<br>a been cou<br>d for great<br>flat roof I<br>th other li<br>oc.<br>I for a 10.<br>t with any<br>ed for a liv<br>as where<br>will fit betw<br>s. | hal to the face<br>iils as applica<br>is per ANSI/TI<br>L: Lum DOL=<br>DL=1.15 Plate<br>r Exp.; Ce=0.9<br>nsidered for the<br>r of min roof<br>oad of 20.0 p<br>ve loads.<br>0 psf bottom<br>r other live loa<br>re load of 20.0<br>a rectangle<br>ween the bottom | ),<br>ble,<br>PI 1.<br>1.<br>1.<br>3<br>9;<br>his<br>f live<br>sf on<br>ds.<br>0psf |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |         |
| FORCES<br>TOP CHORD                                                                                   | (lb) - Maximum Con<br>Tension<br>1-2=0/24, 2-3=-63/2                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                  | UPLIFT at jt(<br>only and doe                                                                                                                                                                                                                                                                                | ed to connect true<br>(s) 2, 4, 6, and 2.<br>es not consider la                                                                                                                                                                                                                                                                                                                                         | This con<br>iteral force                                                                                                                                                                                                           | nection is for es.                                                                                                                                                                                                                                                 |                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | HTH CA                          | ROUT                               |         |
| this design<br>2) Wind: AS(<br>Vasd=103<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members            | 3-6=-383/133<br>ed roof live loads have                                                                                                                                                                                                                                         | e been considered for<br>h (3-second gust)<br>iCDL=6.0psf; h=25ft;<br>iS (envelope) exteriou<br>;; cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown;       | 12<br>13<br>ght                                                  | ) This truss is<br>International<br>R802.10.2 a<br>) See Standar<br>Detail for Co                                                                                                                                                                                                                            | d bearing conditi<br>designed in accc<br>Residential Cod<br>nd referenced sta<br>d Industry Piggyl<br>nnection to base<br>fied building desi<br>Standard                                                                                                                                                                                                                                                | ordance w<br>e sections<br>andard Al<br>back Trus<br>truss as                                                                                                                                                                      | vith the 2018<br>s R502.11.1 a<br>NSI/TPI 1.<br>ss Connection                                                                                                                                                                                                      |                                                                                     |                      | Contraction of the second seco | i                        | 17                              | L<br>22<br>EERER                   | Mannung |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minimum)

March 16,2023

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V1    | Valley     | 1   | 1   | Job Reference (optional) | 157188508 |

Loading

Snow (Pf)

LUMBER

OTHERS

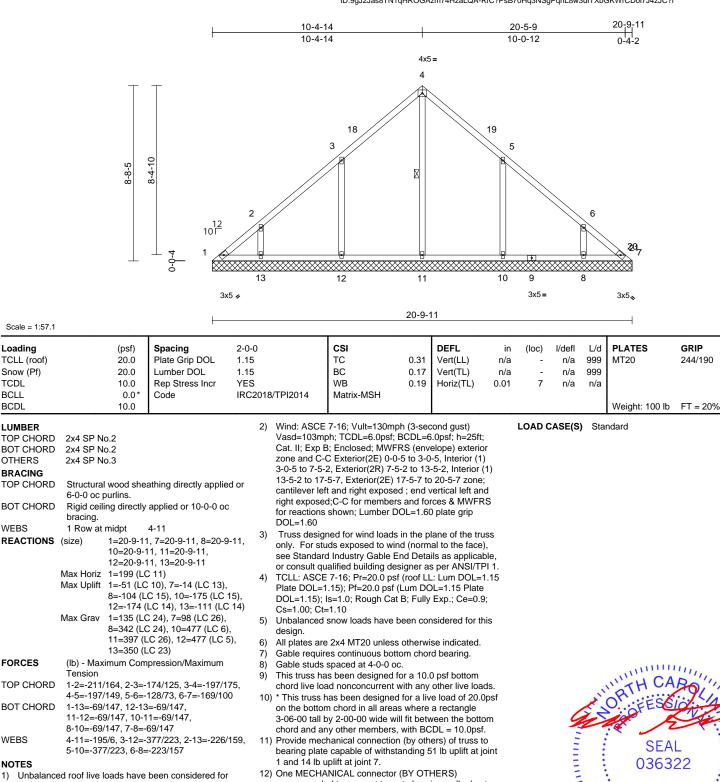
WEBS

FORCES

WEBS

NOTES

BRACING


TCDL

BCLL

BCDL

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:26 ID:9gJ2Jas8TN1qHROGAzm74HzaLQA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



1) this design. recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12, 13, 10, and 8. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

111111111 G mmm March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V2    | Valley     | 1   | 1   | Job Reference (optional) | 157188509 |

Scale = 1:50.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

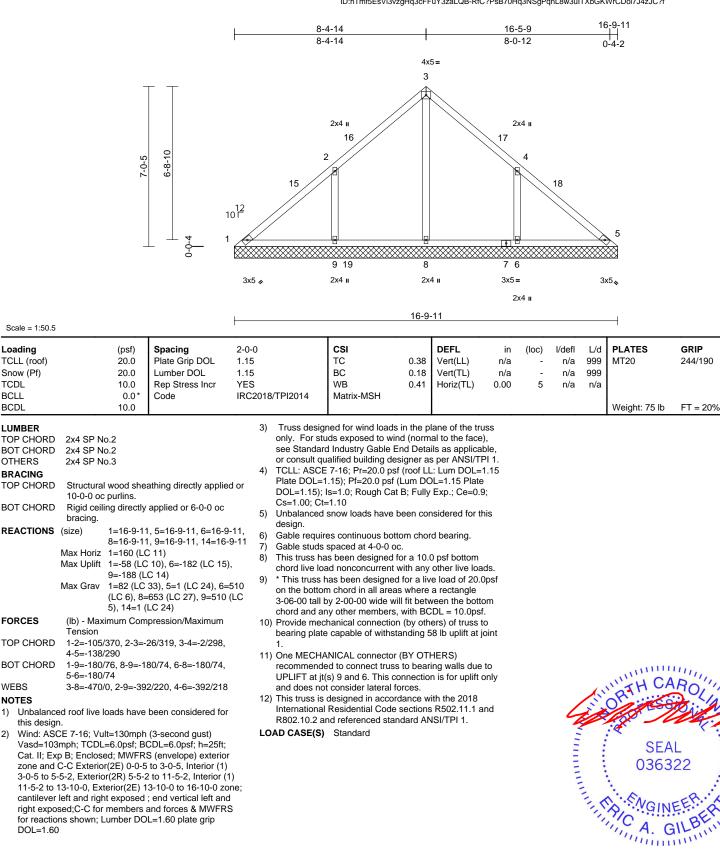
DOL=1.60

WFBS

NOTES

1)

2)


TCDL

BCLL

BCDL

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:26 ID:hTmf5EsVi3vzgHq3cFFuY3zaLQB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V3    | Valley     | 1   | 1   | Job Reference (optional) | 157188510 |

Scale = 1:40.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

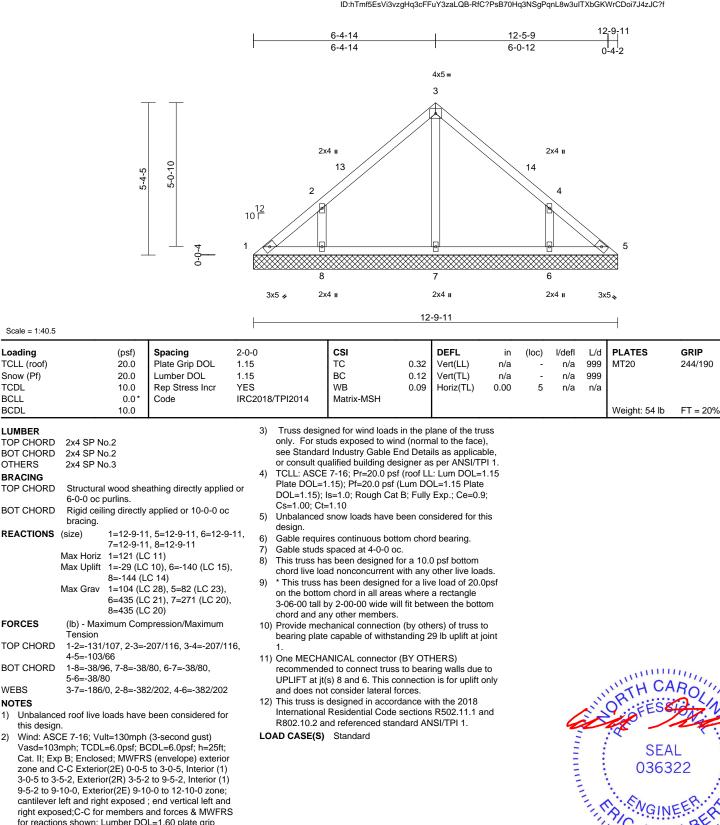
this design.

WFBS

NOTES

1)

2)


TCDL

BCLL

BCDL

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:27 ID:hTmf5EsVi3vzgHq3cFFuY3zaLQB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-5-2, Exterior(2R) 3-5-2 to 9-5-2, Interior (1) 9-5-2 to 9-10-0. Exterior(2E) 9-10-0 to 12-10-0 zone: cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

G mmm March 16,2023

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V4    | Valley     | 1   | 1   | Job Reference (optional) | 157188511 |

4-4-14

4-4-14

Carter Components (Sanford), Sanford, NC - 27332,

3-4-10

3-8-5

Spacing

Code

Plate Grip DOL

Rep Stress Incr

4=713

Lumber DOL

(psf)

20.0

20.0

10.0

10.0

0.0

### Run: 8 53 S Mar 9 2023 Print: 8 530 S Mar 9 2023 MiTek Industries Inc. Wed Mar 15 08:24:27 ID:hTmf5EsVi3vzgHq3cFFuY3zaLQB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-5-9

4-0-12



GRIP

244/190

FT = 20%

9 10 12 10 Г 3 Λ 3x5 🍫 2x4 II 3x5 💊 8-9-11 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) 1.15 TC 0.42 Vert(LL) n/a n/a 999 MT20 BC 1 15 0.39 Vert(TL) n/a n/a 999 YES WB 0.15 Horiz(TL) 0.00 4 n/a n/a IRC2018/TPI2014 Matrix-MP Weight: 33 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4x5 = 2

- Unbalanced snow loads have been considered for this 5) desian.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 1 and 51 lb uplift at joint 3.
- 11) One MECHANICAL connector (BY OTHERS) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:34

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

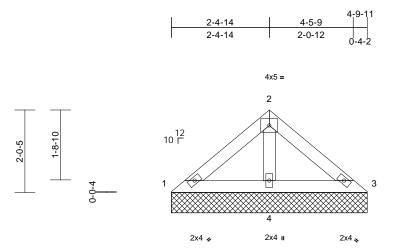
BCDL

| TOP CHORD | 2x4 SP N                | 0.2                                             |
|-----------|-------------------------|-------------------------------------------------|
| BOT CHORD | 2x4 SP N                | 0.2                                             |
| OTHERS    | 2x4 SP N                | 0.3                                             |
| BRACING   |                         |                                                 |
| TOP CHORD | Structural<br>8-9-11 oc | wood sheathing directly applied or purlins.     |
| BOT CHORD | Rigid ceili<br>bracing. | ng directly applied or 6-0-0 oc                 |
| REACTIONS | ()                      | 1=8-9-11, 3=8-9-11, 4=8-9-11<br>1=-82 (LC 12)   |
|           |                         | 1=-51 (LC 21), 3=-51 (LC 20),<br>4=-110 (LC 14) |
|           | Max Grav                | 1=76 (LC 20), 3=76 (LC 21), 4=713 (LC 21)       |
| FORCES    | (lb) - Max<br>Tension   | imum Compression/Maximum                        |
| TOP CHORD |                         | 331, 2-3=-133/331                               |
| BOT CHORD |                         | 193, 3-4=-225/193                               |
| WEBS      | 2-4=-535/               | ,                                               |
| VVLDO     | 2-4=-0000/              | 201                                             |

# NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-10-0, Exterior(2E) 5-10-0 to 8-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road


Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V5    | Valley     | 1   | 1   | Job Reference (optional) | 157188512 |

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:27 ID:DHCHuurtxIn627Ft3Ykf?szaLQC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-11

Page: 1



Scale - 1.28 3

| Scale = 1:28.3                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                           |                                             |                      |                             |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                     | 3/TPI2014                                                                                                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                             | 0.08<br>0.11<br>0.04                                                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                 | in<br>n/a<br>n/a<br>0.00                    | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 17 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                                                                                                                                                                      | Max Horiz 1=43 (LC<br>Max Uplift 3=-7 (LC<br>Max Grav 1=88 (LC<br>(LC 21)<br>(lb) - Maximum Com<br>Tension<br>1-2=-80/102, 2-3=-8<br>1-4=-78/87, 3-4=-78<br>2-4=-179/95<br>ed roof live loads have                                                                                                                                                                 | applied or 6-0-0 oc<br>3=4-9-11, 4=4-9-11<br>11)<br>15), 4=-33 (LC 14)<br>20), 3=88 (LC 21), 4<br>pression/Maximum<br>0/102<br>/87                                                                                                                                              | 6)<br>7)<br>8)<br>ed or 9)<br>10)<br>1=291 11)<br>12)<br>LO | design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Provide mec<br>bearing plate<br>3.<br>One MECHA<br>recommende<br>UPLIFT at jt(<br>does not corr<br>This truss is<br>International | snow loads have<br>es continuous bol<br>spaced at 4-0-0 c<br>s been designed<br>ad nonconcurrent<br>nas been designe<br>n chord in all arez<br>by 2-00-00 wide w<br>y other members<br>hanical connection<br>e capable of withs<br>NICAL connector<br>d to connect trus<br>s) 4. This connect<br>sider lateral force<br>designed in accoo<br>Residential Code<br>nd referenced sta<br>Standard | tom chor<br>c.<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>n (by oth<br>tanding 7<br>r (BY OTI<br>s to bear<br>tion is for<br>s.<br>rdance w | d bearing.<br>0 psf bottom<br>other live loa<br>te load of 20.0<br>a rectangle<br>veen the botto<br>rest) of truss t<br>r lb uplift at jo<br>HERS)<br>ing walls due<br>r uplift only ar<br>ith the 2018<br>\$ R502.11.1 a | ids.<br>Opsf<br>om<br>to<br>int<br>to<br>nd |                      |                             |                          |                                 | 10.                                |
| <ol> <li>Wind: ASC<br/>Vasd=103/<br/>Cat. II; Exy<br/>zone and 0<br/>exposed;<br/>members a<br/>Lumber D0</li> <li>Truss des<br/>only. For s<br/>see Standa<br/>or consult</li> <li>TCLL: ASC<br/>Plate DOL</li> </ol> | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Br<br>p B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>end vertical left and rig<br>and forces & MWFRS<br>OL=1.60 plate grip DC<br>signed for wind loads in<br>studs exposed to wind<br>ard Industry Gable En<br>qualified building desi;<br>CE 7-16; Pr=20.0 psf (L<br>=1.15); Pf=20.0 psf (L<br>i); Is=1.0; Rough Cat E | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown;<br>DL=1.60<br>h the plane of the tru<br>I (normal to the face)<br>d Details as applicat<br>gner as per ANSI/TF<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate | r<br>ight<br>ss<br>,<br>ole,<br>11.<br>.15                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                           |                                             |                      | W. HILL                     |                          | SEA<br>0363                     | • –                                |

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

GI

unnin . March 16,2023

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V10   | Valley     | 1   | 1   | Job Reference (optional) | 157188513 |

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

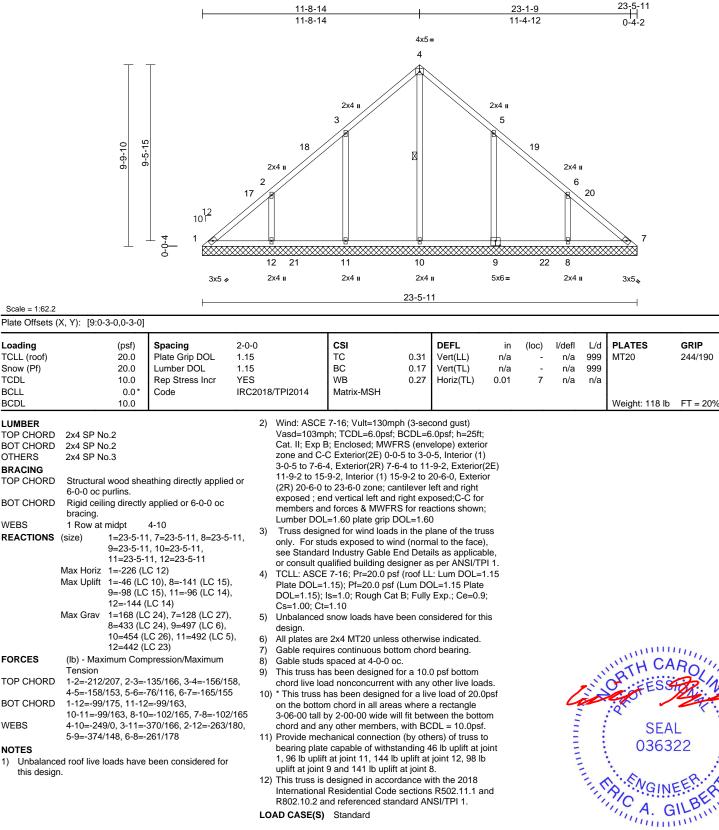
BRACING

WEBS

FORCES

WEBS

NOTES


TCDL

BCLL

BCDL

Run: 8 53 S Mar 9 2023 Print: 8 530 S Mar 9 2023 MiTek Industries Inc. Wed Mar 15 08:24:28 ID:A4MZPzV4GQHuA56oGHgcb2zaPP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

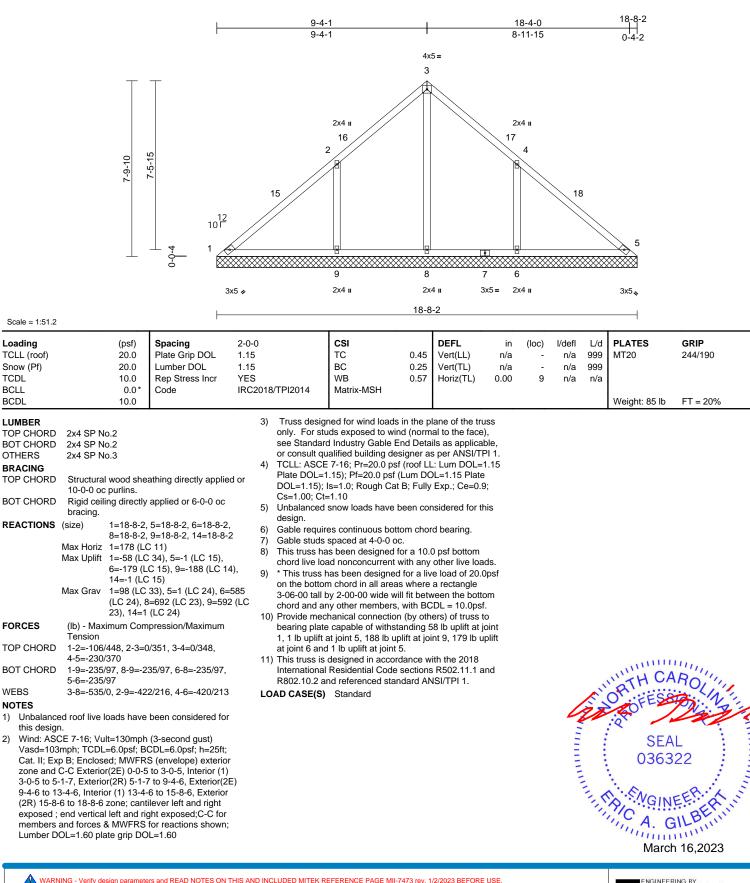
Page: 1



March 16,2023

UTITITITI I




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V11   | Valley     | 1   | 1   | Job Reference (optional) | 157188514 |

2)

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:24:28 ID:A4MZPzV4GQHuA56oGHgcb2zaPP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V12   | Valley     | 1   | 1   | Job Reference (optional) | 157188515 |

Scale = 1:42.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

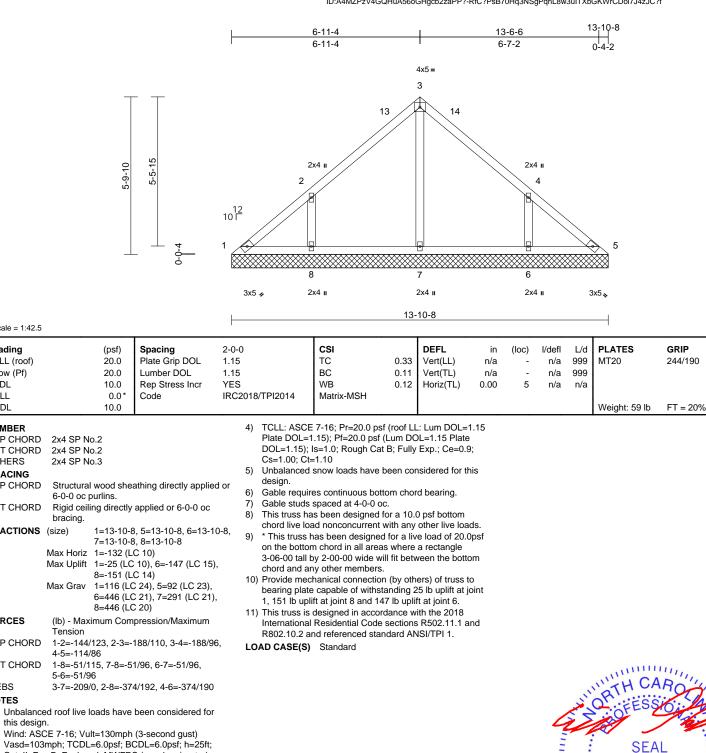
this design.

WEBS

NOTES

1)

**REACTIONS** (size)


TCDL

BCLL

BCDL

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:29 ID:A4MZPzV4GQHuA56oGHgcb2zaPP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

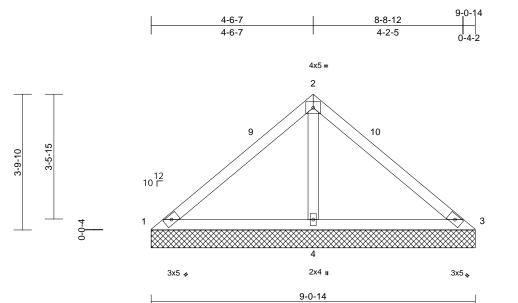


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

036322 G mmm March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Abby plan                |           |
|-------------|-------|------------|-----|-----|--------------------------|-----------|
| 23030004-01 | V13   | Valley     | 1   | 1   | Job Reference (optional) | 157188516 |

# Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:24:29 ID:A4MZPzV4GQHuA56oGHgcb2zaPP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



Scale = 1:32.3

|                                                                                              |                                                                                                                                                                                                      | 1                                                                                                                       | 1                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Loading                                                                                      | (psf)                                                                                                                                                                                                | Spacing                                                                                                                 | 2-0-0                                                                                                                                                                                        | CSI                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          | DEFL                                                                                                                                                                       | in                        | (loc) | l/defl  | L/d | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP     |
| TCLL (roof)                                                                                  | 20.0                                                                                                                                                                                                 | Plate Grip DOL                                                                                                          | 1.15                                                                                                                                                                                         | TC                                                                                                                                                                                                                                                                                                                                 | 0.38                                                                                                                                     | Vert(LL)                                                                                                                                                                   | n/a                       | -     | n/a     | 999 | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244/190  |
| Snow (Pf)                                                                                    | 20.0                                                                                                                                                                                                 | Lumber DOL                                                                                                              | 1.15                                                                                                                                                                                         | BC                                                                                                                                                                                                                                                                                                                                 | 0.37                                                                                                                                     | Vert(TL)                                                                                                                                                                   | n/a                       | -     | n/a     | 999 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TCDL                                                                                         | 10.0                                                                                                                                                                                                 | Rep Stress Incr                                                                                                         | YES                                                                                                                                                                                          | WB                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                     | Horiz(TL)                                                                                                                                                                  | 0.00                      | 4     | n/a     | n/a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BCLL                                                                                         | 0.0*                                                                                                                                                                                                 | Code                                                                                                                    | IRC2018/TPI2014                                                                                                                                                                              | Matrix-MSH                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BCDL                                                                                         | 10.0                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     | Weight: 34 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>9-0-14 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=9-0-14,<br>Max Horiz 1=85 (LC<br>Max Uplift 1=-35 (LC<br>Max Grav 1=96 (LC | 3=9-0-14, 4=9-0-14<br>11)<br>2 21), 3=-35 (LC 20),<br>2 14)                                                             | design.<br>6) Gable req<br>7) Gable stu<br>8) This truss<br>d or<br>9) * This truss<br>on the bot<br>3-06-00 ta<br>chord and<br>10) Provide m<br>bearing pl<br>1, 35 lb up<br>11) This truss | ed snow loads have<br>dires continuous bot<br>ds spaced at 4-0-0 o<br>has been designed<br>load nonconcurrent<br>s has been designed<br>tom chord in all area<br>II by 2-00-00 wide w<br>any other members<br>echanical connectio<br>ate capable of withs<br>lift at joint 3 and 84<br>is designed in accor<br>al Residential Code | tom cho<br>ic.<br>for a 10.<br>with any<br>d for a liv<br>as where<br>iill fit betv<br>n (by oth<br>tanding 3<br>lb uplift a<br>rdance w | rd bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle<br>ween the botto<br>uers) of truss t<br>35 lb uplift at j<br>at joint 4.<br>rith the 2018 | ds.<br>Dpsf<br>om<br>oint |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                              | (LC 21)                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                              | and referenced star                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| FORCES                                                                                       | (lb) - Maximum Com<br>Tension                                                                                                                                                                        | pression/iviaximum                                                                                                      | LOAD CASE(                                                                                                                                                                                   | <ol> <li>Standard</li> </ol>                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TOP CHORD                                                                                    |                                                                                                                                                                                                      | 3/332                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BOT CHORD                                                                                    | ,                                                                                                                                                                                                    |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| WEBS                                                                                         | 2-4=-535/218                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| NOTES                                                                                        |                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                              | ed roof live loads have                                                                                                                                                                              | been considered for                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       |
| this desig                                                                                   |                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       |         |     | "" CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIL      |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members                                  | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>sp B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>end vertical left and ri<br>and forces & MWFRS<br>VOL=1.60 plate grip DC                            | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown; | ght                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       | A state |     | OR FEES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • -      |
| only. For<br>see Stand<br>or consult<br>4) TCLL: AS<br>Plate DOI                             | signed for wind loads in<br>studs exposed to wind<br>lard Industry Gable En<br>t qualified building desi<br>(CE 7-16; Pr=20.0 psf (L<br>=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E<br>Ct=1.10 | I (normal to the face),<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate      | le,<br>I 1.<br>.15                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                            |                           |       | THWA.   |     | in the second se | EER      |

March 16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

