Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 43964 JOB: 23-B588-R01 JOB NAME: LOT 0.0099 BLAKE POND Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *40 Truss Design(s)*

Trusses:

M01, M04, R02, R03, R04, R05, R06, R07, R07A, R08, R09, R10, R10A, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10, VT11, VT12, VT13, VT14, VT15

Warning !-- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling,

I							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.33 BC 0.31 WB 0.07 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo 0.01 0.02 -0.00	oc) I/de 1 n. 1 n. 7 n/	fl L/d /r 180 /r 80 a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3		E	BRACING- OP CHORD	Structura end verti Rigid cei MiTek r be insta Installa	al wood s icals. iling direc recomme alled duri ition quid	heathing otly applied ands that S ng truss e e.	directly applied or 6-0-0 oc purlins, except d or 6-0-0 oc bracing. Stabilizers and required cross bracing rection, in accordance with Stabilizer

REACTIONS. All bearings 10-0-0.

(lb) - Max Horz 2=84(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 10, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 9, 8 except 10=496(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-10=-368/236

NOTES-(12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 5-0-0, Corner(3E) 5-0-0 to 9-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

- 10.5 muss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the second se

LOAD CASE(S) Standard

3. A CONTRACTOR OF THE STATE SEAL 28147 VOINE K. MORP mannet

1/6/2024

	F	<u> </u>		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. DEFL. TC 0.63 Vert(LL) BC 0.82 Vert(CT) WB 0.40 Horz(CT) Matrix-SH Horz(CT) Horz(CT)	in (loc) l/defl L/d -0.25 2-6 >473 240 -0.50 2-6 >230 180 0.01 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3	2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct end verticals. Rigid ceiling directly applied or 1	tly applied or 5-3-5 oc purlins, except
			MiTek recommends that Stabil be installed during truss erection	izers and required cross bracing on, in accordance with Stabilizer

Installation guide.

REACTIONS. (lb/size) 2=451/0-3-8 (min. 0-1-8), 6=395/Mechanical Max Horz 2=85(LC 10) Max Uplift2=-74(LC 10), 6=-63(LC 14) Max Grav 2=512(LC 21), 6=505(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-7=-970/226, 3-7=-937/237
- BOT CHORD 2-6=-297/917
- 3-6=-879/308 WFBS

LOAD CASE(S) Standard

NOTES-(9)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 5-0-6, Exterior(2E) 5-0-6 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 6) between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

1/6/2024

Plate Offsets (X V)-- [2:0-0-7 Edge] [2:0-0-7 0-8-0]

Fiale Olisels (A, I) [2.0-0	-1,Lugej, [2.0-0-1,0-0-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.11 BC 0.13 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 2-4 -0.00 2-4 0.00	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural w end verticals Rigid ceiling MiTek reco be installed Installation	ood sheathing direct s. g directly applied or 1 ommends that Stabil d during truss erection guide.	tly applied or 2-9-0 or 10-0-0 oc bracing. izers and required cr on, in accordance wit	c purlins, except oss bracing th Stabilizer

REACTIONS. (Ib/size) 2=172/0-3-8 (min. 0-1-8), 4=86/0-1-8 (min. 0-1-8) Max Horz 2=52(LC 14) Max Uplift2=-21(LC 14), 4=-21(LC 14) Max Grav 2=241(LC 21), 4=114(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(10)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOAD CASE(S) Standard

1/6/2024

Plate Olisets (<u>, r) [2.0-4-</u>	·1,0-0-4], [5.0-3-1,Euge	, דוביהיבי, דו	ugej, [17.0-c	5-4,0-2-4]								_
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	7) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.12 0.09 0.03 ix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 18 18 19	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%	-
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3					BRACING- TOP CHORD BOT CHORD	Struc end v Rigid	tural w /erticals ceiling	ood shea s. I directly	athing direct	tly applied or 6-0-0 oc p	purlins, except	
OTHERS	2x4 SP No.3						6-0-0	oc bra	cing: 21-	-22,20-21,19	9-20.		

SLIDER Left 2x6 SP No.2 -° 1-8-0

REACTIONS. All bearings 24-8-0.

(lb) - Max Horz 2=-129(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 19, 2, 27, 28, 29, 30, 31, 32, 26, 23, 20, 21

Max Grav All reactions 250 lb or less at joint(s) 19, 2, 22, 27, 28, 29, 30, 31, 32, 26, 24, 23, 20, 21

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(14)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-9-15, Corner(3R) 3-9-15 to 8-4-0, Exterior(2N) 8-4-0 to 11-6-7, Corner(3R) 11-6-7 to 20-8-14, Corner(3E) 20-8-14 to 25-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed to a model.
 11) * This truss has been designed to a model.
 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 to up in target, 31, 32, 26, 23, 20, 21.
 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 22, 27, 28, 29, 30, 31, 32, 26, 24, 23, 21 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will

20<u>24</u> Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

TH CARO

ROFESS

SEAL 28147

K. MORP

1/6/2024

MARTH

- Provide adequate drainage to prevent water ponding. 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 27, 28, 29, 30 24, 22, 20, 19, 2.

LOAD CASE(S) Standard

SEAL 28147 MONEER C. MORRISHIM

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0099 BLAKE POND 63 WHIMB	REL COURT LILLINGTON, NC
23-B588-R01	R13	Hip Girder	1	2	Job Reference (optional)	# 43964
		Run: 8.4 ID:dp	30 s Feb 1 zZVSj9_?	2 2021 Prin Ad6xFKq\	t: 8.430 s Feb 12 2021 MiTek Industries, /9FmJyf3OS-W4TgEypvVpw1nDsN	Inc. Tue Jan 9 10:00:23 2024 Page 2 lihOXqphWkcEyMvevTapTihzx81s

NOTES- (13)

12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 13-17=-20

Concentrated Loads (lb)

Vert: 11=-966(F) 13=-974(F) 19=-1041(F) 21=-966(F) 22=-966(F) 23=-966(F) 24=-966(F) 25=-1039(F) 26=-1039(F) 27=-1039(F) 28=-1039(F) 28=-10

1/6/2024

1/6/2024

vertically. Applicability of design parameters and read notes before user runs design is based only upon parameters shown, and is for an individual banding component to be instanted and based of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	г	russ	Truss Ty	ре	Qty	Ply	LO	T 0.0099 B	LAKE POND	63 WHIMBREL COURT	LILLINGTON, NC
23-B588-R01	V	T01	Valley		1		1	h Referen	ce (ontional)	7	# 43964
					Run: 8.430 s Feb	12 2021 Si9 2A	Print: 8.4	430 s Feb 1	2 2021 MiTek	Industries, Inc. Tue Jan 2.II YKt. kl.VEziXtOM	9 10:00:28 2024 Page 1 dwc1l2fcsXENuzx81
					9-4-6			, or moyne			
					9-4-0						0
						2x4	· 3				Scale = 1:45.6
]								
						//					
				10.00 12	2x4						
					2						
			-9-10		TIP		W1				
			2								
					ST1						
				1							
					B1 0						
				2x4 //		~ ~ ~ ~	4				
					2x4		4 2x4	·			
				ŀ							
LOADING (pst	ⁱ)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf)	20.0	Plate Grip DOL	1.15 1 15	TC 0.31 BC 0.37	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
TCDL BCLL	10.0 0.0 *	Rep Stress Incr	YES	WB 0.11	Horz(CT)	0.00	4	n/a	n/a	Waight 49	b FT = 20%
BCDL	10.0	Code IRC2021/1P	12014	Matrix-SH						Weight: 48 I	D FI = 20%
LUMBER- TOP CHORD	2x4 SP No.2				BRACING- TOP CHORD	Struc	tural w	ood she	athing direc	tly applied or 6-0-0	oc purlins, except
BOT CHORD	2x4 SP No.3					end v Rigid	ertical	S. 1 directly	applied or 1	10-0-0 oc bracing	
OTHERS	2x4 SP No.3				Boronona	MiT	ek rec	ommend	s that Stabil	lizers and required of	cross bracing
						be i Inst	nstalle allatior	d during n auide.	truss erection	on, in accordance w	vith Stabilizer
REACTIONS.	(lb/size) 1=	=160/9-4-6 (min. 0-1-8), 4	l=104/9-4	4-6 (min. 0-1-8), 5=441/9-	4-6 (min. 0-1-8)						
	Max Uplift4=	-42(LC 12), 5=-174(LC 1	2)								
	Max Grav 1=	=179(LC 21), 4=190(LC 1	9), 5=56	I(LC 19)							
FORCES. (Ib)) - Max. Com 1-2=-260/1	p./Max. Ten All forces 2 51	250 (lb) o	r less except when shown							
WEBS	2-5=-330/2	50									
NOTES- (7)											
1) Wind: ASCI (envelope)	∃ 7-16; Vult= gable end zoi	120mph (3-second gust) ne and C-C Exterior(2E) z	Vasd=95 cone;C-C	mph; TCDL=5.0psf; BCDL for members and forces &	.=5.0psf; h=23ft; C & MWFRS for reac	at. II; E tions s	xp B; I hown;	Enclosed Lumber [I; MWFRS DOL=1.60		
plate grip D	OL=1.60 F 7-16 [.] Pr=20) 0 psf (roof LL · Lum DOI	=1 15 P	ate DOI =1 15)· Pf=20.0 n	sf (I um D∩I =1 15	Plate		1 15) [,] le=	1 0. Rough		
Cat B: Parti	ally Exp Ce	=1.0: Cs=1.00: Ct=1.10		, , , , , , , , , , , , , , , , ,					,		

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=174.

LOAD CASE(S) Standard

Job	Truss	Truss Typ	e	Qty	ý	Ply	LOT	0.0099 BL	AKE POND 6	3 WHIMBREL COURT	LILLINGTON, NC
23-B588-R01	VT02	Valley		1			1	Deferre	. (÷	# 43964
				Run: 8.430 s	Feb 1	2 2021 Pr	JOD int: 8.4	30 s Feb 12	e (optional) 2 2021 MiTek I	ndustries, Inc. Tue Jan	9 10:00:28 2024 Page 1
			7-9	1D:dp2 9-2	zzvsj	9_?Ad6x	ε⊦κqν	9FmJyf3C	DS-t1GZHTt2	JLYKt_KLVFZIXtONN	IdwP1IdfcsXENuZX81r
			7-9	9-2							
						2x4					Scale = 1:38.1
		ſ					3				
						/	B				
			10.00 12								
		a	2x4	т1							
		3-5-1	2 _	//			W1				
			B	ſ							
			ST	1							
			1								
				1			0				
		ı		~~~~~	\sim	\sim	\sim				
			2x4 🥢 5	6			4				
			2x4	11			2x4				
	1										
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.		in ((loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 1.15	TC 0.22 BC 0.38	Vert(L	L) CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
TCDL 10.0 BCU 0.0 *	Rep Stress Incr	YES	WB 0.08	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2021/TP	12014	Matrix-P							Weight: 38	b FT = 20%
LUMBER-	0		E	BRACING-		<u>.</u>					
BOT CHORD 2x4 SP No BOT CHORD 2x4 SP No	0.2 0.3		I	OP CHOR	KD	end ve	rticals	ood shea S.	thing direct	ly applied or 6-0-0	oc purlins, except
WEBS 2x4 SP No	0.3		В	BOT CHOR	RD	Rigid c	eiling	directly	applied or 1	0-0-0 oc bracing.	
UTHERS 2X4 SP NG	0.3					MiTel	k reco	ommends during t	that Stabili	izers and required on in accordance w	cross bracing
						Instal	lation	guide.			
REACTIONS. (lb/size) Max Horz	1=95/7-9-2 (min. 0-1-8), 4= 1=183(LC 12)	=120/7-9-2	2 (min. 0-1-8), 5=362/7-9-2	(min. 0-1-8	3)						
Max Uplift	4=-48(LC 12), 5=-143(LC 1	2)	(1.0.40)								
Max Grav	1=123(LC 25), 4=196(LC 1	9), 5=437	(LC 19)								
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	250 (lb) or	less except when shown.								

- TOP CHORD 1-2=-262/144
- WEBS 2-5=-289/255

NOTES-(7)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=143.

LOAD CASE(S) Standard

1/6/2024

1/6/2024

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

WFBS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Structural wood sheathing directly applied or 4-6-12 oc purlins, except

REACTIONS. (lb/size) 1=161/4-6-12 (min. 0-1-8), 3=161/4-6-12 (min. 0-1-8) Max Horz 1=102(LC 12) Max Uplift3=-64(LC 12) Max Grav 1=161(LC 1), 3=169(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

1/6/2024

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-11-9 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=97/2-11-9 (min. 0-1-8), 3=97/2-11-9 (min. 0-1-8) Max Horz 1=61(LC 12) Max Uplift3=-38(LC 12) Max Grav 1=97(LC 1), 3=101(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

LUMBER-

WFBS

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.3

2x4 SP No.3

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

1/6/2024

REACTIONS. (lb/size) 1=58/2-0-0 (min. 0-1-8), 3=58/2-0-0 (min. 0-1-8) Max Horz 1=37(LC 12) Max Uplift3=-23(LC 12) Max Grav 1=58(LC 1), 3=61(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=174/9-9-4 (min. 0-1-8), 4=97/9-9-4 (min. 0-1-8), 5=467/9-9-4 (min. 0-1-8) Max Horz 1=235(LC 12) Max Uplift4=-39(LC 12), 5=-185(LC 12)

Max Grav 1=192(LC 21), 4=183(LC 19), 5=587(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-263/156

WEBS 2-5=-348/254

NOTES- (7

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=185.

LOAD CASE(S) Standard

be installed during truss erection, in accordance with Stabilizer

Installation guide.

Job	Truss	Truss Type		Qty	Ply	LOT 0.0099 B	LAKE POND	63 WHIMBREL COURT	LILLINGTON, NC
23-B588-R01	VT08	Valley		1	1	Job Deferer	an (antional)	#	# 43964
				Run: 8.430 s Feb	12 2021 Pri	JOD Referen	ice (optional) 12 2021 MiTek	Industries, Inc. Tue Jan	9 10:00:30 2024 Page
		F		1D:0p22.VS 8-2-1		-кqv9гшуіз —	US-PQUJILVI	IZP26HUKCIUAdiUjVVR	(a5vC5x4A0L5n2x6
		I		8-2-1		I			
					2x4				Scale = 1:40
		ſ				3			
						B			
			10.00 12	Ē //					
			2x4						
		,		2 11		W1			
		<u>6-9</u>				ľ l			
				ST1					
			1	-					
		l	/~/ //////////////////////////////////		~~~~				
		2	x4 🕢	5 6		4			
				2x4		2x4			
		1							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (l	loc) l/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip	DOL 1.15	TC 0.24 BC 0.41	Vert(LL)	n/a n/a	- n/a - n/a	999 999	MT20	244/190
TCDL 10.0 BCLL 0.0	Rep Stress	Incr YES	WB 0.08	Horz(CT)	0.00	n/a	n/a	M(-5-1-4-44-11	
BCDL 10.0	Code IRC2	2021/1912014	Matrix-P					Weight: 41 l	b F1 = 20%
LUMBER-	No 2			BRACING-	Structu	ral wood she	athing direc	tly applied or 6-0-0 (oc purlins except
BOT CHORD 2x4 SP	No.3				end ver	ticals.			be pullins, except
WEBS 2x4 SP OTHERS 2x4 SP	No.3 No.3			BOT CHORD		eiling directly	applied or a	10-0-0 oc bracing.	cross bracing
					be ins	talled during	truss erecti	on, in accordance w	rith Stabilizer
REACTIONS. (lb/size) 1=112/8-2-1 (min.	0-1-8), 4=117/8-2-1	(min. 0-1-8), 5=381/8	8-2-1 (min. 0-1-8)	Install	ation guide.			
Max Ho Max U	orz 1=194(LC 12) lift4=-46(LC 12) 5=-1	51(I C 12)		, ,					
Max G	av 1=136(LC 21), 4=1	96(LC 19), 5=472(L	C 19)						
FORCES. (lb) - Max.	Comp./Max. Ten All	forces 250 (lb) or le	ess except when show	n.					
TOP CHORD 1-2=-2	264/147		·						
	JUT/200								
NOTES- (7) 1) Wind: ASCE 7-16: \	/ult=120mph (3-secon	d gust) Vasd=95mp	h; TCDL=5.0psf: BCD	L=5.0psf; h=23ft: C	at. II: Exc	B; Enclosed	; MWFRS		
(envelope) gable er	d zone and C-C Exter	ior(2E) zone;C-C for	r members and forces	& MWFRS for reac	tions sho	wn; Lumber	DOL=1.60		
2) TCLL: ASCE 7-16;	, Pr=20.0 psf (roof LL: L	um DOL=1.15 Plate	e DOL=1.15); Pf=20.0	psf (Lum DOL=1.15	i Plate DO	DL=1.15); ls=	1.0; Rough		
Cat B; Partially Exp 3) Gable requires cont	; Ce=1.0; Cs=1.00; Ct	=1.10 earing	-				-		
4) This truss has been	designed for a 10.0 p	sf bottom chord live	load nonconcurrent w	ith any other live lo	ads.				

g between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=151.

LOAD CASE(S) Standard

	Truce				Db		
JOD 23-B588-R01	Truss	Valley				LOT 0.0099 BLAKE POND	63 WHIMBREL COURT LILLINGTON, NC # A206
23-2300-1101	103	valley		Run: 8.430 s Feb	 12 2021 Pri	Job Reference (optiona int: 8.430 s Feb 12 2021 MiTe	l) # 43904 k Industries, Inc. Tue Jan 9 10:00:30 2024 Page 1
		1	e	ID:dpzZVS 6-6-14	j9_?Ad6x	FKqV9FmJyf3OS-pQOJiL	vlrzp26Hukcf0AdlUkLRdAVC8x4A0LSnzx81
		Г	6	6-14			
					2x4	2	Scale = 1:32.5
		Ţ				3	
						B	
			10 00 12	/			
			10.00 12				
		.		т			
		5-5-`	2x4			VV1	
			2				
			st1				
				B1			
		1 É	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	$\nabla \nabla \nabla \nabla$		
		2	x4 ∕⁄⁄ 5 2x4 Ⅲ	6		4 2x4	
		1					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in ((loc) l/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.19 BC 0.23	Vert(LL) Vert(CT)	n/a n/a	- n/a 999 - n/a 999	MT20 244/190
BCLL 0.0 *	Rep Stress Incr Code IRC2021/TP	YES 12014	WB 0.07 Matrix-P	Horz(CT)	0.00	n/a n/a	Weight: 31 lb FT = 20%
LUMBER-				BRACING-			5
TOP CHORD 2x4 SP No	0.2			TOP CHORD	Structu	ral wood sheathing dire	ctly applied or 6-0-0 oc purlins, except
WEBS 2x4 SP No).3 > 2			BOT CHORD	Rigid c	eiling directly applied or	10-0-0 oc bracing.
OTHERS 2X4 SP NO	5.5				MiTel be ins	k recommends that Stal stalled during truss erec	bilizers and required cross bracing tion, in accordance with Stabilizer
REACTIONS. (lb/size)	1=35/6-6-14 (min. 0-1-8), 4	1=125/6-6-14	4 (min. 0-1-8), 5=321/6-	6-14 (min. 0-1-8)	Instal	lation guide.	
Max Horz Max Uplif	1=153(LC 12) t1=-20(LC 10), 4=-50(LC 12	e), 5=-127(LC	C 12)				
Max Grav	1=113(LC 12), 4=180(LC 1	9), 5=358(L0	C 19)				
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	250 (lb) or le	ss except when shown.				
WEBS 2-5=-257	7/251						
NOTES- (7)					=		
1) Wind: ASCE 7-16; Vul (envelope) gable end 2	t=120mph (3-second gust) zone and C-C Exterior(2E) z	Vasd=95mp zone;C-C for	h; TCDL=5.0psf; BCDL= members and forces &	=5.0psf; h=23ft; C MWFRS for react	at. II; Exp tions sho	p B; Enclosed; MWFRS own; Lumber DOL=1.60	
plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=	=20.0 psf (roof LL: Lum DOI	_=1.15 Plate	DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate D	OL=1.15); ls=1.0; Roug	h
Cat B; Partially Exp.; C 3) Gable requires continu	Ce=1.0; Cs=1.00; Ct=1.10 lous bottom chord bearing.						
4) This truss has been de	esigned for a 10.0 psf botto	n chord live	load nonconcurrent with	any other live loa	ads. Jale 3-6-	0 tall by 1-0-0 wide will	fit
between the bottom ch	nord and any other member	s, with BCDL	$_{-}$ = 10.0psf.	nding 100 lb unlif	t at ioint((a) 1. 4 except (it=lb)	it.
5=127.	finection (by others) of this	s to bearing		inding 100 ib upin		s) 1, 4 except (jt-ib)	and the first of the second se
LOAD CASE(S) Standard	b						WHINTH CARO
						Inter-	OFESSION
						tum.	SEAL
						11115	28147
						HIII	No. al
						3	ARYOINEE ORRESING
							Man K. Mount

1/6/2024

REACTIONS. (lb/size) 1=202/5-7-3 (min. 0-1-8), 3=202/5-7-3 (min. 0-1-8) Max Horz 1=128(LC 12) Max Uplift3=-80(LC 12) Max Grav 1=202(LC 1), 3=212(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

NOTES- (8

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 4-11-6, Interior(1) 4-11-6 to 8-10-14, Exterior(2E) 8-10-14 to 13-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 12, 11, 10, 9, 8.

LOAD CASE(S) Standard

Will fit 8. SEAL 28147 1/6/2024

Max Hol2 / --2 15(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 7, 5 except 6=-104(LC 13) Max Grav All reactions 250 lb or less at joint(s) 7, 4 except 6=465(LC 20), 5=291(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7)

WEBS

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

2-6=-271/156

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5 except (jt=lb) 6=104.

LOAD CASE(S) Standard

Max Uplift5=-35(LC 13), 4=-114(LC 13)

Max Grav 5=178(LC 20), 3=114(LC 22), 4=415(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-292/200

NOTES- (7)

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=114.

LOAD CASE(S) Standard

1/6/2024

Max Horz 3=-93(LC 13)

Max Uplift3=-55(LC 13) Max Grav 3=187(LC 20), 2=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

REACTIONS. (Ib/size) 3=62/2-2-4 (min. 0-1-8), 2=62/2-2-4 (min. 0-1-8) Max Horz 3=-32(LC 13) Max Uplift3=-19(LC 13) Max Grav 3=64(LC 20), 2=62(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

