

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES Model: 81 FaNC COOPER 3 ELV 6

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

I RIANGULAR OT MOUL NE	<pre>** FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS. ** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT. Truss Drawing L</pre>		General Notes:
EAR END OF TRUSS INDIC			** CUTTING OR DRILL
AIES LEFT END OF IRU			ING OF COMPONENTS SI
SS AS SHOWN ON INDIVID			HOULD NOT BE DONE WI
JUAL IRUSS DRAVINGS.			THOUT CONTACTING CON
	21' 11 1/2" V1 PB4	B03	MPONENT S
	** **	B01 B01 B01	UPPLIER FIRST. (
	20 0" PB PB	B01	USTOMER TAKES
	PB3 PB3 PB3 PB3 PB3 PB3 PB3 PB3 PB3 PB3	B01 B01 B02	FULL RESPONSIBIL
	403 PB1 NO NO 90 01 PB1 NO 90 01 PB1 NO 90 01 PB1		ITY FOR COMPONEN
	PB1 No A02 No A01 PB1 A01 PB1 PB1 No No No		UTS IF CUT BEFORE
	A01 PB1 Q	12'0" V11 V11	AUTHORIZATION.
	A04 PB2 56'0"		
			** ALL E

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

RE: 23120147 DRB GROUP - 81 FaNC

Site Information:

Customer: Project Name: 23120147 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	158456832	A01	5/19/2023	21	158456852	V4	5/19/2023
2	158456833	A02	5/19/2023	22	158456853	V5	5/19/2023
3	158456834	A03	5/19/2023	23	158456854	V6	5/19/2023
4	158456835	A04	5/19/2023	24	158456855	V7	5/19/2023
5	158456836	B01	5/19/2023	25	158456856	V8	5/19/2023
6	158456837	B02	5/19/2023	26	158456857	V9	5/19/2023
7	158456838	B03	5/19/2023	27	158456858	V10	5/19/2023
8	158456839	C01	5/19/2023	28	158456859	V11	5/19/2023
9	158456840	C02	5/19/2023				
10	158456841	C03	5/19/2023				
11	158456842	D01	5/19/2023				
12	158456843	D02	5/19/2023				
13	158456844	PB1	5/19/2023				
14	158456845	PB2	5/19/2023				
15	158456846	PB3	5/19/2023				
16	158456847	PB4	5/19/2023				
17	158456848	PB5	5/19/2023				
18	158456849	V1	5/19/2023				
19	158456850	V2	5/19/2023				

5/19/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

V3

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

158456851

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	A01	Piggyback Base	6	1	Job Reference (optional)	158456832

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:06 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-10 12-6-8 17-6-14 21-2-5 26-2-5 32-6-12 38-4-2 43-9-4 49-10-6 55-11-0 6-0-10 6-5-14 5-0-6 3-7-7 5-0-0 6-4-7 5-9-6 5-5-1 6-1-2 6-0-10 6x8= 2x4 // 2x4 🗤 4x6= 4x5 =6x8= 6 7 41428 43 944546 10 11 8x10 🕫 8x10 👟 5 7¹² 12 4748 3940 4x5 ≉ <u>11-6-0</u> 11-0-8 2x4 🖊 11-6-0 49 13 38 37 ⁴ 4x5 ≉ 3 2 뷺 rŧ. TT I Ø Ø 220 53 19 25 5023 22 51 21 52 54 18 17 55 56 16 24 4x5= 2x4 II 4x6= 2x4= 4x6= 4x8= 4x5= 2x4 II 4x8 II 2x4= 4x8= 2x4 II 4x6= 4x5= 12-4-12 12-6-8 17-8-10 6-0-10 23-8-5 29-6-4 38-2-6 46-11-13 55-11-0 6-4-2 0-1-12 5-2-2 6-0-10 5-11-11 5-9-15 8-8-2 8-9-7 8-11-3

Scale = 1:97.6

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [12:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.61 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.31 0.04	(loc) 16-18 21-22 15	l/defl >999 >662 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 475 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No. 2x6 SP No. 2x4 SP No. 22-6,22-7,2 SP No.2 Left 2x6 SP 1-6-0	2 2 3 *Except 20-8,20-10 2 No.2 1	t*),18-10,18-11,26-27 -6-0, Right 2x6 SP ∣	V :2x4 No.2	VEBS 2		655/16; 231/42; 7=-493; -20=-1; -18=-7; 2-16=-3; -28=-6;	5, 5-24=-1429 22-26=-345/ 142, 041/310, 195, 2/530, 7, 27-28=-6/7	0/68, 117, 7,	10) * Th on t 3-06 cho 11) One reco UPL uplit	iis truss he botto 5-00 tall rd and a e H2.5A ommend LIFT at jt ft only a	has be m cho by 2-0 ny oth Simps ed to o c(s) 2, 2 nd doe	een designed for rd in all areas wh 0-00 wide will fit er members, with on Strong-Tie cc connect truss to l 24, 20, and 15. T es not consider la	a live load of 20.0ps lere a rectangle between the bottom 1 BCDL = 10.0psf. innectors bearing walls due to his connection is for teral forces.	sf 1) vr
BRACING				N	IOTES					12) This	s truss is	desig	ned in accordan	ce with the 2018	
TOP CHORD	Structural v 4-7-7 oc pu	vood shea Irlins, exc	athing directly applie ept	ed or 1) Unbalanced this design.	7-16: Vult=130mpt	been o	considered for	r	Inte R80 13) Gra	rnationa)2.10.2 a phical p	I Resid and ref urlin re	dential Code sec erenced standar presentation doe	tions R502.11.1 and d ANSI/TPI 1. es not depict the size	i e
BOT CHORD	Rigid ceiling	g directly	applied or 6-0-0 oc	2	Vasd=103mp Cat II: Exp F	bh; TCDL=6.0psf; B B: Enclosed: MWER	CDL=6	.0psf; h=25ft; elope) exterio	r	or the	ne orient om chor	ation o d.	of the purlin alon	g the top and/or	
WEBS	1 Row at m	nidpt	5-24, 6-22, 7-22, 8-2 10-20, 12-18	20,	zone and C-0 5-1-6 to 9-1-3	C Exterior(2E) -0-10 3, Exterior(2R) 9-1-	0-8 to 5 3 to 26	-1-6, Interior (-1-7, Interior ((1) [1]	LOAD	CASE(S)	Sta	ndard		
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2=0-3-8, 1 24=0-3-8 2=249 (LC 2=-56 (LC 20=-118 (L 2=427 (LC 20=1924 (5=0-3-8, 20=0-3-8, 14), 15=-124 (LC 1 LC 15), 24=-158 (LC 241), 15=1277 (LC LC 44), 24=1914 (L	5), C 14) 37), 3 C 35)	26-1-7 to 29- Interior (1) 46 55-11-0 zone vertical left a forces & MW DOL=1.60 pl) TCLL: ASCE	10-7, Exterior(2R) : 5-9-13 to 49-11-2, E cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf (1)	29-10-7 Exterior I right e -C for n shown; (roof LL	' to 46-9-13, (2E) 49-11-2 xposed ; end nembers and Lumber .: Lum DOL='	to 1.15				TH CA	RO	
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum	,	DOL=1.15); I	.15); P1=20.0 pst (L s=1.0; Rough Cat I	B; Fully	Exp.; Ce=0.9);			- North	OFFESS	Killer.	
TOP CHORD	1-2=0/26, 2 6-7=-209/14 10-11=-696 13-15=-176	2-4=-355/8 42, 7-8=-3 3/232, 11- 35/207	37, 4-6=-320/523, 312/172, 8-10=-166/ 13=-1605/227,	4/145, 5) Unbalanced design.) This truss ha	snow loads have be s been designed fo	een cor or great	nsidered for th	live				SEA	L	7
BOT CHORD	2-25=-207/ 22-24=-409 20-21=-116 16-18=-16/	317, 24-2)/158, 21-)/392, 18-3)/392, 18-3 1155, 15-	5=-170/317, 22=-116/392, 20=-68/478, 16=-96/1433	6 7 8 9	 overhangs no 200.0lb AC u from left end, Provide adec All plates are This truss ha chord live load 	on-concurrent with nit load placed on f supported at two p juate drainage to p 2x4 MT20 unless s been designed fo ad nonconcurrent w	other liv the bott points, s revent otherwi or a 10.0 rith any	ve loads. om chord, 23 5-0-0 apart. vater ponding se indicated.) psf bottom other live loa	-8-8 J. ds.		11102	in the second se		EER.K	

May 19,2023

818 Soundside Road Edenton, NC 27932

Page: 1

4x5**≈** ¹⁴15

6x12 II

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	A02	Piggyback Base	1	1	Job Reference (optional)	158456833

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:09 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:95.7

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [10:0-3-12,0-3-0], [11:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.57 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.18 0.02	(loc) 16-18 18-20 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 451 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E No.2 2x4 SP No.2 *Excep 22-4,16-11,16-12,5-: Left 2x6 SP No.2 1-6-0 Structural wood she 4-7-5 oc purlins, exc 2-0-0 oc purlins (6-0	*Except* 21-19:2x6 S ot* 22:2x4 SP No.3 1-6-0, Right 2x6 SP N athing directly applie cept 0-0 max.): 6-10.	W SP No.2 N 1) d or 2)	YEBS 9 4 7 7 7 7 1 5 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0-18=-592/185, 10-1 -22=-271/181, 6-22 -20=0/1237, 6-20 -18=-1659/162, 11 0-16=-228/1321, 1 -22=-679/235 roof live loads have 7-16; Vult=130mph b; TCDL=6.0psf; B ; Enclosed; MWFR	2=-129 2=-253, -648/23 -16=-69 2-16=-69 2-16=-69 2-16=-69 2-16=-69 (3-sec CDL=6 S (envi	52/213, 1185, 39, 55/236, 347/181, considered for ond gust) .0psf; h=25ft; elope) exterio	r	9) * Th on t 3-06 cho 10) One recc UPL only 11) This Inte R80 12) Gra	is truss he botto 3-00 tall rd and a 4 H2.5A primend LFT at jt or and do truss is rnationa (2.10.2 a phical pro- ories)	has be m cho by 2-0 ny oth Simps ed to c (s) 2, es not desig I Resid and ref urlin re	een designed for rd in all areas wi 0-00 wide will fit er members, witt on Strong-Tie cc connect truss to 1 18, and 14. This consider lateral ned in accordani dential Code sec erenced standar presentation doo	a live load of 20.0 here a rectangle between the bottk n BCDL = 10.0psf nnectors bearing walls due connection is for i forces. ce with the 2018 tions R502.11.1 a d ANSI/TPI 1. es not depict the s a the top and/or)psf om to uplift ind size
BOT CHORD WEBS WEBS REACTIONS	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, Max Horiz 2=-253 (L Max Uplift 2=-113 (L 18=-44 (L Max Grav 2=1402 (L 18=3320	applied or 10-0-0 oc i-18. 9-18, 10-18, 6-20 7-18 14=0-3-8, 18=0-3-8 (C 12) C 14), 14=-133 (LC 1 C 15) LC 35), 14=919 (LC 3 (LC 3)	15), 3) 37),	zone and C-0 5-1-6 to 9-1-7 26-0-9 to 29- Interior (1) 46 56-9-8 zone; vertical left an forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	C Exterior(2E) -0-10 3, Exterior(2R) 9-1- 10-7, Exterior(2R) 2 5-9-13 to 50-9-10, E cantilever left and r nd right exposed;C- FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10	I-8 to 5 3 to 26 29-10-7 2xterior ight ex C for n hown; roof LL um DC 3; Fully	-1-6, İnterior (-0-9, Interior ('to 46-9-13, (2E) 50-9-10 i possed ; end nembers and Lumber :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	(1) 1) to 1.15 ;	or ti bott LOAD C	ne orient om chor CASE(S)	ation d d.) Star	ndard	g the top and/or	
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-1855 6-7=-673/108, 7-9=0 10-12=-853/325, 12- 14-15=0/26	pression/Maximum 5/182, 4-6=-1683/293 0/681, 9-10=0/681, -14=-1102/213,	4) 9, 5)	Unbalanced design. This truss ha load of 12.0 p overhangs no	snow loads have be s been designed fo osf or 1.00 times fla on-concurrent with o	en cor r greate t roof lo other liv	nsidered for th er of min roof bad of 20.0 ps ve loads.	iis live sf on			in the second se	SEA	L	Mann
BOT CHORD	2-22=-237/1552, 20 18-20=-81/532, 16-1 14-16=-86/883	-22=-67/867, 8=-196/175,	6) 7) 8)	200.0lb AC u 23-11-12 fror apart. Provide adec This truss ha chord live loa	nit load placed on t n left end, supporte juate drainage to pr s been designed fo id nonconcurrent wi	he bott d at tw event v r a 10.0 th any	om chord, o points, 5-0-(water ponding) psf bottom other live load	0 I. ds.		1111	A MARTINE A	0363	EER.	IIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCB Exclusion Component Script Information available from the Structural Building Component Association (www.stponpents.com) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 19,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	A03	Piggyback Base	3	1	Job Reference (ontional)	158456834

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:10 ID:aoRBENz7FOPJS6leKNt1qPzFzyH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x8॥	27 2x4 /	26 4x5=	42 25 4x6	= 43	242344 4x5=		45	22 4x8=	6x8=		4x5	= 4x6=		3x5॥ 5x6=	
					4x6=			3x	5 II					10	0x12 ≈
5-0-0	5-1-1 10-3-13		21-1-	1	1	31-10-4		34-0-0		43-9-12	45	-11-0	53-7-8	55-1	1-0
5-0-0	0-1-1 5-2-12		10-9-	3	1	10-9-3		2-1-12		9-9-12	2	-1-4	7-8-8	2-3	-8

Scale = 1:98.6

11-6-0

11-6-0

0-0-0

_oading FCLL (roof) Snow (Pf) FCDL 3CLL 3CDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.74 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.36 0.13	(loc) 17-19 17-19 15	l/defl >999 >795 n/a
	2x6 SP No.2	* 21_9·2v4 SP No 2	WEBS	20-22=-1089/395, 7-22=-2221/164, 6-24=-440/142, 7-	10-20=- 7-20=-12 24=0/96	1248/158, 7/896, 6. 4-26=-54/3	76.	9) Or rec UF	e H2.5A commen PLIFT at

В 17-16:2x4 SP No.3 WEBS 2x4 SP No.2 *Except* 22-20,4-26,4-27,19-12,16-13:2x4 SP No.3, 15-13,7-22:2x6 SP No.2 NOTES SLIDER Left 2x6 SP No.2 -- 1-6-0 1) BRACING this design TOP CHORD Structural wood sheathing directly applied or 2) 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-10. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 9-20 WEBS 1 Row at midpt 10-20, 6-24, 4-27, 6-26 WEBS 2 Rows at 1/3 pts 7-22 REACTIONS 15=0-3-8, 22=0-3-8, 27=0-3-8 (size) Max Horiz 27=279 (LC 13) Max Uplift 15=-140 (LC 15), 22=-182 (LC 15), 3) 27=-229 (LC 14) 15=954 (LC 49), 22=2975 (LC 6), Max Grav 27=1648 (LC 35) FORCES (lb) - Maximum Compression/Maximum 4) Tension design. TOP CHORD 1-2=0/26, 2-4=-280/565, 4-6=-887/302, 5) 6-7=-382/229, 7-9=0/562, 9-10=0/558, 10-12=-902/295, 12-13=-1106/206, 13-14=0/42. 13-15=-960/192 6) BOT CHORD 2-27=-353/251, 26-27=-239/632 7) 24-26=-203/556, 22-24=-303/248, 21-22=-206/0, 20-21=-286/0, 9-20=-535/168, 8) 19-20=-156/159. 17-19=-44/880. 13-17=-4/795, 16-17=-71/148, 15-16=-165/267

Plate Offsets (X, Y): [10:0-3-12,0-3-0], [15:0-4-12,0-2-12], [20:0-2-12,0-3-12]

4-27=-1632/262, 6-26=-95/365, 12-19=-794/306, 10-19=-180/1353, 13-16=-210/148

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-8-10, Interior (1) 4-8-10 to 9-7-15, Exterior(2R) 9-7-15 to 25-5-12, Interior (1) 25-5-12 to 30-5-4, Exterior(2R) 30-5-4 to 46-0-15, Interior (1) 46-0-15 to 51-2-6, Exterior(2E) 51-2-6 to 56-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15, 22, and 27. This connection is for uplift only and does not consider lateral forces.

Weight: 469 lb

PLATES

MT20

GRIP

244/190

FT = 20%

Page: 1

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

L/d

240

180

n/a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456835

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:12 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.7

Plate Offsets (X, Y): [8:0-5	5-0,0-4-8],	[11:0-3-0,0-3-12], [2	24:0-3-0,0-3-12], [27:0)-5-0,0-4-8],	[42:0-5-0,0-4-8], [46:0-5-0,0-4-	8], [54:0-	5-0,0-4-	8]				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.21 0.06 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 585 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x6 SP No 2x6 SP No 2x4 SP No 2x4 SP No 48-17,49-1 46-20,45-2	0.2 0.2 0.3 *Excep 16,50-15,5 21,44-22,4	t* 1-14,52-13,53-12,47 3-23:2x4 SP No.2	7-19 ,	Max Uplift	34=-60 (LC 13), 36=-32 (LC 15), 38=-49 (LC 15), 40=-53 (LC 15), 42=-10 (LC 15), 45=-26 (LC 11), 47=-27 (LC 11), 49=-25 (LC 11), 51=-28 (I C 10)	35=-132 (LC 37=-52 (LC 1 39=-39 (LC 1 41=-62 (LC 1 44=-26 (LC 1 46=-26 (LC 1 48=-24 (LC 1 50=-25 (LC 1 52=-24 (L C 1	15), 5), 5), 5), 1), 0), 0), 1), 0)	TOP CH	IORD	2-62= 3-4=- 6-7=- 10-11 12-13 14-15 16-17 19-20 21-22		0, 2-3=-211/ ² i0/147, 5-6=- ⁻ i8/218, 9-10= 2=-164/276, 4=-164/276, 3=-164/276, 9=-164/276, 1=-164/276, 3=-164/276	191, 136/143, -167/269,
TOP CHORD BOT CHORD	Structural 6-0-0 oc p 2-0-0 oc p Rigid ceilir	wood shea urlins, exo urlins (6-0- ng directly	athing directly applie cept end verticals, a -0 max.): 11-24. applied or 10-0-0 oc	ed or nd		53=-1 (LC 11), 5 55=-60 (LC 14), 57=-39 (LC 14), 59=-53 (LC 14),	54=-15 (LC 14 56=-53 (LC 1 58=-49 (LC 1 60=-27 (LC 1	4), 4), 4), 4),			23-24 25-26 28-29 31-32	=-164/276, 24-2 =-168/269, 26-2 =-91/132, 29-30 =-91/78, 32-33=	5=-182/292, 3=-139/219, =-72/97, 30-3 -146/111, 33-	1=-83/73, -34=-89/45
WEBS	bracing. 1 Row at r	nidpt	17-48, 16-49, 15-50 14-51, 13-52, 12-53 10-54, 9-55, 19-47, 20-46, 21-45, 22-44 23-43, 25-42, 26-41	, ,	Max Grav	61=-155 (LC 14 34=127 (LC 53) 36=155 (LC 39) 38=226 (LC 43) 40=234 (LC 43)), 62=-127 (LC , 35=213 (LC , 37=165 (LC , 39=220 (LC , 41=253 (LC	C 10) 29), 43), 43), 43), 50)						
REACTIONS	(size) Max Horiz	34=55-11. 38=55-11. 38=55-11. 40=55-11. 42=55-11. 44=55-11. 48=55-11. 50=55-11. 50=55-11. 52=55-11. 58=55-11. 60=55-11. 60=55-11. 62=269 (L	$\begin{array}{l} \text{-0, } 35 = 55 - 11 - 0, \\ \text{-0, } 37 = 55 - 11 - 0, \\ \text{-0, } 39 = 55 - 11 - 0, \\ \text{-0, } 43 = 55 - 11 - 0, \\ \text{-0, } 43 = 55 - 11 - 0, \\ \text{-0, } 45 = 55 - 11 - 0, \\ \text{-0, } 47 = 55 - 11 - 0, \\ \text{-0, } 51 = 55 - 11 - 0, \\ \text{-0, } 53 = 55 - 11 - 0, \\ \text{-0, } 53 = 55 - 11 - 0, \\ \text{-0, } 55 = 55 - 11 - 0, \\ \text{-0, } 55 = 55 - 11 - 0, \\ \text{-0, } 59 = 55 - 11 - 0, \\ \text{-0, } 61 = 55 - 11 - 0, \\ \text{-0, } C \end{array}$	FORCES	(lb) - Max Tension	44=217 (LC 38) 46=211 (LC 38) 48=156 (LC 55) 50=211 (LC 38) 52=218 (LC 38) 54=225 (LC 41) 56=233 (LC 41) 58=221 (LC 41) 60=159 (LC 39) 62=232 (LC 49) cimum Compressi	45=220 (LC 47=171 (LC 49=173 (LC 51=218 (LC 53=183 (LC 55=252 (LC 57=219 (LC 59=165 (LC 61=226 (LC on/Maximum	38), 38), 38), 38), 52), 41), 24), 28),		A CONTRACTOR OF CONTRACTOR	A MARTINE AND A	SEA 0363	L EEER.K ILBER	ATT AND

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

818 Soundside Road Edenton, NC 27932

May 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company dependencies for an individue property decomposition (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456835

Run: 8.53 S. Mar. 9.2023 Print: 8.530 S.Mar. 9.2023 MiTek Industries, Inc. Fri May 19.09:44:12

ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

BOT CHORD	61-62=-104/119, 60-61=-104/119, 59-60=-104/119, 58-59=-104/119, 57-58=-104/119, 56-57=-104/119, 55-56=-105/118, 53-55=-105/118, 52-53=-105/118, 51-52=-105/118, 48-49=-105/118, 49-50=-105/118, 48-49=-105/118, 47-48=-105/118, 43-44=-105/118, 41-43=-105/118, 40-41=-105/118, 39-40=-103/117, 38-39=-103/117, 37-38=-103/117, 34-37=-103/117,
WEBS	17-48=-116/48, 16-49=-134/48, 15-50=-172/48, 14-51=-179/51, 13-52=-179/48, 12-53=-143/25, 10-54=-187/38, 9-55=-214/83, 8-56=-194/77, 7-57=-181/62, 6-58=-183/73, 5-59=-123/73, 4-60=-120/64, 3-61=-146/121, 19-47=-134/49, 20-46=-172/49, 21-45=-179/51, 22-44=-179/49, 23-43=-131/2, 25-42=-187/33, 20-44 - 047/20-272

19-47 -- 134/49, 20-40--- 172/49, 21-45--- 179/51, 22-44--179/49, 23-43=-131/2, 25-42=--187/33, 26-41=-215/84, 27-40=-195/76, 28-39=-181/62, 29-38=-187/73, 30-37=-127/73, 31-36=-119/66, 32-35=-147/112

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 5-1-6, Exterior(2N) 5-1-6 to 11-6-15, Corner(3R) 11-6-15 to 23-6-12, Exterior(2N) 23-6-12 to 32-4-4, Corner(3R) 32-4-4 to 44-2-7, Exterior(2N) 44-2-7 to 49-9-6, Corner(3E) 49-9-6 to 55-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 62, 60 lb uplift at joint 34, 24 lb uplift at joint 48, 25 lb uplift at joint 49, 25 lb uplift at joint 50, 28 lb uplift at joint 51, 24 lb uplift at joint 52, 1 lb uplift at joint 53, 15 lb uplift at joint 54, 60 lb uplift at joint 55, 53 lb uplift at joint 56, 39 lb uplift at joint 57, 49 lb uplift at joint 58, 53 lb uplift at joint 61, 27 lb uplift at joint 47, 26 lb uplift at joint 46, 26 lb uplift at joint 45, 26 lb uplift at joint 44, 10 lb uplift at joint 45, 39 lb uplift at joint 45, 39 lb uplift at joint 45, 26 lb uplift at joint 40, 39 lb uplift at joint 39, 49 lb uplift at joint 38, 52 lb uplift at joint 37, 32 lb uplift at joint 36 and 132 lb uplift at joint 35.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	B01	Piggyback Base	8	1	Job Reference (optional)	158456836

TCDL

BCLL

BCDL

WEBS

WEBS

WFBS

WEBS

NOTES

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:13 ID:fgJGN1CBxSiq8LzfII_gKzzhpjD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	B02	Piggyback Base	2	1	Job Reference (optional)	158456837

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WFBS

FORCES

WEBS

NOTES

1)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 09:44:14 ID:U0VysG?d9oeHisHgY8i761zFzil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456838

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:14

Scale =	1:69.7
---------	--------

11-6-0

H

Plate Offsets (X, Y):	[2:0-2-8,0-1-12]	[12:0-3-0,0-3-12],	[22:Edge,0-3-8],	, [23:Edge,0-1-8],	[29:0-3-0,0-3-0],	[32:0-3-0,0-3-0]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15 1.15	CSI TC	0.67	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Show (PI)		20.0	Rep Stress Incr	1.15 VES	BC WB	0.31	Horz(CT)	n/a ₋0.01	- 23	n/a n/a	999 n/a			
BCU		0.0*	Code	IRC2018/TPI2014	Matrix-M	0.21 R	11012(01)	-0.01	20	n/a	n/a			
BCDL		10.0	0000									Weight: 353 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x6 SP N 2x4 SP N 2x4 SP N 2x4 SP N 32-11,33- x4 SP No	o.2 o.2 o.3 *Excep o.2 *Excep 10,34-9,35 .3	t* 22-23:2x4 SP No.2 t* -8,36-6,37-5,38-4,39	2 -3:2	Max Grav 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23=86 (LC 35), 2 25=219 (LC 35), 27=203 (LC 35), 29=217 (LC 35), 31=175 (LC 35), 33=217 (LC 36), 35=193 (LC 36), 35=193 (LC 24), 39=258 (LC 40),	24=216 (LC 3 26=213 (LC 28=209 (LC 30=219 (LC 32=208 (LC 34=217 (LC 36=161 (LC 38=157 (LC 40=343 (LC	35), 35), 35), 35), 36), 36), 24), 36), 11)	1) Ur thi 2) W Va Ca zo 2-I Ex 33	balanced s design. nd: ASCI sd=103n t. II; Exp ne and C)-0 to 14- terior(2N -10-4 zor	I roof li E 7-16; nph; TC B; Enc -C Cor 6-14, () 20-6- ne; can	ve loads have t Vult=130mph (DDL=6.0psf; BC dosed; MWFRS ner(3E) -0-10-8 Corner(3R) 14-6 14 to 30-10-4, (tilever left and r	een considered 3-second gust) DL=6.0psf; h=25 (envelope) exte to 2-0-0, Exterit :-14 to 20-6-14, Corner(3E) 30-1(ight exposed ; e	for 5ft; prior pr(2N) 0-4 to end
TOP CHORD	6-0-0 oc 2-0-0 oc	l wood shea purlins, exc purlins (6-0	athing directly applied cept end verticals, an -0 max.): 12-22.	d FORCES	(lb) - Maxim Tension	num Compressio	on/Maximum	,	ve	rtical left ces & M\	and rig	ht exposed;C-C for reactions sh	for members ar own; Lumber	nd
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc	TOP CHORD	2-40=-267/ 3-4=-289/18	116, 1-2=0/30, 2 86, 4-5=-272/17	2-3=-385/245 6, 5-6=-245/	, 158,	3) T	uss desig	gned fo	or wind loads in	the plane of the	truss
WEBS	1 Row at	midpt	22-23, 21-24, 20-25, 18-26, 17-27, 16-28, 15-29, 14-30, 13-31, 11-32, 10-33	6-8=-229/14 10-11=-189 12-13=-145 14-15=-145	/137,	on se or 4) TC	ly. For si e Standa consult q LL: ASC	tuds ex rd Indu ualified E 7-16	cposed to wind (istry Gable End d building desig ; Pr=20.0 psf (ru Pf=20.0 psf (lu	normal to the fac Details as applic ner as per ANSI/ of LL: Lum DOL	ce), cable, /TPI 1. L=1.15			
REACTIONS	(size) Max Horiz Max Uplift	23=34-0-0 26=34-0-0 29=34-0-0 32=34-0-0 35=34-0-0 38=34-0-0 40=394 (L 23=-18 (L)	1, 24=34-0-0, 25=34- 1, 27=34-0-0, 28=34- 1, 30=34-0-0, 31=34- 1, 33=34-0-0, 34=34- 1, 36=34-0-0, 37=34- 1, 39=34-0-0, 40=34- C 13) C 11), 24=-49 (LC 10	D-0, D-0, D-0, D-0, D-0, D-0, D-0, D-0	18-20=-144 21-22=-144 39-40=-140 37-38=-140 35-36=-140 33-34=-140 30-31=-140		5) Ur	DL=1.15); =1.00; C balanced sign.	t=1.10 t=1.10 t snow	loads have bee	n considered for	0.9; r this		
		25=-48 (L) 27=-26 (L) 29=-26 (L) 31=-58 (L) 33=-57 (L) 35=-49 (L) 37=-56 (L) 39=-241 (I)	C 11), 26=.34 (LC 10 C 11), 28=.27 (LC 10 C 11), 30=.25 (LC 10 C 11), 32=.27 (LC 14 C 14), 32=.48 (LC 14 C 14), 36=.47 (LC 14 C 14), 38=.11 (LC 14 LC 14), 40=.144 (LC),),), WEBS),),),), 12) NOTES	27-28=-140 25-26=-140 23-24=-140 21-24=-174 18-26=-174 16-28=-174 14-30=-179 9-34=-177/ 5-37=-124/	17159, 20-27=-14 1/159, 24-25=-14 1/159 1/102, 20-25=-18 1/02, 20-25=-18 1/102, 20-25=-18 1/102, 20-25=-18 1/102, 20-25=-18 1/20, 10-33=-18 1/20, 10-35=-10, 10	40/159, 40/159, 31/52, 4/48, 3/50, 5/82, 0/79, 2, 6-36=-123 3, 3-39=-177	/72, /191				SE/ 0363	AL 322	Mannunn
												A. (

May 19,2023

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company dependencies for an individue property decomposition (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456838

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 40, 18 lb uplift at joint 23, 49 lb uplift at joint 24, 48 lb uplift at joint 25, 34 lb uplift at joint 26, 26 lb uplift at joint 27, 27 lb uplift at joint 28, 26 lb uplift at joint 29, 25 lb uplift at joint 30, 58 lb uplift at joint 31, 27 lb uplift at joint 32, 57 lb uplift at joint 33, 48 lb uplift at joint 34, 49 lb uplift at joint 35, 47 lb uplift at joint 36, 56 lb uplift at joint 37, 11 lb uplift at joint 38 and 241 lb uplift at joint 39.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:14 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	C01	Piggyback Base	2	1	Job Reference (optional)	158456839

Run: 8.53 E Oct 7 2022 Print: 8.530 E Oct 7 2022 MiTek Industries, Inc. Fri May 19 13:29:31 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-0NhbHyjlbu?XKwanqTJ9iG?87HdIrje8gFsDuhzEwPp Page: 1

Scale = 1:67

Plate Offsets ((X, Y): [2:0-3-4,0-0-12]], [3:0-3-0,0-2-1], [4:	:0-3-0,0-2-1], [5:0-3-4,0-0-	-12], [8:0-4-0,0-3-4	4]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.89 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.38 -0.01	(loc) 7-8 7-8 7	l/defl >999 >617 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 *Except 2x4 SP No.2 2x4 SP No.2 Structural wood shee	3) 4)	 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 										
BOT CHORD WEBS REACTIONS	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 9 Max Horiz 9=303 (LC Max Uplift 7=-80 (LC Max Grav 7=1017 (L	aunig uncerviticals, a -0 max.): 3-4. applied or 6-7-7 oc 4-8, 3-8 0=0-3-8 2 13) 15), 9=-80 (LC 14) .C 40), 9=1017 (LC	6) 7) 8) 40)	This truss ha load of 12.0 p overhangs no Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	s been designed psf or 1.00 times f on-concurrent with quate drainage to s been designed ad nonconcurrent nas been designed n chord in all area y 2-00-00 wide w	for great lat roof lo o other lip prevent for a 10.1 with any d for a liv s where ill fit betw	er of min root bad of 20.0 p ve loads. water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott	flive sfon g. ads. Opsf om					
FORCES	(lb) - Max. Comp./Ma (lb) or less except wh 2-3=-801/184, 3-4=-4	ax. Ten All forces hen shown. 432/211, 4-5=-801/1	250 9) 184,	One RT4 Mi truss to bear This connect	Fek connectors re ing walls due to U ion is for uplift onl	commen PLIFT at v and do	ded to conne i jt(s) 7 and 9 es not consid	ect der					
BOT CHORD WEBS NOTES 1) Unbalance this design	2-9=-933/170, 5-7=-{ 7-9=-266/290 2-8=-75/438, 5-8=-76 ed roof live loads have n.	933/170 6/438 been considered for	10) r 11)	lateral forces This truss is International R802.10.2 ar Graphical pu or the orienta bottom chord	designed in accor Residential Code nd referenced star rlin representation ation of the purlin	dance w sections ndard AN n does no along the	ith the 2018 5 R502.11.1 a ISI/TPI 1. bt depict the s top and/or	and size			1 in	ORTH CA	ROLIN

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-2-8, Exterior(2R) 3-2-8 to 16-8-8, Interior (1) 16-8-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	C02	Piggyback Base	8	1	Job Reference (optional)	158456840

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:16 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	77PI2014	CSI TC BC WB Matrix-MSH	0.65 0.89 0.15 f (roof LL	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.38 0.00 1.15	(loc) 6-7 5-6 5	l/defl >999 >616 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-3-8, 7 Max Horiz 7=-283 (L Max Uplift 5=-62 (LC Max Grav 5=956 (LC (lb) - Maximum Com	t* 2-3:2x4 SP No.2 athing directly applied cept end verticals, an -0 max.): 2-3. applied or 6-7-7 oc 3-6, 2-6 7=0-3-8 C 12) 5 (5), 7=-62 (LC 14) C 39), 7=956 (LC 39) pression/Maximum	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(and does noi	.15); Pf=20.0 psf is=1.0; Rough Cat =1.10 snow loads have is upuate drainage to is been designed ad nonconcurrent thas been designed in chord in all area by 2-00-00 wide w by other members simpson Strong-Ti ed to connect truss s) 7 and 5. This co t consider lateral f	(Lum DC B; Fully been cor prevent v for a 10.0 with any d for a liv s where ill fit betv e conne s to bear ponectio orces.	DL=1.15 Plate Exp.; Ce=0. Insidered for t water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift	e 9; g. ads. 0psf om e to only							
TOP CHORD 30T CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and (2R) 3-1-1 zone; can and right e MWFRS f grip DOL=	Tension 1-2=-802/170, 2-3=- 1-7=-872/137, 4-5=- 5-7=-247/270 1-6=-78/445, 4-6=-7 2-6=-117/145 ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B4 p B; Enclosed; MWFR: C-C Exterior(22) 0-1-1 2 to 16-9-4, Exterior(2 litever left and right exp exposed;C-C for memb or reactions shown; Lu 1.60	435/201, 3-4=-802/17 872/137 9/445, 3-6=-117/145, been considered for (3-second gust) CDL=6.0psf, h=25ft; S (envelope) exterior 2 to 3-1-12, Exterior E) 16-9-4 to 19-9-4 posed ; end vertical le bers and forces & mber DOL=1.60 plate	9) 10, 11 <u>1</u> LO	This truss is International R802.10.2 ar O Graphical pu or the orienta bottom choro Attic room ch AD CASE(S)	designed in accor Residential Code nd referenced star rlin representation ation of the purlin a l. necked for L/360 d Standard	dance w sections ndard AN a does no along the eflection	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	and		1 Manual Contraction		SEA 0363		Manunun

Plate Offsets (X, Y): [1:0-3-0,0-1-12], [2:0-4-4,0-2-0], [3:0-4-4,0-2-0], [4:0-3-0,0-1-12], [6:0-4-0,0-3-4]

GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply DRB GROUP - 81 FaNC		DRB GROUP - 81 FaNC		
23120147	C03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456841

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:16 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-11-0

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [6:0-2-8,0-0-3], [10:0-2-8,0-0-3], [14:0-2-8,0-1-12], [16:Edge,0-2-0], [21:0-3-0,0-3-0]

Loading		(psf)	Spacing	1-11-4		csi		DEFL	in	(lo	c) l/def	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.89	Vert(LL)	n/a	-	- n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	n/a		- n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.19	Horz(CT)	-0.01	1	6 n/a	n/a			
BCLL		0.0*	Code	IRC2018	3/TPI2014	Matrix-MR		, ,							
BCDL		10.0											Weight: 189 lb	FT = 20%	
				TC			-0/20 4	2 2 - 200/207		5) I	Inholono	d on ou			hio
	0.4 00 N	- 0		i C		2-202477190, 1-2	-0/30, 4	2-3200/207	, 200	5) (Jinbalarici	eu show	loads have been		115
	2X4 SP N	0.2				S-7-131/213, 4-3-	-134/28	7 8-0134/	529, 587	6) 7	This truce	has had	on decigned for g	contor of min roof	livo
	2X4 SP N	0.2				0-10=-134/287 10-	.11=_16	5/329	207,	0)	and of 12		1 00 times flat re	of load of 20.0 m	of on
	2X4 SP N	0.3			•	11_12=_154/207 12	2_13=_1	17/213				non-cc	nourrent with oth	or load or 20.0 pa	51 011
	284 SP IN	0.5				13-14=-206/205 14	4-15=0/:	38		7) [Provide a		drainage to preve	ant water nonding	a
BRACING						14-16=-245/196		,		8) /	Il nlates	aro 2v/	MT20 unless othe	anvise indicated	y.
TOP CHORD	Structura	I wood she	athing directly applied	or BC	T CHORD	25-26=-163/145 24	4-25=-1	63/145		a) (Sable red	uires co	ntinuous bottom	shord bearing	
	6-0-0 oc p	puriins, exe	cept end verticals, and	1 20		23-24=-163/145 22	2-23=-1	63/145		10) 1	Truss to b	e fullv s	heathed from one	face or securely	,
	2-0-0 0C p	puriins (6-0	-0 max.): 6-10.			20-22=-163/145. 19	9-20=-1	63/145.		10) ł	raced an	ainst lat	eral movement (i	e diagonal web)	
BOTCHORD	Rigid cell	ing directly	applied or 6-0-0 oc			18-19=-163/145, 17	7-18=-1	63/145,		11) (Gable stu	ds spac	ed at 2-0-0 oc	o. diagonal wob)	
	1 Devices	mainlast				16-17=-163/145				12) 1	This truss	has bee	en designed for a	10.0 psf bottom	
NEDS	I ROW at	mapt	11 10	', WI	EBS 8	3-21=-199/89, 7-22	2=-179/2	9, 5-23=-185	/57,	,	hord live	load no	nconcurrent with	any other live loa	ids.
	<i></i>		0 47 40 44 0			1-24=-192/110, 3-2	5=-296	209,		13) *	This trus	s has b	een designed for	a live load of 20.0	Opsf
REACTIONS	(size)	10=19-11	-0, 17=19-11-0,		9	9-20=-179/29, 11-1	9=-185	'57,		, c	on the bot	tom cho	ord in all areas wh	ere a rectangle	
		10=19-11	-0, 19=19-11-0,			12-18=-192/110, 13	3-17=-2	95/208		3	8-06-00 ta	ll by 2-0	0-00 wide will fit I	petween the botto	om
		20-19-11	-0, 21-19-11-0,	NC	DTES					c	hord and	any oth	er members.		
		24-19-11	-0, 25-19-11-0,	1)	Unbalanced	roof live loads have	e been o	considered fo	r						
		26=19-11	-0, 20-10-11-0,	-	this design.										
	Max Horiz	26=-294 (I C 12)	2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	ond gust)							
	Max Uplift	16=-340 (L C 11) 17=-375 (L C ⁻	10)	Vasd=103m	oh; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft	;					a second	
	max opini	18=-71 (L	C 15), 19=-36 (LC 15)	,,	Cat. II; Exp E	3; Enclosed; MWFF	RS (env	elope) exterio	or				11111	1111	
		21=-41 (L	C 10), 23=-36 (LC 14)	,	zone and C-	C Exterior(2E) -0-1	0-8 to 1	-11-8, Interio	r (1)				"TH CA	Rollin	
		24=-72 (L	C 14), 25=-378 (LC 1	í),	1-11-8 to 3-2	-8, Exterior(2R) 3-	2-8 to 1	6-8-8, Interio	r (1)			1	R	······································	
		26=-343 (LC 10)		16-8-8 to 17-	9-8, Exterior(2E) 1	7-9-8 to	20-9-8 zone	;			1.	U.FESS	Chi Vin	1
	Max Grav	16=400 (L	C 12), 17=494 (LC 13	3),	cantilever let	t and right exposed	1; end \	ertical left an	D			55	Al 1		<
		18=231 (L	.C 40), 19=230 (LC 50),	for reactions	a;C-C for members			(5		_	Į	21 /	· · ·	-
		20=218 (L	.C 23), 21=238 (LC 39	9),		snown; Lumber Do	JL=1.60	plate grip					CEA	r 1.	-
		22=218 (L	.C 22), 23=231 (LC 48	3), ₂ ,	DOL-1.00	and for wind loads	in the n						SEA	- :	-
		24=231 (L	.C 40), 25=497 (LC 12	<u>2),</u> 3)	only For st	ied for wind loads	in the p	ane or the tru	ss ۱			- :	0363	22 :	-
		26=403 (L	.C 13)		coo Standar	lus exposed to will	nd Doto), blo			=			2
FORCES	(lb) - Max	imum Com	pression/Maximum		or consult a	alified building des	igner a	iis as applica s ner ANSI/TI	DIE, ⊃I1			1			-
	Tension			4)		7-16 Pr=20.0 nsf	(roof LI	\cdot Lum DOI =	1 15			21	N. ENG	CR. X S	
				-7)	Plate DOI =1	15) Pf=20.0 psf (I =1 15 Plate	1.10			1	S, GIN	EF. AN	
					DOI = 1.15	s=1 0: Rough Cat	B' Fully	Exp Ce=0.9	J.			1	CA C	IL BEIN	
					Cs=1.00; Ct	=1.10	_,		- ,				11, A. G	1L-III	
					, o t								111111	ann.	

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Crieria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust information, available from the Structure Building Company dependencies for an individue property decomposition (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 19,2023

Job	Truss	Truss Type Qty Ply DRB GROUP - 81 FaNC		DRB GROUP - 81 FaNC		
23120147	C03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	158456841

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 343 lb uplift at joint 26, 340 lb uplift at joint 16, 41 lb uplift at joint 21, 36 lb uplift at joint 23, 72 lb uplift at joint 24, 378 lb uplift at joint 25, 36 lb uplift at joint 19, 71 lb uplift at joint 18 and 375 lb uplift at joint 17.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:16 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	D01	Common	5	1	Job Reference (optional)	158456842

4x5 =

5-11-8

5-11-8

-0-10-8

0-10-8

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 09:44:17 ID:_chtVMf3J_GcW_b8at2KjIzFzYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-11-0

5-11-8

12-9-8

0-10-8

Page: 1

a 12 2 1-4-0 ٠ 8 6 Ø 7 2x4 ı 2x4 ı 4x8= 5-11-8 11-11-0 5-11-8 5-11-8 PLATES (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d GRIP 20.0 Plate Grip DOL 1.15 тс 0.91 Vert(LL) -0.02 7-8 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.30 Vert(CT) -0.05 7-8 >999 180 10.0 Rep Stress Incr YES WB 0.10 Horz(CT) 6 0.00 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 69 lb 10.0 FT = 20% 4) Unbalanced snow loads have been considered for this 2x4 SP No 2 desian. 2x4 SP No.2 5) This truss has been designed for greater of min roof live 2x4 SP No.3 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads This truss has been designed for a 10.0 psf bottom 6) Structural wood sheathing directly applied or chord live load nonconcurrent with any other live loads. 6-0-0 oc purlins, except end verticals. * This truss has been designed for a live load of 20.0psf 7) Rigid ceiling directly applied or 10-0-0 oc on the bottom chord in all areas where a rectangle bracing. 3-06-00 tall by 2-00-00 wide will fit between the bottom REACTIONS (size) 6=0-3-8, 8=0-3-8 chord and any other members. Max Horiz 8=145 (LC 13) One H2.5A Simpson Strong-Tie connectors 8) Max Uplift 6=-56 (LC 15), 8=-56 (LC 14) recommended to connect truss to bearing walls due to Max Grav 6=619 (LC 22), 8=619 (LC 21) UPLIFT at it(s) 8 and 6. This connection is for uplift only (lb) - Maximum Compression/Maximum and does not consider lateral forces. Tension 9) This truss is designed in accordance with the 2018 1-2=0/34, 2-3=-539/122, 3-4=-539/122, International Residential Code sections R502.11.1 and 4-5=0/34, 2-8=-566/164, 4-6=-566/164 R802.10.2 and referenced standard ANSI/TPI 1. 7-8=-153/263, 6-7=-85/252 LOAD CASE(S) Standard 3-7=0/208, 2-7=-36/249, 4-7=-39/249 Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) VIIIIII 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) SEAL 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed ; end vertical left and 036322 right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; G minin Cs=1.00; Ct=1.10 ay 19,2023

Plate Offsets (X, Y):	[2:0-3-8,Edge], [4:0-3-8,Edge]
-----------------------	--------------------------------

Scale = 1:42.4

Loading

TCLL (roof)

Snow (Pf)

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WFBS

1)

2)

3)

NOTES

TCDL

BCLL

BCDL

WEBS

	May 1
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)	TREEMAN AN 818 Soundside Road Edenton, NC 27932

1111111111

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	D02	Common Structural Gable	1	1	Job Reference (optional)	158456843

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:17 ID:sNxOLkiaNCm2?cvvpi6Gu8zFzYp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets	(X, Y):	[2:0-3-0,0-1-8],	[8:0-3-0,0-1-8]

Scale = 1:42.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.69	DEFL Vert(LL)	in -0.02	(loc) 11-12	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.29	Horz(CT)	0.00	10	<i>>999</i> n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH	0.10	1.10.2(0.1)	0.00		1.74		1		
BCDL	10.0											Weight: 81 lb	FT = 20%	6
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)		13) Thi	s truss is	desig	ned in accordance	ce with the	2018
TOP CHORD	2x4 SP No.2			Vasd=103m	oh; TCDL=6.0psf; I	BCDL=6	.0psf; h=25ft;		Inte	rnationa	I Resi	dential Code sec	ions R502	.11.1 and
BOT CHORD	2x4 SP No.2			Cat. II; Exp E	3; Enclosed; MWFI	RS (env	elope) exterio	or r (1)	880)2.10.2 a	and ret	erenced standar	I ANSI/TPI	1.
WEBS	2x4 SP No.3			1-11-8 to 2-1	1_8 Exterior(2R)	0-0 10 1 2-11-8 to	-11-0, IIILEIIUI	i (1)	LOAD	CASE(S)) Sta	ndard		
OTHERS	2X4 SP N0.3			(1) 8-11-8 to	9-9-8 Exterior(2F) 9-9-8 t	o 12-9-8 zone	<i>.</i> .						
BRACING	Otm	- 41- 1		cantilever lef	t and right expose	d : end \	vertical left an	d						
TOP CHORD	Structural wood sne	athing directly applie	ea or	right expose	d;C-C for members	s and for	rces & MWFF	RS						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or		for reactions	shown; Lumber D	OL=1.60) plate grip							
BOT ONORD	bracing.		· .	DOL=1.60										
JOINTS	1 Brace at Jt(s): 13,		3)	Truss desig	ned for wind loads	in the p	lane of the tru	iss						
	15			only. For stu	ids exposed to win	d (norm	al to the face), blo						
REACTIONS	(size) 10=0-3-8,	12=0-3-8		or consult qu	alified building des	signer a	s ner ANSI/TE	DIE, 211						
	Max Horiz 12=-145 (LC 12)	4)	4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)										
	Max Uplift 10=-56 (L	C 15), 12=-56 (LC 1	4) ′	Plate DOL=1.15): Pf=20.0 psf (Lum DOL=1.15 Plate										
	Max Grav 10=619 (L	_C 22), 12=619 (LC 2	21)	DOL=1.15);	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;						
FORCES	(lb) - Maximum Com	pression/Maximum		Cs=1.00; Ct=	=1.10									
	Tension		5)	5) Unbalanced snow loads have been considered for this										
TOP CHORD	1-2=0/34, 2-3=-511/	79, 3-4=-436/98,	· · · ·	design.										
	4-5=-380/134, 5-6=-	380/134, 6-7=-436/9	8, 6)	I his truss has been designed for greater of min roof live										
	8-10-563/162	34, 2-12=-303/102,		overbangs n	psi or 1.00 times in	at roor in	Jad of 20.0 ps	sion					11111	
BOT CHORD	11-12=-135/232 10-	-11=-57/206	7)	All plates are	2x4 MT20 unless	otherwi	se indicated					N'TH UA	RO	1.
WEBS	5-11=-11/209, 2-14=	-22/253, 13-14=-22/	(250. 8)	Truss to be f	ully sheathed from	one fac	e or securely				N	OH .: FRO	× 11	1.4
	11-13=-27/254, 11-1	15=-31/254,	, _,	braced agair	ist lateral moveme	nt (i.e. d	liagonal web)			1	52	The second	1	an
	15-16=-26/250, 8-16	6=-25/253, 4-13=-82/	43, 9)	Gable studs	spaced at 2-0-0 oc). `	c ,			9			R	1
	3-14=-23/13, 6-15=-	82/43, 7-16=-23/13	10) This truss ha	s been designed f	or a 10.0	0 psf bottom			2	1	· × ·	- N - 0	
NOTES				chord live loa	ad nonconcurrent v	vith any	other live loa	ds.		=		SEA	L	1 E
1) Unbalance	ed roof live loads have	been considered for	• 11) * This truss h	as been designed	for a liv	e load of 20.0	Opsf		=		0363	22	·
this desig	n.			on the bottor	n chord in all areas	s where	a rectangle			=		0505	22	- E
				s-06-00 tall t	by 2-00-00 wide wi		veen the bollo	om				N		·
			12) One H2 54 9	Simpson Strong-Ti	e conne	ctors				1.	N. En	-R.	4.5
			12	recommende	ed to connect truss	to bear	ing walls due	to			21	A GIN	EF. Q	25
				UPLIFT at jt(s) 12 and 10. This	connec	tion is for upli	ft			1	CA C	IL BE	11
				only and doe	s not consider late	eral force	€S.					11, A. C	11-111	107

- chord and any other members.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces.

A. GIL GI

May 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	PB1	Piggyback	10	1	Job Reference (optional)	158456844

9-6-8

9-6-8

Carter Components (Sanford), Sanford, NC - 27332

6-0-11

5-11-1

-0-9-12

d-9-12

4x5= 5 19-0-15

9-6-8

19-10-11

d-9-12

12 7 24 25 4 6 23 26 22 3 0-4-5 ∏ 15 14 28 1312 29 11 3x5 = 3x5 = 19-0-15 Spacing 2-0-0 CSI DEFL l/defl (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a n/a BC Vert(CT) 20.0 Lumber DOL 1 15 0.17 n/a n/a 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 19 n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0

LUMBER TOP CHORD 2x4 SP No.2

Scale = 1:44.6

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

BOT CHORD	2x4 SP N	o.2
OTHERS	2x4 SP N	o.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	0-0-0 00	Jumms.
BOT CHORD	bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=19-0-15, 8=19-0-15, 10=19-0-15,
	. ,	11=19-0-15, 12=19-0-15,
		14=19-0-15, 15=19-0-15,
		16=19-0-15, 19=19-0-15

- Max Horiz 2=-138 (LC 12), 16=-138 (LC 12) Max Uplift 2=-36 (LC 10), 8=-9 (LC 11), 10=-79 (LC 15), 11=-115 (LC 15), 14=-116 (LC 14), 15=-80 (LC 14), 16=-36 (LC 10), 19=-9 (LC 11)
- Max Grav 2=89 (LC 25), 8=75 (LC 22), 10=310 (LC 25), 11=479 (LC 6), 12=374 (LC 24), 14=479 (LC 5), 15=311 (LC 24), 16=89 (LC 25), 19=75 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-3=-127/108, 3-4=-130/87,
- TOP CHORD 1-2=0/16, 2-3=-127/108, 3-4=-130/87, 4-5=-147/128, 5-6=-147/111, 6-7=-90/52, 7-8=-91/55, 8-9=0/16 BOT CHORD 2-15=-39/90, 14-15=-39/90, 12-14=-39/90, 11-12=-39/90, 10-11=-39/90, 8-10=-39/90
- WEBS 5-12=-203/0, 4-14=-395/165, 3-15=-206/129, 6-11=-395/164, 7-10=-206/128

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior (1) 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
 LOAD CASE(S) Standard

Weight: 83 lb

PLATES

MT20

L/d

999

999

n/a

27

10

3x5 =

GRIP

244/190

FT = 20%

TRENGINEERING BY A MITCH Affiliate

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	PB2	Piggyback	1	1	Job Reference (optional)	158456845

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:18 ID:qL3tquim6qzpeKtAr y6F3zFzxL-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Ansociation (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	PB3	Piggyback	10	1	Job Reference (optional)	158456846

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:19 ID:N2f4Wi7Qirl DEHgFPhyiqz3598-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 6-0-0 oc bracing.							
REACTIONS	(size)	2=15-7-0, 8=15-7-0, 9=15-7-0, 10=15-7-0, 11=15-7-0, 12=15-7-0, 13=15-7-0							
	Max Horiz	2=163 (LC 13), 13=163 (LC 13)							
	Max Uplift	2=-58 (LC 10), 8=-12 (LC 14),							
		9=-104 (LC 15), 11=-116 (LC 14), 12=-80 (LC 14), 13=-58 (LC 10)							
	Max Grav	$2=94 (I \subset 25) = 34 (I \subset 25) = 436$							
	max orav	(I C 22) 10=431 (I C 24) 11=478							
		(LC 5), 12=313 (LC 24), 13=94 (LC 25)							
FORCES	(lb) - Max Tension	imum Compression/Maximum							
TOP CHORD	1-2=0/16,	2-3=-159/147, 3-4=-143/132,							
	4-5=-124/ 7-8=-34/2	/140, 5-6=-114/139, 6-7=-44/78, 8							
BOT CHORD	2-12=-34/ 9-10=-34/	′38, 11-12=-34/38, 10-11=-34/38, ′38, 8-9=-34/38							
WEBS	5-10=-244 3-12=-207	4/26, 4-11=-394/164, 7/129, 6-9=-369/145							

NOTES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

Unbalanced roof live loads have been considered for 1) this design.

- Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	PB4	Piggyback	1	1	Job Reference (optional)	158456847

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:19 ID:EH?9y8P97CeBx Eia0ORCNz34u -RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	PB5	Piggyback	11	1	Job Reference (optional)	158456848

-0-7-7

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:20 ID:8mWxTeWJ9gZVpjX8mZWEG3z34rG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

C?f

Plate Offsets (X, Y):	[2:0-2-1,0-1-0],	[4:0-2-1,0-1-0]
-----------------------	------------------	-----------------

-	()) L = , =	-1) [-] -]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf 20.0 20.0 10.0 0.1 10.0) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 5-0-3 oc purlins. Rigid ceiling dire bracing. (size) 2=3-8 7=3-8 Max Horiz 2=-44 Max Uplift 2=-19 7=-19 Max Grav 2=126 6=126 10=15	sheathing directly applie ctly applied or 10-0-0 o .12, 4=3-8-12, 6=3-8-12 .12, 10=3-8-12 (LC 12), 7=-44 (LC 12) (LC 14), 4=-25 (LC 15) (LC 14), 10=-25 (LC 15) (LC 21), 4=154 (LC 22) (LC 21), 7=154 (LC 21)	4) 5) ed or 6) c 2, 7) 8) 9) 5) 10) 2),), 11)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar	7-16; Pr=20.0 ps .15); Pf=20.0 psf s=1.0; Rough Cat 1.10 snow loads have l bsf or 1.00 times f pon-concurrent with es continuous bott spaced at 4-0-0 o s been designed to d nonconcurrent v tas been designed n chord in all area by 2-00-00 wide with the souther members.	f (roof LL (Lum DC t B; Fully been cor for great lat roof k n other list tom chor c. for a 10.0 with any d for a liv s where ill fit betw	:: Lum DOL= *IL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps re loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle reen the bottom	1.15 ; ive sf on ds. Dpsf om						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 Cat. II; Ex zone and	(lb) - Maximum C Tension 1-2=0/23, 2-3=-7 2-6=-10/46, 4-6= 3-6=-50/2 ed roof live loads h n. CE 7-16; Vult=130r Bmph; TCDL=6.0ps p B; Enclosed; MW C-C Exterior(2E) zd	Compression/Maximum 7/56, 3-4=-77/56, 4-5=(-8/46 ave been considered fo nph (3-second gust) f; BCDL=6.0psf; h=25ft FRS (envelope) exteric one; cantilever left and)/23 12) r 13) ; LO . pr	This truss is International R802.10.2 an See Standar Detail for Co consult quali AD CASE(S)	designed in accor Residential Code nd referenced star d Industry Piggyba nnection to base t fied building desig Standard	dance w sections ndard AN ack Truss russ as a jner.	ith the 2018 R502.11.1 a ISI/TPI 1. s Connection applicable, or	nd		Marine and Annual An	The second se	OR TH CA	ROUNT	Mannin

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V1	Valley	1	1	Job Reference (optional)	158456849

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:20 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.6

Plate Offsets (X, Y): [11:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.27 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wo 6-0-0 oc purl Rigid ceiling bracing. 1 Row at mic (size) 1= Max Horiz 1= Max Uplift 1= 12 15 17 Max Grav 1 19 Max Grav 1 12 15 17 19 Max Grav 1 19 (b) - Maximu	bod sheat lins, exc directly a =16-5-14 =16-5-14 =16-5-14 =16-5-14 =16-5-14 =16-5-14 =16-5-14 ==32 (LC ==-35 (LC ==-35 (LC ==-36 (LC ==-30 (LC ==-145 (LC ==-144 (LC ==164 (LC ==-164 (LC ==-164 (LC ==-164 (LC ==-164 (LC) ==-202 (LC)	thing directly applie ept end verticals. applied or 10-0-0 or 10-11, 9-12 , 11=16-5-14, 4, 13=16-5-14, 4, 13=16-5-14, 4, 18=16-5-14, 4 11) 10), 11=-53 (LC 13 2 14), 13=-44 (LC 1 2 14), 13=-48 (LC 1 2 14), 13=-55 (LC 1 2 14), 13=223 (LC 2 20), 13=223 (LC 2 20), 13=223 (LC 2 20), 16=161 (LC 2 20), 18=150 (LC 2 20), 18=150 (LC 2 20)	V N 1 ed or c 2 3), 3 4), 3 4), 4 4), 4 20), 5 23), 6 23), 7 8	VEBS 9 VEBS 9	9-12=-200/78, 8-13 5-16=-122/88, 4-17 2-19=-135/86 7-16; Vult=130mp b; TCDL=6.0psf; E; corner(3E) 0-0-7 -9, Corner(3E) 13- t and right exposed t;C-C for members shown; Lumber Du the for wind loads ds exposed to wind loads to wind loads to wind loads building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (10); Rough Cat 1.10 snow loads have b 2x4 MT20 unless es continuous bottt spaced at 2-0-0 oc s been designed for d nonconcurrent w	s=-185/1 '=-124/8 h (3-sec SCDL=6 RS (env. ' to 3-0- 4-9 to 1 d; end \s and for OL=1.6(in the p d (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor otherwi or a 10.1 vith any	10, 6-15=-12: 6, 3-18=-119, cond gust) .0psf; h=25ft; elope) exterior 7, Exterior(2N 6-4-9 zone; rertical left an: reces & MWFR b) plate grip lane of the trual at to the face) is as applicat s per ANS//TF L: Lum DOL=1 b)L=1.15 Plate Exp.; Ce=0.9 asidered for the se indicated. d bearing. D) psf bottom other live load	5/83, /90, r l) d SS sss), ble, 1.15 l.15 l; iis	10) Prov bea 11, at jc 48 ll uplil 11) This Inte R80 LOAD C	vide mer ring plat 35 lb up int 13, 5 o uplift a t at joint t rruss is rnationa 2.10.2 a cASE(S)	chanic e capa lift at j 51 lb u t joint i 19. c desig il Resiand rel) Sta	al connection (by able of withstandi oint 1, 56 lb uplift plift at joint 15, 44 17, 55 lb uplift at ined in accordand dential Code sec ferenced standar ndard	others) of truss to ng 53 lb uplift at join at joint 12, 44 lb up 3 lb uplift at joint 16, joint 18 and 30 lb ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.	nt Jiff
TOP CHORD	Tension 1-2=-278/186 4-5=-204/13 8-9=-167/11	6, 2-3=-2 1, 5-6=-1 5 9-10=-	58/165, 3-4=-231/1 88/118, 6-8=-173/1 115/120 10-11=-7	9 149, 113, 2/40) * This truss h on the botton 3-06-00 tall b chord and an	as been designed n chord in all areas y 2-00-00 wide wil y other members.	for a liv s where Il fit betv	e load of 20.0 a rectangle veen the botto)psf om		THUN W		0363	22	
BOT CHORD	1-19=-133/10 17-18=-133/ 15-16=-133/ 12-13=-133/	63, 18-19 63, 18-19 163, 16-1 163, 13-1 163, 11-1)=-133/163, 17=-133/163, 15=-133/163, 12=-133/163	L, TU							đ		AIC A. G	E.F.R. KIN	

May 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V2	Valley	1	1	Job Reference (optional)	158456850

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:20 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.19 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=14-5-9 9=14-5-9 9Max Horiz 1=292 (L Max Uplift 1=-34 (LC 8=-107 (L 10=-67 (L Max Grav 1=127 (L 8=530 (L 10=341 (eathing directly applied copt end verticals. / applied or 10-0-0 oc 6-7 , 7=14-5-9, 8=14-5-9, , 10=14-5-9 C 11) C 10), 7=-42 (LC 11), C 14), 9=-104 (LC 14) C 14), 9=-104 (LC 14) C 24), 7=207 (LC 5), C 5), 9=417 (LC 23), LC 23)	 2) Truss designed in the bottom in the bottom is a set of the bottom in the bottom is a set of the bottom	ined for wind loads uds exposed to wir d Industry Gable E ualified building de 7-16; Pr=20.0 ps 1s=1.0; Rough Caf =1.10 snow loads have spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connection e capable of withst f at joint 7, 107 lb 0	in the pi nd (norm End Deta signer as f (roof LL (Lum DC : B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betw , with BC n (by oth anding 3 uplift at it	ane of the tru al to the face) ils as applicat s per ANSI/TF = L L T D D L = 1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0.0 a rectangle ween the bottc DL = 10.0psf ers) of truss to 4 lb uplift at j0 bint 8.104 lb	ss , ole, 11. 1.15 ; iis ds. psf om obint					
FORCES	(Ib) - Maximum Con Tension 1-2=-255/174, 2-3=-	npression/Maximum -220/148, 3-4=-183/1	uplift at join 10) This truss is 18, Internationa	9 and 67 lb uplift a designed in accor l Residential Code	at joint 10 dance w sections). ith the 2018 R502.11.1 a	nd					
BOT CHORD	4-6=-149/115, 6-7=- 1-10=-120/134, 9-10	-159/47 0=-120/134,	R802.10.2 a LOAD CASE(S)	and referenced star	ndard AN	ISI/TPI 1.				A	ORTHOR	
WEBS	8-9=-120/134, 7-8= 4-8=-387/140, 3-9=	-120/134 -254/156. 2-10=-223/′	118						6	is	1 PLL	The ser
NOTES											a ~	
1) Wind: ASC Vasd=103 Cat. II; Ex zone and 0 3-0-7 to 1 ² cantilever	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B D B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 I-4-4, Exterior(2E) 11- left and right exposed	n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 7 to 3-0-7, Interior (1) -4-4 to 14-4-4 zone; : end vertical left and									SEA 0363	L 22

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V3	Valley	1	1	Job Reference (optional)	158456851

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:21 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.34 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=13-8-10 7=13-8-11 Max Horiz 1=276 (LC Max Uplift 5=-40 (LC 7=-110 (L Max Grav 1=238 (LC 6=475 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4-5 0, 5=13-8-10, 6=13-8 0 11) 11) 11) 11) 24), 5=216 (LC 16), 24), 5=216 (LC 5), 5), 7=578 (LC 23)	d or -10,	 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable require Gable studs This truss ha chord live log * This truss ha chord live log * This truss ha chord and ar Provide mec bearing plate \$, 41 lb uplift This truss is International 	7-16; Pr=20.0 ps .15); Pf=20.0 psf is=1.0; Rough Ca .1.10 snow loads have es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent tas been designed ad nonconcurrent in chord in all area y 2-00-00 wide w y other members hanical connection c capable of withs at joint 6 and 110 designed in accoor Residential Code	of (roof LL (Lum DC t B; Fully been cor ttom chor oc. for a 10. with any d for a liv as where vill fit bett s, with BC on (by oth tanding 4 0 lb uplift rdance w e sections	: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. 0 psf bottom other live loave the load of 20.0. CDL = 10.0psf ers) of truss to 10 buplift at ju at joint 7. tith the 2018 s R502.11.1 a	l.15 ; ds. psf o pint nd					
TOP CHORD	(lb) - Maximum Com Tension 1-2=-394/173, 2-3=-	179/105, 3-4=-143/10	04,	R802.10.2 a LOAD CASE(S)	nd referenced sta Standard	ndard AN	ISI/TPI 1.						
BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and 3-0-7 to 9 cantilever right expo for reaction DOL=1.6(2) Truss de only. For see Stand or consult	4-5=-164/47 1-7=-114/320, 6-7=- 3-6=-362/106, 2-7=- CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B qp B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 0-4-7, Exterior(2E) 0-0-7 i eft and right exposed posed;C-C for members pons shown; Lumber DC 0 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi	114/127, 5-6=-114/12 338/148 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) 7 to 13-7-5 zone; ; end vertical left and and forces & MWFRS iL=1.60 plate grip in the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	27 I S ss le, I 1.							Contraction of the second seco		SEA 0363	ROUTE REPERTING

May 19,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V4	Valley	1	1	Job Reference (optional)	158456852

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:21 ID:WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.16 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-7-5, 7=11-7-5 Max Horiz 1=232 (LC Max Uplift 1=-6 (LC (LC 14), 7 Max Grav 1=159 (LC 6=494 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 5=11-7-5, 6=11-7-5, C 11) 10), 5=-34 (LC 11), 6 7=-92 (LC 14) C 24), 5=210 (LC 5), C 5), 7=398 (LC 23)	 3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalance design. 5) Gable requ 6) Gable stud 7) This truss be chord live l 8) * This truss on the botts 3-06-00 tal chord and a 9) Provide me bearing pla 5, 6 lb uplif uplif et joir 	E 7-16; Pr=20.0 p = 1.15); Pf=20.0 ps ; Is=1.0; Rough C t=1.10 d snow loads have irres continuous bo s spaced at 4-0-0 has been designer by 2-00-00 wide any other member chanical connectit te capable of with a t joint 1, 54 lb u +7	best (roof Ll fr (Lum DC at B; Fully e been cor- bottom chor oc. d for a 10. tt with any ed for a liv- ass where will fit betv s, with BC on (by oth standing 3 plift at join	: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t t4 lb uplift at j t 6 and 92 lb	1.15 b; ds.)psf om o oint					
	(lb) - Maximum Com Tension 1-2=-252/136_2-3=-	pression/Maximum	10) This truss i Internation	s designed in acco al Residential Cod	ordance w le sections	ith the 2018 R502.11.1 a	nd					
BOT CHORD	4-5=-159/45 1-7=-97/181, 6-7=-9 3-6=-389/134, 2-7=-	7/108, 5-6=-97/108	LOAD CASE(S) Standard		1 0/1111.					, unun	1111.
NOTES	3-6=-389/134, 2-7=- CE 7-16: Vult=130mph	(3-second gust)								A	WATH CA	ROLIN
Vasd=103 Cat. II; Ex zone and 3-0-7 to 7- cantilever right expo- for reactio DOL=1.60 2) Truss des only. For see Stand or consult	imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 -3-1, Exterior(2R) 7-3- left and right exposed sed;C-C for members ns shown; Lumber DC signed for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) to 11-5-15 zone; ; end vertical left and and forces & MWFRS DL=1.60 plate grip the the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI	5 15 1.						1		SEA 0363	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minin May 19,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V5	Valley	1	1	Job Reference (optional)	158456853

10-10-6

2x4 II

6

10-10-6

2x4 II

11 ³ 10

Carter Components (Sanford), Sanford, NC - 27332,

6-4-5

0-0-4

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:21 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4 6-4-5 6 5 2x4 u

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	⁻ PI2014	CSI TC BC WB Matrix-MSH	0.38 0.16 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-10-6 7=10-10-6 Max Horiz 1=216 (LC Max Uplift 1=-13 (LC 6=-62 (LC Max Grav 1=127 (LC 6=-52 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 5, 5=10-10-6, 6=10-7 C 11) C 11) C 11), 5=-33 (LC 11), C 14), 7=-83 (LC 14) C 24), 5=209 (LC 5), C 5, 7=282 (LC 5),	3) - 4) (4) (4) (5) (6) (6) (7) - 6) (6) (7) - 6) (7) - 7 0-6, 8) - 8) - 8 - 9) [FCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Jnbalanced si design. Gable require Gable studs si This truss ha chord live loa chord live loa this truss ha on the botton 3-06-00 tall b shord and an Provide mech bearing plate 5, 13 lb uplift	7-16; Pr=20.0 p 15); Pf=20.0 ps s=1.0; Rough C 1.10 snow loads have es continuous bo spaced at 4-0-0 s been designed a chord in all are y 2-00-00 wide y 2-00-00 wide y other member nanical connecti capable of with at joint 1, 62 lb	isf (roof LL f (Lum DC at B; Fully e been cor bottom chor oc. d for a 10.0 t with any ed for a liv as where will fit betw s, with BC on (by oth standing 3 uplift at joi	L: Lum DOL= JL=1.15 Plate Exp.; Ce=0.4 asidered for t d bearing. D psf bottom other live loa e load of 20.4 a rectangle ween the bott DL = 10.0ps ers) of truss ' 3 lb uplift at j nt 6 and 83 li	1.15 e); his dds. Dpsf f. to oint o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10) ⁻ I	This truss is onternational	/. designed in acco Residential Cod	ordance w e sections	ith the 2018 R502.11.1 a	ind					
TOP CHORD	1-2=-196/128, 2-3=-	151/110, 3-4=-132/8	0, F	R802.10.2 ar	nd referenced sta	andard AN	ISI/TPI 1.						
BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone and 0 2-10-13 to cantilever right expos for reaction DOL=1.60	1-7=-91/125, 6-7=-9 3-6=-393/143, 2-7=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br o B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 6-6-2, Exterior(2R) 6- left and right exposed sed;C-C for members ns shown; Lumber DO	1/101, 5-6=-91/101 223/127 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 2-10-13, Interior 6-2 to 10-9-1 zone; ; end vertical left an and forces & MWFR 9L=1.60 plate grip	LOA (1) 3 5	D CASE(S)	Standard					An and a second	THE REAL	OR FESS SEA 0363	L 22
2) Truss des only. For	igned for wind loads in studs exposed to wind	n the plane of the tru I (normal to the face)	SS ,								ing.	S. ENGIN	EERPALIN

2x4 II 2

7

2x4 II

12 7Γ

3x5 💋

1

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

minim May 19,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V6	Valley	1	1	Job Reference (optional)	158456854

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:22 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-9-0

Scale = 1:34.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.21 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wc 6-0-0 oc pur Bigid ceiling bracing. (size) 1= Max Horiz 1= Max Horiz 1= Max Uplift 4= Max Grav 1= 5= (lb) - Maximu Tension	200d shea ins, exc directly :8-9-0, 4 :172 (LC :-27 (LC :563 (LC :563 (LC um Com	athing directly applied cept end verticals. applied or 10-0-0 oc =8-9-0, 5=8-9-0 : 11) 11), 5=-111 (LC 14) : 24), 4=168 (LC 20), : 20) pression/Maximum	4) 5) 6) 7) 1 or 8) 9) 1(Unbalanced : design. Gable require Gable studs s This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide med bearing plate 4 and 111 lb)) This truss is of International R802.10.2 ar CADE CASE(S)	snow loads have b es continuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areasil y 2-00-00 wide will y other members. nanical connection capable of withsta uplift at joint 5. designed in accord Residential Code s ad referenced stand Standard	een cor om chor or a 10.0 vith any for a liv s where I fit betv (by oth anding 2 lance w sections dard AN	asidered for the d bearing.) psf bottom other live loave e load of 20.0 a rectangle veen the botto ers) of truss to 7 lb uplift at ju ith the 2018 R502.11.1 a ISI/TPI 1.	nis ds.)psf om oint nd					
TOP CHORD BOT CHORD WEBS	1-2=-252/124 1-5=-77/214, 2-5=-435/188	4, 2-3=-^ , 4-5=-77 8	122/62, 3-4=-146/45 7/84											
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exy zone and 4 3-0-7 to 4- cantilever right expos- for reaction DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; 0	CE 7-16; Vult=1 mph; TCDL=6. p B; Enclosed; C-C Exterior(2E 4-12, Exterior(2 left and right ex sed;C-C for me ns shown; Lum signed for wind studs exposed ard Industry Ge qualified buildii CE 7-16; Pr=20. =1.15); Pf=20.0; i); Is=1.0; Roug Ct=1.10	130mph Opsf; BC MWFRS E) 0-0-7 2R) 4-4- xposed ; mbers a aber DOI loads in to wind able Enc ng desig 0.0 psf (ft 0 psf (tu 0 psf (tu 0 psf (tu	(3-second gust) DL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) 12 to 8-7-11 zone; end vertical left and and forces & MWFRS L=1.60 plate grip the plane of the trus (normal to the face), d Details as applicabl ner as per ANSI/TPI oof LL: Lum DOL=1. m DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	s e, 1. 15							Mannan	the second second	SEA 0363	ROUTER ROUTER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 19,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V7	Valley	1	1	Job Reference (optional)	158456855

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:22 ID:J_sEjrctR6zXiUZBQxy2OEz34cy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	B/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.15 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=8-0-1, Max Horiz 1=157 (L0 Max Uplift 4=-25 (L0	athing directly applied cept end verticals. applied or 10-0-0 oc 4=8-0-1, 5=8-0-1 C 11) C 11), 5=-105 (LC 14)	4) 5) 6) 7) or 8) 9)	Unbalanced s design. Gable require Gable studs s This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 4 and 105 bio	snow loads have b es continuous bott spaced at 4-0-0 oc s been designed fi d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta uplift at joint 5.	been cor com chor cor a 10.0 vith any for a liv s where l fit betw (by oth anding 2	sidered for thi d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 5 lb uplift at jo ith the 2018	is ls. osf m int					
FORCES	Max Grav 1=134 (L0 5=524 (L0 (lb) - Maximum Com	C 24), 4=177 (LC 20), C 20) pression/Maximum	10 LC	International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.									
TOP CHORD BOT CHORD WEBS	Tension 1-2=-207/113, 2-3=- 1-5=-71/167, 4-5=-7 2-5=-413/185	115/57, 3-4=-151/44 1/77											
NOTES													
 Wind: ASC Vasd=103/ Cat. II; Exp zone and 0 3-0-7 to 3- cantilever right expos for reaction DOL=1.60 Truss des only. For s see Standa or consult TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; 0 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 7-13, Exterior(2R) 3-7 left and right exposed sed;C-C for members ns shown; Lumber DC igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L i); Is=1.0; Rough Cat E Ct=1.10	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ' to 3-0-7, Interior (1) -13 to 7-10-12 zone; ; end vertical left and and forces & MWFRS 0L=1.60 plate grip n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9;	s ə, 1. 15								to the second se	SEA 0363	ROCH HILL

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

May 19,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V8	Valley	1	1	Job Reference (optional)	158456856

5-3-3

5-3-3

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:22 ID:JAHy0P_uRRYm5f9OxjX5pTz34dI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Fay

3x5 💋

											i	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.57 0.57 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 5-3-3 oc purlins, exe Rigid ceiling directly bracing. (size) 1=5-3-3, 3 Max Horiz 1=99 (LC Max Grav 1=303 (LC Max Grav 1=303 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3=5-3-3 11) 2 14), 3=-47 (LC 14) 2 201, 3=303 (LC 20)	 7) This truss ha chord live lo so the botton 3-06-00 tall lichtor and al 9) Provide mee bearing platt 3 and 18 lb (10) This truss is International R802.10.2 a LOAD CASE(S) 	as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will hy other members. thanical connection e capable of withsta uplift at joint 1. designed in accord Residential Codes and referenced stand Standard	or a 10. vith any for a liv where fit betw (by oth nding 4 ance w sections dard AN	0 psf bottom other live load re load of 20.0 a rectangle veen the botto ers) of truss to 17 lb uplift at jo ith the 2018 s R502.11.1 at JSI/TPI 1.	ds. Ipsf om Dint					
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD	Tension 1-2=-471/85, 2-3=-20 1-3=-84/399	08/66										
NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and exposed ; members Lumber D	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B(p B; Enclosed; MWFR; C-C Exterior(2E) zone; end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown; iL=1.60	ght							A.L.	NITH CA	ROUT
2) Truss dea only. For see Stand	signed for wind loads ir studs exposed to wind dard Industry Gable End qualified building desir	n the plane of the trus (normal to the face), d Details as applicab	ss , le, l 1							ie	200	
3) TCLL: AS Plate DOI DOL=1.15 Cs=1.00:	CE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10	roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	.15						THUN T		0363	22
4) Unbalanc design	ed snow loads have be	en considered for thi	is						3	1.1	NGIN	EERIA
 Gable req Gable stu 	uires continuous bottor ds spaced at 4-0-0 oc.	m chord bearing.								11	CA. G	ILBE

May 19,2023

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DRB GROUP - 81 FaNC			
23120147	V9	Valley	1	1	Job Reference (optional)	158456857		

5-1-13

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:23 ID:JAHy0P_uRRYm5f9OxjX5pTz34dI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🛛 2 ø 3-0-5 3-0-5 12 7 Г 0 1 0-0-4 3

2x4 II

T

3x5 🍫

5-1-13	

					0 1 10			_					
Scale = 1:26													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-MP	0.54 0.55 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) Truss des only. For see Stand or consult 3) TCLL: AS Plate DOI DOL=1.1§ Cs=1.0; 4) Unbalanci design. 5) Gable req 6) Gable stur	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-1-13 oc purlins, e Rigid ceiling directly bracing. (size) 1=5-1-13, Max Horiz 1=97 (LC Max Uplift 1=-17 (LC Max Uplift 1=-17 (LC Max Grav 1=296 (LC (lb) - Maximum Com Tension 1-2=-459/83, 2-3=-2 1-3=-82/389 CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br pB; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DC signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be puires continuous bottoo ds spaced at 4-0-0 oc.	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=5-1-13 11) 2 14), 3=-46 (LC 14) 2 20), 3=296 (LC 20) pression/Maximum 03/65 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r ght exposed;C-C for for reactions shown; DL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANS/ITP roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 even considered for th m chord bearing.	r ight ss , is r is r r is r 7) This chor 9) Prov beau 3 ar 10) This 100 This 100 This 100 Composition 100 Composition 10	truss has been design d live load nonconcurr is truss has been design be bottom chord in all i s-00 tall by 2-00-00 wic d and any other membride mechanical conne ring plate capable of w d 17 lb uplift at joint 1. truss is designed in a mational Residential C 2.10.2 and referenced CaSE(S) Standard	ned for a 10. rent with any gned for a liv areas where de will fit betw bers. sction (by oth /ithstanding 4 ccordance w code sections I standard AN	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i6 lb uplift at j ith the 2018 5 R502.11.1 a ISI/TPI 1.	ds. Dpsf om oint nd				SEA 0363	L L L BEFNIN 19,2023	Mannan and

INFEDING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DRB GROUP - 81 FaNC	
23120147	V10	Valley	1	1	Job Reference (optional)	158456858

4-4-1

Carter Components (Sanford), Sanford, NC - 27332,

2-7-4

2-10-15

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MTek Industries, Inc. Fri May 19 09:44:23 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-2-15

3

Scale = 1:28.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.37 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 8-8-2 oc p Rigid ceili bracing. (size)	o.2 o.3 wood she ourlins. ng directly 1=8-8-2, 3	athing directly applied applied or 6-0-0 oc 8=8-8-2, 4=8-8-2	d or	 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loc This truss ha 	7-16; Pr=20.0 psf .15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have t es continuous bott spaced at 4-0-0 or is been designed f ad nonconcurrent t	(roof LL Lum DC B; Fully been cor om chor c. or a 10.0 vith any	: Lum DOL=1 IL=1.15 Plate Exp.; Ce=0.9 Isidered for th d bearing. 0 psf bottom other live load	.15 ; is					
	Max Horiz Max Uplift Max Grav	1=-64 (LC 1=-40 (LC 4=-76 (LC 1=104 (LC 4=676 (LC	10) 21), 3=-40 (LC 20), 14) 2 20), 3=104 (LC 21) 2 21)	,	on the bottor 3-06-00 tall t chord and ar 10) Provide mec bearing plate	n chord in all areas or chord in all areas or 2-00-00 wide wi ny other members. hanical connection capable of withst	tor a liv s where Il fit betv i (by oth anding 4	e load of 20.0 a rectangle veen the botto ers) of truss to 0 lb uplift at io	psr m o					
FORCES	(lb) - Max Tension 1-2=-109/	imum Com 336, 2-3=-	pression/Maximum 109/336		1, 40 lb uplift 11) This truss is International	at joint 3 and 76 l designed in accord Residential Code	b uplift a dance w	t joint 4. ith the 2018	nd					
BOT CHORD WEBS	1-4=-228/ 2-4=-501/	161, 3-4=- 208	228/161		R802.10.2 a	nd referenced star Standard	dard AN	ISI/TPI 1.						
NOTES														
 Unbalance this design 	ea root live l 1.	oads have	been considered for										1111100	11111

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

A. GILP.... May 19,2023

SEAL

036322

Voumment

annun mart

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 81 FaNC	
23120147	V11	Valley	1	1	Job Reference (optional)	158456859

1-8-15

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 09:44:23 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2x4 💊

Page: 1

2x4 🍫

5-2-2

Scale = 1:23.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 5-2-2 oc purlins. Rigid ceiling directh bracing. (size) 1=5-2-2,	• eathing directly applie y applied or 6-0-0 oc 3=5-2-2, 4=5-2-2	5) 6) 7) 8) ed or 9)	Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar	snow loads have es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent nas been designe m chord in all area by 2-00-00 wide w y other members	been cor ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv s.	hsidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto or p) of truce t	his Ids. Opsf om					
	Max Horiz 1=-37 (L Max Uplift 1=-5 (LC (LC 14) Max Grav 1=90 (LC (LC 20)	C 10) 14), 3=-11 (LC 15), 4 C 20), 3=90 (LC 21), 4	4=-28 4=314 ¹¹	 0) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 1, 11 lb uplift at joint 3 and 28 lb uplift at joint 4. 1) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and D5020 4 0.2 and extraored ANC/CEU 1.1 									
FORCES	(lb) - Maximum Cor	npression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD BOT CHORD	1-2=-88/120, 2-3=-1 1-4=-91/83, 3-4=-9	38/120 1/83											
WEBS	2-4=-196/100												
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 	ed roof live loads have n. CE 7-16; Vult=130mpl 3mph; TCDL=6.0psf; E p B; Enclosed; MWFF C-C Exterior(2E) zonc end vertical left and r and forces & MWFRS OL=1.60 plate grip Do	e been considered for h (3-second gust) 3CDL=6.0psf; h=25ft; KS (envelope) exterio e; cantilever left and r ight exposed;C-C for for reactions shown DL=1.60	r ; right ;							Con the second s	and	ORTH CA	
3) Truss des only. For	signed for wind loads studs exposed to win	in the plane of the tru d (normal to the face)	ISS),									0363	22

N

- 2
- 3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.