

RE: BASE+COP+1CG - DREAMFINDERS HOMES/JORDAN/ELEV:A&B

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: Project Name: Lot/Block: Address: City:

Subdivision:

State:

 Name Address and License # of Structural Engineer of Record, If there is one, for the building.

 Name:
 License #:

 Address:
 State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10

Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Job ID#	Truss Name	Date	No.
1 2 3 4 5	I60132990 I60132991 I60132992 I60132993 I60132994	BASE+COP- BASE+COP- BASE+COP- BASE+COP- BASE+COP-	+ 14006 + 14002 + 14003 + 14004 + 14004 + 14004	8/15/23 8/15/23 8/15/23 8/15/23 8/15/23	25 26 27 28
6 7	160132995 160132996	BASE+COP- BASE+COP-	+ 1406 + 1406	8/15/23 8/15/23	
8 9	l60132997 l60132998	BASE+COP- BASE+COP-	+14083 +18063	8/15/23 8/15/23	
10 11	160132999 160133000	BASE+COP- BASE+COP-	+ 606 + 606	8/15/23 8/15/23	
12 13	160133001 160133002	BASE+COP- BASE+COP-	+0006 +0002	8/15/23 8/15/23	
14	160133003 160133004	BASE+COP- BASE+COP-	+1CG +100043	8/15/23 8/15/23	
16 17	160133005	BASE+COP- BASE+COP-	+1006 +1CG	8/15/23 8/15/23	
10	160133007 160133008	BASE+COP-	+1004	8/15/23	
20 21 22	160133010 160133010	BASE+COP-	+1006	8/15/23 8/15/23	
23	160133012	BASE+COP-	+1ČĞ	8/15/23	

Seal#	Job ID#	Truss	Name	Date
160133013	BASE+COP+	EOG		8/15/23
160133014	BASE+COP+	1 0 G		8/15/23
160133015	BASE+COP+	1 0 23		8/15/23
160133016	BASE+COP+	1 0 6		8/15/23
160133017	BASE+COP+	1 0 45		8/15/23

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

August 15,2023

1 of 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-278/217, 2-3=-836/474, 1-8=-327/248, 4-6=-315/285
- BOT CHORD 7-8=-532/791. 6-7=-196/422
- WEBS 2-7=-432/498, 3-7=-306/706, 2-8=-724/187, 3-6=-768/361

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=275, 6=387.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affil 818 Soundside Road

			1	9	-5-8	1		19-5-8		1		
			ſ	9	-5-8	1		10-0-0		1		
Plate Offse	ts (X,Y)	[9:0-5-0,0-4-8]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL	. i	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(L	L) -0.0	5 9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(0	CT) -0.1	3 7-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.44	Horz(CT) 0.0	16	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix	<-AS	Wind(LL) 0.0	39	>999	240	Weight: 161 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3 *Ex

EBS 2x4 SP No.3 *Except* 1-10,4-6,12-13: 2x4 SP No.2

REACTIONS. (size) 10=Mechanical, 6=Mechanical Max Horz 10=414(LC 12) Max Uplift 10=-218(LC 12), 6=-244(LC 12) Max Grav 10=850(LC 19), 6=918(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-266/229, 2-3=-927/383, 1-10=-321/255, 4-6=-321/279

BOT CHORD 9-10=-467/826, 8-9=-153/460, 7-8=-153/460, 6-7=-153/460

WEBS 2-9=-410/520, 9-12=-201/700, 3-12=-191/725, 2-10=-750/79, 3-13=-773/298, 6-13=-823/272

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) 200.0lb AC unit load placed on the bottom chord, 13-10-0 from left end, supported at two points, 5-0-0 apart.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=218, 6=244.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

2-10, 12-13, 3-6

Rigid ceiling directly applied.

1 Row at midpt

Scale = 1:70.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type		Qty	Ply	DREAMFINDERS	S HOMES/JORDAN/ELEV:A&B	160122007
BASE+COP+1CG	A08	Roof Special Supported Gable		1	1			100132997
Builders FirstSource (Sum	iter, SC), Sumter, SC - 291	53,		8	.630 s Ju	Job Reference (op I 28 2023 MiTek Ind	ptional) ustries, Inc. Mon Aug 14 09:31:4	5 2023 Page 1
		13-7-0	ID:h9G7F	ShkwdX	sXwp5Zi0	0SNOzktn2-RfC?PsI 29-0-0	B70Hq3NSgPqnL8w3ulTXbGKWı 29-10 ₇ 8	CDoi7J4zJC?f
		13-7-0	1			15-5-0	0-10-8	
			4x6 =					Scale = 1:67.6
Ī		8.00 12 8	9					
10-10-7	4 3x6 = 2	3x4 = 7		11	12	3x4 = 13 14 15	16 3x4	
		33 5x6 = ³²				22 23 21		
	36 35 6x8 ≒ _{4.00} 12	31 30 29 3x4 =	28 27	26 25 3x4 —	24	4x6 =	4x6 ≈ 3x4 ≈	
	5-8-12	11-2-0	16-9-8		22-9-0		29-0-0	
Plate Offsets (X,Y) [1	<u>5-8-12</u> 8:0-3-10,0-2-0], [22:0-3-0,0-0-	<u>5-5-4</u> 0], [26:0-2-0,0-0-11], [30:0-2-0,0-	5-7-8 0-11]		5-11-8	•	6-3-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YES	CSI. 5 TC 0.17 5 BC 0.10 6 WB 0.23 Matrix S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.02	(loc) 18 19 18	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES GR MT20 244	IP 1/190
BCDL 10.0	Code IRC2015/1PI2014	Matrix-S					Weight: 214 lb F	1 = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N 18-22: 22 WEBS 2x4 SP N OTHERS 2x4 SP N SLIDER Right 2x4	lo.2 lo.2 *Except* 66 SP No.2 lo.3 lo.3 4 SP No.2 2-6-0		BRACING TOP CHO BOT CHO WEBS	j- DRD DRD	Structu except Rigid c 8-7-1 c 6-0-0 c 1 Row	Iral wood sheathing end verticals. eiling directly appli o bracing: 35-36 o bracing: 20-21. at midpt	g directly applied or 6-0-0 oc pu ed or 10-0-0 oc bracing, Excep 9-28, 8-29, 10-27	rlins, pt:
REACTIONS. All bea (lb) - Max Hor Max Upl Max Gra	rings 29-0-0. z 36=-517(LC 8) ift All uplift 100 lb or less at jo 33=-133(LC 9), 30=-119(L0 12), 32=-149(LC 12), 34=-1 25=-164(LC 13), 24=-148(L v All reactions 250 lb or less 27, 25, 24, 23, 21 except 36 35=505(LC 10), 20=322(LC	bint(s) 22, 18, 28, 21 except 36=-5 C 13), 26=-120(LC 13), 29=-148(L 54(LC 12), 35=-508(LC 12), 27=- C 13), 23=-160(LC 13), 20=-271(at joint(s) 30, 26, 22, 18, 29, 31, S=631(LC 9), 33=285(LC 19), 28= 20)	563(LC 10), _C 12), 31=-161 141(LC 13), LC 13) 32, 34, -373(LC 13),	(LC				
FORCES. (lb) - Max. C TOP CHORD 1-36 8-9=-3 BOT CHORD 35-36= 30-31= 25-26= 20-21= WEBS 9-28	omp./Max. Ten All forces 25 476/406, 1-2=-350/298, 2-3=-2 78/444, 9-10=-378/444, 10-11= -479/521, 34-35=-253/394, 33 -260/398, 29-30=-243/373, 28 -257/397, 24-25=-263/398, 23 -269/399, 18-20=-258/394 362/248, 16-20=-315/283, 1-35	0 (lb) or less except when shown 91/267, 6-7=-206/301, 7-8=-298/ 298/350, 16-18=-340/220 -34=-255/393, 32-33=-263/397, 3 -29=-243/373, 27-28=-243/373, 2 -24=-263/397, 22-23=-261/394, 2 5=-394/442	369, 11-32=-263/398, 16-27=-243/373, 11-22=-250/382,				TH CAR	0
 NOTES- 1) Unbalanced roof live II 2) Wind: ASCE 7-10; Vul gable end zone and C forces & MWFRS for ri 3) Truss designed for win Gable End Details as 4) All plates are 2x4 MTZ 5) Gable requires continu 6) Gable studs spaced a 7) This truss has been di 8) * This truss has been will fit between the both 	bads have been considered fo tt=150mph Vasd=119mph; TC -C Exterior(2) zone; cantilever eactions shown; Lumber DOL: nd loads in the plane of the tru applicable, or consult qualified 20 unless otherwise indicated. Jour bottom chord bearing. t 2-0-0 oc. esigned for a 10.0 psf bottom of designed for a live load of 20.0 tom chord and any other mem	r this design. DL=6.0psf; BCDL=6.0psf; h=25ft; left and right exposed ; end vertii =1.60 plate grip DOL=1.60 ss only. For studs exposed to wir building designer as per ANSI/Tf chord live load nonconcurrent with opsf on the bottom chord in all are bers.	Cat. II; Exp C; I cal left and right nd (normal to the PI 1. n any other live I eas where a rect	Enclosed exposed a face), s pads. angle 3-4	l; MWFR l;C-C for ee Stand 6-0 tall b	S (envelope) members and dard Industry y 2-0-0 wide	SEAL 036322 August 1	BEH 1111 5,2023
Continued on page 2	==:							2415
WARNING - Verify de Design valid for use onl a truss system. Before building design. Bracin is always required for s fabrication, storage, del and BCSI Building Co	sign parameters and READ NOTES ON y with MiTek® connectors. This design use, the building designer must verify to g indicated is to prevent buckling of indi ability and to prevent collapse with pos- ivery, erection and bracing of trusses a imponent Safety Information availal	THIS AND INCLUDED MITEK REFERENC is based only upon parameters shown, an he applicability of design parameters and fividual truss web and/or chord members of sibile personal injury and property damage ind truss systems, see ANSUTPI Quality ole from the Structural Building Componen	E PAGE MII-7473 re nd is for an individua properly incorporate ponly. Additional temp e. For general guida y Criteria and DSB - tt Association (www.	 1/2/2023 I building c this design orary and nce regard availat sbcacompc 	BEFORE U omponent, into the ov permanent ing the ole from Tru onents.com	JSE. not verall bracing uss Plate Institute (www.)	tpinst.org)	BY ICCO II Tek Affiliate

Job	Truss	Truss Type	Qty	Ply	DREAMFINDERS HOMES/JORDAN/ELEV:A&B	
						I60132997
BASE+COP+1CG	A08	Roof Special Supported Gable	1	1		
					Job Reference (optional)	
Builders FirstSource (Sumter, SC), Sumter, SC - 29153,		53,	8.630 s Jul 28 2023 MiTek Industries, Inc. Mon Aug 14 09:31:46 2023 Page 2			
			ID:h9G7FShkwdXsXwp5Zi0SNOzktn2-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f			

NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 18, 28, 21 except (jt=lb) 36=563, 33=133, 30=119, 26=120, 29=148, 31=161, 32=149, 34=154, 35=508, 27=141, 25=164, 24=148, 23=160, 20=271.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 33, 22, 31, 32, 34, 35, 25, 24, 23, 21, 20.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=275, 6=275.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=257, 5=257.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

st.org) 818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DREAMFINDERS HOMES/JORDAN/ELEV:A&B	
						I60133004
BASE+COP+1CG	C04	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
Builders FirstSource (Sumter	r, SC), Sumter, SC - 2915	53,	8	.630 s Jul	28 2023 MiTek Industries, Inc. Mon Aug 14 09:31:56 2023	Page 2
		ID:h9G7	FShkwdX	sXwp5Zi08	SNOzktn2-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7	J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-10=-20

Concentrated Loads (lb)

Vert: 6=-742(B) 10=-893(B) 13=-742(B) 14=-742(B) 15=-742(B) 16=-742(B) 17=-885(B) 18=-885(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Grav 8=605(LC 1), 9=686(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-933/648, 2-3=-2291/1381, 3-4=-369/106, 5-9=-898/609 TOP CHORD

BOT CHORD 7-8=-1015/971.5-7=-1960/2787

WEBS 2-7=-921/1690, 3-7=-326/343, 3-5=-2090/1490

NOTES-(8)

1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 9=609.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except*
	4-7: 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD WEBS

D Structural wood sheathing directly applied, except end verticals. D Rigid ceiling directly applied. 1 Row at midpt 4-7, 3-7

REACTIONS. (size) 9=0-3-8, 6=0-3-0 Max Horz 9=601(LC 12) Max Uplift 9=-70(LC 12), 6=-567(LC 12) Max Grav 9=612(LC 19), 6=707(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-515/0, 4-7=-256/225, 2-9=-563/149
- BOT CHORD 8-9=-765/696. 7-8=-423/601

WEBS 3-8=-37/266, 3-7=-815/576, 2-8=-99/374

NOTES- (6)

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 6=567.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		<u>1-9-8</u> <u>6-10-0</u> <u>1-9-8</u> <u>5-0-8</u>	<u>10-11-8</u> <u>13-5-013-9</u> -0 4-1-8 <u>2-5-8</u> 0-4-0	
Plate Offsets (X,Y) [2:0-	-3-8,Edge], [3:0-4-0,0-3-0], [7:0-3-0,	0-1-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.95 BC 0.50 WB 0.34 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.06 10-11 >999 360 Vert(CT) -0.14 10-11 >999 240 Horz(CT) 0.08 6 n/a n/a Wind(LL) 0.08 11-12 >999 240	PLATES GRIP MT20 244/190 Weight: 106 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except*

4-7,12-14,8-10: 2x4 SP No.2

REACTIONS. (size) 15=0-3-8, 6=0-3-0 Max Horz 15=601(LC 12) Max Uplift 15=-70(LC 12), 6=-567(LC 12) Max Grav 15=602(LC 1), 6=660(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown

TOP CHORD 2-3=-571/74, 7-9=-874/624, 4-9=-258/227, 13-15=-587/142, 2-13=-541/193

BOT CHORD 14-15=-451/298, 12-13=-1124/1085, 11-12=-1124/1085, 10-11=-497/697, 9-10=-497/697

WEBS 2-11=-393/636, 3-11=-107/302, 3-9=-893/640, 12-14=-271/205, 13-14=-341/516

NOTES-(6)

1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 6=567

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

4-7, 3-9

Rigid ceiling directly applied.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	13-5-0	
I	13-5-0	
1		

Plate Offsets ()	X,Y)	[17:0-3-8,0-3-0]										
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 1/2014	CSI. TC 0 BC 0 WB 0 Matrix-S	0.35 0.13 0.37 S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 1 1-2 11	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 2x4 SP 2x4 SP 10-11: 3	No.2 No.2 No.3 *Except* 2x4 SP No.2				BRACING- TOP CHOR BOT CHOR	RD RD	Structur except e Rigid ce 6-0-0 oc	al wood end vertic eiling dire c bracing	sheathing di cals. ctly applied : 17-18.	rectly applied or 6-0-0 c or 10-0-0 oc bracing, E	c purlins, Except:
OTHERS	2x4 SP	No.3				WEBS		1 Row a	at midpt	1	0-11, 9-12	

REACTIONS. All bearings 13-5-0. (lb) - Max Horz 18=601(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 11 except 18=-478(LC 10), 12=-154(LC 12), 13=-154(LC 12),

- 14=-152(LC 12), 15=-150(LC 12), 16=-164(LC 12), 17=-1047(LC 12)
- Max Grav All reactions 250 lb or less at joint(s) 11, 12, 13, 14, 15, 16 except 18=1239(LC 12), 17=535(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-18=-1306/1021, 2-3=-696/586, 3-4=-616/502, 4-5=-497/404, 5-7=-387/316,
- 7-8=-276/227 BOT CHORD 17-18=-673/554
- WEBS 2-17=-1010/1227
- --- 21,-10

NOTES- (10)

1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.
5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 18=478, 12=154, 13=154, 14=152, 15=150, 16=164, 17=1047.

10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITEK Affil 818 Soundside Road

ICDL 10.0 Lumber DOL 1.15 BC 0.41 Vert(C1) -0.08 5-6 >999 240 BCLL 0.0 * Rep Stress Incr YES WB 0.33 Horz(CT) -0.01 5 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.01 6 >999 240 Weight: 96 lb FT = 20%	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.69 BC 0.41 WB 0.33 Matrix-AS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) -0. Wind(LL) 0.	in (loc) 04 5-6 08 5-6 01 5 01 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%
--	--	---	--	--	--	---------------------------------------	---------------------------------	---------------------------------	------------------------------------

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3 *Except*

 4-5: 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD WEBS

D Structural wood sheathing directly applied, except end verticals. D Rigid ceiling directly applied. 1 Row at midpt 4-5, 3-5

REACTIONS. (size) 5=Mechanical, 7=0-3-8 Max Horz 7=603(LC 12) Max Uplift 5=-592(LC 12), 7=-55(LC 12) Max Grav 5=715(LC 19), 7=595(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-489/0, 4-5=-258/226, 2-7=-539/127

BOT CHORD 6-7=-774/707, 5-6=-402/569

WEBS 3-5=-788/558, 2-6=-142/387

NOTES- (7)

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 5=592.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [2:0-3-8,Edge]	, [3:0-4-0,0-3-0]	1-9-8 6-10-0 1-9-8 5-0-8	<u>10-11-8</u> <u>13-5-0 13-5-8</u> 4-1-8 <u>2-5-8</u> 0-0-8	
LOADING (psf) TCLL 20.0 Plate G TCDL 10.0 Lumber BCLL 0.0 * Rep Str BCDL 10.0 Code II	IG- 2-0-0 rip DOL 1.15 DOL 1.15 ess Incr YES RC2015/TPI2014	CSI. TC 0.61 BC 0.44 WB 0.40 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) 0.09 10-11 >999 240 Vert(CT) -0.08 9-10 >999 240 Horz(CT) 0.06 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 106 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

=

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3 *Except*

4-6,2-14,11-13,7-9: 2x4 SP No.2 **REACTIONS.** (size) 6=Mechanical, 14=0-3-8 Max Horz 14=601(LC 12)

Max Uplift 6=-588(LC 12), 14=-54(LC 12) Max Grav 6=669(LC 19), 14=589(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-544/43, 6-8=-847/605, 4-8=-259/229, 12-14=-574/128, 2-12=-519/168
- BOT CHORD 13-14=-422/258, 11-12=-1147/1117, 10-11=-1147/1117, 9-10=-471/659, 8-9=-471/659
- WEBS 2-10=-464/685, 3-10=-73/266, 3-8=-851/612, 11-13=-256/184, 12-13=-295/483

NOTES- (7)

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 6=588.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

4-6, 3-8

Rigid ceiling directly applied.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

I RENC

Plate Offsets (X,Y)	[6:0-4-0,0-3-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.85 WB 0.15 Matrix-AS	DEFL. ii Vert(LL) -0.13 Vert(CT) -0.28 Horz(CT) 0.02 Wind(LL) 0.18	n (loc) 3 6-9 3 6-9 2 4 3 6-9	l/defl L/c >999 360 >844 240 n/a n/a >999 240	d PLATES D MT20 a D Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structur Rigid ce	ral wood sheat eiling directly a	thing directly applied. applied.	
REACTIONS. (si. Max Max Max	ze) 2=0-3-8, 4=0-3-8 Horz 2=-133(LC 13) Uplift 2=-395(LC 12), 4=-395(LC 13) Grav 2=836(LC 1), 4=836(LC 1)						
FORCES.(lb) - MaxTOP CHORD2-3=BOT CHORD2-6=WEBS3-6=	Comp./Max. Ten All forces 250 (lb) o 1235/814, 3-4=-1235/814 562/1080, 4-6=-562/1080 -0/404	r less except when shown					
NOTES- (7) 1) Unbalanced roof liv 2) Wind: ASCE 7-10; gable end zone an- forces & MWFRS f 3) This truss has been 4) * This truss has been will fit between the 5) Provide mechanica 2=395, 4=395.	re loads have been considered for this de Vult=150mph Vasd=119mph; TCDL=6.0 d C-C Exterior(2) zone; cantilever left and or reactions shown; Lumber DOL=1.60 p n designed for a 10.0 psf bottom chord liv en designed for a live load of 20.0psf on bottom chord and any other members. I connection (by others) of truss to bearing	esign. osf; BCDL=6.0psf; h=25ft; d right exposed ; end verti late grip DOL=1.60 re load nonconcurrent with the bottom chord in all are ng plate capable of withsta	Cat. II; Exp C; Enclosed cal left and right expose n any other live loads. as where a rectangle 3- anding 100 lb uplift at joi	d; MWFR: d;C-C for 6-0 tall by nt(s) exce	S (envelope) members and / 2-0-0 wide pt (jt=lb)		

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES- (10)

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=311, 5=216.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. (size) 2=0-3-0, 5=0-1-8 Max Horz 2=121(LC 8) Max Uplift 2=-311(LC 8), 5=-216(LC 8)

Max Uplift 2=-311(LC 8), 5=-216(LC 8) Max Grav 2=319(LC 1), 5=199(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-231/529, 4-5=-138/261

NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=311, 5=216.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	1	10-4-0		0-2-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. DEFL. TC 0.26 Vert(LL) -0.0 BC 0.16 Vert(CT) 0.0 WB 0.11 Horz(CT) -0.0	in (loc) l/defl L/d)0 1 n/r 120)0 1 n/r 120)0 1 n/r 120)0 7 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 49 lb FT = 20%
		DD 4 OINO		

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-2-0.

(lb) - Max Horz 2=275(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 9, 11 except 8=-124(LC 8), 10=-243(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9, 11 except 10=273(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-357/202
- WEBS 3-10=-249/380

NOTES-

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 9, 11 except (jt=lb) 8=124, 10=243.

8) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Horz 2=251(LC 8) Max Uplift 5=-449(LC 8), 2=-394(LC 8) Max Grav 5=414(LC 1), 2=437(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-717/1202

BOT CHORD 2-6=-1359/645, 5-6=-1359/645

WEBS 3-6=-469/228, 3-5=-665/1408

NOTES-

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=449, 2=394.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

