Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 43960 JOB: 23-B568-R01 JOB NAME: LOT 0.0005 HONEYCUTT HILLS Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *40 Truss Design(s)*

Trusses:

M01, M04, R02, R03, R04, R05, R06, R07, R07A, R08, R09, R10, R10A, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10, VT11, VT12, VT13, VT14, VT15

Warning !-- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling,

	r											
LOADING (psf) TCLL (roof) 2 Snow (Pf) 2 TCDL 1 BCLL	20.0 20.0 0.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TF	2-0-0 1.15 1.15 YES Pl2014	CSI . TC BC WB Matri	0.33 0.31 0.07 x-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.02 -0.00	(loc) 1 1 7	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
BCDL 1	0.0										5	
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	4 SP No.2 4 SP No.3 4 SP No.3					BRACING- TOP CHORD BOT CHORD	NG- HORD Structural wood sheathing directly applied or 6-0-0 oc purlins, ex end verticals. HORD Rigid ceiling directly applied or 6-0-0 oc bracing.				c purlins, except	
OTHERS 2X	4 SP No.3						MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.					

REACTIONS. All bearings 10-0-0.

(lb) - Max Horz 2=84(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 10, 9, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 9, 8 except 10=496(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-10=-368/236

NOTES-(12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 5-0-0, Corner(3E) 5-0-0 to 9-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

- 10.5 muss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the second se

LOAD CASE(S) Standard

3. A CONTRACTOR OF THE STATE SEAL 28147 VOINE K. MORP mannet 1/6/2024

ł		10-0-0		
		10-0-0		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI.DEFL.TC0.63Vert(LLBC0.82Vert(CTWB0.40Horz(CMatrix-SHVert(CT	in (loc) l/defl L/d) -0.25 2-6 >473 240) -0.50 2-6 >230 180 Γ) 0.01 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3		BRACING- TOP CHORE BOT CHORE	Structural wood sheathing direc end verticals. Rigid ceiling directly applied or	tly applied or 5-3-5 oc purlins, except 10-0-0 oc bracing.
			MiTek recommends that Stabi be installed during truss erecti	lizers and required cross bracing on, in accordance with Stabilizer

Installation guide.

REACTIONS. (Ib/size) 2=451/0-3-8 (min. 0-1-8), 6=395/Mechanical Max Horz 2=85(LC 10) Max Uplift2=-74(LC 10), 6=-63(LC 14) Max Grav 2=512(LC 21), 6=505(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-7=-970/226, 3-7=-937/237
- BOT CHORD 2-6=-297/917
- WEBS 3-6=-879/308

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 5-0-6, Exterior(2E) 5-0-6 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Plate Offsets (X,Y)-- [2:0-0-7,Edge], [2:0-0-7,0-8-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.11 BC 0.13 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.00 2-4 >999 240 -0.00 2-4 >999 180 0.00 n/a n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire end verticals. Rigid ceiling directly applied or MiTek recommends that Stat be installed during truss erec Installation guide	ctly applied or 2-9-0 oc 10-0-0 oc bracing. ilizers and required cro ion, in accordance with	purlins, except oss bracing o Stabilizer

REACTIONS. (lb/size) 2=172/0-3-8 (min. 0-1-8), 4=86/0-1-8 (min. 0-1-8) Max Horz 2=52(LC 14) Max Uplift2=-21(LC 14), 4=-21(LC 14) Max Grav 2=241(LC 21), 4=114(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOAD CASE(S) Standard

1/6/2024

], [, [. = . • • . , = .	3-1, [.,							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	0 0 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/TF	2-0-0 1.15 1.15 YES Pl2014	CSI . TC BC WB Matri	0.12 0.09 0.03 x-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 18 18 19	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	SP No.2 SP No.3 SP No.3 SP No.3					BRACING- TOP CHORD BOT CHORD	Struc end v Rigid 6-0-0	tural wo verticals ceiling oc bra	ood shea directly cing: 21-	athing direct applied or 1 22,20-21,19	ly applied or 6-0-0 oc 0-0-0 oc bracing, Ext 3-20.	purlins, except cept:

SLIDER Left 2x6 SP No.2 -° 1-8-0

REACTIONS. All bearings 24-8-0.

(lb) - Max Horz 2=-129(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 19, 2, 27, 28, 29, 30, 31, 32, 26, 23, 20, 21

Max Grav All reactions 250 lb or less at joint(s) 19, 2, 22, 27, 28, 29, 30, 31, 32, 26, 24, 23, 20, 21

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-9-15, Corner(3R) 3-9-15 to 8-4-0, Exterior(2N) 8-4-0 to 11-6-7, Corner(3R) 11-6-7 to 20-8-14, Corner(3E) 20-8-14 to 25-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.

- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.

8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed to a model.
11) * This truss has been designed to a model.
12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 to up in target, 31, 32, 26, 23, 20, 21.
13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 22, 27, 28, 29, 30, 31, 32, 26, 24, 23, 21 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will

20<u>24</u> Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

TH CARO

ROFESS

SEAL 28147

K. MORP

1/6/2024

MARTH

vertically. Applicability of design parameters and roue incorporation of component is responsibility of building designer – not truss designer of truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 27, 28, 29, 30 24, 22, 20, 19, 2.

LOAD CASE(S) Standard

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0005 HONEYCUTT HILLS 95 SHELBY N	ALADOW LANE ANGIER, NC
23-B568-R01	R13	Hip Girder	1	2	Job Reference (optional)	# 43960
		Run: 8. ID:d	430 s Feb 12 ozZVSj9_?/	2021 Print d6xFKqV	: 8.430 s Feb 12 2021 MiTek Industries, Inc. Mon 9FmJyf3OS-uCJJFOuXxJRySqH948UvYt	Jan 8 22:55:19 2024 Page 2 C343Hna_OZIYv8azxHnM

NOTES- (13)

12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 13-17=-20

Concentrated Loads (lb)

Vert: 11=-966(F) 13=-974(F) 19=-1041(F) 21=-966(F) 22=-966(F) 23=-966(F) 24=-966(F) 25=-1039(F) 26=-1039(F) 27=-1039(F) 28=-1039(F)

1/6/2024

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=174.

LOAD CASE(S) Standard

1/6/2024

NOTES- (7

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=143.

LOAD CASE(S) Standard

1/6/2024

1/6/2024

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

WFBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Structural wood sheathing directly applied or 4-6-12 oc purlins, except

REACTIONS. (lb/size) 1=161/4-6-12 (min. 0-1-8), 3=161/4-6-12 (min. 0-1-8) Max Horz 1=102(LC 12) Max Uplift3=-64(LC 12) Max Grav 1=161(LC 1), 3=169(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

1/6/2024

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WFBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-11-9 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=97/2-11-9 (min. 0-1-8), 3=97/2-11-9 (min. 0-1-8) Max Horz 1=61(LC 12) Max Uplift3=-38(LC 12) Max Grav 1=97(LC 1), 3=101(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

1/6/2024

REACTIONS. (lb/size) 1=58/2-0-0 (min. 0-1-8), 3=58/2-0-0 (min. 0-1-8) Max Horz 1=37(LC 12) Max Uplift3=-23(LC 12) Max Grav 1=58(LC 1), 3=61(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

WFBS

WFBS 2x4 SP No.3 2x4 SP No.3 OTHERS

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 3-4

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=174/9-9-4 (min. 0-1-8), 4=97/9-9-4 (min. 0-1-8), 5=467/9-9-4 (min. 0-1-8) Max Horz 1=235(LC 12) Max Uplift4=-39(LC 12), 5=-185(LC 12)

Max Grav 1=192(LC 21), 4=183(LC 19), 5=587(LC 23)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-263/156
- 2-5=-348/254 WFBS

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=185.

LOAD CASE(S) Standard

1/6/2024

Job	Truss	Truss Typ	e	Qty	Ply	LOT 0.0005 H	ONEYCUTT HIL	LS 95 SHELBY MEAD	OW LANE ANGIER, NO
23-B568-R01	VT08	Valley		1	1	1		#	43960
				Run: 8.430 s Feb 1	 2 2021 Pril 2 4 6 x EK	IJOD Reference nt: 8.430 s Feb 12	ce (optional) 2 2021 MiTek In	dustries, Inc. Mon Jan 8	3 22:55:34 2024 Page 1
				8-2-1			y+j_i vv+xi w		
				8-2-1					0
					2x4	3			Scale = 1:40.0
		[,				
			10 00 12	/					
		5	2x4	П о Т1					
		-6-9				VV1			
				ST1					
			1	BA		-0			
		l			\sim				
			2x4 🥢	5 6		4			
				2x4		2x4			
			1						
LOADING (psf)	SPACING-	2-0-0	CSI	DEEL	in (loc) l/defl	L/d	PI ATES	GRIP
TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL	1.15	TC 0.24	Vert(LL)	n/a	- n/a	999	MT20	244/190
TCDL 10.0 BCLI 0.0 *	Rep Stress Incr	YES	WB 0.08	Horz(CT)	0.00	- n/a n/a	999 n/a		
BCDL 10.0	Code IRC2021/	FPI2014	Matrix-P					Weight: 41 lb	> FT = 20%
LUMBER- TOP CHORD 2x4 SP No	b.2			BRACING- TOP CHORD	Structu	ral wood shea	athing direct	v applied or 6-0-0 o	c purlins, except
BOT CHORD 2x4 SP No WEBS 2x4 SP No	D.3				end ver Rigid c	rticals. eiling directly	applied or 1	0-0-0 oc bracing	
OTHERS 2x4 SP No	5.3			Berenere	MiTek	c recommends	s that Stabiliz	zers and required c	ross bracing
					be ins	stalled during lation guide.	truss erectio	n, in accordance wi	th Stabilizer
REACTIONS. (lb/size) Max Horz	1=112/8-2-1 (min. 0-1-8 1=194(I C 12)), 4=117/8-2-	-1 (min. 0-1-8), 5=381/8-	2-1 (min. 0-1-8)					
Max Uplif	t4=-46(LC 12), 5=-151(LC 12), 5=-151(LC 12), 5=-151(LC 12), 5=-151(LC 12), 1=-156(LC 12), 1=-1	() () () () () () () () () () () () () ((1 C 10)						
	1-130(EC 21), 4-130(EC	· 13), 3-472(
TOP CHORD 1-2=-264	Mp./Max. Ten All force	s 250 (ID) or	less except when shown						
WEBS 2-5=-304	4/260								
NOTES- (7) 1) Wind: ASCE 7-16: Vul	t=120mph (3-second aus	t) Vasd=95m	nph: TCDL=5.0psf: BCDL	.=5.0psf: h=23ft: C	at. II: Exr	B: Enclosed	: MWFRS		
(envelope) gable end 2 plate grip DOL =1.60	zone and C-C Exterior(2E) zone;C-C f	for members and forces &	& MWFRS for reac	tions sho	wn; Lumber D	OOL=1.60		
2) TCLL: ASCE 7-16; Pr	=20.0 psf (roof LL: Lum D	OL=1.15 Pla	te DOL=1.15); Pf=20.0 p	sf (Lum DOL=1.15	Plate D	OL=1.15); ls=	1.0; Rough		
3) Gable requires continu	uous bottom chord bearin	9.							
 4) This truss has been de 5) * This truss has been de 	esigned for a 10.0 psf bot designed for a live load o	tom chord liv f 30.0psf on	e load nonconcurrent withe bottom chord in all ar	th any other live loa reas where a rectai	ads. ngle 3-6-I	0 tall bv 1-0-0	wide will fit		
between the bottom ch	ord and any other memb	ers with BC	DI = 10.0 nsf		5 - 5	,			

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=151.

LOAD CASE(S) Standard

1/6/2024

	T	T			D				
23-B568-R01	VT09	Valley		Q(y	Piy 	LOT 0.0005 HC		S 95 SHELBY MEAD	SW LANE ANGIER, NO 3.02060
23-2300-1101	100	Valicy		Run: 8.430 s Feb 1	2 2021 Prir	Job Reference nt: 8.430 s Feb 12	e (optional) 2021 MiTek Ind	# ustries, Inc. Mon Jan 8	43900 322:55:34 2024 Page 1
			6	ID:dpzZVSj9_ 6-6-14	?Ad6xFKc	V9FmJyf3OS-	y4j_PW4xPwK	ql7x1SoFQf16of7Bl	/loVTc?8hCADzxHn
			6	6-14					
					2x4	0			Scale = 1:32.5
		Ţ				3			
						Ø			
			10 00 12	/					
			10.00 12						
		5		тı					
		2-2-	2x4			VV1			
			2 D1						
		1 /	SI1						
				B1		Ð			
			~~~~~	~~~~~	VVVV	$\overline{\Delta}$			
		2x4 //	5 2x4	6		4 2x4			
		I							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (l	loc) l/defl	L/d	PLATES	GRIP
Snow (Pf) 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.19 BC 0.23	Vert(LL) Vert(CT)	n/a n/a	- n/a - n/a	999 999	MT20	244/190
BCLL 0.0 *	Rep Stress Incr Code IRC2021/TP	YES 12014	WB 0.07 Matrix-P	Horz(CT)	0.00	n/a	n/a	Weight: 31 lb	FT = 20%
LUMBER-				BRACING-					
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	o.2 o.3			TOP CHORD	Structur end ver	ral wood shea ticals.	thing directly	applied or 6-0-0 o	c purlins, except
WEBS 2x4 SP No OTHERS 2x4 SP No	o.3 o.3			BOT CHORD	Rigid ce	eiling directly	applied or 10-	0-0 oc bracing.	oss bracing
					be ins	talled during t	russ erection	, in accordance wi	th Stabilizer
REACTIONS. (Ib/size)	1=35/6-6-14 (min. 0-1-8), 4	l=125/6-6-14 (mir	n. 0-1-8), 5=321/6-	6-14 (min. 0-1-8)	Instan	ation guide.			
Max Horz Max Uplift	1=155(LC 12) 1=-20(LC 10), 4=-50(LC 12	), 5=-127(LC 12)							
	1=113(LC 12), 4=180(LC 1	9), 5=358(LC 19)							
TOP CHORD 1-2=-261	mp./Max. Ten All forces 2 /137	250 (Ib) or less exc	ept when shown.						
WEBS 2-5=-257	//251								
NOTES- (7) 1) Wind: ASCE 7-16; Vul	t=120mph (3-second gust)	Vasd=95mph; TCI	DL=5.0psf; BCDL=	=5.0psf; h=23ft; Ca	at. II; Exp	B; Enclosed;	MWFRS		
(envelope) gable end z plate grip DOL=1.60	zone and C-C Exterior(2E)	cone;C-C for mem	bers and forces &	MWFRS for react	tions sho	wn; Lumber D	OL=1.60		
2) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp : C	20.0 psf (roof LL: Lum DOI Ce=1 0 [.] Cs=1 00 [.] Ct=1 10	=1.15 Plate DOL=	=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DC	OL=1.15); Is='	1.0; Rough		
<ul> <li>3) Gable requires continu</li> <li>4) This truss has been de</li> </ul>	lous bottom chord bearing.	n chord live load r	onconcurrent with	any other live loa	ads				
5) * This truss has been of	designed for a live load of 3	0.0psf on the botto	om chord in all are	as where a rectar	ngle 3-6-0	0 tall by 1-0-0	wide will fit		
<ul> <li>6) Provide mechanical co</li> <li>5-127</li> </ul>	onnection (by others) of trus	s to bearing plate	capable of withsta	nding 100 lb uplif	t at joint(	s) 1, 4 except	(jt=lb)		
J-127.								HUMELIN CAR	<i>.</i> ,
LOAD CASE(S) Standard	1						11114	SEESSIN .	11111
							Inn	our ma	
								SEAL 28147	
							111111	-01-77	
							Inne A	AQINEER	D. Martine
							24	MA K. MORM	Inter

1/6/2024



REACTIONS. (lb/size) 1=202/5-7-3 (min. 0-1-8), 3=202/5-7-3 (min. 0-1-8) Max Horz 1=128(LC 12) Max Uplift3=-80(LC 12) Max Grav 1=202(LC 1), 3=212(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard





TOP CHORD

BOT CHORD 12-13=-165/275, 11-12=-165/275, 10-11=-165/275, 10-14=-163/274, 9-14=-163/274,

8-9=-163/274, 7-8=-163/274

NOTES-

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 4-11-6, Interior(1) 4-11-6 to 8-10-14, Exterior(2E) 8-10-14 to 13-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 12, 11, 10, 9, 8.

LOAD CASE(S) Standard

will fit 8. WILL BEAL SEAL 28147 SEAL 28147 1/6/2024



Max Uplift All uplift 100 lb or less at joint(s) 7, 5 except 6=-104(LC 13) Max Grav All reactions 250 lb or less at joint(s) 7, 4 except 6=465(LC 20), 5=291(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-6=-271/156

NOTES- (7

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5 except (jt=lb) 6=104.

LOAD CASE(S) Standard





Max Uplift5=-35(LC 13), 4=-114(LC 13) Max Grav 5=178(LC 20), 3=114(LC 22), 4=415(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-292/200

NOTES-(7)

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=114.

LOAD CASE(S) Standard



1/6/2024

![](_page_40_Figure_0.jpeg)

Max Horz 3=-93(LC 13)

Max Uplift3=-55(LC 13) Max Grav 3=187(LC 20), 2=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

![](_page_40_Picture_12.jpeg)

![](_page_41_Figure_0.jpeg)

REACTIONS. (Ib/size) 3=62/2-2-4 (min. 0-1-8), 2=62/2-2-4 (min. 0-1-8) Max Horz 3=-32(LC 13) Max Uplift3=-19(LC 13) Max Grav 3=64(LC 20), 2=62(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (

1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

LOAD CASE(S) Standard

![](_page_41_Picture_11.jpeg)