

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 86 FaNC MIDDLETON 6

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

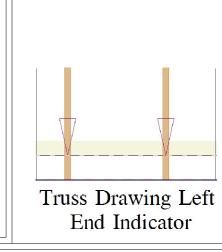
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

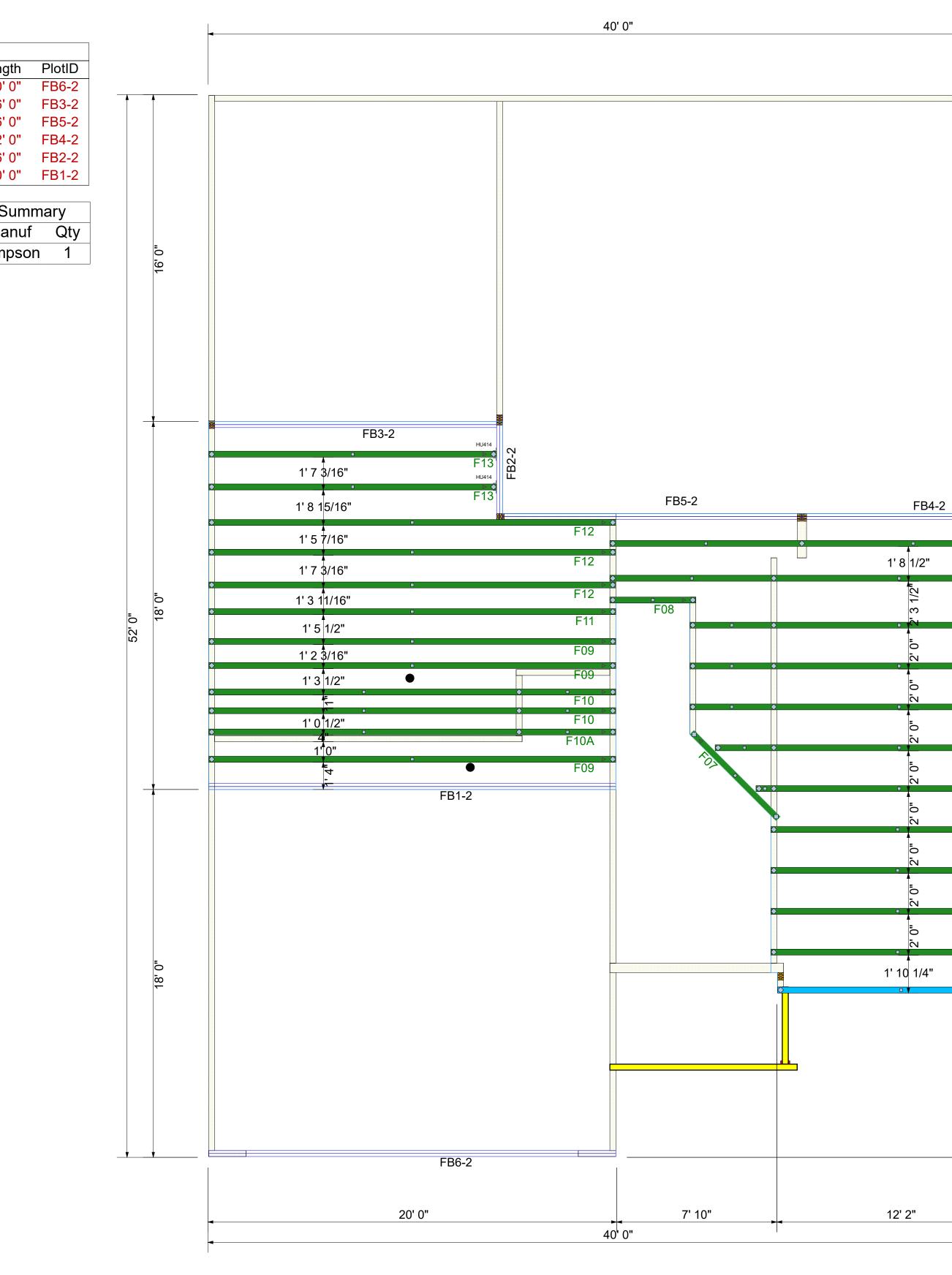
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

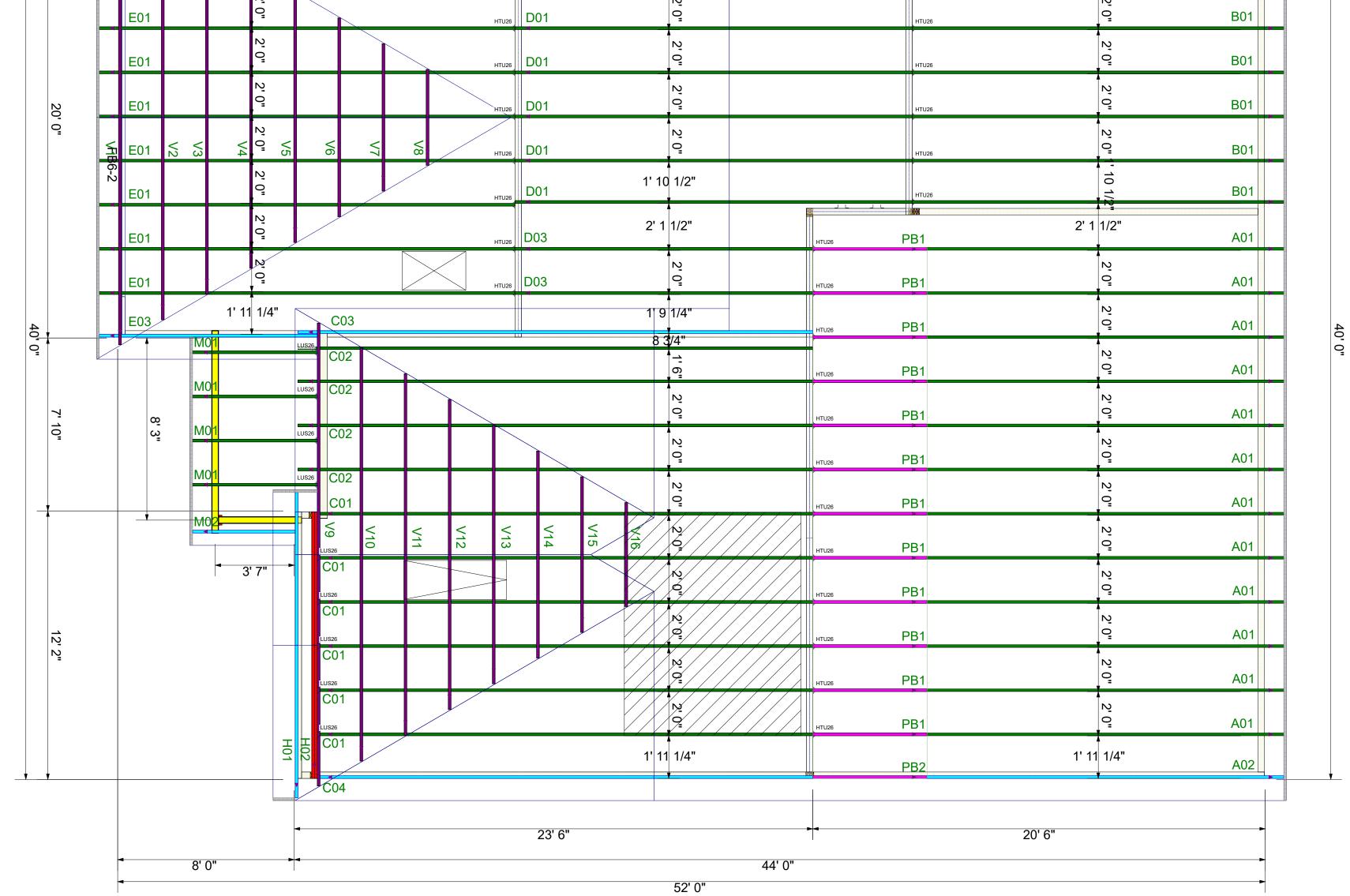
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____


					Products			
Ī	Fab Type	Net Qty	Plies	5			Product	Lengt
ſ	FF	2	2	2.0 Rig	idLam DF LVI	_ 1-3	/4 x 11-7/8	20' 0
	FF	2	2	2.0	RigidLam DF	LVL	1-3/4 x 14	16' 0
	FF	2	2	2.0	RigidLam DF	LVL	1-3/4 x 14	16' 0
	FF	2	2	2.0	RigidLam DF	LVL	1-3/4 x 14	12' 0
	FF	2	2	2.0	RigidLam DF	LVL	1-3/4 x 14	6' 0
	FF	2	2	2.0	RigidLam DF	LVL	1-3/4 x 18	20' 0
			Truss	Connecto	or Total List		Connec	ctor Su
			Qty	Product	Manuf		Product	Mar
			2	HU414	Simpson		HU416	Simp

E INSTALLED PRIOR TO SETTING ANY COMPONENTS.	ų	Revisions 00/00/00 Name
50, e.	TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
F06 F05 F04 F04 </td <td>DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. ** TRUS</td> <td>A Division of the Cempany</td>	DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. ** TRUS	A Division of the Cempany
F01 F01 FW12 FW12	TOGETHER PRIOR TO ADDING ANY LOADS. **	DRB HOMES 86 FARM AT NEILLS CREEK MIDDLETON 6 COMPONENT PLACEMENT PLAN
R TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.	** GIRDERS MUST BE FULLY CONNECTED	Scale: NTS Date: 1/17/2024 Designer: ND Project Number: 23120149 Sheet Number: 1/1/1

* FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTAL	LED UNLESS TOLD TO BY THE COMPONENT F	PLANT.		
Truss Drawing Left End Indicator					
TRUSS					
AS SHOWN ON INDIVIDUAL					
ON INDIV					
TRUSS DRAWINGS		52' 0"			
	18' 0"	18' 0"	16' 0		
E02	D02			B02	
1' 10 1/4"	нти26 D01		HTU26	B01	
× * E01 ≥ Q	нти26 Д01	2 <u>0</u>	НТU26	۷ ۹ B01	
				2'	

**

REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

Truss Qty 28 10

Connector Product HTU26 LUS26

r Total List Manuf Simpson Simpson General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** ALL BEARING POINT

00/00/00

Name

00/00/00

Name

Revisions

00/00/00

Name

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23120149 DRB GROUP - 86 FaNC

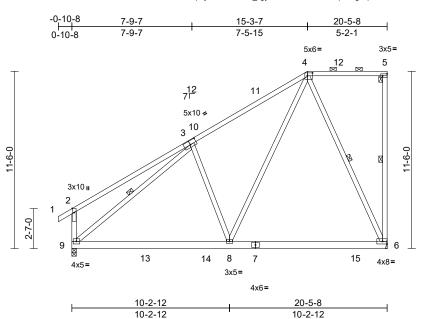
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63106364 thru I63106414

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

January 19,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	A01	Piggyback Base	12	1	Job Reference (optional)	163106364

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:01 ID:7s9YZp8yTT6bkb8sXP_ligyEN4k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale :	= 1:74.8
Scale -	- 1.74.0

Plate Offsets (X, Y): [3:0-5-0.0-3-0], [4:0-4-0.0-2-4], [5:Edge.0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.63 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.22 0.01	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 162 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 SP 1 WEBS 2x4 SP 1 No.3 BRACING TOP CHORD Structur 2-2-0 oc 2-0-0 oc BOT CHORD Rigid ce bracing. WEBS 1 Row a REACTIONS (size) Max Horiz Max Uplif Max Grav FORCES (lb) - Ma Tension TOP CHORD 1-2=0/3 5-6=-21: BOT CHORD 8-9=-20	No.2 No.2 *Excep al wood she purlins, exp purlins, exp purlins (6-0 liing directly t midpt 6= Mecha 2 9=404 (LC 6=976 (LC ximum Com 1, 2-4=-986/: 5/87, 2-9=-3 7/950, 6-8=- 5/158, 3-9=- 1/971 loads have ult=130mph L=6.0psf; Bis sed; MWFRS or(2E) -0-10 rior(2E) -	C 11), 9=-85 (LC 14) C 40), 9=1074 (LC 40) pression/Maximum 227, 4-5=-141/187, 59/161 150/406 1008/51, 3-8=-395/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterion -8 to 2-1-8, Interior (3-7 to 17-3-12, Exter intilever left and right pht exposed;C-C for for reactions shown;	a 4) d or 5) nd 6) 7) 8))) 9) 10 11 89, 12 13 13 13 10 LC	Plate DOL=1 DOL=1.15); Cs=1.00; Cts Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird D) Provide mec bearing plate joint 6. I) One H2.5A S recommende UPLIFT at jtt does not cor 2) This truss is International R802.10.2 a B) Graphical pu	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with quate drainage to p is been designed ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide winy other members, er(s) for truss to tri hanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 9. This connect sider lateral forces designed in accord Residential Code ind referenced star r/lin representation ation of the purlin a d.	Lum DC B; Fully been cor or great at roof li- or at all of the prevent ' or a 10. with any f for a liv s where Il fit betw with BC uss conne (by oth anding 1 e conne to bear ion is for a. dance w sections idard AN	DL=1.15 Plate Exp.; Ce=0.9 asidered for t er of min roof bad of 20.0 p ve loads. water pondin. D psf bottom other live loas e load of 20.1 a rectangle veen the bott DL = 10.0ps lections. ers) of truss i 48 lb uplift at ctors ing walls due vuplift only at ith the 2018 c R502.11.1 at SI/TP1 1.	e 9; his flive sfon g. ads. 0psf to t. to t. to t. and			Ì	SEA 0363	22 EER. A.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GI A. GIL January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	A02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	163106365

Plate Offsets (X, Y): [2:0-0-14,0-1-8], [11:0-2-8,0-2-1]

19=-50 (LC 14), 21=-50 (LC 14),

22=-41 (LC 14), 23=-83 (LC 14),

15=94 (LC 35), 16=242 (LC 35),

17=197 (LC 35), 18=205 (LC 36),

19=216 (LC 36), 21=217 (LC 36),

22=201 (LC 36), 23=173 (LC 40),

24=159 (LC 26), 25=387 (LC 12),

26=604 (LC 14)

(Ib) - Maximum Compression/Maximum

2-26=-389/222, 1-2=0/32, 2-3=-475/279,

7-8=-149/87, 8-9=-101/61, 9-10=-61/47,

10-11=-41/3, 11-12=-2/3, 12-13=-2/3,

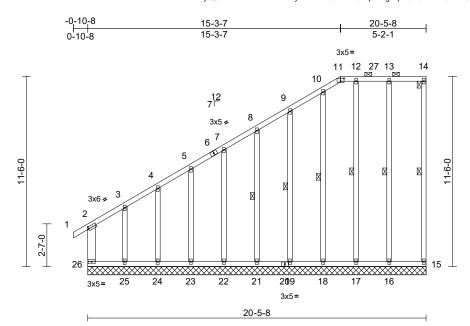
13-14=-2/3, 14-15=-77/27

3-4=-261/143, 4-5=-250/143, 5-7=-196/112,

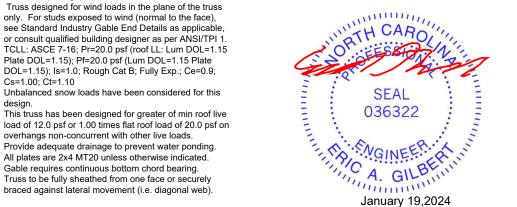
25=-634 (LC 14), 26=-199 (LC 12)

Scale = 1:69.7

FORCES


TOP CHORD

Max Grav


Tension

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed. Jan 17 18:37:03 ID:uyiQOAflaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

rig 1-11-4 srip DOL 1.15 r DOL 1.15 ress Incr YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-MR	0.68 0.54 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 WEBS 17-12,16-13:2x4 WEBS rectly applied or verticals, and 11-14. 1) Unb: this 01-00-00 c 10-0-0 oc 2) Wind -21, 9-19, 10-18, 3-16 Cat. 2006 5-8, 17=20-5-8, 5-8, 24=20-5-8, 5-8 Second 2006 5-8 24=20-5-8, 5-8 5-8 and 5-8-31 (LC 10), 2006 DOL	22-23=-3/2, 21-22 18-19=-3/2, 17-18 15-16=-3/2 8-21=-178/72, 7-2 4-24=-119/0, 3-25 10-18=-166/66, 12 13-16=-199/57 alanced roof live loads ha design. d: ASCE 7-16; Vult=130m j=103mph; TCDL=6.0psf; II; Exp B; Enclosed; MWF and C-C Exterior(2E) -0- 12 to 12-2-12, Exterior(2R rior(2E) 17-3-12 to 20-3-1 osed ; end vertical left exp forces & MWFRS for reac .=1.60 plate grip DOL=1.6	2=-3/2, 19 =-3/2, 16 22=-162/6 5=-306/40 2-17=-160 ve been of ph (3-sec BCDL=6 FRS (env. 10-8 to 2 2) 12-2-12 2 zone; c ossed;C-C titons sho	-21=-3/2, -17=-3/2, 9, 5-23=-128/, 0, 9-19=-177/ 0/47, considered for cond gust) .0psf, h=25ft; elope) exterior 2-12, Interior 2 to 17-3-12, cantilever left C for members wn; Lumber	38, 73, (1)	12) This cho 13) * Th on t 3-06 cho 14) Pro bea join lb u join lb u join lb u 15) This Inte R80 16) Gra or th bott	s truss h rd live lc is truss he bottc 5-00 tall rd and a vide me ring plat t 26, 24 plift at jc t 25, 50 plift at jc s truss is rnationa i2.10.2 a phical p ne orien om choi	as bee bad not has be om cho by 2-0 uny oth chanic te capa lb uplit bint 22 lb uplit bint 17 s desig al Resid and ref urlin re tation of	en designed for a nconcurrent with een designed for - rd in all areas wh 00-00 wide will fit l eer members. al connection (by able of withstandi ft at joint 15, 50 lb , 83 lb uplift at joint ft at joint 19, 42 lb and 31 lb uplift at joint 10, 42 lb and 31 lb uplift at ned in accordance dential Code sect ferenced standard spresentation doe of the purlin along	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 199 lb uplift at o uplift at joint 21, 41 nt 23, 634 lb uplift at o uplift at joint 18, 26 t joint 16. with the 2018 ions R502.11.1 and d ANSI/TPI 1. es not depict the size
	The DOL 1.15 DOL 1.15 DOL 1.15 Ease Incr YES IRC2018/TPI2 BOT CH Ex4 SP No.2 7-12,16-13:2x4 WEBS Eactly applied or verticals, and 11-14. 11-14. 10 Unb trise 20 Winc 21, 9-19, 10-18, 1-6 5-8, 21=20-5-8, 2-2- 5-8, 24=20-5-8, 2-2- 5-8, 24=20-5-8, 2-2- 5-	The pole 1.15 TC DOL 1.15 BC WB DOL 1.15 BC WB matrix-MR Matrix-MR Matrix-MR BOT CHORD 25-26=-3/2, 24-25 22-23=-3/2, 21-22 11-14 15-16=-3/2 15-16=-3/2 7-12,16-13:2x4 WEBS 8-21=-178/72, 7-2 4:24=-119/0, 3-25 10-18=-166/66, 12 11-14. 10 Unbalanced roof live loads ha this design. 11-14. 10 Unbalanced roof live loads ha this design. 21, 9-19, 10-18, 1-16 Vasd=103mph; TCDL=6.0psf; Cat. II; Exp B; Enclosed; MWF 14 10 Unbalanced roof live loads ha this design. 19. Wind: ASCE 7-16; Vult=130m Vasd=103mph; TCDL=6.0psf; Cat. II; Exp B; Enclosed; MWF 5-8, 21=20-5-8, 5-8, 5-8 2-2-12 to 12-2-12, Exterior(2E) -0-2-2-12 to 12-2-12, Exterior(2E) -0-2-2-12 to 12-2-12, Exterior(2E) -0-3-12 exposed; end vertical left exp and forces & MWFRS for read 5-8 2-31 (LC 10), Destinate free different for the d	ip DOL 1.15 TC 0.68 DOL 1.15 BC 0.54 poll 1.15 BC 0.54 ess Incr YES WB 0.16 IRC2018/TPI2014 Matrix-MR BOT CHORD 25-26=-3/2, 24-25=-3/2, 23 22-23=-3/2, 22-23=-3/2, 12 ex4 SP No.2 BOT CHORD 25-26=-3/2, 24-25=-3/2, 23 7-12,16-13:2x4 WEBS 8-21=-178/72, 7-22=-162/6 4-24=-119/0, 3-25=-306/40 10-18=-166/66, 12-17=-16/ 11-14. NOTES 1) 11-14. 1) Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 1) Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 1) Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 1) Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 10 Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 10 Unbalanced roof live loads have been of this design. 21, 9-19, 10-18, 20 2-2-12, 12, 2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12, 2-2-12,	The pole 1.15 The pole Vert(LL) DOL 1.15 BC 0.54 Vert(LL) posess Incr YES WB 0.16 Vert(CT) IRC2018/TPI2014 Matrix-MR Vert(CT) Horz(CT) BOT CHORD 25-26=-3/2, 24-25=-3/2, 23-24=-3/2, 22-23=-3/2, 21-22=-3/2, 19-21=-3/2, 18-19=-3/2, 17-18=-3/2, 10-17=-3/2, 15-16=-3/2 Notest Notest tx4 SP No.2 15-16=-3/2 8-21=-178/72, 7-22=-162/69, 5-23=-128/8, 4-24=-119/0, 3-25=-306/400, 9-19=-177/7, 10-18=-166/66, 12-17=-160/47, 13-16=-199/57 Notest Notest t1-14. NOTES 1) Unbalanced roof live loads have been considered for this design. Notest 11-14. 10 Unbalanced roof live loads have been considered for this design. Notest 11-14. 10 Unbalanced roof live loads have been considered for this design. Notest 121, 9-19, 10-18, 1-16 10 Unbalanced roof live loads have been considered for this design. Notest 121, 9-19, 10-18, 1-6 10 Unbalanced roof live loads have been considered for this design. Notest 13-16=-205-8, 5-8, 21=20-5-8, 5-8, 21=20-5-8, 5-8 10 Unbalanced roof live loads have been considered for this design. 2-2-12, 10	The DOL 1.15 TC 0.68 Vert(LL) n/a DOL 1.15 BC 0.54 Vert(LL) n/a ess Incr YES WB 0.16 Vert(CT) n/a IRC2018/TPI2014 Matrix-MR Vert(CT) 0.00 BOT CHORD 25-26=-3/2, 24-25=-3/2, 23-24=-3/2, 29-21=-3/2, 19-21=-3/2, 18-19=-3/2, 17-18=-3/2, 19-21=-3/2, 18-19=-3/2, 17-18=-3/2, 15-16=-3/2 Notes tx4 SP No.2 15-16=-3/2 8-21=-178/72, 7-22=-162/69, 5-23=-128/88, 4-24=-119/0, 3-25=-306/400, 9-19=-177/73, 10-18=-166/66, 12-17=-160/47, 13-16=-199/57 NOTES t1-14. 10 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 21, 9-19, 10-18, 1-16 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; bcft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-2-12, Interior (1) 2-2-12 to 12-2-12, Exterior(2E) 17-3-12, core; cantilever left 5-8, 21=20-5-8, 5-8 -8, 21=20-5-8, 5-8 -2-12 to 12-2-12, Exterior(2E) 17-3-12, core; cantilever left 6-8 -34 -32-12 to 12-2-12, Exterior(2E) 17-3-12, core; cantilever left -34 -24=20-5-8, 5-8 -24=20-5-8, 5-8 -24=20-5-8, 5-8 -3-8 -24=20-5-8, 5-8 -24=20-5-8, 5-8	TC 0.68 Vert(LL) n/a - DOL 1.15 BC 0.54 Vert(LL) n/a - BOI 1.15 BC 0.54 Vert(LL) n/a - BOT HORD 25-26=-3/2, 24-25=-3/2, 23-24=-3/2, 19-21=-3/2, 19-21=-3/2, 19-21=-3/2, 19-21=-3/2, 12) This - K4 SP No.2 15-16=-3/2 13) *TT - - 7.12,16-13:2x4 WEBS 8-21=-178/72, 7-22=-36/(400, 9-19=-177/73, 3-00) 10-18=-166/66, 12-17=-160/47, cho 13) *TT r11-14. 1) Unbalanced roof live loads have been considered for this design. 10 10-18=-166/66, 12-17=-160/47, cho 14) Prov 21, 9-19, 10-18, -16 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; L Lb join join 21, 9-19, 10-18, -16 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; L Lb join join 21, 9-19, 10-18, -16 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; L Lb join join 21, 9-19, 10-18, -16 Vasd=103mph; TCDL=2.0p-0-0-8 to 2-2-12, Interior (1) join	TC 0.68 BCVert(LL) n/a $-n/a$ DOL 1.15 BC 0.54 WB 0.16 Vert(CT) n/a $-n/a$ BC2018/TPI2014Matrix-MRHorz(CT) 0.00 15 n/a BOT CHORD $25-26=-3/2, 24-25=-3/2, 23-24=-3/2, 22-23=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-21=-3/2, 22-23=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-22=-3/2, 21-21=-3/2, 21-$	ip DOL1.15TC0.68Vert(LL) n/a n/a 999DOL1.15BC0.54Vert(CT) n/a $-n/a$ 999ess IncrYESWB0.16Vert(CT) n/a $-n/a$ 999Horz(CT)0.0015 n/a n/a $-n/a$ 999K4 SP No.2BOT CHORD25-26=-3/2, 24-25=-3/2, 19-21=-3/2, 22-23=-3/2, 21-22=-3/2, 19-21=-3/2, 10-21=-3/2, 12-23=-3/2, 12-33=-3/2, 12-23=-3/2, 12-23=-3/2, 12-33=-3/	The DOL1.15The DOLThe DOLT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Cs=1.00: Ct=1.10

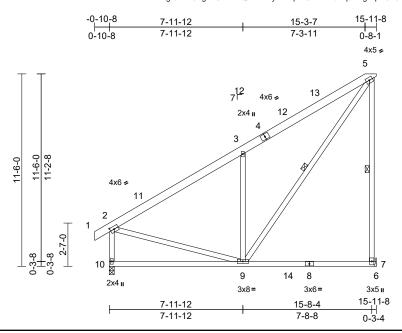
design.

4)

5)

6)

8)


9)

10)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	B01	Monopitch	7	1	Job Reference (optional)	163106366

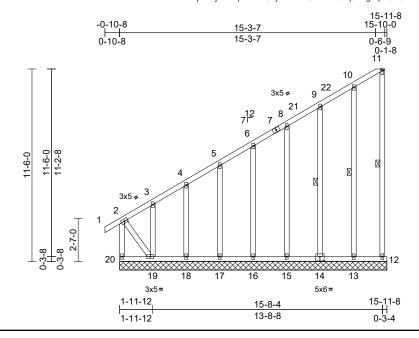
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:04 ID:gfOscPOdgdYC2AMcQTKNEuyEN1q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.9

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

	1										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIR	15 15	CSI TC BC WB Matrix-MSH	0.50 0.66 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.26 0.00	(loc) 7-9 7-9 7	l/defl >999 >714 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural wood she 6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 7= Mecha Max Horiz 10=323 (L Max Uplift 7=-240 (L	r applied or 9-10-6 oc 5-7, 5-9 anical, 10=0-3-8 LC 14) C 24), 10=766 (LC 24) mpression/Maximum 10, 3-5=-745/159, =-653/12 =0/11, 6-7=0/0 -338/979, 2-9=0/460 n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior D-8 to 2-1-8, Interior (1) 8-4 to 15-8-4 zone; tical left exposed;C-C RS for reactions shown; DL=1.60 (roof LL: Lum DDL=1.15 Jum DDL=1.15 Plate 3; Fully Exp.; Ce=0.9;	 load of 12.0 overhangs n 5) This truss ha chord live loc 6) * This truss f on the bottor 3-06-00 tall t chord and ar 7) Refer to gird 8) Provide mec bearing plate joint 7. 9) This truss is International 	is been designed fo psf or 1.00 times fla on-concurrent with o is been designed fo d nonconcurrent w has been designed in n chord in all areas by 2-00-00 wide will by other members, w er(s) for truss to trus hanical connection is capable of withstar designed in accord Residential Code s and referenced stance Standard	at roof k other liv or a 10.0 ith any for a liv where fit betw with BC ss conr (by oth nding 2 ance w sections	bad of 20.0 ps re loads. D psf bottom other live loa e load of 20.0 a rectangle ween the bottk DL = 10.0psf lections. ers) of truss t 40 lb uplift at ith the 2018 r R502.11.1 a	sf on ds. Dpsf Dm 0				SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



A. GI minimum) January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	B02	Monopitch Supported Gable	1	1	Job Reference (optional)	163106367

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:04 ID:2VuldpuPTjAcxEqRhVYSG2yEN?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.8

Plate Offsets (X, Y): [14:0-3-0,0-3-0]

		1		1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*		IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	-									Weight: 146 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.3 *Except Structural wood she 6-0-0 oc purlins, ex		NOTES 1) Wind: ASCI Vasd=103m or Cat. II; Exp zone and C	6-16=-127/92, 5-17 3-19=-110/86, 8-19 10-13=-198/111, 2 5 7-16; Vult=130mp ph; TCDL=6.0psf; B; Enclosed; MWFI -C Corner(3E) -0-10	5=-133/9 -19=-35 h (3-seo BCDL=0 RS (env)-8 to 1-	90, 9-14=-196/ 8/673 cond gust) 5.0psf; h=25ft; elope) exterio .11-12, Exteric	/97, r	Ínte R8	s truss is ernationa 02.10.2	al Resid and ref	ferenced standar	tions R502.11.1 and
BOT CHORD	Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1		zone; cantil exposed;C-	2 to 12-8-4, Corner ever left exposed ; C for members and	end vert	ical left & MWFRS for		LOAD	CASE(S) Sta	ndard	
WEBS	1 Row at midpt	11-12, 9-14, 10-13		own; Lumber DOL	=1.60 pl	ate grip						
REACTIONS	(size) 12=15-11 14=15-11 16=15-11 18=15-11 20=15-11 Max Horiz 20=322 (1 Max Uplift 12=-19 (L 14=-51 (L 18=-53 (L 20=-187 Max Grav 12=81 (L1 14=235 (L 14=235 (L 16=167 (1 18=169 (1 20=577 (1)	-8, 13=15-11-8, -8, 15=15-11-8, -8, 19=15-11-8, -8, 19=15-11-8, -8 LC 14), 13=-48 (LC 14), C 14), 15=-50 (LC 14), C 14), 17=-50 (LC 14), C 14), 19=-473 (LC 14), (LC 12), 13=238 (LC 21), LC 21), 13=238 (LC 21), LC 21), 15=173 (LC 24), LC 24), 17=166 (LC 24), LC 24), 19=309 (LC 12), LC 14)	DOL=1.60 2) Truss design only. For still see Standa or consult q 3) TCLL: ASC Plate DOL= DOL=1.15); Cs=1.00; Ci), 4) Unbalanced design. 5) This truss h load of 12.00 overhangs r), 6) All plates ar 7) Gable requi	ned for wind loads uds exposed to wir rd Industry Gable E ualified building de: 2 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat	in the p d (norm nd Deta signer a (roof LI Lum DC B; Fully been col or great at roof I other li other vi om chol	lane of the tru nal to the face) ills as applicat s per ANSI/TF L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof oad of 20.0 ps ve loads. ise indicated. rd bearing.), ble, Pl 1. I.15 I.15 is live sf on		4		ORTH CA	ROLIN
FORCES	(lb) - Maximum Con Tension 2-20=-655/346, 1-2-	pression/Maximum =0/31, 2-3=-448/215,	braced agai 9) Gable studs	nst lateral moveme spaced at 2-0-0 or	nt (i.e. c c.	liagonal web).					0363	
BOT CHORD	3-4=-393/189, 4-5=- 6-8=-217/104, 8-9=- 10-11=-51/25, 11-12 19-20=-414/220, 18	-333/160, 5-6=-275/132 -159/76, 9-10=-98/49, 2=-68/40	chord live lo 11) * This truss on the botto 3-06-00 tall	as been designed f ad nonconcurrent v has been designed m chord in all area: by 2-00-00 wide wi ny other members.	vith any for a liv s where	other live load ve load of 20.0 a rectangle	psf			A MARINE AND AN	SEA 0363	EER. KINN

January 19,2024

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	C01	Common	6	1	Job Reference (optional)	163106368

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:05 ID:ecZulQRhcRtdtdrTWhmsqdyEMuk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

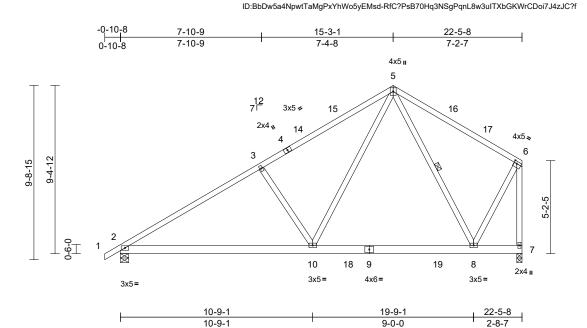
Scale = 1:68.1

Plate Offsets	(X, Y):	[5:0-3-0,Edge]
---------------	---------	----------------

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.96 0.77 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.44 0.02	(loc) 12-18 12-18 8	l/defl >999 >602 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 178 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 8- 1 Row at midpt	applied or 10-0-0 oc 9. 13-14 inical, 8=0-3-8 C 13) : 14)	3)	Vasd=103m Cat. II; Exp B zone and C- 3-0-10 to 12: (1) 18-3-1 to zone; cantile and right exp MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Cts	: 7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat	BCDL=6 RS (env -10 to 3- 12-3-1 to 2E) 19-3 xposed hbers an Lumber I (roof LL Lum DC B; Fully	.0psf; h=25ft elope) exteric 0-10, Interior b 18-3-1, Interior b 18-3-1, Interior b 12 to 22-3-1 ; end vertical d forces & DOL=1.60 plate Exp.; Ce=0.5	or (1) rior 2 left ate 1.15 9;					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	5)		init load placed on , supported at two			5-3-0					
TOP CHORD	1-2=-1469/23, 2-4=- 5-6=-356/62, 6-7=-5		, 6)	This truss ha	is been designed f	or a 10.0) psf bottom	ıds.					
BOT CHORD WEBS	1-12=-77/1238, 10-1 8-9=-64/88	2=0/681, 9-10=0/68 3=0/788, 4-13=0/794 =-492/105, 7-9=0/11	4,	* This truss h on the bottor 3-06-00 tall h chord and ar	nas been designed n chord in all area by 2-00-00 wide wi ny other members. er(s) for truss to tru	l for a liv s where ll fit betv	e load of 20.0 a rectangle veen the botto	Opsf			-	TH CA	Routin
NOTES 1) Unbalance this design	10-15=0/18 ed roof live loads have			Provide mec bearing plate 1.) This truss is	hanical connection capable of withsta designed in accord Residential Code	n (by oth anding 3 dance w	ers) of truss t 0 lb uplift at j ith the 2018	oint		4	a	SEA	

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

036322


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	C02	Common	4	1	Job Reference (optional)	163106369

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:05

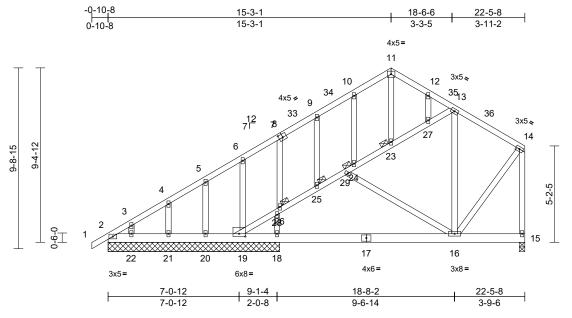
Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Plate Offsets (X, Y): [6:0-2-0,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORE BOT CHORE		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	Plat	2014 CSI TC BC WB Matrix-MSH LL: ASCE 7-16; Pr=20. te DOL=1.15); Pf=20.0 L=1.15); Is=1.0; Rough	0 psf (roof Ll psf (Lum DC	L=1.15 Plate	е	(loc) 10-13 10-13 7	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%
WEBS BRACING TOP CHORD	2x4 SP No.3	athing directly applied	Cs= 4) Unb d, des d, 5) This	1.00; Ċt=1.10 balanced snow loads h ign. s truss has been design	ave been cor ned for great	nsidered for t er of min roo	this f live					
BOT CHORE WEBS REACTIONS	 Rigid ceiling directly bracing. 1 Row at midpt 	applied or 10-0-0 oc 5-8 7=0-3-8 C 13) C 14), 7=-75 (LC 14)	ove 6) This cho 7) * Th on t 3-06	d of 12.0 psf or 1.00 tin rhangs non-concurrent is truss has been desig rd live load nonconcur his truss has been desi he bottom chord in all 6-00 tall by 2-00-00 wic rd and any other meml	with other lined for a 10. rent with any gned for a liv areas where de will fit betw	ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott	ads. .0psf tom					
FORCES	 (lb) - Maximum Com Tension 1-2=0/26, 2-3=-1399 5-6=-525/166, 6-7=- 	9/159, 3-5=-1206/194	reco UPL	e H2.5A Simpson Stror ommended to connect _IFT at jt(s) 2 and 7. Th does not consider late	truss to bear	ing walls due						
BOT CHORD WEBS	,	0=-34/602, 7-8=-65/8)=-115/917, 5-8=-476	/88, Inte	s truss is designed in a rnational Residential C 02.10.2 and referenced	ode sections	s R502.11.1 a	and					uri
this desig 2) Wind: AS Vasd=10 Cat. II; E zone and 2-1-8 to (1) 18-3- zone; car and right	SCE 7-16; Vult=130mph (3mph; TCDL=6.0psf; B4 xp B; Enclosed; MWFR f C-C Exterior(2E) -0-10 12-3-1, Exterior(2R) 12- 1 to 19-3-12, Exterior(2R) tilever left and right exp exposed;C-C for memb for reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1 3-1 to 18-3-1, Interior E) 19-3-12 to 22-3-12 oosed ; end vertical le pers and forces &) ft	CASE(S) Standard						A MARTINE AND A MARTINE	SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GI minim January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	C03	Common Structural Gable	1	1	Job Reference (optional)	163106370

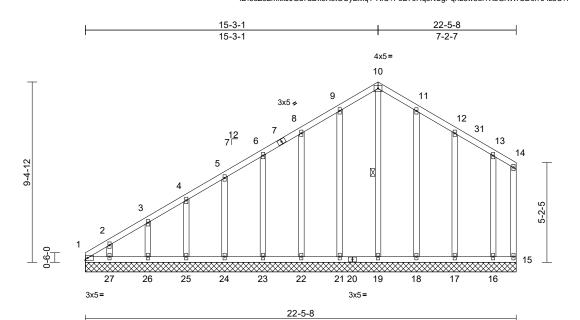
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:05 ID:U0FHqD_Q9yKq4uvqqoX5LvyEMrS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.1 Plate Offsets (X, Y): [8:0-2-8,0-2-4], [19:0-4-0,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.34 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.01	(loc) 16-18 16-18 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 188 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc	t* 13-19:2x4 SP No.2 athing directly applied cept end verticals. applied or 10-0-0 oc	l or		11-23=-38/24, 10-2 7-26=-79/104, 6-19 4-21=-141/76, 3-22 19-28=-584/151, 26 25-26=-547/154, 26 24-29=-296/109, 26 23-27=-242/95, 13- 13-16=-169/148, 18 16-29=-371/94	=-211/6 =-101/6 5-28=-5 5-29=-4 3-24=-2 27=-22	1, 5-20=-84/ 5, 12-27=-51 37/198, 73/139, 34/76, 7/81, 14-16=0	77, 1/28,	, cho 10) * Tł on t 3-0	rd live lo nis truss the botto 6-00 tall rd and a	bad noi has be om cho by 2-0	een designed for rd in all areas wh	any other live loads. a live load of 20.0psf
	1 Brace at Jt(s): 23, 24, 25, 26 (size) 2=9-3-0, 30=9-3-0 Max Horiz 2=278 (LC Max Uplift 2=-17 (LC 19=-159 (21=-51 (L 30=-17 (L 30=-17 (L 30=-17 (L)	: 10), 15=-43 (LC 15), LC 14), 20=-120 (LC C 14), 22=-60 (LC 14 C 10) C 26), 15=702 (LC 22	2)) 7),),	this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 2-1-8 to 12-3 (1) 18-3-1 to zone; cantile and right exp	roof live loads have 7-16; Vult=130mpl ph; TCDL=6.0psf; B; Enclosed; MWFF C Exterior(2E) -0-1 3-1, Exterior(2R) 12 19-3-12, Exterior(2 voer left and right e bosed;C-C for mem reactions shown; L 60	n (3-sec SCDL=6 RS (env 0-8 to 2 -3-1 to 2E) 19-3 cposed bers ar	cond gust) .0psf; h=25ft elope) exterior -1-8, Interior 18-3-1, Interior -12 to 22-3-1 ; end vertical d forces &	; or (1) or 12 left	Inte	ernationa 02.10.2 a	al Resid	erenced standard	ions R502.11.1 and
	21=230 (L 30=202 (L	,		Truss design only. For stu	ned for wind loads uds exposed to wind d Industry Gable Er	d (norm	al to the face	e),			A.I.	RTH CA	ROLI
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-279/ 4-5=-230/74, 5-6=-11 7-9=-177/47, 9-10=- 11-12=-196/101, 12- 13-14=-418/109, 14-	110, 3-4=-252/100, 89/76, 6-7=-204/34, 171/58, 10-11=-195/1 .13=-251/74,		or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	ualified building des 5 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (I Is=1.0; Rough Cat	igner a (roof Ll _um DC B; Fully	s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	PI 1. 1.15 9;			U	SEA 0363	• •
BOT CHORD	2-22=-131/205, 21-2 20-21=-131/205, 19-	2=-131/205,	6) 3/93 7) 8)	load of 12.0 overhangs n All plates are	as been designed for psf or 1.00 times fla on-concurrent with e 2x4 MT20 unless spaced at 2-0-0 oc	at roof le other li otherwi	oad of 20.0 p /e loads.	sf on			A MARTINE A	O363	ILBERTINIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

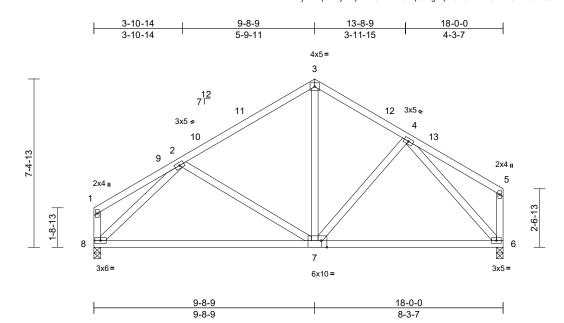
January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	C04	Common Supported Gable	1	1	Job Reference (optional)	163106371

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:06 ID:88Z52mkxJJGu7aDx0X9tOCyEMqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1	.60	1


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress Incr1	I-11-4 I.15 I.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.11 0.25	Vert(TL)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190
	10.0	l		Į				-			Weight. 103 lb	FT = 2078
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	athing directly applied o cept end verticals. applied or 10-0-0 oc	_{or} WEBS	1-27=-136/148, 26 25-26=-63/113, 24 23-24=-63/113, 22 21-22=-63/113, 19 18-19=-63/113, 17 16-17=-63/113, 15 10-19=-225/85, 9-: 6-23=-124/72, 5-2: 3-26=-124/80, 2-2: 12-17=-184/88, 13	-25=-63, -23=-63, -21=-63, -18=-63, -16=-63, 21=-205, 4=-123/7 7=-119/8	/113, /113, /113, /113, /113 /70, 8-22=-182 /2, 4-25=-122/ 80, 11-18=-205	2/77, /72, 5/70,	on t 3-06 choi 11) N/# 12) This	he botto 6-00 tall rd and a A	om cho by 2-0 iny oth	rd in all areas wh 10-00 wide will fit ler members. Ined in accordance	between the bottom
WEBS	1 Row at midpt	10-19	NOTES								dential Code sec ferenced standar	tions R502.11.1 and
REACTIONS	17=22-5-6 21=22-5-6 21=22-5-6 27=22-5-6 Max Horiz 1=264 (LC Max Uplift 1=-110 (L 16=-37 (L 21=-46 (L 21=-46 (L 23=-48 (L 25=-50 (L 27=-82 (L) 16=145 (L 18=243 (L) 23=163 (L) 23=163 (L) 25=161 (L)	$\begin{array}{l} 15=22-5-8, \ 16=22-5-8, \\ 18=22-5-8, \ 19=22-5-8, \\ 3, \ 18=22-5-8, \ 23=22-5-8, \\ 3, \ 22=22-5-8, \ 26=22-5-8, \\ 213), \ 28=264 \ (LC \ 13), \\ C \ 13), \ 17=-55 \ (LC \ 14), \\ C \ 15), \ 17=-55 \ (LC \ 15), \\ C \ 15), \ 17=-55 \ (LC \ 14), \\ C \ 14), \ 22=-51 \ (LC \ 14), \\ C \ 14), \ 22=-51 \ (LC \ 14), \\ C \ 14), \ 28=-110 \ (LC \ 12), \\ LC \ 14), \ 28=-110 \ (LC \ 23), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 17=225 \ (LC \ 24), \\ LC \ 24), \ 26=161 \ (LC \ 23), \\ LC \ 23), \ 26=161 \ (LC \ 23), \\ LC \ 23), \ 28=169 \ (LC \ 11) \end{array}$	 this design. Wind: ASCE Vasd=103m Cat. II; Exp I zone and C- 3-3-1 to 12-3 (2N) 18-3-1 zone; cantile and right exp MWFRS for grip DOL=1. Truss desig only. For stuse Standar or consult quit. TCLL: ASCE Plate DOL=1. DOL=1.15); Cs=1.00; Ct: 	ned for wind loads uds exposed to wird d Industry Gable E ralified building de 57-16; Pr=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10	bh (3-sec BCDL=6 RS (env) 0 to 3-3- -3-1 to 1 3E) 19-3 exposed nbers an humber I in the p nbers an hoters an f (noof LL (Lum DC E B; Fully	cond gust) 0.0psf; h=25ft; elope) exterior 1. Exterior(2N 8-3-1, Exterior -1 to 22-3-12 ; end vertical 1 d forces & DOL=1.60 plat lane of the tru al to the face) ils as applicat s per ANSI/TP :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	or l) or left iss), ole, 1.15 0;	LOAD	CASE(S) Sta	NUM H CA	ROLINI
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-264/214, 2-3=-	pression/Maximum 235/193, 3-4=-215/176, 187/167, 6-8=-174/193, 143/285, -12=-116/244,	 Unbalanced design. All plates are Gable requir Gable studs This truss has 	snow loads have l e 2x4 MT20 unless es continuous bott spaced at 2-0-0 or as been designed f ad nonconcurrent	s otherwi tom chor c. for a 10.0	se indicated. d bearing. 0 psf bottom			1102		SEA 0363 NGIN A. C	EEREX

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	D01	Common	7	1	Job Reference (optional)	163106372

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:06 ID:Sr7tMDseeasrAjFdPspS7byEMp1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

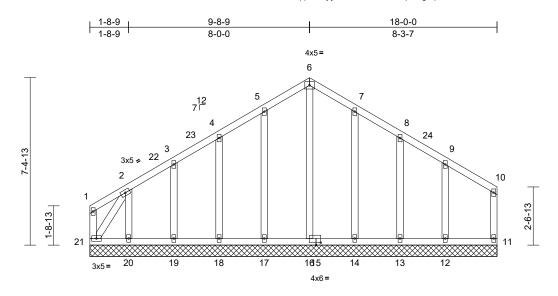
Scale = 1:50.7

Plate Offsets (X, Y): [7:0-3-0,Edge]

										-			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.81 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.38 0.02	(loc) 7-8 7-8 6	l/defl >999 >557 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood shee 4-10-14 oc purlins, - Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=193 (LC Max Grav 6=765 (LC (lb) - Maximum Com Tension 1-2=-136/30, 2-3=-7 4-5=-121/96, 5-6=-1 6-8=-125/665 2-7=-198/175, 3-7=-	except end verticals applied or 10-0-0 or 3=0-3-8 C 11) C 15), 8=-63 (LC 14) C 21), 8=769 (LC 20) pression/Maximum 15/124, 3-4=-656/13 45/72, 1-8=-114/16 13/348, 4-7=-92/134	, 7)) 8) _{5,} LC	design. This truss ha chord live lo * This truss lo on the botto 3-06-00 tall i chord and ai One H2.5A s recommend- UPLIFT at jt and does no This truss is International	snow loads have b as been designed fo ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. Simpson Strong-Tie ed to connect truss (s) 6 and 8. This co t consider lateral fo designed in accord Residential Code s nd referenced stand Standard	or a 10. vith any for a liv where fit betw conne to bear nnectio rces. ance w sections	0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 a R502.11.1 a	ads. 0psf com e to only					
 4-6=-768/56, 2-8=-868/166 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 										4	rin .	ORTH CA	ROLINI

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-7 to 5-1-7, Interior (1) 5-1-7 to 8-8-5, Exterior(2R) 8-8-5 to 14-8-5, Interior (1) 14-8-5 to 16-9-15, Exterior(2E) 16-9-15 to 19-9-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 January 19,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	D02	Common Supported Gable	1	1	Job Reference (optional)	163106373

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:06 ID:91F41SBaltF?vsppU0onjlyEMoc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

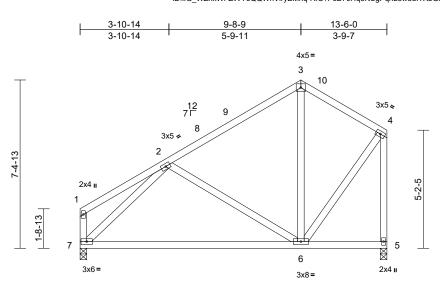
18-0-0

Scale = 1:50.9

Plate Offsets (X, Y): [15:0-2-8,0-1-4]

_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	11	n/a	n/a		
BCLL	0.0	* Code	IRC2018/1	PI2014	Matrix-MSH								
BCDL	10.0					-						Weight: 121 lb	FT = 20%
UMBER			NOT	ES					12) N/A	4			
FOP CHORD	2x4 SP No.2		1) (Jnbalanced	roof live loads ha	ve been	considered fo	r					
BOT CHORD	2x4 SP No.2			his design.									
NEBS	2x4 SP No.3				7-16; Vult=130m								
OTHERS	2x4 SP No.3				h; TCDL=6.0psf;								
BRACING					; Enclosed; MWI							ned in accordance	
FOP CHORD		heathing directly applie			C Corner(3E) 2-1							ferenced standar	tions R502.11.1 and
		except end verticals.			5, Corner(3R) 8-8		, (,					u ANSI/TPLT.
BOT CHORD		tly applied or 10-0-0 o			9-15, Corner(3E) and right expose				LUAD	CASE(S) Sta	ndard	
	bracing.		,		I;C-C for membe								
REACTIONS		0-0, 12=18-0-0, 13=18	-0-0, f		shown; Lumber I								
		0-0, 16=18-0-0, 17=18	-0-0,	DOL=1.60									
	21=18-	0-0, 19=18-0-0, 20=18	-0-0, 3)	Truss desigr	ned for wind load	s in the p	lane of the tru	ISS					
	Max Horiz 21=193			only. For stu	ds exposed to wi	ind (norm	al to the face),					
		(LC 14), 12=-63 (LC 1			I Industry Gable								
		(LC 14), 12=-03 (LC 1 (LC 15), 14=-49 (LC 1	5)		alified building de								
		(LC 13), 17=-50 (LC 1	4)		7-16; Pr=20.0 ps								
		(LC 14), 19=-51 (LC 1	4)		.15); Pf=20.0 psf								
		0 (LC 11), 21=-197 (LC	- 10) I		s=1.0; Rough Ca	it B; Fully	Exp.; Ce=0.9	;					
		LC 24), 12=194 (LC 2	1) [']	Cs=1.00; Ct=	:1.10 snow loads have	h	aidanad fan th						
	13=221	(LC 21), 14=254 (LC	211 /		snow loads have	been col	isidered for tr	lis				minin	inin,
	16=174	(LC 23), 17=253 (LC		design. All plates are	2x4 MT20 unles	e otherwi	se indicated					"TH CA	Roil
		(LC 20), 19=169 (LC	23), ₇ , (es continuous bo						1	RIL	····
	20=266	(LC 23), 21=251 (LC			ully sheathed from							CHEESS	GATN :
ORCES	(lb) - Maximum C	ompression/Maximum			st lateral movem					2	55		Bill
	Tension		9) (spaced at 2-0-0 o		5 ,			1		·Q	
FOP CHORD	,	164/154, 3-4=-149/166	^{3,} 10) ⁻		s been designed) psf bottom			-		SEA	1 1 1
	,	=-118/274, 6-7=-107/2	· (chord live loa	d nonconcurrent	with any	other live loa	ds.			:	SLA	
	,	-75/166, 9-10=-57/96,	11) '	^r This truss h	as been designe	d for a liv	e load of 20.0)psf		=	:	0363	22 : :
	10-11=-73/79, 1-2		(F.O.)	on the botton	n chord in all area	as where	a rectangle			-			
BOT CHORD	,	20=-32/58, 18-19=-32	150'		y 2-00-00 wide w		veen the botto	om				1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -	
		17=-32/58, 14-16=-32 13=-32/58, 11-12=-32		chord and an	y other members	S.					10	C. SNO.	-ERIA S
WEBS		7=-213/78, 4-18=-186									1	SEA 0363	E. P.
	,	0=-222/176, 7-14=-21	,								1	CA C	BEN
	,	2=-143/115, 2-21=-27	,									A. C	
	2.0 100,00,0											2011111	1111
												Januar	/ 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	D03	Common	2	1	Job Reference (optional)	163106374

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:07 ID:ifG_WZnxWFZvvYeQQWhVIryEMnq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-6-0

3-9-7

Page: 1

9-8-9

9-8-9

Scale = 1:50.7

Scale = 1.50.7												
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.61 0.73	DEFL Vert(LL) Vert(CT)	in -0.21 -0.42	(loc) 6-7 6-7	l/defl >752 >374	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.30	Horz(CT)	0.01	5	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2018/TP	PI2014 Matrix-MSH							Weight: 89 lb	FT = 20%
BCDL	10.0										Weight. 09 lb	FT = 2078
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 7=225 (LC Max Uplift 5=-63 (LC Max Grav 5=552 (LC	cept end verticals. applied or 6-0-0 oc 7=0-3-8 C 11) C 14), 7=-47 (LC 14)	ed or 7) Or 8) Th 90 10 10 10 10 10 10 10 10 10 10 10 10 10	his truss has been designed ord live load nonconcurren This truss has been design to the bottom chord in all are 06-00 tall by 2-00-00 wide o hord and any other member ne H2.5A Simpson Strong- commended to connect tru PLIFT at jt(s) 5 and 7. This id does not consider lateral his truss is designed in acco ternational Residential Cod 802.10.2 and referenced st	t with any ed for a liv as where will fit beth s. Tie conne ss to bear connection forces. ordance w e section	other live load ve load of 20.1 a rectangle ween the bott ctors ing walls due n is for uplift vith the 2018 s R502.11.1 a	0psf om e to only					
FORCES	(lb) - Maximum Com Tension		LUAD	CASE(S) Standard								
TOP CHORD	1-2=-142/22, 2-3=-4 4-5=-555/77, 1-7=-1	,	40,									
BOT CHORD	6-7=-138/468, 5-6=-											
WEBS	2-6=-246/180, 3-6=- 2-7=-577/183	45/126, 4-6=-12/43 ⁻	1,									
this design 2) Wind: ASC Vasd=103i Cat. II; Exp zone and (5-1-7 to 8- (2E) 12-3- exposed ;	ed roof live loads have 1. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br p B; Enclosed; MWFR C-C Exterior(2E) 2-1-7 8-5, Exterior(2R) 8-8-5 15 to 15-3-15 zone; ca end vertical left and rig and forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exteric to 5-1-7, Interior (1 5 to 12-3-15, Exteric intilever left and rig ght exposed;C-C for	or) r						4	i	ORTH CA	L
Lumber D0 3) TCLL: AS0 Plate DOL DOL=1.15 Cs=1.00; 0	OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (.=1.15); Pf=20.0 psf (L ·); Is=1.0; Rough Cat E	IL=1.60 roof LL: Lum DOL≕ um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	1.15);							A A A A A A A A A A A A A A A A A A A		EEP. K

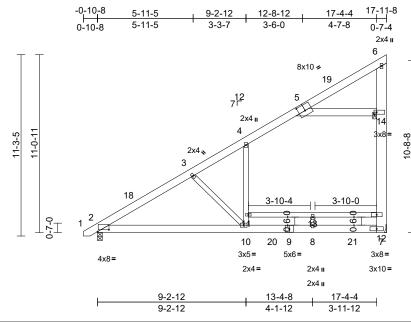
- 5-1-7 to 8-8-5, Exterior(2R) 8-8-5 to 12-3-15, Exterior (2E) 12-3-15 to 15-3-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

A. GILIN

GILB

January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

A.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	E01	Monopitch	9	1	Job Reference (optional)	163106375

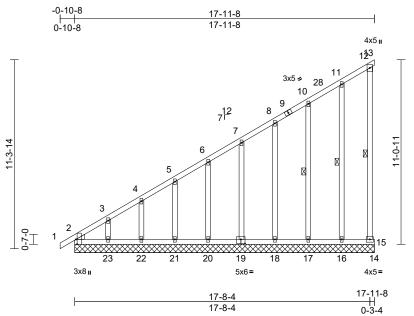
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:07 ID:ffZIL62A0Cf9NXbPWMZuymyEMmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-8-8,0-1-7], [5:0-5-0,0-4-8], [14:0-2-0,0-1-8]

Scale = 1:71.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.71 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.40 -0.84 0.01	(loc) 10-17 8-10 7	I/defl >529 >253 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	 2x6 SP No.2 *Excep 2.0E 2x6 SP No.2 2x4 SP No.3 *Excep 6-7:2x8 SP 2400F 2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 14 (size) 2=0-3-8, 7 Max Horiz 2=390 (LC Max Uplift 7=-72 (LC Max Grav 2=821 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-1111 1-6=-280/1076 2-10=-189/960, 8-10 	t* 5-14:2x6 SP No.2, .0E athing directly applied applied or 10-0-0 oc 7= Mechanical C 14) 14) C 21), 7=1018 (LC 21 pression/Maximum /0, 3-4=-748/0, !=-34/304, 7-8=-34/30 1=0/793, 4-11=0/829 :=-29/76, 8-13=0/70, 2=-823/184,	3) 4) for 5) 6) 7)) 8) 9) 9) 0, 4 10	Plate DOL= DOL=1.15); Cs=1.0; Ct Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end This truss ha chord live lo * This truss la chord live lo * This truss la chord and an Refer to gird Provide mee bearing plate 7.) This truss is International	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with unit load placed on , supported at two as been designed fad nonconcurrent to as been designed m chord in all area by 2-00-00 wide win y other members. er(s) for truss to tru- thanical connection e capable of withst designed in accorn Residential Code nd referenced star	Lum DC B; Fully been col or great at roof I other li the bot points, or a 10. with any for a liv s where II fit betv uss conn h (by oth anding 7 dance w sections	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo bad of 20.0 p ve loads. com chord, 12 5-0-0 apart. Dipsf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss '2 lb uplift at ith the 2018 & R502.11.1 at	e 9; f live ssf on 3-4-8 ads. 0psf tom to				TH CA	ROLINI
Vasd=103 Cat. II; Ex zone and 2-3-15 to cantilever for memb	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(xp B; Enclosed; MWFR: C-C Exterior(2E) -0-8- 14-7-14, Exterior(2E) 1 r left exposed ; end vert vers and forces & MWFI DOL=1.60 plate grip DO	CDL=6.0psf; h=25ft; S (envelope) exterior 1 to 2-3-15, Interior (1 4-7-14 to 17-7-14 zol ical left exposed;C-C RS for reactions shov	ne;								A A A A A A A A A A A A A A A A A A A	SEA 0363	22 ER. Kul

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-3-15, Interior (1) 2-3-15 to 14-7-14, Exterior(2E) 14-7-14 to 17-7-14 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GILB A. GIL January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	163106376

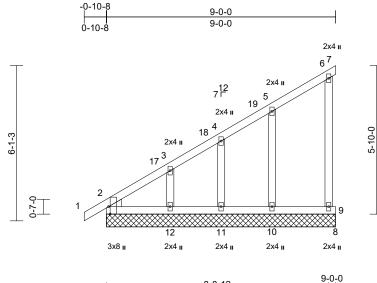
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:07 ID:zAiMM0ntL8gs1V0uOudQFwyEMjz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

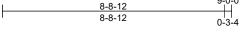
Page: 1

Scale = 1:69			Г—		17-8-4					0-3-4				
	(X, Y): [2:0-3-8,Edge],	[19:0-3-0,0-3-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.42 0.14	Vert(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=17-11-6 16=17-11 20=17-11 20=17-11 21=17-11 22=17-11 24=17-11 24=17-11 24=17-11 Max Horiz 2=387 (LC Max Uplift 2=-73 (LC 16=-60 (L 18=-54 (L 20=-50 (L 18=-33 (L 24=-73 (L 16=233 (L 16=233 (L 16=233 (L 16=233 (L 16=233 (L 16=233 (L 16=233 (L 16=133 (L 22=159 (L))	applied or 6-0-0 oc 12-15, 10-17, 11-16 3, 15=17-11-8, -8, 17=17-11-8, -8, 19=17-11-8, -8, 21=17-11-8, -8, 21=17-11-8, -10, 15=-65 (LC 13) C 14), 17=-42 (LC 14) C 14), 21=-54 (LC 14) C 14), 21=-54 (LC 21) C 14), 15=-115 (LC 21) C 24), 15=115 (LC 22) C 24), 21=169 (LC 22	B(d or W N(1) 1) 1), 2) 4), 2), 2), 3) (4), 2), 3) (4), 2) (4), 2) (4), 2)	Vasd=103r Cat. II; Exp zone and C 2-0-0 to 14 cantilever I right expos for reaction DOL=1.60 Truss des only. For s see Standa or consult TCLL: ASC Plate DOL=1.15; Cs=1.00; C	1-2=0/26, 2-3=-32 4-5=-279/364, 5-6 7-8=-215/282, 8-1 10-11=-195/236, 12-13=-13/0, 12-1 2-23=-190/265, 2 21-22=-136/215, 18-20=-136/215, 18-20=-136/215, 16-17=-136/214, 3-23=-135/104, 4 6-20=-127/85, 7-1 10-17=-196/115, E7-16; Vult=130m mph; TCDL=6.0psf; 0; B; Enclosed; MWf C-C Corner(3E) -0- -11-8, Cor	S=-251/33 0=-201/2 11-12=-1 5=-96/71 2-23=-13 20-21=-1 17-18=-1 15-16=-1 -22=-125 9=-127/8 11-16=-2 ph (3-sec BCDL=6 FRS (env 10-8 to 2- 14-11-8 tr ed; end v 5 s and for DOL=1.60 s in the p nd (norm End Deta asigner a: of (roof LL (Lum DC (Lum DC t B; Fully)	87, 6-7=-229/3 254, 22/147, 1 6/215, 36/215, 36/214, 36/214, 14-15 36/214, 14-15 36,214, 14-15 36,8-18=-132 28/105	5=0/0 7/86, /81, 2N) re; d t S s s ble, PI 1. 1.15 5;	cho 10) * Tr 3-0i cho 11) Pro bea 2, 6 upli 20, upli 20, upli join 12) This Inte R8& LOAD (rd live lc his truss the bottc 6-00 tall rd and a vide me ring plat 5 lb upli ft at join t 2. s truss is rmationa 22.10.2 a CASE(S	oad nor has be m cho by 2-0 any oth chanic te capa ft at joi t 22, 5- t 17, 60 s desig al Resid and ref) Star	een designed for rd in all areas wh 0-00 wide will the er members. al connection (by able of withstandii nt 15, 109 lb uplif 4 lb uplift at joint 1 0 lb uplift at joint 1 0 lb uplift at joint 1 ned in accordance dential Code sect erenced standard ndard	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 73 lb uplift at joint ft at joint 23, 37 lb 21, 50 lb uplift at joint ft at joint 18, 42 lb 16 and 73 lb uplift at we with the 2018 ions R502.11.1 and J ANSI/TPI 1.	
FORCES	22=139 (LC 21), 23=139 (LC 24), 24=226 (LC 29) (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum 5) This tru- load of overhau 6) All plate 7) Gable r				has been designed for greater of min roof live .0 psf or 1.00 times flat roof load of 20.0 psf on s non-concurrent with other live loads. are 2x4 MT20 unless otherwise indicated. uires continuous bottom chord bearing. ds spaced at 2-0-0 oc.									

- Gable requires continuous bottom chord bearing. 7)
- 8) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


January 19,2024

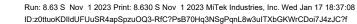
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	E03	Monopitch Supported Gable	1	1	Job Reference (optional)	163106377

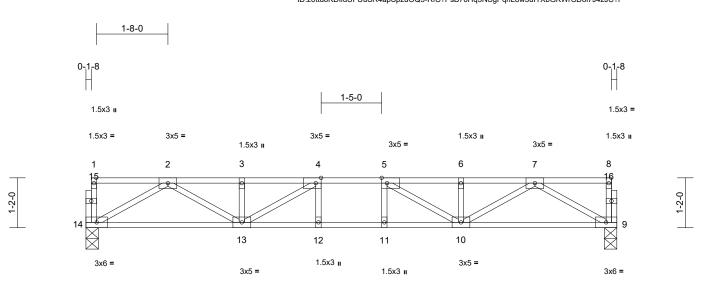
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:08 ID:J7VFPjr0AgI98GvrASDby_yEMju-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.3

Plate Offsets (X	, Y):	[2:0-3-8,Edge]
------------------	-------	----------------


- (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.13 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=9-0-0, § 11=9-0-0, Max Horiz 2=200 (LC Max Uplift 2=-17 (LC 10=-61 (L 12=-88 (L Max Grav 2=168 (LC) 10=280 (I 12=219 (I (lb) - Maximum Com Tension 1-2=0/26, 2-3=-160/. 4-5=-117/183, 5-6=- 6-9=-120/33	applied or 10-0-0 oc 9=9-0-0, 10=9-0-0, 12=9-0-0, 13=9-0-0 C 13), 13=200 (LC 13) ; 10), 9=-27 (LC 11), C 14), 11=-37 (LC 14) C 14), 13=-17 (LC 10 C 29), 9=146 (LC 21), LC 21), 11=194 (LC 2 cC 28), 13=168 (LC 2 pression/Maximum 263, 3-4=-128/206, 92/119, 6-7=-13/0, 2=-68/122, 8-9=0/0	2) 3) 1), 2) 4), (1), 5) 9) 6) 7) 8) 9) 10, 10, 10, 10, 10, 10, 10, 10,	Vasd=103mp Cat. II; Exp E zone and C-(2-1-8 to 6-0-) cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable requiri Gable studs This truss ha chord live loa) * This truss ha	7-16; Vult=130mp bh; TCDL=6.0psf; J 3; Enclosed; MWFI C Corner(3E) -0-11 0, Corner(3E) 6-0- t and right exposed d;C-C for members shown; Lumber D ned for wind loads ids exposed to win d Industry Gable E tailified building des 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1.15); Pf=20.0 psf (1.15); Pf=20.0 psf (1.15); Pf=20.0 psf (1.10); Rough Cat e1.10 snow loads have the spaced at 2-0-0 oct is been designed fad nonconcurrent with a 2x4 MT20 unless es continuous bott spaced at 2-0-0 oct is been designed fad nonconcurrent with a conditional areas by 2-00-00 wide with by other members.	BCDL=6 RS (env) -8 to 2- 0 to 9-0 to 2- 0 to 9-0 d ; end v s and fo OL=1.6 in the p id (norm nd Deta signer a f (roof LL Lum DC B; Fully been col or great at roof I other li other li other li other li other li othany for a liv s where	i.Opsf, h=25ft; lelope) exterior 1-8, Exterior(2 0 zone; vertical left and rcces & MWFR) plate grip lane of the tru al to the face) ils as applicat s per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof pad of 20.0 ps ve loads. se indicated. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle	r 2N) d S ss , ole, l, l.15 i, i, is live of on ds. psf	LOAD (ernationa D2.10.2 CASE(S	al Resi and ref) Sta	ferenced standar ndard	ANSI/TPI 1.
			12		e or shim required truss chord at joint)			in the second	ALC A. C	EER. KINN


818 Soundside Road Edenton, NC 27932

min Ginn January 19,2024

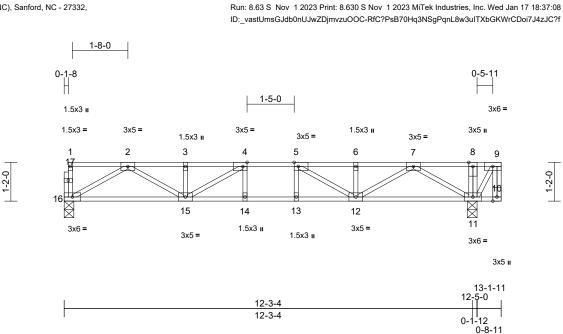
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F01	Floor	4	1	Job Reference (optional)	163106378

12-5-0 12-5-0 Scale = 1:26.9

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

	,, i). [4.0-1-0,Euge],	, [0:0-1-0,Euge]		-							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.63 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%F, 11%E
BCDL	5.0	Code	IRC2010/1F12014	Maultz-MSH			 			Weight. 04 lb	FI - 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	· · ·										
TOP CHORD	Structural wood she		ed or								
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing.		c								
REACTIONS	()										
500050	Max Grav 9=663 (LC										
FORCES	(lb) - Maximum Corr Tension	pression/Maximum									
TOP CHORD	1-14=-72/0, 8-9=-72 2-3=-1632/0, 3-4=-1 5-6=-1632/0, 6-7=-1	632/0, 4-5=-1934/0,									
BOT CHORD	13-14=0/996, 12-13	=0/1934, 11-12=0/19	934,								
WEBS	10-11=0/1934, 9-10 7-9=-1147/0, 2-14=- 2-13=0/743, 6-10=-2 5-10=-506/0, 4-13=- 5-11=-65/85	1147/0, 7-10=0/743 206/7, 3-13=-206/7,	,							mmm	11111
NOTES										"TH CA	ROY
 Unbalance this design 	ed floor live loads have	e been considered fo	or						Sec.	ON EESS	6.10.
	are 1.5x3 MT20 unless	s otherwise indicated	d.					4	25	in the second se	Then
	is designed in accorda								4		
	nal Residential Code search and referenced stand		nd					-		SEA	L i I
4) Recomme	end 2x6 strongbacks, o	n edge, spaced at								0363	22
	oc and fastened to eac 3") nails. Strongbacks		alle					-			1 3
	ter ends or restrained		ans						1	N.En.	Richi
LOAD CASE	S) Standard								A A A A A A A A A A A A A A A A A A A	NGIN C A C	EFERAN
									1	1, A. C	ILB



A. GI A. GILLIN January 19,2024

Page: 1

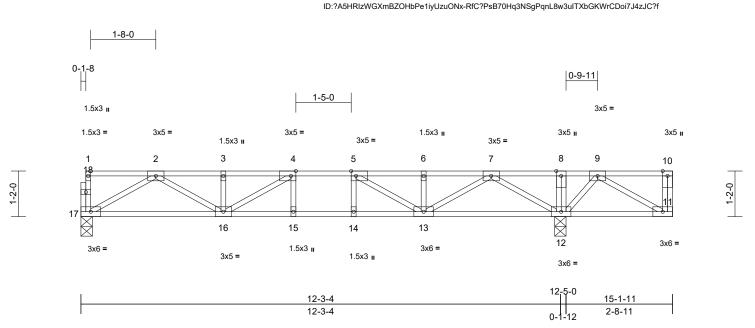
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F02	Floor	1	1	Job Reference (optional)	163106379

Scale = 1:34.6

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

			-									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.31	Vert(LL)	-0.08	13-14	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.63	Vert(CT)	-0.11	13-14	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	11	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 71 lb	FT = 20%F, 11%E
_		-									5	- ,
LUMBER												
TOP CHORD												
BOT CHORD	()											
WEBS	2x4 SP No.3(flat)											
	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
BOT CHORD	0 0 ,	applied or 10-0-0 o	C									
	0											
REACTIONS	• •											
	•)									
FORCES		pression/Maximum										
TOP CHORD												
		624/0, 7-8=-28/10,										
		-0/1021 12 14-0/10	194									
BUICHURD	,	,	931,									
WEBS	,	,	/0									
WEBS	,	,	10,									
	,	, , ,									munn	un,
											"TH CA	Rollin
NOTES	,	,								15	RIL	
	ed floor live loads have	e been considered fo	r							5.	OFFESS	10 TN 3
,									2	55		Bill
	are 3x5 MT20 unless o	otherwise indicated.									2 -	
3) This truss	s is designed in accorda	ance with the 2018							-		CEA	1 2 2
Internatio	nal Residential Code s	ections R502.11.1 a	nd							:		• -
	2 and referenced stand								=		0363	22 : =
									-	1		
										-	N	- 1 S - 2
			alls							11	N.S.Now	FFR. X S
											P. GIN	E. A.S
,		ickwards.								1	1.CAC	II BEIN
LOAD CASE	(S) Standard										111. 6	
											2 min	10.0001
OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) All plates 3) This truss Internation R802.10.2 4) Recomme 10-00-00 (0.131" X at their ou 5) CAUTION	2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 11=0-3-8, Max Grav 11=751 (I (Ib) - Maximum Con Tension 1-16=-72/0, 9-10=-1 2-3=-1630/0, 3-4=-1 5-6=-1624/0, 6-7=-1 8-9=-28/10 15-16=0/995, 14-15 12-13=0/1931, 11-1 8-11=-165/0, 7-11=- 7-12=0/745, 2-15=0 3-15=-207/7, 5-12=- 4-14=-67/84, 5-13=- xed floor live loads have in. are 3x5 MT20 unless of is designed in accordanal Residential Code s	cept end verticals. ⁷ applied or 10-0-0 or ¹ , 16=0-3-8 LC 1), 16=662 (LC 3 hpression/Maximum 6/0, 1-2=-4/0, 630/0, 4-5=-1931/0, 624/0, 7-8=-28/10, =0/1931, 13-14=0/19 2=0/989, 10-11=0/0 1112/0, 2-16=-1146 (742, 6-12=-210/5, -518/0, 4-15=-504/0, 61/91, 9-11=-18/50 e been considered for botherwise indicated. ance with the 2018 ections R502.11.1 at lard ANSI/TPI 1. an edge, spaced at ch truss with 3-10d s to be attached to w by other means.	c) 931, /0, or nd								SEA 0363	EER A



January 19,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F03	Floor		1	1	Job Reference (optional)	163106380
Carter Components (Sanford, NC	c), Sanford, NC - 27332,		Run: 8.63 S Nov 12	023 Print: 8.6	530 S Nov 1	2023 MiTek Industries, Inc. Wed Jan 17 18:37:08	Page: 1

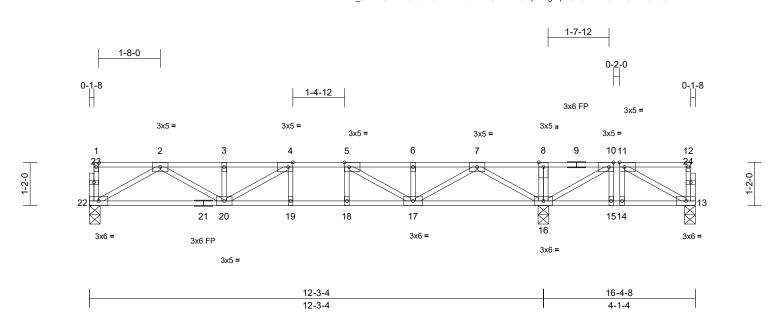
Scale = 1:29.5

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

	(X, T). [4:0-1-0,Euge]	, [0.0 + 0,Eugo]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.38 0.66 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.11 0.03	(loc) 14-15 14-15 12	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH					-		Weight: 80 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex		ed or									
REACTIONS	•	, 17=0-3-8										
	Max Grav 12=1002		3)									
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-17=-72/0, 10-11=- 2-3=-1603/0, 3-4=-1 5-6=-1552/0, 6-7=-1 8-9=0/373, 9-10=0/0	603/0, 4-5=-1882/0, 552/0, 7-8=0/373,										
BOT CHORD	16-17=0/980, 15-16	=0/1882, 14-15=0/18										
WEBS	8-12=-133/0, 7-12=- 7-13=0/798, 2-16=0 3-16=-217/4, 5-13=-	3=-67/905, 11-12=-1 -1178/0, 2-17=-1129/ /727, 6-13=-207/17, -612/0, 4-16=-479/36 -55/113, 9-11=0/165,	Ю, ,								WITH CA	ROLIN
NOTES										K2	OFESS	Marin
,	ed floor live loads have	e been considered fo	r						4	i	1	
this design 2) All plates	n. are 3x5 MT20 unless o	otherwise indicated.									CE A	1 1 1
3) This truss Internation	is designed in accordanal Residential Code s and referenced stand	ance with the 2018 ections R502.11.1 a	nd								SEA 0363	• -
10-00-00 (0.131" X	end 2x6 strongbacks, c oc and fastened to eac 3") nails. Strongbacks iter ends or restrained	ch truss with 3-10d s to be attached to w	alls								A C A C	EERCALIUM
5) CAUTION	I, Do not erect truss ba										11, A. C	allbuin
LOAD CASE(S) Standard										CA. C	1111

January 19,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
231201	149	F04	Floor	3	1	Job Reference (optional)	163106381

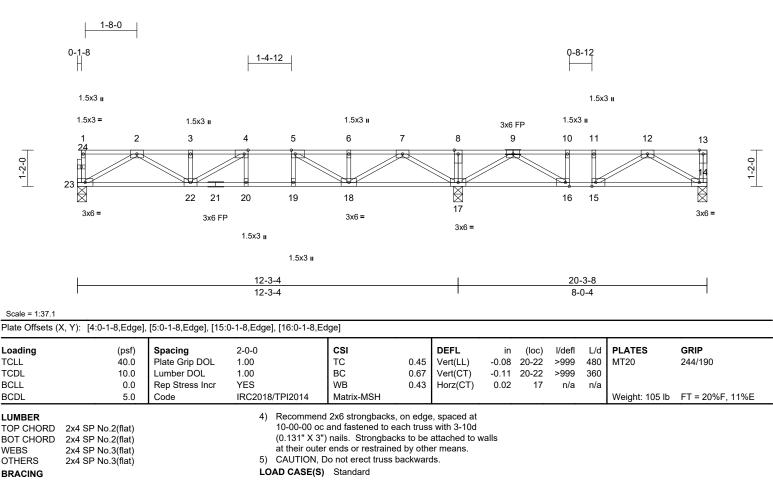
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:09 ID:m_6khsHCNDve3EiONOzZTmzuONY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge], [10:0-1-8,Edge], [11:0-1-8,Edge]

	, . ,. [9-1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.47	Vert(LL)	-0.08	19-20	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.66	Vert(CT)	-0.11	19-20	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.42	Horz(CT)	0.02	16	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 87 lb	FT = 20%F, 11%E
LUMBER			4) This truss is	s designed in accor	dance w	ith the 2018						
TOP CHORD	2x4 SP No.2(flat)		Internationa	al Residential Code	sections	s R502.11.1 a	and					
BOT CHORD	2x4 SP No.2(flat)			and referenced sta								
WEBS	2x4 SP No.3(flat)			d 2x6 strongbacks								
OTHERS	2x4 SP No.3(flat)			c and fastened to e								
BRACING				") nails. Strongbac			valls					
TOP CHORD	Structural wood she			er ends or restraine Do not erect truss l								
	6-0-0 oc purlins, ex		, , ,		Dackwar	15.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	LOAD CASE(S) Standard								
REACTIONS	0	16=0-3-8, 22=0-3-8										
	Max Uplift 13=-193 (
	Max Grav 13=136 (L	· · · ·	1)									
	22=581 (L		- //									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	00/0 4 0 4/0										
TOP CHORD	1-22=-72/0, 12-13=- 2-3=-1367/0, 3-4=-1											
	5-6=-944/0, 6-7=-94											
	8-10=0/950, 10-11=-											
BOT CHORD	,	,	457.									
	17-18=0/1457, 16-17											1.41215
	14-15=-420/88, 13-1	4=-420/88										1111
WEBS	8-16=-185/0, 7-16=-	1283/0, 2-22=-984/0),								TH CA	Roin
	7-17=0/891, 2-20=0/									- N	A	in the
	3-20=-219/0, 5-17=-									2.2	FESS	Philad
	4-19=-94/26, 5-18=-	,	·						2	1	1 12	and the
	11-13=-96/484, 11-1	4=-186/0, 10-15=0/2	203								i d'	N 1 2
NOTES									CONTRACTOR OF		SEA	L 1 E
	ed floor live loads have	been considered fo	r						=			• -
this design									-		0363	22
, ,	are 1.5x3 MT20 unless		1.						-	1	•	1 E
3) Une H2.5/	A Simpson Strong-Tie	connectors								-	1994 (March 1997)	


 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces. January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC
	23120149	F05	Floor	1	1	I63106382 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:09 ID:x5Hu?cP6nbl4tw1VWBg8Q4zuONN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TOP CHORD		I wood sheathing directly applied or
	6-0-0 oc p	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	14=0-3-8, 17=0-3-8, 23=0-3-8
	Max Grav	14=376 (LC 4), 17=1326 (LC 1),
		23=588 (LC 3)
FORCES	(lb) - Max	timum Compression/Maximum
	Tension	
TOP CHORD	1-23=-72/	/0, 13-14=-69/0, 1-2=-4/0,
	2-3=-1390	0/0, 3-4=-1390/0, 4-5=-1498/0,
	5-6=-1003	3/0, 6-7=-1003/0, 7-8=0/983,
	8-10=-61	1/983, 10-11=-611/198,
	11-12=-6	11/198 12-13=0/0

11-12=-611/198, 12-13=0/0 BOT CHORD 22-23=0/867, 20-22=0/1498, 19-20=0/1498, 18-19=0/1498, 17-18=-114/258, 16-17=-518/251, 15-16=-198/611, 14-15=-42/498 WEBS 8-17=-201/0, 7-17=-1267/0, 2-23=-998/0, 7-18=0/899, 2-22=0/610, 6-18=-184/18, 3-22=-223/0, 5-18=-658/0, 4-22=-248/88, 4-20=-102/22, 5-19=0/125, 9-17=-894/0,

3-22=-223/0, 5-18=-58/0, 4-22=-248/88, 4-20=-102/22, 5-19=0/125, 9-17=-894/0, 12-14=-576/48, 9-16=0/612, 12-15=-182/131, 10-16=-248/0, 11-15=-60/81

NOTES

 Unbalanced floor live loads have been considered for this design.

2) All plates are 3x5 MT20 unless otherwise indicated.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. SEAL 036322 January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

ſ	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC
	23120149	F06	Floor	1	1	I63106383 Job Reference (optional)

BCLL

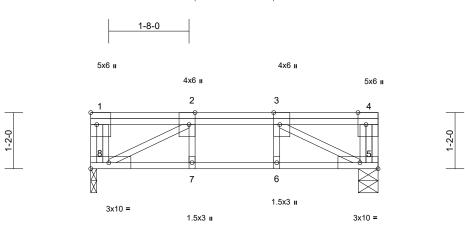
1)

2)

3)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed. Jan 17 18:37:09 Carter Components (Sanford, NC), Sanford, NC - 27332, Page: 1 ID:qtWPq ScrqoWMXLHI1I4awzuONJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-8-0 0-3-12 0-1-8 1-9-12 1.5x3 II 1.5x3 u 3x6 FP 1.5x3 = 1.5x3 **I** 1.5x3 u 1.5x3 u 3 2 4 5 6 7 8 9 1011 12 13 14 ł 12 1-2-0 2 -15 24 Ř × 23 22 21 20 18 17 16 19 3x6 = 3x6 = 1.5x3 u 1.5x3 ı 3x6 = 3x6 FP 3x6 = 10-10-12 20-3-8 10-10-12 9-4-12 Scale = 1:37.1 Plate Offsets (X, Y): [4:0-1-8,Edge], [11:0-1-8,Edge], [16:0-1-8,Edge], [23:0-1-8,Edge] Loading Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) TCLL 40.0 Plate Grip DOL 1.00 тс 0.50 Vert(LL) -0.06 23-24 >999 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.41 Vert(CT) -0.08 23-24 >999 360 0.0 Rep Stress Incr YES WB 0.38 Horz(CT) 0.02 15 n/a n/a BCDL 5.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 105 lb FT = 20%F, 11%E LUMBER 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d TOP CHORD 2x4 SP No.2(flat) (0.131" X 3") nails. Strongbacks to be attached to walls 2x4 SP No.2(flat) BOT CHORD at their outer ends or restrained by other means. 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) 5) CAUTION, Do not erect truss backwards. OTHERS BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 15=0-3-8, 19=0-5-8, 24=0-3-8 Max Grav 15=449 (LC 4), 19=1343 (LC 1), 24=499 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-24=-71/0, 14-15=-72/0, 1-2=-4/0, 2-3=-1090/0, 3-4=-1090/0, 4-5=-767/0, 5-6=-767/0, 6-7=0/1181, 7-8=0/1181, 8-9=-758/259, 9-11=-758/259, 11-12=-886/54, 12-13=-886/54, 13-14=0/0 BOT CHORD 23-24=0/715, 22-23=0/1090, 20-22=0/1090, 19-20=-241/119, 18-19=-535/287, 17-18=-54/886, 16-17=-54/886, 15-16=0/624 WEBS 7-19=-197/0, 6-19=-1161/0, 2-24=-822/0, 6-20=0/802, 2-23=0/437, 5-20=-184/10, 3-23=-186/0 4-20=-504/0 4-22=-11/63 8-19=-1052/0, 13-15=-721/0, 8-18=0/701, Vinnerson 13-16=-83/307. 9-18=-186/0. 12-16=-95/54. THUR I'V 11-18=-412/0, 11-17=-46/69 SEAL NOTES 036322 Unbalanced floor live loads have been considered for this design. All plates are 3x5 MT20 unless otherwise indicated. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. G minin January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F07	Floor	1	1	Job Reference (optional)	163106384

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:10 ID:7DR3INY?C_hWicNdf?NjMPzuONC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-7-10

Scale = 1:23.9

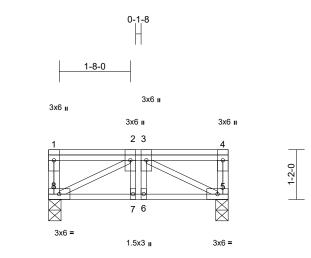
Plate Offsets (X, Y): [2:0-3-0,Edge], [3:0-3-0,Edge], [4:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.25	Vert(LL)	-0.02	7-8	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.34	Vert(CT)	-0.03	7-8	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.27	Horz(CT)	0.01	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH		. ,					Weight: 42 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she											
	5-11-10 oc purlins,											
BOT CHORD	0 0 ,	applied or 10-0-0 o	С									
REACTIONS	bracing. (size) 5=0-4-15	8=0-1-7										
	Max Grav 5=727 (L											
FORCES												
FORCES (Ib) - Maximum Compression/Maximum Tension												
TOP CHORD	1-8=-236/0, 4-5=-23	6/0, 1-2=0/0, 2-3=-9	95/0,									
	3-4=0/0											
BOT CHORD	7-8=0/995, 6-7=0/99	,										
WEBS	3-5=-1117/0, 2-8=-1	117/0, 2-7=-6/42,										
	3-6=-6/42											
NOTES												
	ed floor live loads have	e been considered fo	or									
this design	n. lechanical connection	(by others) of truce t	•									
	ate at joint(s) 8.		0									1111
	is designed in accorda	ance with the 2018									TH CA	Boilt
	nal Residential Code s		ind							A	A y de	11.4
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.								50	FESS	N. Som
4) Recommend 2x6 strongbacks, on edge, spaced at												
10-00-00 oc and fastened to each truss with 3-10d												
	3") nails. Strongbacks		alls						=		SEA	L : E
	ter ends or restrained	by other means.							=			• -
LOAD CASE(S) Standard								1		0363	22 : 2

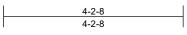
Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 5-8=-10, 1-4=-250

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F08	Floor	1	1	Job Reference (optional)	163106385


1-2-0

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:10 ID:gk9xm9b0Ov_YTao53?vLj1zuOKZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.07	Vert(LL)	0.00	7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.09	Vert(CT)	0.00	5-6	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 31 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)	•										

RRACING

BRACING		
TOP CHORD		wood sheathing directly applied or
	4-2-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-8, 8=0-3-8
	Max Grav	5=218 (LC 1), 8=218 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-8=-85/0	, 4-5=-85/0, 1-2=0/0, 2-3=-247/0,

TOP CHORD	1-8=-85/0, 4-5=-85/0, 1-2=0/0, 2-3=-2
	3-4=0/0
BOT CHORD	7-8=0/247, 6-7=0/247, 5-6=0/247
WEBS	3-5=-279/0, 2-8=-279/0, 2-7=-15/39,
	3-6=-15/39

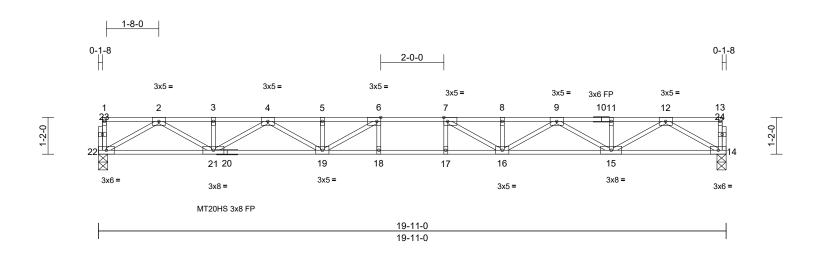
NOTES

1) Unbalanced floor live loads have been considered for this design.

This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DRB GROUP - 86 FaNC	
23120149	F09	Floor	3	1	Job Reference (optional)	163106386

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:10 ID:d68p6_?an8FzZGEIATJyIPzuO4X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.6

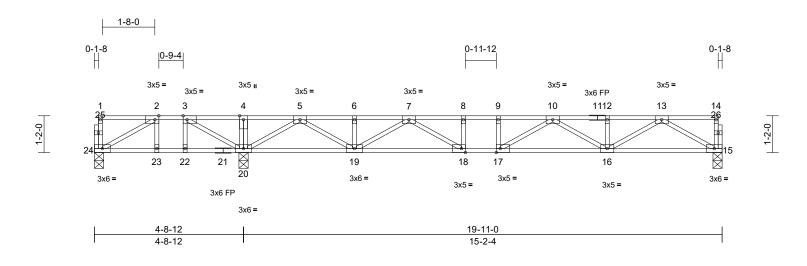
Plate Offsets (X, Y): [6:0-1-8.Edge], [7:0-1-8.Edge]

Plate Offsets (X, Y): [6:0-1-8,Edge],	[7:0-1-8,Edge]		-							-	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.73 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.44 0.07	(loc) 17-18 17-18 14	l/defl >747 >542 n/a	L/d 360 240 n/a	PLATES MT20HS MT20 Weight: 100 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E: No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she		10-00-00 oc (0.131" X 3" at their oute LOAD CASE(S)	d 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Standard	ach truss ks to be	with 3-10d attached to v	valls					
BOT CHORD	TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.											
	0											
FORCES	(lb) - Maximum Com Tension											
TOP CHORD	1-22=-48/0, 13-14= 2-3=-2013/0, 3-4=-2 5-6=-3118/0, 6-7=-3: 8-9=-3118/0, 9-11=- 12-13=-3/0 21-22=0/1135, 19-2'	013/0, 4-5=-3118/0, 371/0, 7-8=-3118/0, 2012/0, 11-12=-2012										
DOT CHORD	17-18=0/3371, 16-17	,	· ·								mm	1111.
WEBS	14-15=0/1136 WEBS 12-14=-1311/0, 2-22=-1310/0, 12-15=0/1023, 2-21=-01024, 11-15=-112/0, 3-21=-113/0, 9-15=-762/0, 4-21=-761/0, 9-16=0/530, 4-19=0/530, 8-16=-157/37, 5-19=-157/37, 7-16=-567/67, 6-19=-567											
NOTES	7-17=-85/108								Ξ		SEA	L 🕴 🗄 🗌
 Unbalance this design All plates a All plates a All plates a This truss Internation 	ed floor live loads have n. are MT20 plates unless are 1.5x3 MT20 unless is designed in accorda al Residential Code se and referenced stand	s otherwise indicated otherwise indicated. ance with the 2018 ections R502.11.1 an							LI IV.	A A A A A A A A A A A A A A A A A A A	0363	ERRALIUM

- 3)
- All plates are 1.5x3 MT20 unless otherwise indicated. 4)
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI Children and Child January 19,2024

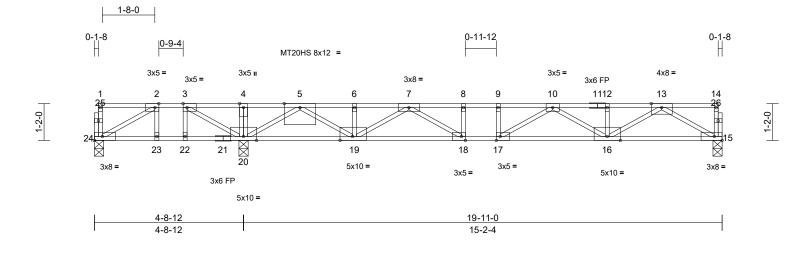
Job	Truss	Truss Type Qty Ply DRB GROUP - 86 F		DRB GROUP - 86 FaNC		
23120149	F10	Floor	2	1	Job Reference (optional)	163106387

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:10 ID:9B6sTSCd?3GhUjSM6rbixnzuO4H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.6

Dista Offecto	(V. V), [0,0.4.0 Edge]	[2.0.4.0 Edwal [47	0 4 0 Edwal [40:0 4	0 Educi								
Plate Offsets	(X, Y): [2:0-1-8,Edge],	, [3:0-1-8,Edge], [17: T	0-1-8,Edgej, [18:0-1	-8,Edgej	-						1	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.56 0.50 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.14 0.02	(loc) 16-17 16-17 15	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc , 20=0-3-8, 24=0-3-8 (LC 4)	ed or LIOAD CAS	ss is designed in accc onal Residential Cod 0.2 and referenced st nend 2x6 strongbacks 0 oc and fastened to 6 X 3") nails. Strongba outer ends or restrain N, Do not erect truss E(S) Standard	e sections andard AN s, on edge each truss cks to be ed by oth	R502.11.1 a NSI/TPI 1. e, spaced at s with 3-10d attached to v er means.						
FORCES	24=105 (l	_C 3)	,									
TOP CHORD	CES (Ib) - Maximum Compression/Maximum Tension											
WEBS	23-24=-395/62, 22-2 20-22=-395/62, 19-2 17-18=0/1559, 16-1 4-20=-103/0, 3-20=-	20=-41/87, 18-19=0/ 7=0/1519, 15-16=0/3	746								TH CA	ROLIN
	2-23=-134/0, 3-22=0 13-15=-860/0, 5-19= 6-19=-117/0, 12-16= 10-16=-319/0, 7-18= 8-18=-154/0, 9-17=-	=0/828, 13-16=0/583 =-104/0, 7-19=-563/0 =0/439, 10-17=-116/	,),						4	in	SEA	
 this design 2) All plates 3) One H2.5 recommendation UPLIFT a 	ed floor live loads have	been considered for s otherwise indicated connectors to bearing walls due ion is for uplift only a	i. to						111102	A MANAGER	0363	ER. Kun


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

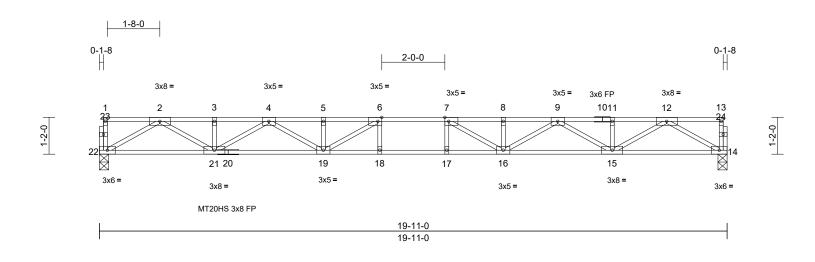
January 19,2024

Job	Truss	Truss Type Qty Ply		Ply	DRB GROUP - 86 FaNC						
23120149	F10A	Floor	1	1	Job Reference (optional)	163106388					

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Wed Jan 17 18:37:10 ID:9B6sTSCd?3GhUjSM6rbixnzuO4H-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.6

Ocale = 1.50.0	-												
Plate Offsets (X, Y): [2:0-1-8,Edge],	, [3:0-1-8,Edge], [17:0)-1-8,Edg	e], [18:0-1-8,Ec	lge], [19:0-4-12,Eo	dge]							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.86 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.33 0.05	(loc) 16-17 16-17 15	l/defl >755 >549 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 103 lb	GRIP 244/190 187/143 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E(SP No.2(flat) 2x4 SP No.2(flat) *E 2400F 2.0E(flat) 2x4 SP No.3(flat) *E (flat) 2x4 SP No.3(flat) Structural wood she 5-11-12 oc purlins, Rigid ceiling directly bracing.	(flat) *Except* 11-14:2 Except* 21-15:2x4 SP Except* 19-5:2x4 SP N eathing directly applie except end verticals. applied or 6-0-0 oc , 20=0-3-8, 24=0-3-8 (LC 4)	3) 2x4 4) No.2 5) d or 7) L(1)	 All plates are One RT8A M truss to bear connection is forces. This truss is International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, D CAUTION, D 	1.5x3 MT20 unle liTek connectors r ing walls due to U for uplift only and designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to ex nails. Strongbac ends or restraine to not erect truss b Standard or Live (balanced)	ecomme PLIFT at d does no dance w sections ndard AN on edge ach truss ks to be d by othe backward	inded to conr jt(s) 24. This of consider la ith the 2018 R502.11.1 a ISI/TPI 1. a, spaced at is with 3-10d attached to w ar means. ds.	teral and valls				100 grit. 100 ib	
FORCES	5-6=-2541/0, 6-7=-2 8-9=-4851/0, 9-10=-	npression/Maximum =-150/0, 1-2=-16/0, =0/2645, 4-5=0/2645, !541/0, 7-8=-4851/0, 4851/0, 10-12=-3823		Uniform Loa Vert: 15-:	ads (lb/ft) 24=-7, 1-14=-217								11111
BOT CHORD	12-13=-3823/0, 13-1 23-24=-1096/210, 2 20-22=-1096/210, 1 18-19=0/3978, 17-1 15-16=0/2314	2-23=-1096/210,	710,							4	1 in	AT ST	
, this desigr	4-20=-339/0, 3-20=- 2-23=-329/0, 3-22=(13-15=-2667/0, 5-19 6-19=-382/0, 12-16= 10-16=-1035/0, 7-18 10-17=-352/669, 8-1 ed floor live loads have	18=-483/0, 9-17=-266 e been considered for	761,), /22							101111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	EP. Kul


January 19,2024

TRENGINEERING BY A MITCH Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F11	Floor	1	1	Job Reference (optional)	163106389

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:11 ID:2zMNIqF73Hm7zKm8Lgge6dzuO4D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.6

Plate Offsets (X, Y): [6:0-1-8.Edge], [7:0-1-8.Edge]

Plate Offsets (2	X, Y): [6:0-1-8,Edge],	[7:0-1-8,Edge]		-								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.88 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.52 0.08	(loc) 17-18 17-18 14	l/defl >623 >452 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 100 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		10-00-00 oc (0.131" X 3" at their oute LOAD CASE(S)	d 2x6 strongbacks, and fastened to ea) nails. Strongbac r ends or restrained Standard	ach truss ks to be	with 3-10d attached to w	valls					
TOP CHORD BOT CHORD	Structural wood she 5-7-14 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals.	l or									
REACTIONS	0											
FORCES	(lb) - Maximum Com											
TOP CHORD	Tension 1-22=-57/0, 13-14=- 2-3=-2414/0, 3-4=-2 5-6=-3739/0, 6-7=-4 8-9=-3739/0, 9-11=- 12-13=-3/0 21-22=0/1382, 19-2	414/0, 4-5=-3739/0, 042/0, 7-8=-3739/0,										
BOT CHORD	,	7=0/4042, 15-16=0/3	,								mm	1111
WEBS	12-14=-1572/0, 2-22 2-21=0/1228, 11-15 9-15=-913/0, 4-21=- 4-19=0/635, 8-16=-1								4	in	ORTH CA	ROUT
NOTES	1-11-102/123								=		SEA	• -
 this design 2) All plates a 3) All plates a 4) This truss a Internation 	ed floor live loads have n. are MT20 plates unless are 1.5x3 MT20 unless is designed in accorda al Residential Code so and referenced stand	s otherwise indicated otherwise indicated. ance with the 2018 ections R502.11.1 an							1111	A A A A A A A A A A A A A A A A A A A		ERERIUM

- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

GI minimum) January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention approach component component component for the prevention of the study of the fabrication of the prevention and the fabrication of the study of Building Component Advance interpretention and the prevention of the study of Building Component Advance interpretent of the prevention of the study of Building Component Advance interpretent of the prevention of the study of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F12	Floor	3	1	Job Reference (optional)	163106390

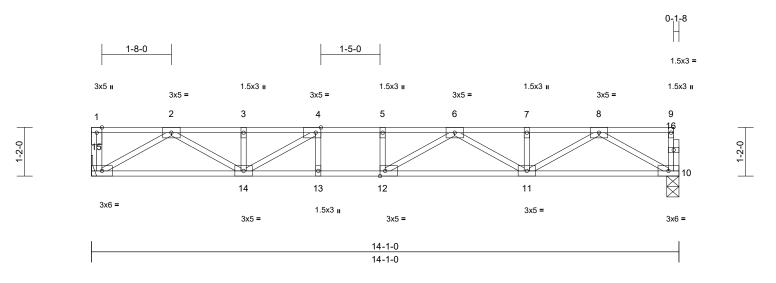
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:11 ID:SY1WxsH0MC8iqoUi0pDLkFzuO4A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.6

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge]

	, i). [0.0-1-0,Euge],	, [_						1	
Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.60	Vert(LL)	-0.38	17-18	>623	480	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.88	Vert(CT)	-0.52	17-18	>452	360	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.08	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH				-			Weight: 101 lb	FT = 20%F, 11%E
LUMBER TOP CHORD	2x4 SP No.2(flat)		10-00-00	end 2x6 strongbacks oc and fastened to 3") nails. Strongba	each truss	with 3-10d	valla					
BOT CHORD	2x4 SP No.2(flat) *E No.1(flat)	xcept^ 20-14:2x4 SP	at their ou	iter ends or restrain	ed by othe	er means.	ans					
WEBS	2x4 SP No.3(flat)		CAUTION	I, Do not erect truss	s backward	ls.						
OTHERS	2x4 SP No.3(flat)		LOAD CASE	S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
	5-7-14 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc										
	bracing.	~ ~ ~ ~										
REACTIONS	· · ·	22=0-3-8	N N									
	Max Grav 14=860 (I)									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-22=-59/0, 13-14=-	57/0 1-2=0/0										
	2-3=-2413/0, 3-4=-2											
	5-6=-3739/0, 6-7=-4	043/0, 7-8=-3740/0,										
	8-9=-3740/0, 9-11=-	2413/0, 11-12=-2413	3/0,									
	12-13=-3/0											
BOT CHORD	21-22=0/1363, 19-2	,	,									
	17-18=0/4043, 16-1	7=0/4043, 15-16=0/3	3196,									111.
WEBS	14-15=0/1362		1007								W'LL CA	Dall
VVEDO	12-14=-1572/0, 2-22 2-21=0/1226, 11-15									1	"aTH UH	70/ 11/2
	9-15=-913/0, 4-21=-		σ,							1	OTEESS	ON' -
	4-19=0/635, 8-16=-1	, ,	5						/	Se	10	Mg.
	7-16=-680/80, 6-19=									g ø	5/ 4	a.c.
	7-17=-102/129	,							-		054	
NOTES											SEA	L <u>i</u> i
	ed floor live loads have	e been considered fo	r						Ξ		0363	22 : E

- this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	F13	Floor	2	1	Job Reference (optional)	163106391

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:11 ID:LJH0mDKWQRe7IPoUFeIHu5zuO46-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.6

Plate Offsets (X, Y): [4:0-1-8,Edge], [12:0-1-8,Edge]

	(X, T). [4.0-1-0,Euge].	, [12.0-1-0,Luge]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 YES	CSI TC BC WB	0.45 0.72 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.19 0.03	(loc) 11-12 11-12 10	l/defl >999 >890 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 72 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly											
DEACTIONO	bracing.	45 Mashaniaal										
REACTIONS	(Size) 10=0-3-8 Max Grav 10=603 (I	, 15= Mechanical LC 1). 15=608 (LC 1)									
FORCES	(lb) - Maximum Com		·									
TOP CHORD	Tension 1-15=-59/0, 9-10=-5 2-3=-1539/0, 3-4=-1 5-6=-1977/0, 6-7=-1 8-9=-3/0	539/0, 4-5=-1977/0, 554/0, 7-8=-1554/0,										
BOT CHORD	14-15=0/923, 13-14 11-12=0/1909, 10-1	,	177,									
WEBS	8-10=-1067/0, 2-15= 2-14=0/719, 7-11=-	=-1067/0, 8-11=0/733 124/0, 3-14=-151/34, -609/0, 6-12=-103/29	,								TH CA	RO
NOTES										AN'	R	a lain
	ed floor live loads have	e been considered fo	r						6	in	TESC	MAL
 3) Refer to g 4) This truss Internation R802.10.2 5) Recommendation (0.131" X at their out 	are 3x5 MT20 unless of irder(s) for truss to trus is designed in accorda al Residential Code s 2 and referenced stand end 2x6 strongbacks, c oc and fastened to ead 3") nails. Strongbacks ter ends or restrained I, Do not erect truss ba	ss connections. ance with the 2018 ections R502.11.1 at dard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to wa by other means.							y		SEA 0363	22

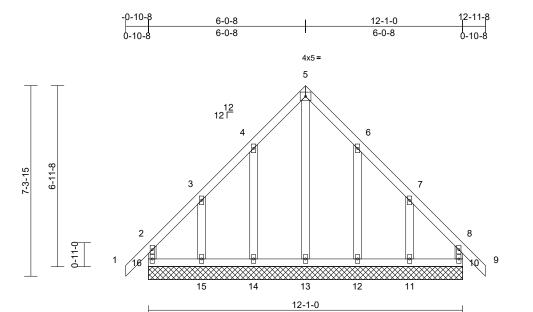
January 19,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qty	Ply	DRB GROUP	- 86 FaNC		
23120149	FW12		Floor Supported (Gable	1	1	Job Reference	e (optional)		163106392
Carter Compone	ents (Sanford, NC), Sanfor	d, NC - 27332,	!				2023 MiTek Indus	tries, Inc. We	ed Jan 17 18:37:11 GKWrCDoi7J4zJC?f	Page: 1
	0-1-8 ⊣								0-1- 	
1-2-0	1 20 3x5 =	2	3 4 0 0 0 0 0 0 18 17	5	6 0 0 15	7	8		9 23 10 22 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0-2- 11 =
Scale = 1:25				<u>12-1</u> 12-1						
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.27 Vert(0.06 Vert(0.05 Horiz	LL) r TL) r	n/a - n/a -	defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%F, 11%E
	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 11=12-1-0 17=12-1-0 20=12-1-0 Max Uplift 11=-15 (L Max Grav 11=110 (L 13=138 (L 17=146 (L 17=146 (L 19=135 (L	applied or 10-0-0 oc), 12=12-1-0, 13=12), 15=12-1-0, 16=12), 18=12-1-0, 19=12) C 8), 12=-25 (LC 8) C 6), 12=-238 (LC 6), C 1), 14=149 (LC 1), C 1), 18=150 (LC 1), C 1), 20=62 (LC 1)	d or d or d or d or d or d or d or d or	is designed in accord al Residential Code : and referenced stan nd 2x6 strongbacks, c and fastened to ea ") nails. Strongback er ends or restrainec or other connection of ufficient to support cr d 67 lb up at 11-2-4 action of such conne- ity of others. D CASE(S) section, are noted as front (i B) Standard loor Live (balanced): ease=1.00	sections R502 dard ANSI/TP on edge, space ich truss with 3 s to be attachm by other mea device(s) shall oncentrated lo on top chord. ction device(s) loads applied F) or back (B).	.11.1 and I 1. sed at 3-10d ed to walls ins. be ad(s) 193 The) is the to the face				
 this design 2) All plates a 3) Gable requ 4) Truss to be braced aga 	6-7=-20/3, 7-8=-20/3 19-20=-3/20, 18-19= 16-17=-3/20, 15-16= 13-14=-3/20, 12-13= 2-19=-127/0, 3-18=- 5-16=-134/0, 6-15=- 8-13=-126/0, 9-12=- ed floor live loads have	110/21, 1-2=-20/3, 3, 4-5=-20/3, 5-6=-20/ 3, 8-9=-20/3, 9-10=-2(-3/20, 17-18=-3/20, -3/20, 14-15=-3/20, -3/20, 11-12=-3/20 135/0, 4-17=-133/0, 133/0, 7-14=-135/0, 219/30 been considered for a otherwise indicated. m chord bearing. one face or securely	Uniform L Vert: 1 (3, Concentr 0/3 Vert: 2	oads (lbft) 1-20=-10, 1-10=-100 ated Loads (lb) 3=-62 (F)				and an		
WARN	IING - Verify design paramete		HIS AND INCLUDED MITEK						ENGINEERI	NG BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

RE

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	H01	Common Supported Gable	1	1	Job Reference (optional)	163106393

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:12 ID:CRocOjIrDL5mi6p9PQuWV_yEMjI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.3

Ocale = 1.44.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.07 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=12-1- 13=12-1- 16=12-1- Max Horiz 16=-187 (Max Uplift 10=-55 (L 12=-88 (L 12=-88 (L 12=-189 (L 12=286 (L))	v applied or 6-0-0 oc 0, 11=12-1-0, 12=12- 0, 14=12-1-0, 15=12- 0 (LC 12) .C 11), 11=-145 (LC 1 .C 15), 14=-87 (LC 14 (LC 14), 16=-73 (LC 1 LC 24), 11=201 (LC 2 LC 22), 13=219 (LC 1 LC 21), 15=207 (LC 2	1-0, 3) 1-0, 4) (5), 4) (0) (5), 5), 5)	Vasd=103mp Cat. II; Exp E zone and C-1 2-0-8 to 3-0-i 9-0-8 to 9-11 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF C Corner(3E) -0-1 8, Corner(3E) 3-0 -8, Corner(3E) 9-7 t and right expose d;C-C for member shown; Lumber D ned for wind loads ids exposed to win d Industry Gable E tailfied building de 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.10; Rough Cat =1.10 snow loads have I psf or 1.00 times f	BCDL=6 RS (env 0-8 to 2- 8 to 9-0 11-8 to 1 d; end v s and for OL=1.60 in the p nd (norm ind Deta signer a: f (roof LL (Lum DC B; Fully been con	i.Opsf, h=25ft; elope) exterio; 0-8, Exterior(21 2-11-8 zone; vertical left an rcces & MWFR 0 plate grip lane of the tru al to the face; ills as applicat s per ANSI/TF c: Lum DOL=- DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof	or 2N) d SS iss), ble, PI 1. 1.15 ; ; inis	Ínte R80	ernationa	al Resid and ref	ferenced standar	tions R502.11.1 and
FORCES	(lb) - Maximum Com Tension 2-16=-151/67, 1-2=(3-4=-103/128, 4-5=- 6-7=-102/127, 7-8=-)/43, 2-3=-125/114, 187/232, 5-6=-187/23	7) 8) 32, 9)	overhangs n All plates are Gable require Truss to be f	on-concurrent with 2x4 MT20 unless es continuous bott ully sheathed from nst lateral moveme	other ling otherwittom tom chor one fac	ve loads. se indicated. d bearing. æ or securely				- Int	WITH CA	ROLIN
BOT CHORD	8-10=-139/52 15-16=-86/102, 14-7 13-14=-86/102, 12-7 11-12=-86/102, 10-7	15=-86/102, 13=-86/102, 11=-86/102	11) Gable studs) This truss ha chord live loa	spaced at 2-0-0 or spaced at 2-0-0 or s been designed f ad nonconcurrent nas been designed	c. for a 10. with any	0 psf bottom other live loa	ds.		4	à	SEA	L
WEBS	5-13=-260/143, 4-14 3-15=-191/148, 6-12 7-11=-184/152			on the bottor 3-06-00 tall b chord and ar) Provide mec	m chord in all area by 2-00-00 wide wi ny other members. hanical connection	s where ill fit betv n (by oth	a rectangle veen the botto ers) of truss to	om				0363	22

bearing plate capable of withstanding 73 lb uplift at joint

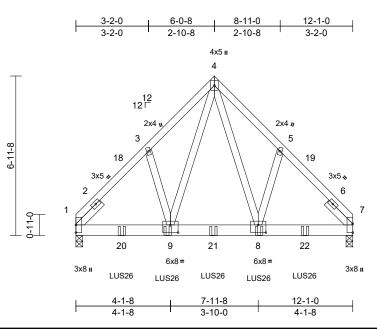
uplift at joint 15, 88 lb uplift at joint 12 and 145 lb uplift at

16, 55 lb uplift at joint 10, 87 lb uplift at joint 14, 149 lb

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

joint 11.

GI A. GIL


January 19,2024

818 Soundside Road Edenton, NC 27932

C

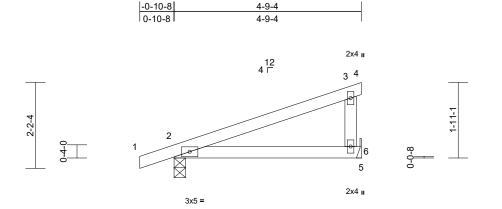
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	H02	Common Girder	1	2	Job Reference (optional)	163106394

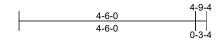
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:12 ID:1shJDaaHoP_Vye3aFmpvwryEMix-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:50.3
---------	--------

	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	[0.0-+-0,0-+-0]	-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.22 0.51 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 8-9 8-9 7	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%
	2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	.C 35) .C 13), 7=-138 (LC 12	5) d or 6) 7) 2) 8)	Vasd=103m Cat. II; Exp Ib zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=- DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha chord live lo: * This truss I	7-16; Vult=130m oh; TCDL=6.0psf; 3; Enclosed; MWF ver left and right e posed; Lumber DC 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have as been designed an onconcurrent has been designed in chord in all area	BCDL=6 RS (env exposed DL=1.60 f (roof LI (Lum DC t B; Fully been cou for a 10. with any d for a liv	6.0psf; h=25ft elope) exteric ; end vertical plate grip .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 nsidered for th 0 psf bottom other live loa e load of 20.0	his nds.					
FORCES TOP CHORD BOT CHORD WEBS	4-5=-3111/262, 5-7= 1-9=-141/2189, 8-9= 4-8=-207/2146, 5-8=	=-3112/262, =-3195/188 =-62/1548, 7-8=-87/2 ⁻ =-134/218,		chord and an One H2.5A s recommende UPLIFT at jt and does no	by 2-00-00 wide w by other members Simpson Strong-T ed to connect truss (s) 1 and 7. This c t consider lateral f	ie conne s to bear onnectio forces.	ctors ing walls due n is for uplift	to				annin	9.00
 (0.131"x3" Top chord oc. Bottom ch staggered Web conn All loads a except ifn CASE(S) s provided t unless oth 	4-9=-207/2146, 3-9= s to be connected toget ') nails as follows: s connected as follows: ords connected as follows ords connected as follows: etced as follows: 2x4 - are considered equally oted as front (F) or bac section. Ply to ply conr o distribute only loads iterwise indicated. ed roof live loads have n.	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows · 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ nections have been noted as (F) or (B),) 12 L(1)	International R802.10.2 a I) Use Simpso Truss) or eq 2-0-0 from th back face of 2) Fill all nail ho DAD CASE(S) Dead + Snn Increase=1 Uniform Lo Vert: 1-4 Concentrat	ow (balanced): Lu .15 ads (lb/ft) =-60, 4-7=-60, 10 ed Loads (lb) 986 (B), 9=-986 (I	sections ndard AN 26 (4-100 2-0-0 oc -0 to con -0 to con -1 is in cor mber Inc -14=-20	R502.11.1 a ISI/TPI 1. d Girder, 4-10 c max. startin nect truss(es ntact with lum rease=1.15, l	ld g at) to ber. Plate			The second secon	111111	22 EREALIT

January 19,2024


Page: 1



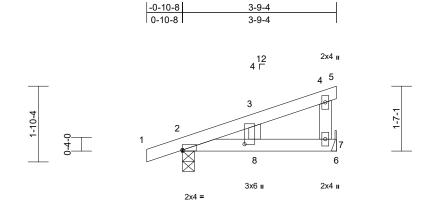
TRENCO A Mitek Attiliate

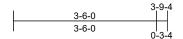
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	M01	Monopitch	4	1	lé Job Reference (optional)	63106395

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:12 ID:dq31jByjVxu5APxXZmsAhNyEMiS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.4

Loading (pst) Spacing 2-0-0 CSI DEFL in (bc) I/deft Ld TCLL (root) 200 Plate Gip DOL 1.15 TC 0.38 Vert(L1) 0.07 6-8 9-8721 240 MT20 244/190 TCDL 0.00 Code IIII S BC 0.37 Vert(C1) 0.06 6-9 967 MT20 244/190 BCDL 0.00 Code IIII S BC 0.00 Horz(C1) 0.00 2 n/a n/a BCDL 0.00 Zud SP No.2 Code IIII S BC 0.00 Horz(C1) 0.00 2 n/a n/a BCDL 0.00 Zud SP No.2 Stouture location Plate S (price(1)) 0.00 1.15 E 0.00 Horz(C1) 0.00 Zud SP No.2 BCT CHORD Zud SP No.2 Stouture location directly applied or 10-00 or braining Felor 0 (price(1)) Foroide mechanical connection ty others of trues to bearing plate consider Poide mechanical connection stoure s	Scale = 1:29.4	+											
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 6. 8) Provide mechanical connectors recommended to connect truss to bearing walls due to UPLIFT at j(ts) 2. This connectors is designed in accordance with the 2018 International Residential forces. 9) Ore H2 5A Simpson Strong-Tie connectors recommended in accordance with the 2018 International Residential forces. 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0ps; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(ZE) zone; cantilever left and right exposed; C-C for members and forces & MWFRS (envelope) exterior zone and right exposed; cord in the sposed; porch left and right exposed; cord from the sposed; porch left and right exposed; cord forces & MWFRS (envelope) exterior zone and right exposed; cord for the sposed; porch left and right exposed; cord for the sposed; porch left and right exposed; cord forces & MWFRS (envelope) exterior zone and right exposed; cord for the sposed; porch left and right exposed; cord forces & MWFRS (envelope) exterior zone and right exposed; cord force in the sposed; porch left and right exposed; cord for the sposed; porch left and right exposed; cord for the sposed; porch left and right exposed; cord for the sposed; porch left and right exposed; cord for the sposed; porch left and right exposed; cord for the sposed; cord left and right exposed; cord for the sposed; cord left and right exposed; cord for the sposed; cord left and right exposed; cord for the sposed; cord left and right exposed; cord left and right exposed; cord for the sposed; cord left and right exp	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.37	Vert(LL) Vert(CT)	0.07 0.06	6-9 6-9	>721 >887	240 180	MT20	244/190
overhangs non-concurrent with other live loads.	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=100 Cat. II; EJ zone and exposed and right MWFRS grip DOL: 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00; 3) Unbalance design. 4) This truss load of 12	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shet 4-9-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=68 (LC Max Uplift 2=-98 (LC Max Uplift 2=-98 (LC Max Grav 2=330 (L- (Ib) - Maximum Con Tension) 1-2=0/25, 2-3=-106, 3-6=-191/159 2-6=-146/89, 5-6=0, 3-6=-191/159 2-6=-160, 3-6=-191/159 2-0.0 psf (L-1.15); Pf=20.0 psf (L-1.15); Pf=20.0 psf (L-1.16); 3-6=-100, 3-6=-10	ccept end verticals. / applied or 10-0-0 or 6= Mechanical 13) C 10), 6=-72 (LC 10) C 21), 6=268 (LC 21) npression/Maximum (141, 3-4=-8/0, /0 n (3-second gust) CDL=6.0psf; h=25ft; (S (envelope) exterio c, cantilever left and r ght exposed; porch lobers and forces & umber DOL=1.60 plat (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 seen considered for the r greater of min roof t roof load of 20.0 pso other live loads. r a 10.0 psf bottom	on the I 3-06-00 chord a 7) Refer to bearing 6. 9) One H2 recomm UPLIFT does no 10) This tru Internal R802.1 LOAD CAS or right eft te 1.15 0; his live sf on	bottom chord in all are tall by 2-00-00 wide and any other member o girder(s) for truss to mechanical connecti plate capable of with .5A Simpson Strong- lended to connect tru at jt(s) 2. This conne t consider lateral forc ss is designed in accc ional Residential Cod 0.2 and referenced st	eas where will fit betw rs. truss conr ion (by oth standing 7 Tie conne ss to bear ection is for ses. ordance w le sections	a rectangle veen the botto nections. ers) of truss t '2 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a	om oo oint to nd				ORTH CA ORTESS SEA 0363	AROLINA B22




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	M02	Monopitch	1	1	I63106396 Job Reference (optional)	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:13 ID:ZUiCigAe1nIPyKuBBGidyOyEMi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-9-4

Scale = 1:28.2

Plate Offsets (X, Y): [2:Edge,0-0-5], [8:0-1-11, 1-6-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.20 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 0.02 0.00	(loc) 8 8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 3-9-4 oc purlins, exc Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 7= Mechanical 13) : 10), 7=-55 (LC 10)	5) 6) d or 7) 8) 9) 10)	design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec	snow loads have as been designed pof or 1.00 times f on-concurrent with spaced at 2-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr hanical connection e capable of withst	for great lat roof lin o ther lin c. for a 10.1 with any d for a liv s where a lin fit betv uss conn n (by oth	er of min roof oad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss	f live sf on ads. Opsf om to					
FORCES	(lb) - Maximum Com Tension	•	11)	7.	Simpson Strong-Ti	Ũ		Joint					
TOP CHORD BOT CHORD WEBS	1-2=0/24, 2-3=-79/97 4-7=-138/120 2-8=-99/57, 7-8=-15/ 3-8=-63/36	, ,	s/0,	recommende UPLIFT at jt(does not cor	ed to connect truss (s) 2. This connect sider lateral force designed in accor	s to bear tion is foi s.	ing walls due r uplift only ai						
Vasd=103 Cat. II; Exp	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS C-C Exterior(2E) zone;	CDL=6.0psf; h=25ft; S (envelope) exterior	LO	International	Residential Code nd referenced star	sections	s R502.11.1 a	and			the state	ORTH CA	ROLI

- exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Vanantantan WITTER PARTY SEAL 036322 GILB January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	PB1	Piggyback	12	1	Job Reference (optional)	163106397

4-3-15

4-3-15

-0-9-12

0-9-12

2

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-0-3

Spacing

Code

Structural wood sheathing directly applied or

2=4-3-15, 4=4-3-15, 5=4-3-15

2=-24 (LC 14), 4=-38 (LC 14),

2=302 (LC 21), 4=245 (LC 21),

5-2-1 oc purlins, except end verticals.

Max Horiz 2=93 (LC 13), 5=93 (LC 13)

5=-24 (LC 14)

Rigid ceiling directly applied or 10-0-0 oc

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

(size)

9-4-5

2-0-0

1.15

1 15

YES

IRC2018/TPI2014

5)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed. Jan 17 18:37:13 ID:HII0SpjNqkTfjD9fESC6fWzuPbk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 u 3 12 7 Г ø 2-10-9 4 2x4 = 2x4 II 4-3-15 DEFL l/defl L/d PLATES GRIP in (loc) 0.39 Vert(LL) n/a n/a 999 MT20 244/190 0.31 Vert(CT) 999 n/a n/a 0.00 Horz(CT) 0.00 2 n/a n/a Matrix-MP Weight: 19 lb FT = 20% This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Gable requires continuous bottom chord bearing

6) Gable studs spaced at 4-0-0 oc.

CSI

TC

BC

WB

- 7) This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

10) N/A

5=302 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/27, 2-3=-77/85, 3-4=-173/59 BOT CHORD 2-4=-47/79

NOTES

Scale = 1:28.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

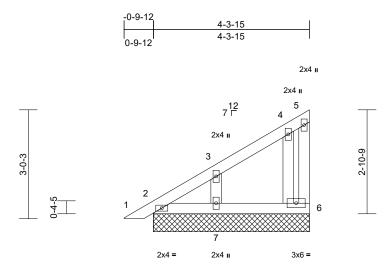
REACTIONS

TCDL

BCLL

BCDL

WFBS


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	PB2	Piggyback	1	1	I63 Job Reference (optional)	3106398

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:13 ID:e38BCyOVexWiRqRQWDCExKzuPas-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-15

Scale = 1:31.9

00010 1.01.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	bracing. (size) 2=4-3-15, 8=4-3-15 Max Horiz 2=90 (LC Max Uplift 6=-19 (LC Max Grav 2=149 (LC	cept end verticals. applied or 10-0-0 oc 6=4-3-15, 7=4-3-15, 13), 8=90 (LC 13) 2 14), 7=-46 (LC 14)	8) 9) 10	design. This truss ha load of 12.0 J overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with es continuous bott spaced at 2-0-0 or is been designed fad nonconcurrent has been designec n chord in all area by 2-00-00 wide wi by other members.	for great lat roof lo o other liv om chor c. for a 10.0 with any l for a liv s where Il fit betv	er of min roof bad of 20.0 ps /e loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	live sf on ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-62/8/ 4-5=-41/58, 5-6=-38, 2-7=-30/48, 6-7=-30, 3-7=-186/100, 4-6=-	6, 3-4=-82/52, /22 /48		Ínternational R802.10.2 ai See Standar Detail for Co	designed in accord Residential Code nd referenced star d Industry Piggyba nnection to base to fied building desig	sections Idard AN ack Trus russ as a	R502.11.1 a ISI/TPI 1. s Connection						

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

consult qualit ied b

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V1	Valley	1	1	Job Reference (optional)	163106399

10-3-10

0-0-4

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:13 ID:iGiYwDCYoaW9sCUyjbULfGyEDm9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11

3x5 💊

12

20-6-12 || 0-3-7 10-3-6 20-3-5 10-3-6 9-11-15 4x5= 6 个 5 26 27 4 8 9-11-15 3 9 2 10 12 12Г

20-6-12

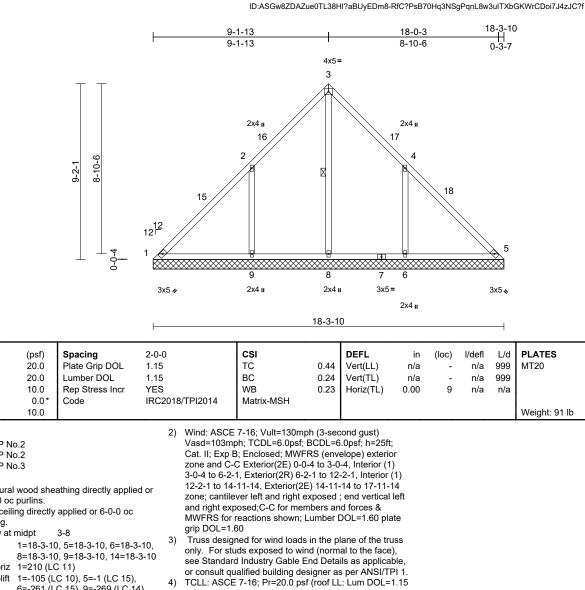
Scale = 1:64.4										1		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.06 0.28	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	athing directly applie		6-17=-199/74, 5- 4-19=-164/121, 3 2-21=-143/104, 7 8-15=-164/122, 9 10-12=-139/101 d roof live loads ha	-20=-133, -16=-233, -13=-134,	/122, /114, /123,	r	์ bea	ring plat nd 24 lb	te capa		y others) of truss to ing 77 lb uplift at joint
WEBS REACTIONS	bracing. 1 Row at midpt (size) 1=20-6-12 12=20-6 15=20-6 19=20-6 21=20-6 21=20-6 Max Horiz 1=-230 (L Max Uplift 1=-77 (LC 12=-68 (L 15=-98 (L 18=-93 (L 20=-100 (Max Grav 1=170 (LC 12=198 (L 15=205 (L 17=222 (L)	6-17 2, 11=20-6-12, 12, 13=20-6-12, 12, 18=20-6-12, 12, 18=20-6-12, 12, 20=20-6-12, 12, 20=20-6-12, 12 C 10) C 15), 13=-102 (LC 13) C 15), 13=-102 (LC 14) C 15), 13=-102 (LC 14) C 14), 19=-98 (LC 14) LC 14), 21=-77 (LC 14) C 14), 13=167 (LC 14) C 24), 13=167 (LC 14) C 24), 13=167 (LC 14) C 15), 18=271 (LC 14) C 14), 20=164 (LC 14)	 Wind: ASC Vasd=103r Cat. II; Exp zone and C 3-0-4 to 7-3 (1) 13-3-10 zone; canti and right e MWFRS fo grip DOL=' Truss desi only. For s Truss desi only. For s Truss desi only. For s TCLL: ASC Plate DOL: 20, CS=1.00; C 	E 7-16; Vult=130rr nph; TCDL=6.0psf B; Enclosed; MWI C-C Exterior(2E) 0- 3-10, Exterior(2R) 1 0 to 17-7-0, Exterior lever left and right xposed; C-C for me r reactions shown; 1.60 gned for wind load tuds exposed to w ard Industry Gable qualified building do E 7-16; Pr=20.0 psi = 1.15); Pf=20.0 psi s; Is=1.0; Rough Ca	BCDL=6 FRS (env 0-4 to 3-0 7-3-10 to r(2E) 17-7 exposed mbers an Lumber I s in the p ind (norm End Deta esigner a: sf (roof LL f (Lum DC at B; Fully	6.0psf; h=25ft; elope) exterio 1-4, Interior (1) 13-3-10, Inter 7-0 to 20-7-0 ; end vertical 1 dd forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	r) ior left te ss),)ole, 11. 1.15);	LOAD (rnationa)2.10.2 (CASE(S	al Resid and ref) Sta	ferenced standar ndard	tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	,		re 2x4 MT20 unles ires continuous bo							SEA	
TOP CHORD	1-2=-280/197, 2-3=-	121/184, 6-7=-121/1 /62, 9-10=-153/98, 21=-100/211, -19=-100/211, -17=-100/211, -15=-100/211,	22, 8) Gable stud 67, 9) This truss I chord live I 10) * This truss on the bott 3-06-00 tal	s spaced at 2-0-0 d has been designed oad nonconcurrent s has been designe om chord in all are I by 2-00-00 wide v any other members	bc. for a 10.0 with any d for a liv as where vill fit betv	0 psf bottom other live load re load of 20.0 a rectangle)psf		11110	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER. HUILING

January 19,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V2	Valley	1	1	Job Reference (optional)	163106400


Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed. Jan 17 18:37:14

Page: 1

GRIP

244/190

FT = 20%

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing WEBS 1 Row at midpt **REACTIONS** (size) Max Horiz 1=210 (LC 11) Max Uplift 1=-105 (LC 10), 5=-1 (LC 15), 6=-261 (LC 15), 9=-269 (LC 14), 14=-1 (LC 15) Max Grav 1=123 (LC 13), 5=1 (LC 24), 6=589 (LC 24), 8=748 (LC 26), 9=595 (LC 23), 14=1 (LC 24) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-164/463, 2-3=-36/378, 3-4=-29/366,
 - 4-5=-279/347 BOT CHORD 1-9=-196/99, 8-9=-196/99, 6-8=-196/99, 5-6=-196/99 WEBS 3-8=-568/0, 2-9=-426/296, 4-6=-424/293
 - NOTES

Scale = 1:60.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5)
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to joint 1, 1 lb uplift at joint 5 and 1 lb uplift at joint 5. 11) N/A bearing plate capable of withstanding 105 lb uplift at
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V3	Valley	1	1	Job Reference (optional)	163106401

7-11-13

7-11-13

2x4 🛛

2

9

2x4 II

15

12 12 □

3x5 🕢

16

Carter Components (Sanford, NC), Sanford, NC - 27332,

7-8-6 8-0-1

0-0-4

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:14 ID:ASGw8ZDAZue0TL38HI?aBUyEDm8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-8-3

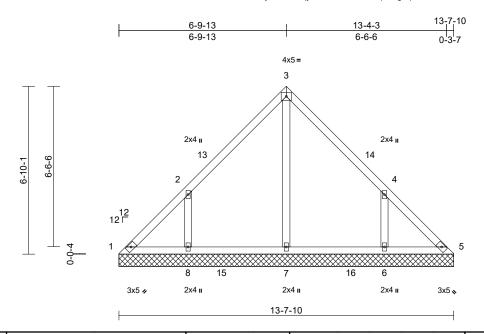
Page: 1

15-11-10 || 0-3-7 7-8-6 4x5= 3 2x4 🛛 17 4 18 5 Į, $\times\!\!\!\times$ ∞ 8 7 6 2x4 II 3x5= 2x4 II 3x5 💊 15-11-10 _

Scale = 1:52

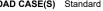
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.53	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								FT 000/
BCDL		10.0								_			Weight: 77 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	lo.2 lo.3 l wood she purlins. ing directly 1=15-11- 6=15-11- 9=15-11- 1=133 (LC 9=-227 (L 1=-121 (LC	.C 10), 6=-220 (LC 1 .C 14) C 13), 5=0 (LC 24), € ⊧675 (LC 26), 9=504	ed or (5), (LC	 only. For str see Standar or consult qu TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo * This truss ha chord and al 	ned for wind load Jds exposed to w d Industry Gable Jalified building de 7-16; Pr=20.0 ps Is=1.0; Rough Ca =1.10; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 da donconcurrent has been designed ad nonconcurrent has been designed m chord in all are: by 2-00-00 wide v ny other members shanical connectio	ind (norm End Deta esigner a: sf (roof Ll f (Lum DC t (Lum DC t been cor ttom chor oc. l for a 10. t with any ed for a liv as where vill fit betw s, with BC	al to the face ils as applica s per ANSI/TI .: Lum DOL= Del=1.15 Plate Exp.; Ce=0.9 nsidered for t d bearing. D psf bottom other live loa e load of 200.1 a rectangle ween the bott CDL = 10.0ps), ble, Pl 1. 1.15 9; his dds. 0psf om f.					
FORCES	Tension		pression/Maximum 73/325, 3-4=-43/297		bearing plate joint 1.	e capable of withs								
	4-5=-145	,	10/020, 0-440/201	, .	1) N/A									
BOT CHORD	1-9=-136 5-6=-136		36/72, 6-8=-136/72,									2	UNITH CA	ROUL
WEBS	3-8=-477	/0, 2-9=-39	3/258, 4-6=-394/256	i.	2) This truss is	designed in acco	ordance w	ith the 2018				N	A	- Cliff
NOTES						Residential Code			and			~.	O' FESE	HANN'S
1) Unbalanc	ed roof live	loads have	been considered for		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.			6	25		in sit
this desig	n.			1	OAD CASE(S)	Standard							.0	4.6
Vasd=103 Cat. II; Ex zone and 3-0-4 to 5 11-0-1 to cantilever right expo	Smph; TCDL p B; Enclos C-C Exterio -0-1, Exterio 12-7-14, Ex left and righ sed;C-C for ons shown; I	=6.0psf; B ed; MWFR or(2E) 0-0-4 or(2R) 5-0- terior(2E) 1 nt exposed members	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterios to 3-0-4, Interior (1) to 11-0-1, Interior (1) to 11-0-1, Interior (1) 2-7-14 to 15-7-14 zc ; end vertical left and and forces & MWFR bL=1.60 plate grip	1) one; d							THURSEN STR		SEA 0363	EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


January 19,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V4	Valley	1	1	Job Reference (optional)	163106402

Scale = 1:46.9


Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:14 ID:vJY5oNOabHhEy4AtKZcs2qyEDbb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.35 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 10.0	-	IRC207	18/TPI2014	Matrix-MSH							Weight: 64 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=13-7 7=13-7 Max Horiz 1=-156 Max Uplift 1=-41 6=-187 Max Grav 1=140 6=455 8=455	(LC 10), 5=-5 (LC 11), (LC 15), 8=-191 (LC 1 (LC 24), 5=113 (LC 23 (LC 21), 7=373 (LC 23 (LC 20)	5 7-10, 6 7 8 4) 9	only. For sti see Standar, or consult qu) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct [:]) Unbalanced design.) Gable requir) Gable studs) This truss ha chord live loo.) * This truss ha chord live loo. 3-06-00 tall l	ned for wind load ids exposed to w d Industry Gable ialified building d 7-16; Pr=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designed no chord in all are by 2-00-00 wide v y other member	ind (norm End Deta esigner a: signer a: signer a: f (com DC at B; Fully been cor toon chor boo for a 10.1 t with any ed for a liv as where vill fit betw	al to the face ils as applica is per ANSI/T :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.4 d bearing. 0 psf bottom other live loa e load of 20. a rectangle veen the bott), ble, PI 1. 1.15 e 9; his dds. 0psf om					
TOP CHORD	Tension	ompression/Maximum 3=-228/132, 3-4=-228/1		bearing plate	hanical connection capable of withe capable of withe								
BOT CHORD	5-6=-61/121	61/121, 6-7=-61/121,		1) N/A	ont at joilt 3.							WITH CA	11111
WEBS NOTES	3-7=-169/0, 2-8=	-386/239, 4-6=-386/239		2) This truss is	designed in acco	ordance w	ith the 2018				11	RTHUA	ROLI

- 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 2-10-1, Interior (1) 2-10-1 to 3-10-1, Exterior(2R) 3-10-1 to 9-10-1, Interior (1) 9-10-1 to 10-7-14, Exterior(2E) 10-7-14 to 13-7-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V5	Valley	1	1	Job Reference (optional)	163106403

5-7-13

5-7-13

13

2x4

Carter Components (Sanford, NC), Sanford, NC - 27332,

5-4-6

6

5-8-1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:15 ID:NV6U0jPCMbp5aEl3tH75b1yEDba-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-0-3

5-4-6

14

2x4 II

4x5 = 3 11-3-10 || 0-3-7

5

3x5 💊

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	lo.2 lo.3 ll wood she purlins. ling directly 1=11-3-10 7=11-3-10 1=-128 (LC 6=-169 (L 1=98 (LC	athing directly applied applied or 10-0-0 oc 0, 5=11-3-10, 6=11-3-1 0, 8=11-3-10 C 12) C 12), 5=-27 (LC 13), C 15), 8=-175 (LC 14) 11), 5=78 (LC 26), 6=4 '=236 (LC 20), 8=457 (5) 0, 6) 7) 8) 8)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha con the botton 3-06-00 tall h	I ned for wind loads dds exposed to wi d Industry Gable I alified building de 5.7-16; Pr=20.0 ps I.15); Pf=20.0 ps I.15); Pf=20.0 ps I.10; Rough Ca =1.10 snow loads have es continuous bol spaced at 4-0-00 sis been designed ad nonconcurrent has been designed by 2-00-00 wide w y other members	nd (norm End Deta signer as f (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.1 with any d for a liv is where ill fit betv	al to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 nsidered for th rd bearing. 0 psf bottom other live loa a rectangle), ble, Pl 1. 1.15); his ds. 0psf				weight: 50 ib	FT = 20%
FORCES	Tension		pression/Maximum 257/131, 3-4=-257/131		Provide mec bearing plate	hanical connectio	n (by oth							
BOT CHORD	4-5=-143 1-8=-44/9	/90 90, 7-8=-38	/90, 6-7=-38/90,		1 and 27 lb u) N/A	ıplift at joint 5.								1.655
WEBS	5-6=-43/9 3-7=-148		5/302, 4-6=-445/302										OR SESS	RO
NOTES	od roof live	loodo hovo	haan considered for	12		designed in accor			nd			S.	OFFESS	i Alni

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 8-3-14, Exterior(2E) 8-3-14 to 11-3-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V6	Valley	1	1	Job Reference (optional)	163106404

4-5-13

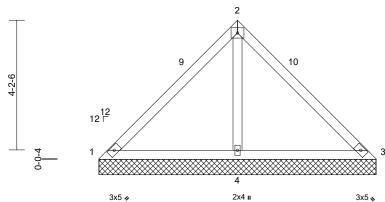
4-5-13

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-6-1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:15 ID:rigsD2Qr7vxyBOKFR_eK8FyEDbZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-3


4-2-6

4x5 =

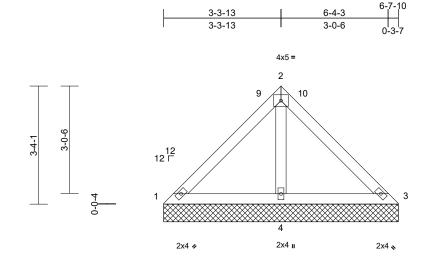
8-11-10

8-11-10

Scale = 1:37.3

		i			i		i					i	
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.47 0.44	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP		. ,						
BCDL	10.0					-						Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.3	athing directly applied	6)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir	snow loads have es continuous bo	(Lum DC t B; Fully been cor ttom chor	DL=1.15 Plate Exp.; Ce=0.9	; 9;					
BOT CHORD REACTIONS	Rigid ceiling directly bracing. (size) 1=8-11-10 Max Horiz 1=-101 (Lu), 3=8-11-10, 4=8-11-	7) 8) ¹⁰ 9)	This truss ha chord live loa	spaced at 4-0-0 o as been designed ad nonconcurrent nas been designe	for a 10.0 with any	other live loa						
	Max Holiz Max Uplift 1=-57 (LC 4=-153 (LC Max Grav 1=83 (LC (LC 21)	C 21), 3=-57 (LC 20), C 14)	⁷⁴⁹ 10	3-06-00 tall t chord and ar) Provide mec	m chord in all area by 2-00-00 wide w ny other members hanical connection capable of withs	vill fit betv s. n (by oth	veen the botto ers) of truss t	0					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11		uplift at joint 3.	tanung c	or ib upint at j	onn					
TOP CHORD BOT CHORD WEBS	1-2=-163/332, 2-3=- 1-4=-225/229, 3-4=-2 2-4=-562/336		11)									
NOTES	ed roof live loads have	been considered for	12		designed in acco Residential Code			ind					

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 5-11-14, Exterior(2E) 5-11-14 to 8-11-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V7	Valley	1	1	l6 Job Reference (optional)	3106405

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:15 ID:n4ocekR5fWBgRiTeZPgoDgyEDbX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

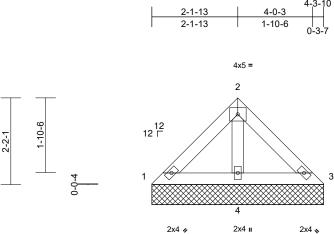
....с Г С2f

6-7-10

Scale	= 1	1.32.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-MP	0.22 0.24 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-7-10 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=6-7-10, 4=6-7-10 11) 21), 3=-6 (LC 20), 4: C 20), 3=109 (LC 21	Plate DOL= Cs=1. 5) Unbal dor 6) Gable 7) Gable 7) Gable 8) This tr chord 9) * This 9) * This on the 3-83 3-06-0 chord), 10) Provio	ASCE 7-16; Pr=20.0 DOL=1.15); Pf=20.0 p 1.15); Is=1.0; Rough (00; Ct=1.10 anced snow loads hav requires continuous t studs spaced at 4-0-(russ has been design betom chord in all an 00 tall by 2-00-00 wide and any other membe le mechanical connec g plate capable of wit	sf (Lum DC Cat B; Fully ve been col pottom choi o oc. ed for a 10. nt with any red for a 1iv reas where eas where will fit betw ers. tion (by oth	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. 0 psf bottom other live load re load of 20.1 a rectangle ween the botther wers) of truss for the set of the s	e); his ds. Dpsf om				Weight: 27 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-83/186, 2-3=-8 1-4=-137/156, 3-4=- 2-4=-326/201	3/186		lb uplift at joint 3.		o io upint at ju	11111 1					
NOTES 1) Unbalance	ed roof live loads have	been considered for	- Íntern	uss is designed in acc ational Residential Co	de sections	s R502.11.1 a	ind					111

- Unbalanced root live loads have been consider this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 3-7-14, Exterior(2E) 3-7-14 to 6-7-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY A MITCH A HITIGA

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V8	Valley	1	1	l6 Job Reference (optional)	3106406

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:15 ID:GHM_r4SjQqJX2r2q66C1ltyEDbW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

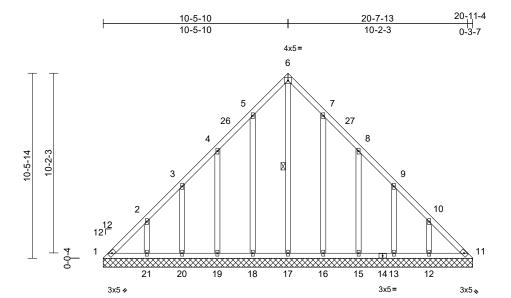
2x4 II 2x4 🍬

4-3-10

Scal	e =	1.28	8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 014 Matrix-MP	0.07 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-3-10 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc , 3=4-3-10, 4=4-3-10 13) 15), 4=-35 (LC 14)	desig 6) Gable 7) Gable 8) This ed or chorc 9) * This on th 3-06- chorc 10) Provi beari 3.	e requires continuous bo e studs spaced at 4-0-0 truss has been designed d live load nonconcurren s truss has been design e bottom chord in all are -00 tall by 2-00-00 wide to d and any other member ide mechanical connectii ing plate capable of with:	ottom chor oc. I for a 10.1 t with any ed for a liv as where will fit betv s. on (by oth	d bearing. O psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds.)psf om o					
FORCES	(LC 20) (lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES	1-4=-65/90, 3-4=-65 2-4=-146/86	/90	Ínterr R802 LOAD CA	truss is designed in accontational Residential Cod 2.10.2 and referenced state ASE(S) Standard	e sections	s R502.11.1 a	nd					
this desig 2) Wind: AS Vasd=103 Cat. II; Ex zone and	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B φ B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri	i (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i	r						6	in the	ORTH CA	ROUNT

- exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4)
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Studyter Building Component Advance interpretention applicable for the Studyter Building Component Advance interpretention and the prevention and the fabrication of the studyter Building Component Advance interpretention and the prevent of the studyter Building Component Advance interpretention and the prevention applicability for the studyter Building Component Advance interpretention appropriet on the prevention and the prevention and the fabrication and the prevention and the prevention and the fabrication and the prevention application and the prevention application and the prevention and the prevention application and the prevention application application and the prevention application and the prevention application applicatio and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V9	Valley	1	1	Job Reference (optional)	163106407

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:16 ID:WOLfUjrna5JrFcHtLrJif9zphjR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

H

20-11-4

Scale = 1:65.3

Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.30	Horiz(TL)	0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 147 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=20-11 12=20-11 15=20-11 17=20-11 21=20-11 Max Horiz 1=234 (LC Max Uplift 1=-76 (LC 12=-76 (L 15=-99 (L 18=-93 (L 20=-98 (L Max Grav 1=173 (LC 12=211 (L 15=206 (L 17=227 (L)	6-17 4, 11=20-11-4, -4, 13=20-11-4, -4, 16=20-11-4, -4, 18=20-11-4, -4, 20=20-11-4, -4, 20=20-11-4, -4 C 11), 11=-23 (LC 13), C 15), 13=-101 (LC 1 C 15), 16=-90 (LC 15) C 14), 19=-98 (LC 14) C 14), 19=-98 (LC 14) C 14), 21=-85 (LC 14) C 14), 11=137 (LC 26) -C 28), 13=-163 (LC 2) -C 20), 16=271 (LC 2) -C 20), 20=160 (LC 2) -C 20), 20=160 (LC 2)	or NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m Cat. II; Expl zone and C- 3-0-4 to 7-5- (1) 13-5-14 i zone; cantile and right exp MWFRS for grip DOL=1. 5), 3) Truss desig only. For st), see Standar or consult qi), TCLL: ASCE 4), Plate DOL= 1), DOL=1.15;), 5) Unbalanced design.	ned for wind load uds exposed to w d Industry Gable alified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have	-20=-131. -16=-233 -13=-132 we been of the base of the base of	/120, /113, /121, considered for sond gust) 0.0psf; h=25ft; elope) exterior -4, Interior (1) 13-5-14, Inter -11-8 to 20-11 ; end vertical I di forces & DOL=1.60 pla lane of the tru lal to the face) is per ANSI/TF _: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 hsidered for th	r) ior I-8 left te Iss), ole, 1.15);	bea 1, 2 at jc 90 II at jc 12) This Inte R80 LOAD C	ring plat 3 lb upli oint 19, 9 b uplift a oint 13 as truss is rnationa i2.10.2 a CASE(S	te capa ft at jo 28 lb u nd 76 s desig and ref) Sta	able of withstand int 11, 93 Ib uplif plift at joint 20 16, 99 Ib uplift at Ib uplift at joint 1 Ined in accordan dential Code sec ferenced standar ndard	ce with the 2018 tions R502.11.1 and rd ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) Gable requir	e 2x4 MT20 unles res continuous bo	ttom chor						SEA	AL II
TOP CHORD	,	21=-104/215, -19=-104/215, -17=-104/215, -15=-104/215,	9, 9) This truss ha chord live lo 10) * This truss on the botto 3-06-00 tall	spaced at 2-0-0 d as been designed ad nonconcurrent has been designe m chord in all are: by 2-00-00 wide v ny other members)psf		THAN			EER. AL		

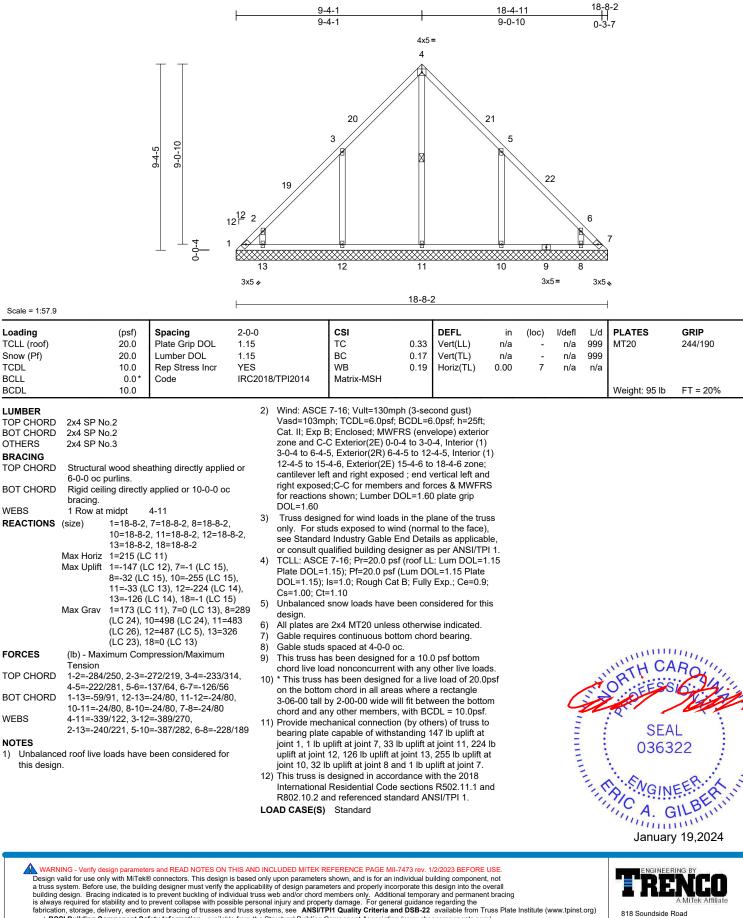
January 19,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V10	Valley	1	1	Job Reference (optional)	163106408

9-4-1


Carter Components (Sanford, NC), Sanford, NC - 27332,

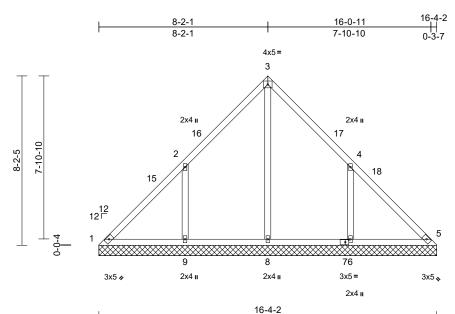
Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed. Jan 17 18:37:16 ID:2CnHHNq9poB dTiho7oT6yzphjS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-4-11

Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V11	Valley	1	1	Job Reference (optional)	163106409

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:16 ID:2CnHHNq9poB_dTiho7oT6yzphjS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

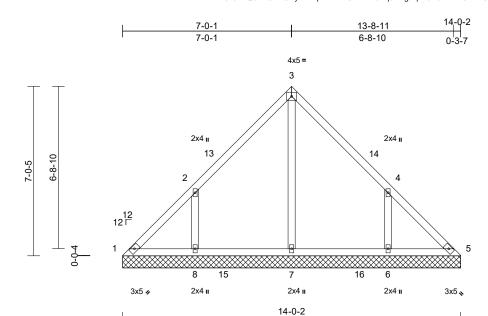
Page: 1

Scale = 1:55.7

Plate Offsets (X, Y): [7:0-2-1,0-1-8]

	X, 1). [7.0-2-1,0-1-0]	-				-	-						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.57	Horiz(TL)	0.00	5	n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0					-						Weight: 79 lb	FT = 20%	
LUMBER			2) Wind: ASCE	7-16; Vult=130m	ph (3-seo	cond gust)							
TOP CHORD	2x4 SP No.2			Vasd=103m	ph; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft;							
BOT CHORD	2x4 SP No.2			Cat. II; Exp I	B; Enclosed; MWF	FRS (env	elope) exterio	or						
OTHERS	2x4 SP No.3				C Exterior(2E) 0-0									
BRACING					5, Exterior(2R) 5-									
TOP CHORD	Structural wood sh	eathing directly applie	ed or		-0-6, Exterior(2E)									
	6-0-0 oc purlins.	0 , 11			ft and right expose									
BOT CHORD	Rigid ceiling direct	y applied or 6-0-0 oc			d;C-C for member			(S						
	bracing.			DOL=1.60	shown; Lumber [JOL=1.6	J plate grip							
REACTIONS	(size) 1=16-4-2	2, 5=16-4-2, 6=16-4-2	, o		and for wind load	o in tho n	long of the tru	100						
	8=16-4-2	2, 9=16-4-2, 14=16-4-	-2 3		ned for wind loads									
	Max Horiz 1=187 (I	_C 11)		only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable.										
	Max Uplift 1=-102 (LC 10), 5=-1 (LC 15)	,	or consult qualified building designer as per ANSI/TPI 1.										
		LC 15), 9=-233 (LC 1	4), 4		E 7-16; Pr=20.0 ps									
	14=-1 (L		•		1.15); Pf=20.0 psf									
		_C 13), 5=1 (LC 24), 6			Is=1.0; Rough Ca									
		8=688 (LC 26), 9=51	7 (LC	Cs=1.00; Ct			_, 00 0.0	,						
		1 (LC 24)	5	,	snow loads have	been co	nsidered for th	nis						
FORCES	()	mpression/Maximum		design.										
	Tension		6) Gable requir	es continuous bot	ttom choi	d bearing.							
TOP CHORD		-66/336, 3-4=-39/309	9, 7) Gable studs	spaced at 4-0-0 c	DC.	-						1111	
	4-5=-165/262		8) This truss ha	as been designed	for a 10.	0 psf bottom					M' IL CL	D-11.	
BOT CHORD	,	146/77, 6-8=-146/77,			ad nonconcurrent							"ATH UT	10, 11,	
WEBS	5-6=-146/77	97/264, 4-6=-398/261	9		has been designe)psf			1	ONESS	and his	
	3-8=-492/0, 2-9=-3	97/204, 4-0=-398/20			m chord in all area						12	infloo	MAR	
NOTES					by 2-00-00 wide w								1	
,		e been considered fo			ny other members					2	8 8		1 N N E	
this design	1.		1		chanical connectio					11111	6	SEA	(L 🔅 E	
					e capable of withs					-	5		•	
					uplift at joint 5, 233		at joint 9, 226	מו מ		-	5	0363		
			4		6 and 1 lb uplift a		ith the 2010			-	2 3	•	1 1	
			1	i) i nis truss is	designed in accord	raance w	ith the 2018				-			

This truss is designed in acc nce with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V12	Valley	1	1	Job Reference (optional)	163106410

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:17 ID:YP5uJ?dQGLKGxLrUKy2zf2zphDR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.7

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.17 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
6-0-0 oc purlins.	eathing directly applied	3) 4) or 5)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	hed for wind loads ds exposed to win 4 Industry Gable E alified building de 7-16; Pr=20.0 ps .15); Pf=20.0 psf s=1.0; Rough Cat :1.10 snow loads have	nd (norm End Deta signer as f (roof LL (Lum DC B; Fully	al to the face; ils as applicat s per ANSI/TF .: Lum DOL=* DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. I.15);					
7=14-0-2 Max Horiz 1=-160 (I Max Uplift 1=-40 (L 6=-191 (I Max Grav 1=143 (L	C 10), 5=-3 (LC 11), LC 15), 8=-196 (LC 14) C 28), 5=116 (LC 27), C 21), 7=385 (LC 23),	6) 7) 8) 9)	Gable require Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b	es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	c. for a 10.0 with any d for a liv s where ill fit betv	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto)psf om					
FORCES (Ib) - Maximum Cor Tension TOP CHORD 1-2=-164/148, 2-3=	npression/Maximum -221/131, 3-4=-221/13 ²		Provide mecl (bearing plate	y other members hanical connection capable of withst	n (by oth anding 4	ers) of truss to 0 lb uplift at jo	o oint					
4-5=-142/105 BOT CHORD 1-8=-66/128, 7-8=-6 5-6=-66/127	66/127, 6-7=-66/127, 85/237, 4-6=-385/235		uplift at joint) This truss is International	at joint 5, 196 lb u 6. designed in accor Residential Code nd referenced star	dance w sections	ith the 2018 8 R502.11.1 a					TH CA	RO
NOTES		LC	AD CASE(S)	Standard						AN'	R	35/1

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-5, Interior (1) 3-0-5 to 4-0-5, Exterior(2R) 4-0-5 to 10-0-5, Interior (1) 10-0-5 to 11-0-5, Exterior(2E) 11-0-5 to 14-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V13	Valley	1	1	Job Reference (optional)	163106411

5-10-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:17 ID:0beGXLe21fS7ZVQhtgaCBFzphDQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-11

Page: 1

11-8-2 5-10-1 5-6-10 4x5= 3 9 5-10-5 5-6-2x4 II 2x4 2 12 12 Г 5 ò 6 8 7 3x5 🕢 2x4 II 2x4 **I** 2x4 u 3x5 💊 11-8-2 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 тс 0.33 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.12 999 Vert(TL) n/a n/a 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 52 lb FT = 20% Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. 6) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint)3, 1, 18 lb uplift at joint 5, 175 lb uplift at joint 8 and 170 lb uplift at joint 6. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard \cap - CHARLEN COMPANY MANDER IN INTERNET SEAL 036322 G minin January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB_Building** Component **5**, the form the structure Building form the Structure Building Component to the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:45.5

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL		10.0	
LUMBER			
TOP CHORD			
BOT CHORD	2x4 SP N	o.2	
OTHERS	2x4 SP N	o.3	
BRACING			
TOP CHORD	Structural 6-0-0 oc p		athing directly applied
BOT CHORD			applied or 10-0-0 oc
REACTIONS	(size)	1=11-8-2, 7=11-8-2,	5=11-8-2, 6=11-8-2, 8=11-8-2
	Max Horiz	1=-133 (L	C 10)
	Max Uplift	1=-50 (LC	12), 5=-18 (LC 13),
			C 15), 8=-175 (LC 14)
	Max Grav		24), 5=85 (LC 26),
			21), 7=240 (LC 20),
		8=450 (LC	; 20)
FORCES	(lb) - Max Tension	imum Com	pression/Maximum
TOP CHORD	1-2=-159/	124, 2-3=-2	254/117, 3-4=-254/103
	4-5=-134/	87	,
BOT CHORD	1-8=-45/9	4, 7-8=-41/	94, 6-7=-41/94,
	5-6=-41/9	4	
WEBS	3-7=-152/	0, 2-8=-424	1/244, 4-6=-424/242
NOTES			

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 8-8-6, Exterior(2E) 8-8-6 to 11-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V14	Valley	1	1	Job Reference (optional)	163106412

4-8-1

4-8-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-8-5

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:17 ID:0beGXLe21fS7ZVQhtgaCBFzphDQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 = 2

9-0-11

4-4-10

9-4-2

10 11 4-4-10 12 12 ⊏ q 12 3 0-0 4 2x4 II 3x5 🕢 3x5 💊 9-4-2 Vanananan SEAL 036322 GILB

Scale = 1:35.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-MSH	0.43 0.42 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 9-4-2 oc purlins. Rigid ceiling directly bracing. (size) 1=9-4-2, 3 Max Horiz 1=-105 (L Max Uplift 1=-36 (LC 4=-135 (L Max Grav 1=100 (LC 4=733 (LC	applied or 6-0-0 oc 3=9-4-2, 4=9-4-2 C 12) : 21), 3=-36 (LC 20), C 14) C 20), 3=100 (LC 21)	for Plate DOL= Cs=1 5) Unba desig 6) Gable 7) Gable 8) This t chorc 9) * This 0 this 3-06- chorc 10) Provi	: ASCE 7-16; Pr=20.0 p DOL=1.15); Pf=20.0 ps =1.15); Is=1.0; Rough Ca .00; Ct=1.10 lanced snow loads have n. e requires continuous bc e studs spaced at 4-0-0 fruss has been designed b live load nonconcurrent is truss has been designed e bottom chord in all are 00 tall by 2-00-00 wide v d and any other member: de mechanical connection ng plate capable of withs	F (Lum DC at B; Fully been cor ttom chor cc. for a 10.1 with any d for a liv as where vill fit betv s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loar e load of 20.0 a rectangle veen the botto ers) of truss to); ds. dpsf om o					
FORCES	(lb) - Maximum Com Tension		,	Ib uplift at joint 3 and 13 truss is designed in acco		,						
TOP CHORD BOT CHORD	1-2=-137/339, 2-3=- 1-4=-195/193, 3-4=-			national Residential Code 2.10.2 and referenced sta			nd					
WEBS	2-4=-557/314			ASE(S) Standard								
NOTES				.,								
this desigi	ed roof live loads have										WHY CA	Della

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 6-4-6, Exterior(2E) 6-4-6 to 9-4-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

January 19,2024

WILLING THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC	
23120149	V15	Valley	1	1	Job Reference (optional)	163106413

3-6-1

3-6-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WFBS

1)

2)

3)

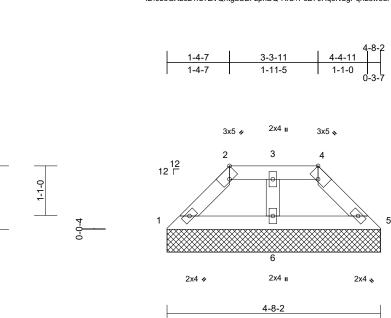
Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Wed Jan 17 18:37:17 ID:0beGXLe21fS7ZVQhtgaCBFzphDQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-11

3-2-10

4x5 = 2

Page: 1


111111111

10 11 5 3-6-5 3-2-12 12 ⊏ 12 9 3 0-0-4 4 2x4 ı 3x5 🖌 3x5 💊 7-0-2 Scale = 1:31.1 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) n/a n/a 999 MT20 244/190 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.26 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 3 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 28 lb FT = 20% TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 LUMBER 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 OTHERS Unbalanced snow loads have been considered for this 5) BRACING desian. Structural wood sheathing directly applied or TOP CHORD Gable requires continuous bottom chord bearing. 6) 7-0-2 oc purlins. 7) Gable studs spaced at 4-0-0 oc. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc This truss has been designed for a 10.0 psf bottom 8) bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf REACTIONS (size) 1=7-0-2, 3=7-0-2, 4=7-0-2 9) Max Horiz 1=-78 (LC 10) on the bottom chord in all areas where a rectangle 1=-12 (LC 21), 3=-12 (LC 20), Max Uplift 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-92 (LC 14) chord and any other members. 1=98 (LC 20), 3=98 (LC 21), 4=511 Max Grav 10) Provide mechanical connection (by others) of truss to (LC 21) bearing plate capable of withstanding 12 lb uplift at joint FORCES (lb) - Maximum Compression/Maximum 1, 12 lb uplift at joint 3 and 92 lb uplift at joint 4. Tension 11) This truss is designed in accordance with the 2018 TOP CHORD 1-2=-94/206, 2-3=-94/206 International Residential Code sections R502.11.1 and 1-4=-150/167, 3-4=-150/167 BOT CHORD R802.10.2 and referenced standard ANSI/TPI 1. 2-4=-359/222 LOAD CASE(S) Standard NOTES Unbalanced roof live loads have been considered for this design. ORTH Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-0-6, Exterior(2E) 4-0-6 to 7-0-6 zone; VIIIIIIIIIIIIIII cantilever left and right exposed ; end vertical left and SEAL right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 036322 DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. GI minin January 19,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a loss system: before use, the building design index very the applications of design had been properly incorporate and sessing into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 86 FaNC			
23120149	V16	Valley	1	1	Job Reference (optional)	163106414		

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Jan 17 18:37:18 ID:0 be GXLe 21 fS7ZVQ htgaCBFz ph DQ-R fC?Ps B70 Hq3NSgPqnL8w3u ITX bGKWrCDoi7J4zJC? factor of the second statement of the

Page: 1

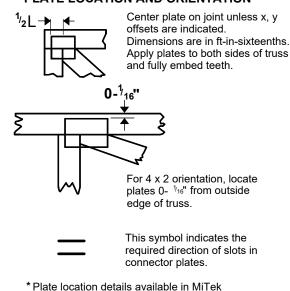
Scale = 1:25.2

Plate Offsets (X, Y): [2:0-2-8.Edge], [4:0-2-8.Edge]

1-4-11

Plate Offsets	(X, Y): [2:0-2-8,Edge],	, [4:0-2-8,Edge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TI	PI2014	CSI TC BC WB Matrix-MP	0.05 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
this design 2) Wind: AS Vasd=10 Cat. II; E zone and 1-4-11 to cantileve right exp	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-2 oc purlins, exc 2-0-0 oc purlins: 2-4 Rigid ceiling directly bracing. (size) 1=4-8-2, 5 Max Horiz 1=-28 (LC Max Uplift 1=-12 (LC 6=-11 (LC Max Grav 1=123 (LC 6=211 (LC (lb) - Maximum Com Tension 1-2=-136/50, 2-3=-4 4-5=-137/51 1-6=-23/90, 5-6=-24 3-6=-140/87 1-6=-23/90, 5-6=-24 3-6=-140/87 1-6=Capsf; Bi xp B; Enclosed; MWFR 1 C-C Exterior(2E) 0-0-4 3-3-15, Exterior(2E) 3- r left and right exposed osed; C-C for members. on shown; Lumber DO 	applied or 10-0-0 oc 5=4-8-2, 6=4-8-2 10) 14), 5=-15 (LC 15), 14) 38), 5=124 (LC 38), 37) pression/Maximum 7/59, 3-4=-47/59, /91 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 1-4-11, Exterior(2) 3-15 to 4-8-6 zone; ; end vertical left and and forces & MWFRS	o s s o o o o o o o o o o o o o	nly. For stu ee Standarc r consult qu CLL: ASCE late DOL=1 OL=1.15); I ioL=1.15); I	snow loads have b quate drainage to p ess continuous bott spaced at 4-0-0 or s been designed f id nonconcurrent v has been designed in chord in all areas y 2-00-00 wide wi y other members. hanical connectior capable of withsta at joint 5 and 11 ll designed in accord Residential Code nd referenced stan rlin representation tion of the purlin a l.	Id (norm nd Deta signer a f (roof LI Lum DC B; Fully been color or event om choic or a 10. with any f or a 110. with any f or a 110. with any f or a 10. with any f or	al to the face ils as applical s per ANSI/TF \perp : Lum DOL=: \perp : Note that the exp.; Ce=0.9 the state of the water ponding d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at ji t joint 6. ith the 2018 s R502.11.1 a SI/TPI 1.), ble, Pl 1. 1.15 e 9; his g. ds. Dpsf com ko oom				SEA 0363	• •

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 1-4-11, Exterior(2R) 1-4-11 to 3-3-15, Exterior(2E) 3-3-15 to 4-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



GI munin January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

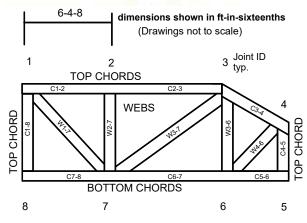
software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING



Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.