Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 44032 JOB: 24-0140-R01 JOB NAME: LOT 31 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 23 Truss Design(s)

Trusses:

PB01, PB02, R01, R02, R03, R03A, R04, R05, R07, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	Y-VARINA, NC
24-0140-R01	PB01	GABLE	2	1	Job Reference (optional)	# 44032
		F	Run: 8.430 s Feb 12 2	2021 Print:	8.430 s Feb 12 2021 MiTek Industries, Inc.	Wed Jan 10 17:19:56 2024 Page

ID:20YuXCSZgcKAUakfxRI2BEyzqFZ-3l8WpybSIK8sm?cSbX6DyMvcr5VYmkc6aKDPLhzwiVn 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated. 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Met Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Scale = 1:114.9

Job		Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQU	JAY-VARINA, NC
24-0140-R	01	R01	GABLE	2	1	Job Reference (optional)	# 44032
				Run: 8.430 s Feb 12 ID:2OYuXCSZg	2021 Print: cKAUakfo	8.430 s Feb 12 2021 MiTek Industries, In (RI2BEyzqFZ-uuVn3?gDtAu0Uw3c)	c. Wed Jan 10 17:20:02 2024 Page 2 coDdBd9isWbKAQj?yGgkYLzwiVh

NOTES- (15-18)

7) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

8) Provide adequate drainage to prevent water ponding.

9) All plates are 3x6 MT20 unless otherwise indicated.

10) Gable requires continuous bottom chord bearing.

11) Gable studs spaced at 2-0-0 oc.

12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 57, 56, 55, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42 except (jt=lb) 41=105, 76=119.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

Scale = 1:117.4

ł	8-10-5	15-5-12	26-0-0	36-	6-12	42-0-12	47-6-12	57-1-10	67-0-0		
Plate Offset	s (X.Y) [22:0-	4-0.0-4-81	10-0-4	10-	0-12	5-6-0	5-6-0	9-0-14	9-10-0		
LOADING (p TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0 0.0 * 10.0 10.0	SPACING- Plate Grip DOI Lumber DOL Rep Stress Inc Code IRC2021	2-0-0 - 1.15 1.15 r YES /TPI2014	CSI. TC 0.69 BC 0.67 WB 0.93 Matrix-MSH	I	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.31 20-21 -0.43 20-21 0.03 17	l/defl L/d >999 240 >893 180 n/a n/a	PLATES MT20 Weight: 525 II	GRIP 244/190 p FT = 20%	
LUMBER- TOP CHOR BOT CHOR WEBS SLIDER	D 2x6 SP No.2 D 2x6 SP No.2 B4: 2x6 SP 2x4 SP No.3 W9: 2x6 SP Left 2x4 SP	2 *Except* DSS, B5: 2x4 SP No *Except* No.2 No.3 -° 1-11-0, Right	2 2x4 SP No.3 -° ⁻	1-11-0	BRA TOP BOT WEE	CING- CHORD CHORD 3S	Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 9-8-5 oc bracing. Except: 6-0-0 oc bracing: 19-21 1 Row at midpt 6-26, 7-24, 8-24, 8-22, 9-19, 10-17, 12-17 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.				
REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical. (lb) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-102(LC 14), 26=-229(LC 14), 17=-146(LC 15), 14=-126(LC 15) 15) Max Grav Max Grav All reactions 250 lb or less at joint(s) except 2=628(LC 41), 26=2357(LC 45), 17=3149(LC 45), 14=664(LC 43)											
FORCES. (TOP CHOR BOT CHOR WEBS	43) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-394/0, 3-4=-694/117, 6-38=0/293, 6-39=-1177/275, 7-39=-1127/305, 7-40=-1040/327, 40-41=-1040/327, 8-41=-1040/327, 8-42=-1182/289, 42-43=-1182/289, 9-43=-1182/289, 9-10=-29/454, 10-11=0/479, 11-44=0/261, 12-13=-863/204, 13-14=-401/0 BOT CHORD 2-28=-191/580, 27-28=-191/580, 26-27=-191/580, 26-45=-42/415, 25-45=-42/415, 25-46=-42/415, 24-46=-42/415, 24-47=-19/1310, 23-47=-19/1310, 23-48=-19/1310, 22-48=-19/1310, 22-49=0/839, 18-49=0/839, 18-50=0/839, 50-51=0/839, 17-51=0/839, 16-17=-101/731, 16-52=-101/731, 15-52=-101/731, 14-53=-101/731 WEBS 4-28=0/286, 4-26=-816/239, 6-26=-1684/299, 6-24=-17/1003, 8-24=-455/59, 8-22=-553/197, 21-22=-54/1139, 9-21=-28/1256, 9-19=-1829/158, 17-19=-1920/133, 10-17=-865/263, 12-17=-1114/287, 12-15=0/280, 18-20=-380/0										
NOTES- (1) Unbalanc 2) Wind: AS Roof; Hip 19-3-10 to 67-0-0 zo shown; Lu 3) TCLL: AS Cat B; Pa 4) Unbalanc 5) This truss non-conc	13-16) ed roof live loa CE 7-16; Vult= Truss; MWFR: o 32-8-6, Interio ne; cantilever l umber DOL=1.6 CE 7-16; Pr=2/ rtially Exp.; Ce ed snow loads s has been desi urrent with othe	ds have been conside 120mph (3-second gu S (envelope) gable er rr(1) 32-8-6 to 34-3-1(eft and right exposed 50 plate grip DOL=1.6 0.0 psf (roof LL: Lum =1.0; Cs=1.00; Ct=1.' have been considere gned for greater of m er live loads.	ered for this desi ist) Vasd=95mp id zone and C-C), Exterior(2R) 3 ; end vertical lef 0 DOL=1.15 Plate 10 d for this design in roof live load	gn. h; TCDL=5.0psf; E Exterior(2E) -0-11 4-3-10 to 47-6-12, t and right expose DOL=1.15); Pf=2 of 12.0 psf or 2.00	CDL=5.0ps)-8 to 5-9-1 Interior(1) 4 d;C-C for m 0.0 psf (Lur times flat m	sf; h=35ft; C 4, Interior(1) 47-6-12 to 6 embers and n DOL=1.15 pof load of 2	eat. II; Exp B; F) 5-9-14 to 19- 0-3-10, Exteri d forces & MW 5 Plate DOL=1 20.0 psf on ov	Enclosed; Gable 3-10, Exterior(2R) or(2E) 60-3-10 to /FRS for reactions (1.15); Is=1.0; Rough erhangs	SEAL 28147	THE A THE REAL PROPERTY OF THE	

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQ	QUAY-VARINA, NC
24-0140-R01	R02	Piggyback Base	8	1	Job Reference (optional)	# 44032
	·	Run: E	.430 s Feb 12 :20YuXCSZ	2021 Print: gcKAUakf	8.430 s Feb 12 2021 MiTek Industries, I xRI2BEyzgFZ-gHdYUhhTPn8jjED	Inc. Wed Jan 10 17:20:03 2024 Page 2 3DF5H2EuTK7Ge95IQa9qdFzwiVi

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 229 lb uplift at joint 26, 146 lb uplift at joint 17 and 126 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

Scale = 1:114.3

 	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0	37-2-12	2	47-6-12 10-4-0	57-1-10	67-0-0 9-10-6
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/I	2-0-0 1.15 1.15 YES 'Pl2014	CSI. TC 0.71 BC 0.64 WB 1.00 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 24-27 -0.29 18-20 0.04 17	l/defi L/d >904 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 512 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP D 2x4 SP No.3 W9: 2x6 SP N Left 2x4 SP N	*Except* /SS *Except* \o.2 Io.3 -° 1-11-0, Right 2)	(4 SP No.3 -° 1-1	1-0	BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek reco be installed Installation	ood sheathing direc directly applied or dpt 6-20, ommends that Stabi d during truss erecti guide.	otty applied or 5-1-12 oc purlins. 10-0-0 oc bracing. 8-20, 8-18, 9-17, 10-17, 12-17 ilizers and required cross bracing ion, in accordance with Stabilizer
REACTIONS. (lb) -	All bearings Max Horz 2= Max Uplift Al 15) Max Grav Al 43)	0-3-8 except (jt=lengt 172(LC 14) Il uplift 100 lb or less a) Il reactions 250 lb or le)	h) 14=Mechanica t joint(s) except 2 ess at joint(s) exce	ll. 2=-194(LC 10), 24=- ept 2=594(LC 54), 2	187(LC 14), 17=-2 24=2081(LC 45), 1	45(LC 11), 14 7=3134(LC 45	=-125(LC i), 14=646(LC	
FORCES. (Ib TOP CHORD) - Max. Comp 2-3=-356/45 6-34=-1526/ 8-37=-1433/	./Max. Ten All forces i5, 3-4=-559/466, 4-33 /474, 6-35=-1632/452, /488, 8-38=-1161/386 - 14.0=0/284, 12.40	s 250 (lb) or less =-1719/447, 5-33 7-35=-1551/480, 38-39=-1161/386	except when shown 3=-1650/451, 5-34=- , 7-36=-1433/488, 3(6, 9-39=-1161/386, 3 129/109, 12, 44, 438	1638/456, 6-37=-1433/488, 9-10=0/576,			
BOT CHORD	10-11=0/576 2-41=-363/4 21-22=-263, 19-45=-144, 16-17=-96/6 4-24=-1706, 8-18=-871/2 12-15=0/393	5, 11-40=0/384, 12-40 ;43, 24-41=-363/443, 2 (1492, 21-43=-263/142 (1412, 18-45=-144/141)99, 16-48=-96/699, 15 (255, 4-22=0/1338, 6-2 258, 9-18=-137/1383, § 7	=0/327, 12-138 24-42=-363/443, 2 32, 20-43=-263/14 12, 18-46=-20/78 5-48=-96/699, 15 22=-485/72, 6-20: 9-17=-2048/276, 1	128/198, 13-14=-438 23-42=-363/443, 22- 492, 20-44=-144/14 90, 46-47=-20/780, 1 -49=-96/699, 14-49= =-328/311, 7-20=0/2 10-17=-865/262, 12-	//0 -23=-363/443, 12, 19-44=-144/14 7-47=-20/780, 96/699 281, 8-20=-80/485, -17=-1141/276,	12,		
NOTES- (13 1) Unbalanced 2) Wind: ASCI Roof; Hip T 19-3-10 to 3 67-0-0 zone MWFRS for 3) TCLL: ASC Cat B; Parti 4) Unbalanced 5) This truss h non-concur	3-16) 4 roof live load E 7-16; Vult=1 russ; MWFRS 32-8-6, Interior 9; cantilever lef r reactions sho E 7-16; Pr=20 ally Exp.; Ce= 4 snow loads h has been desig rent with other	s have been considered 20mph (3-second gust (envelope) gable end (1) 32-8-6 to 34-3-10, ft and right exposed ; e wn; Lumber DOL=1.6 0 psf (roof LL: Lum D' 1.0; Cs=1.00; Ct=1.10 ave been considered ined for greater of min live loads.	ed for this design. t) Vasd=95mph; T zone and C-C E) Exterior(2R) 34-3 end vertical left an 0 plate grip DOL= OL=1.15 Plate DO for this design. roof live load of 1	CDL=5.0psf; BCDL terior(2E) -0-10-8 to 10 to 47-6-12, Inten right exposed; po 1.60 DL=1.15); Pf=20.0 p 12.0 psf or 2.00 time	L=5.0psf; h=35ft; C o 5-9-14, Interior(1 rior(1) 47-6-12 to 6 orch left exposed;C osf (Lum DOL=1.15 es flat roof load of 2	at. II; Exp B; E) 5-9-14 to 19- 0-3-10, Exteri -C for membe 5 Plate DOL=1 20.0 psf on ov	Enclosed; Gable 3-10, Exterior(2R) or(2E) 60-3-10 to rs and forces & .15); Is=1.0; Rough erhangs	SEAL 28147

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQU	JAY-VARINA, NC
24-0140-R01	R03	Piggyback Base	1	1	Job Reference (optional)	# 44032
		Run: 8.4 ID::	30 s Feb 12 OYuXCSZ	2021 Print: gcKAUakf	8.430 s Feb 12 2021 MiTek Industries, In xRI2BEyzgFZ-ITBwi1i5A5GaLOoBc	c. Wed Jan 10 17:20:05 2024 Page 2 wmKpGn2zjTtNbFReEvO9qzwiVe

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 194 lb uplift at joint 2, 187 lb uplift at joint 24, 245 lb uplift at joint 17 and 125 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

Scale = 1:114.3

—	10-1-12 10-1-12		18-0-14 7-11-2		26-0-0 7-11-2		<u>37-2-12</u> 11-2-12		47-6-12 10-4-0		57-1-10 9-6-14	67-0-0	
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPAC Plate Lumbe Rep S Code	ING- Grip DOL er DOL Stress Incr IRC2021/T	2-0-(1.1) 1.1) YES	0 5 5 5 4	CSI. TC BC WB Mati	0.69 0.56 0.98 rix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 24-27 -0.23 18-20 0.02 2	l/defl >903 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 512 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP E 2x4 SP No.3 W9: 2x6 SP I Left 2x4 SP N	*Except* DSS *Except* No.2 No.3 -° 1-11-	-0, Right 2>	x4 SP I	No.3 -° 1	-11-0		BRACING- TOP CHORD BOT CHORD WEBS	 Structural wood sheathing directly applied or 5-10-15 oc purlins. Rigid ceiling directly applied or 10-0 oc bracing, Except: 6-0 oc bracing: 17-18. 1 Row at midpt 6-20, 7-20, 8-18, 9-18, 9-17, 10-17, 12-17 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation quide 				
REACTIONS. All bearings 0-3-8 except (jt=length) 14=Mechanical. (lb) - Max Horz 2=172(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 24=-168(LC 14), 18=-162(LC 10), 17=-272(LC 15), 14=-124(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=619(LC 54), 24=1555(LC 45), 18=2078(LC 44), 17=1811(LC 39), 14=676(LC 55)													
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-373/459, 3-4=-612/475, 4-33=-1279/380, 5-33=-1194/384, 5-34=-1179/388, 6-34=-1042/407, 6-35=-892/352, 7-35=-762/379, 7-36=-701/395, 36-37=-701/395, 8-37=-701/395, 8-38=-39/300, 38-39=-39/300, 9-10=-29/465, 10-11=0/480, 11 40=0/271 42 129 - 896(496 - 13 14 - 464/0													
BOT CHORD	2-41=-372/4 21-22=-201 19-45=-8/3 15-49=-93/7	491, 24-41=- 1/1067, 21-43 79, 18-45=-8 761, 14-49=-	-372/491, 2 3=-201/106 3/379, 16-1 -93/761	24-42= 67, 20-4 7=-93/	-372/49 ⁻ 43=-201 761, 16-	1, 23-42=-3 /1067, 20- 48=-93/76	372/491, 22- 44=-8/379, 1 1, 15-48=-93	23=-372/491, 9-44=-8/379, 3/761,					
WEBS	4-24=-1246 9-18=-253/6	6/236, 4-22=0 62, 9-17=-31	0/755, 6-20 19/51, 10-1	0=-576 7=-863	/193, 8-2 3/262, 12	20=-119/10 2-17=-1138	002, 8-18=-1 3/276, 12-15	365/330, =0/397					
 NOTES- (13-16) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof, Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0.10-8 to 5-9-14 to 19-3-10, Exterior(2E) 60-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2E) -0.10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2E) 60-3-10 to 67-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15); Is=1.0; Raugh (4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCS!"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design 1/9/2024 Costinuing of Pode Zeisign parameters and red notes before use. This design is based only up on parameters shown, is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not russ designer or truss designer bracing shown is for lateral support 													
vertically. App of individual w	plicability of des	sign parameters	s and proper temporary b	incorporation incorporation in the second seco	oration of o ensure	component stability duri	is responsibilit ng constructio	y of building designed n is the responsibilit	er – not truss desi y of the erector.	igner or tr Additiona	uss engineer. Il permanent b	Bracing shown is for later pracing of the overall struc	al support ture is the
responsibility of	of the building d	lesigner For g	eneral guida	nce reg	arding fab	rication au	ality control st	orage delivery erec	tion and bracing	consult A	NSI/TPI 1 N	ational Design Standard (for Metal

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	Y-VARINA, NC
24-0140-R01	R03A	Piggyback Base	1	1	Job Reference (optional)	# 44032
		Run: 8.4: ID	0 s Feb 12 20YuXCS	2021 Print: ZgcKAUa	8.430 s Feb 12 2021 MiTek Industries, Inc. kfxRI2BEyzqFZ-j2t2K2kzT?e9CrXII3K	Wed Jan 10 17:20:08 2024 Page 2 1RuPaWxWtayOtLC72m?zwiVb

NOTES- (13-16)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x5 MT20 unless otherwise indicated.

) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.

11) Refer to girder(s) for truss to truss connections.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 168 lb uplift at joint 24, 162 lb uplift at joint 18, 272 lb uplift at joint 17 and 124 lb uplift at joint 14.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

Scale = 1:115.3

F	10-1-12	18-0-14	26-0-	0	37-2-12		47-6-12		59-4-4	67-0-0	
LOADING (p TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/	2-0-0 1.15 1.15 YES IPI2014	- CSI. TC BC WB Matri	0.63 0.56 0.99 x-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.13 25-28 -0.23 19-21 0.03 16	l/defl >904 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 515 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS SLIDER	 2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W9: 2x6 SP I Left 2x4 SP I 	*Except* DSS *Except* No.2 Vo.3 -° 1-11-0, Right 2	×4 SP No.3 -° ۲	-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at min MiTek recc be installed Installation	ood sheat directly a dpt ommends d during tr guide.	hing directl pplied or 10 6-21, 7 that Stabili uss erectio	y applied or 5-11-14 or 0-0-0 oc bracing. -21, 8-19, 9-19, 10-18 zers and required cro n, in accordance with	oc purlins. 3, 12-18 ss bracing Stabilizer
REACTIONS. All bearings 0-3-8. (Ib) - Max Horz 2=167(LC 14) Max Uplift All uplift 100 lb or less at joint(s) except 2=-197(LC 10), 25=-163(LC 14), 19=-246(LC 11), 14=-180(LC 11), 16=-110(LC 15) Max Grav All reactions 250 lb or less at joint(s) except 2=617(LC 54), 25=1536(LC 45), 19=2712(LC 45), 14=452(LC 55), 16=1234(LC 39)											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-372/461, 3-4=-608/480, 4-34=-1244/378, 5-34=-1174/383, 5-6=-1030/406, 6-35=-874/346, 7-35=-745/374, 7-36=-686/390, 36-37=-686/390, 8-37=-686/390, 8-38=0/335, 38-39=0/335, 9-39=0/335, 9-10=-941/395, 10-11=-793/283, 11-40=-854/259, 12-40=-933/249, 12-13=-362/352, 13-14=-60/277 BOT CHORD 2-41=-359/487, 25-41=-359/487, 25-42=-359/487, 24-42=-359/487, 23-24=-359/487, 2-22=-181/1052, 22-43=-181/1052, 21-43=-181/1052, 21-44=-6/375, 20-44=-6/375, 20-45=-6/375, 19-45=-6/375, 17-18=-270/664, 48-49=-270/664, 46-49=-270/664, 14-63=-241/266 WEBS 4-25=-122/231, 4-23=0/737, 6-21=-592/197, 8-21=-122/1025, 8-19=-1383/333,											
 9-19=-1164/230, 9-18=-262/1203, 10-18=-858/263, 12-16=-1078/211 NOTES- (12-15) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 61-2-2, Exterior(2E) 61-2-2 to 67-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members ant forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rorgh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling, and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCS!"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member 1/9/2024. Cottinge between the design and inspection of the temporary installation restraint/bracing and the permanent individual building component to be installed and loaded 											
Continuing br vertically. A of individual responsibility Plate Conne	+ berde 2 design participation of the second	arameters and read notes sign parameters and proper ly. Additional temporary le esigner. For general guida <i>Construction</i> and BCSI 1	before use. This incorporation of pracing to ensure ince regarding fall 03 Guide to <i>Goo</i>	s design is basic component is stability durir prication, qual d Practice for	sed only upon p s responsibility ng construction lity control, stor r Handling, Ins.	parameters shown, a of building designe is the responsibility rage, delivery, erect talling & Bracing of	ind is for an indi r – not truss desi of the erector. ion and bracing, <i>f Metal Plate Co</i>	vidual build gner or trus Additional j consult AN onnected W	ling compone ss engineer. I permanent br VSI/TPI 1 Na food Trusses	ent to be installed and loa Bracing shown is for later acing of the overall struc <i>tional Design Standard J</i> from Truss Plate Institute	ded ral support ture is the <i>for Metal</i> e, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	/-VARINA, NC
24-0140-R01	R04	PIGGYBACK BASE	2	1	Job Reference (optional)	# 44032
		Ru	n: 8.430 s Feb 12 ID:20YuXCSZ	2021 Print: gcKAUakf	8.430 s Feb 12 2021 MiTek Industries, Inc. xRI2BEyzqFZ-7dYBy4nsmw1k3JFKzE	Wed Jan 10 17:20:11 2024 Page 2 8tk3X15d8YcnJxK19MiNKzwiVY

NOTES- (12-15)

7) Provide adequate drainage to prevent water ponding.

8) All plates are 5x6 MT20 unless otherwise indicated.

) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 163 lb uplift at joint 25, 246 lb uplift at joint 19, 180 lb uplift at joint 14 and 110 lb uplift at joint 16.
- 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

Scale = 1:114.3

F	10-1-12 10-1-12	18-0-14 7-11-2	26-0-0 7-11-2		37-2-12 11-2-12		47-6-12 10-4-0		57-1-10 9-6-14	67-0-0 9-10-6	
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.65 0.52 0.98 x-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.14 24-27 -0.23 18-20 0.03 14	l/defl >894 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 512	GRIP 244/190 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS. (lb) -	2x6 SP No.2 2x6 SP No.2 B4: 2x6 SP I 2x4 SP No.3 W7: 2x4 SP I Left 2x4 SP I All bearings Max Horz 2= Max Uplift A	*Except* DSS *Except* No.2, W8: 2x4 SP No.1 No.3 -° 1-11-0, Right 2x s 0-3-8 except (jt=lengt 172(LC 14) Il uplift 100 lb or less a	, W9: 2x6 SP № ;4 SP №.3 -° 1- h) 18=0-4-0, 14 t joint(s) except	lo.2 11-0 =Mechanic 2=-195(LC	cal. C 10), 24=-1	BRACING- TOP CHORD BOT CHORD WEBS 64(LC 14), 18=-2	Structural wood sheathing directly applied or 5-1-9 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 18-20,17-18. 1 Row at midpt 6-20, 7-20, 8-20, 8-18, 9-18, 10-17, 12-17 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.				
	15 Max Grav A 14) Il reactions 250 lb or le =1016(LC 43)	ess at joint(s) ex	cept 2=605	5(LC 54), 24	=1360(LC 35), 18	8=3525(LC 45),			
FORCES. (Ib TOP CHORD	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-358/456, 3-4=-580/464, 4-33=-1082/331, 5-33=-1012/335, 5-34=-1003/339, 6-34=-868/358, 6-35=-665/286, 7-35=-517/314, 7-36=-474/334, 36-37=-474/334, 8-37=-474/334, 8-38=0/927, 38-39=0/927, 9-39=0/927, 9-10=-739/334, 10-11=-590/207, 11-40=-649/183, 12-40=-725/174, 12-13=-1664/313, 13-14=-631/0										
WEBS	2-41=-361/ 21-22=-157 19-45=-495 16-17=-201 4-24=-1052 8-18=-1531 12-15=0/38	402, 24-4 1=-36 1/402, 2 //899, 21-43=-157/899, //256, 18-45=-495/256, /1461, 16-48=-201/146 //233, 4-22=0/561, 6-20 /372, 9-18=-1754/267, /2	24-42=-361/462 20-43=-157/89 18-46=-383/19 31, 15-48=-201/)=-731/202, 7-2 9-17=-321/175	, 23-42=-36 9, 20-44=-4 8, 46-47=-3 1461, 15-4 0=-368/83, 9, 10-17=-8	61/462, 22-2 495/256, 19 383/198, 17 9=-201/146 , 8-20=-165/ 869/263, 12	23=-361/462, -44=-495/256, -47=-383/198, 1, 14-49=-201/14 1324, -17=-1064/265,	61				
 NOTES- (13-16) I) Unbalanced roof live loads have been considered for this design. I) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-9-14, Interior(1) 5-9-14 to 19-3-10, Exterior(2R) 19-3-10 to 32-8-6, Interior(1) 32-8-6 to 34-3-10, Exterior(2R) 34-3-10 to 47-6-12, Interior(1) 47-6-12 to 60-3-10, Exterior(2E) 60-3-10 to 570-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 B) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Reugh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 B) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 											
										1/9/2024	

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK F	FUQUAY-VARINA, NC
24-0140-R01	R05	Piggyback Base	7	1	Job Reference (optional)	# 44032
	·	·	Run: 8.430 s Feb 12 ID:2OYuXCSZgc	2021 Print: KAUakfxF	8.430 s Feb 12 2021 MiTek Industri RI2BEyzqFZ-0PoioRqNp9XAYw	es, Inc. Wed Jan 10 17:20:15 2024 Page 2 /Z6C1ygDNBmMlv3j62vynKwW5zwiVU

NOTES- (13-16)

- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 2, 164 lb uplift at joint 24, 277 lb uplift at joint 18 and 176 lb uplift at joint 14.
- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 15) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

BOT CHORD

BOT CHORD 2x4 SP No.3 2x4 SP No 3 WFBS 2x4 SP No.3 OTHERS

REACTIONS. All bearings 20-2-0.

(lb) - Max Horz 24=-171(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 21, 22, 23, 17, 16, 15 except 19=262(LC 27), 20=305(LC

5), 18=302(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(14-17)

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-1-0, Exterior(2N) 4-1-0 to 5-3-6, Corner(3R) 5-3-6 to 14-10-10, Exterior(2N) 14-10-10 to 16-1-0, Corner(3E) 16-1-0 to 21-0-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 10) Gable studs spaced at 2-0-0 oc.
 11) This truss has been designed for a 10.0 psf bottom chord live load noncentrative in the bottom chord in all areas where a rectangle of a fit between the bottom chord and any other members, with BCDL = 10.0psf.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 19, 17, 16, 15.

Rigid ceiling directly applied or 6-0-0 oc bracing

Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	Y-VARINA, NC
24-0140-R01	R07	Common Supported Gable	1	1	Job Reference (optional)	# 44032
		Ru	in: 8.430 s Feb 12	2021 Print:	8.430 s Feb 12 2021 MiTek Industries, Inc.	Wed Jan 10 17:20:17 2024 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-ynwSD7rdLmntnEjUJS_8loHF2ZiyBDNCP5p0a_zwiVS 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1/9/2024

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and read notes before use. This design is obased only dopin parameters shown, and is for an individual building component to be instanted and toaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	Y-VARINA, NC
24-0140-R01	R09	Common Girder	1	3	Job Reference (optional)	# 44032
			Run: 8.430 s Feb 12	2021 Print:	8.430 s Feb 12 2021 MiTek Industries, Inc.	Wed Jan 10 17:20:22 2024 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-IIjLGrvmAJPAu?bS6?aJ?r_3YaJUsPWxZNXnFBzwiVN 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 8=-644(F) ⁹=-644(F) 12=-644(F) 13=-644(F) 14=-644(F) 15=-644(F) 16=-644(F) 17=-644(F) 18=-626(F)

1/9/2024

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING

Considered includes. vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

1/9/2024

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQ	UAY-VARINA, NC
24-0140-R01	R10	Common Supported Gable	1	1	Job Reference (optional)	# 44032
		Run: i ID	3.430 s Feb 12 20YuXCSZ	2021 Print: cKAUakfx	8.430 s Feb 12 2021 MiTek Industries, li RI2BEyzqFZ-nxHjTBwOxcX1V9Ae	nc. Wed Jan 10 17:20:23 2024 Page 2 gi5YY3WH5_IQbyL5n1GLodzwiVM

LOAD CASE(S) Standard

1/9/2024

Job	Truss	Truss Type	Qty	Ply	LOT 31 PROVIDENCE CREEK FUQUA	Y-VARINA, NC
24-0140-R01	R11	Common Girder	1	3	Job Reference (optional)	# 44032
		F	Run: 8.430 s Feb 12 2	2021 Print:	8.430 s Feb 12 2021 MiTek Industries, Inc.	Wed Jan 10 17:20:26 2024 Page 2

ID:20YuXCSZgcKAUakfxRl2BEyzqFZ-BWys6CyGEXvcMcvDLreFAh8mwBj_oESXT?V?OyzwiVJ 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20 Concentrated Loads (lb)

Vert: 13=-1002(F) 14=-996(F) 15=-996(F) 16=-996(F) 17=-996(F) 18=-996(F) 19=-996(F)

1/9/2024

