

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: David Weekly Homes Model: 125 Serenity B326 "B"

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _

Date:

2**-00**

1-11-04

9-10-00

10-00-00

A09

56-00-00 32-09-08 23-02-08 PBA PBA1 PBA1 PBA1 -B6 00 PBA1 15-06 PBA1 PBA1 õ 0 0 <u>0</u> 00 0-0-8 PBA1 PBA1 PBA1 AHU PLATFORM PBA1 PBA1 8-12 PBA2 1-09-08 Bearing Wall Under Girder (For EWP Floor Beam) J01 2 . BLDR on Top 2-00-00 J01 าร Wal Plates HTU26 12-07-08 2-00-00 80 J01 cal For 2x6 Top J01 Design Span 17-00-08 2-00-00 20-11-00 J01 ind Ver tall (2) 2-00-00 J01 2x6 | In: 2-00-00 (For EWP Floor Beam) HGUS414 PBA2 5-08 PBA1 LD6 PBA1 PBA1 ROOM 00-00-00 ĕ Ò0 Ő PBA1 16-01-08 PBAT PBA1 2-00-00 PBA

55-00-00

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23120116 DAVID WEEKLEY - 125 SERENITY

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I62656564 thru I62656601

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

December 21,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	162656564

31-5-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

17-8-0

-0-10-8

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:08 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	С Т В М	SI C SC VB Matrix-MSH	0.12 0.05 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 545 II	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 49-17,48-18,4 52-14,53-12:2 0-0,0-0,0-0,0 0,0-0:2x4 SPF	*Except 46-19,45 2x4 SP I -0,0-0,0- F No.2(f	* 5-20,44-22,50-16,51- No.2, 0,0-0,0-0,0-0,0-0,0-0 lat)	15,),0-	Max	Uplift 33=-36 (35=-28 (37=-43 (39=-44 (42=-46 (46=-29 (49=-25 (51=-28 (56=-46 (LC 14), LC 15), LC 15), LC 15), LC 15), LC 15), LC 10), LC 10), LC 10),	34=-96 (LC 1 36=-47 (LC 1 38=-44 (LC 1 40=-43 (LC 1 43=-51 (LC 1 48=-28 (LC 1 50=-28 (LC 1 55=-53 (LC 1 57=-43 (LC 1	(5), (5), (5), (5), (5), (1), (1), (4), (4),	TOP CH	IORD	2-62= 3-4=-7 6-7=-{ 10-11 12-13 14-15 16-17 18-19 20-21	-132/168, 1-2=(72/64, 4-5=-68/ 97/195, 7-9=-11 =-145/332, 11- =-161/380, 13- =-151/376, 15- =-151/376, 17- =-151/376, 19-2 =-151/376, 21- 402/2000	//26, 2-3=-69// 39, 5-6=-81/15 3/240, 9-10=- 2=-162/381, 14=-151/376, 16=-151/376, 18=-151/376, 20=-151/376, 22=-161/380,	32, 30, 129/285,
BRACING TOP CHORD BOT CHORD WEBS	Structural wo 6-0-0 oc purli Rigid ceiling o bracing. T-Brace:	nod shea ins, exc ins (6-0- directly a directly a T and 1 0d (0.13	thing directly applied ept end verticals, and 0 max.): 13-21. applied or 10-0-0 oc 2x4 SPF No.2 - 17-49 18-48, 19-46, 20-45, 22-44, 23-43, 24-42, 16-50, 15-51, 14-52, 12-53, 11-55, 10-56 braces to narrow edg 11*x3*) nails, 6in and distance	l or 1 0,	Max	58=-44 (60=-27 (62=-33 (35=134) 35=143 (37=159) 39=221 (42=229) 44=211 (46=220 (49=216) 51=220 (53=214) 56=233 (LC 14), LC 14), LC 15), LC 27), LC 1), LC 1), LC 43), LC 43), LC 38), LC 38), LC 38), LC 38), LC 38), LC 41),	59=.45 (LC 1 61=-116 (LC 63=.36 (LC 1 34=217 (LC 36=164 (LC 4 40=230 (LC 43=231 (LC 43=231 (LC 43=218 (LC 50=218 (LC 50=218 (LC 55=235 (LC 57=233 (LC	(4), 14), (4) 55), 3), 3), (43), (38), (38), (38), (38), (38), (38), (41), (41),			22-23 24-25 27-28 29-30 31-32	=-162/381, 23- =-129/285, 25-2 =-97/199, 28-29 =-106/152, 30-3 =-140/107, 32-3	'4=-145/332, '7=-113/240, :-93/176, :1=-119/129, :3=-184/114	
REACTIONS	(size) 33: (size) 33: 36: 39: 43: 50: 53: 57: 63: Max Horiz 62:	solution (1) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	 a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (2-0, 2-0,	(lb) Ten	58=232 (60=159 (62=172 (- Maximum Cor ision	LC 41), LC 1), (LC 1), (npressi	59=188 (LC 51=180 (LC 4 53=134 (LC 2 50n/Maximum	41), 7), 7)		Contraction of the second seco	The second secon	SE/ 0363	AL 322	in human

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) December 21,2023

Job		Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116		A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	162656564
Carter Compone	ents (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2 ID:HvYYHe4LpHmiz	2023 Print: 8.6 2Dld9nw5TzR	530 S Nov 1 Qov-RfC?Ps	2023 MiTek Industries, Inc. Tue Dec 19 16:58:08 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
BOT CHORD	61-62=-87/1 59-60=-87/1 57-58=-87/1 52-53=-87/1 50-51=-87/1 45-46=-87/1 45-46=-87/1 45-46=-87/1 43-44=-87/1 38-39=-87/1 36-37=-87/1 34-35=-87/1 34-35=-87/1 34-35=-87/1 17-49=-176/ 19-46=-180/ 22-44=-171/ 24-42=-189/ 27-39=-181/ 27-39=-181/ 26-2=-178/ 14-52=-152/ 10-56=-193/ 6-59=-148/7	81, 60-61=-87/181, 81, 58-59=-87/181, 81, 55-57=-87/181, 81, 55-55=-87/181, 81, 55-50=-87/181, 81, 49-50=-87/181, 81, 42-43=-87/181, 81, 42-43=-87/181, 81, 32-43=-87/181, 81, 37-38=-87/181, 81, 37-38=-87/181, 81, 35-36=-87/181, 81, 35-36=-87/181, 81, 35-36=-87/181, 81, 35-36=-87/181, 81, 35-34=-178/62, 60, 20-45=-152/14, 10, 23-43=-191/88, 81, 25-40=-190/77, 77, 28-38=-132/77, 77, 20-36=-121/80, 103, 32-34=-149/155, 62, 15-51=-180/60, 8, 12-53=-174/0, 11-55=-195/81, 9-57=-193/77, 7-58=-192/7, 7, 5-60=-122/90, 4-61=-120/1	 15) Graphical purlin representation do or the orientation of the purlin alon bottom chord. 16) Warning: Additional permanent an truss system (not part of this compalways required. LOAD CASE(S) Standard 88, 77, 62, 	es not depid g the top ar d stability b onent desig	et the size nd/or racing for gn) is		
NOTES	3-62=-177/9	9					
 Vinit. Association of the second secon	Subject 2, 10, voltage 2, 10, voltage 2, 10, voltage 2, 11, 13 to 26-13, Corner(3E) 2, 1-13 to 26-1-3, Corner(3E) 2, 1-13 to 26-1-3, N) 36-6-8 to 47 ne; cantilever left and right exp dWFRS for read 0 plate grip DO signed for wind studs exposed lard Industry G qualified build CE 7-16; Pr=20, 2, 1-10; P	John (Josenhard) Jopsf; BCDL=6.0psf; h=25ft; MWFRS (envelope) exterior 2) -0-9-14 to 4-6-8, Exterior(2) 3R) 12-4-3 to 22-11-13, Exteri Corner(3R) 26-1-3 to 36-6-8, 7-10-3, Corner(3E) 47-10-3 to eft and right exposed ; end losed; C-C for members and lotions shown; Lumber L=1.60 Loads in the plane of the trus to wind (normal to the face), able End Details as applicabli- ing designer as per ANSI/TPI 0.0 psf (roof LL: Lum DOL=1. 0 psf (Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.9; have been considered for this ligned for greater of min roof lif- imes flat roof load of 20.0 psf nt with other live loads. Ige to prevent water ponding. unless otherwise indicated. Us bottom chord bearing. -0-0 cc. Igned for a 10.0 psf bottom Irrent with any other live loads signed for a live load of 20.0 pl I areas where a rectangle vide will fit between the botton mbers. hection (by others) of truss to withstanding 33 lb uplift at joint , 28 lb uplift at joint 48, 29 lb lift at joint 43, 46 lb uplift at joint 44 lb uplift at joint 39. 44 lb	N) or s e, 1. 15 s ve on s s s s s f n n nt				
uplift at joi 36, 28 lb u uplift at joi 55, 46 lb u uplift at joi 60, 116 lb lb uplift at 14) This truss Internation R802.10.2	int 38, 43 lb up uplift at joint 35 int 50, 28 lb up uplift at joint 56 int 58, 45 lb up uplift at joint 6 joint 33. is designed in nal Residential 2 and reference	lift at joint 37, 47 lb uplift at jo , 96 lb uplift at joint 34, 28 lb lift at joint 51, 53 lb uplift at jo , 43 lb uplift at joint 57, 44 lb lift at joint 59, 27 lb uplift at jo 1, 36 lb uplift at joint 33 and 3 accordance with the 2018 Code sections R502.11.1 and ad standard ANSI/TPI 1.	int int 6 d				
	NING - Verify design	n parameters and READ NOTES ON T	HIS AND INCLUDED MITEK REFERENCE PAGE MII-7473	rev. 1/2/2023 E	BEFORE USE.	ENGINEERIN	

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSS-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A03	Piggyback Base	8	1	Job Reference (optional)	162656565

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:12 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [15:Edge,0-0-7], [29:0-4-0,0-3-12], [32:0-3-8,0-2-0], [36:0-4-0,0-1-0]

Loading FCLL (roof) Snow (Pf) FCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	4	CSI TC BC WB Matrix-MSH	0.64 0.65 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.66 0.10	(loc) 24-26 24-26 15	l/defl >999 >587 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 503 lb	FT = 20%	
UMBER TOP CHORD 3OT CHORD WEBS OTHERS WEDGE	2x6 SP No.2 2x6 SP 2400F 2.0E ⁻ No.2 2x4 SP No.3 *Excep 2-32,6-31,10-19,7-25 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3	*Except* 28-23:2x4 S t* 33-2:2x6 SP No.2, 9,9-21,6-29,10-21:2x4	BOT CHOP P	RD 3 2 1 1 2 2 3 3 1 1	32-33=-114/231, 31 29-31=0/2774, 27-2 21-25=0/2964, 20-2 17-19=0/3311, 16-1 5-16=-57/3534, 26 24-26=-90/37, 23-2 24-25=-224/0, 14-1 3-32=-828/106, 5-3 12-17=-73/649, 14- 11-19=-455/168, 12	-32=-1: 9=0/29 1=0/26 7=-1/3: -28=-9 4=-90/3 6=0/16: 1=-592 17=-36 -19=-8	32/2599, 64, 25-27=0/2 98, 19-20=0/2 534, 0/37, 5, 26-27=-218 (201, 3-31=0/3 (4/187, 77/180,	2964, 2698, 8/0, 521,	 5) Thi load ove 6) 200 fror 7) Pro 8) All 9) Thi cho 10) * Tl 	s truss h d of 12.0 erhangs r).0lb AC n left end vide ade plates ar s truss h ord live lo nis truss	as bee psf or non-co unit loa d, supp equate e 2x4 as bee pad nor has be	In designed for g 1.00 times flat ra neurrent with oth ad placed on the oorted at two poin drainage to prev MT20 unless oth an designed for a neconcurrent with en designed for	reater of min pof load of 20 er live loads. bottom chore its, 5-0-0 apa ent water poi erwise indica 10.0 psf bott any other liv a live load of	roof live).0 psf on d, 24-6-8 art. nding. ated. tom e loads. f 20.0psf
FOP CHORD	Structural wood shea 3-3-2 oc purlins, exe	athing directly applied cept end verticals, and	or d	1	2-32=-20/2695, 6-3 10-19=-234/589, 28 28-34=-505/227, 7-3	1=-296 -29=-5 34=-48	'537, 52/207, 9/225,		on 3-0 chc	the botto 6-00 tall ord and a	m cho by 2-0	rd in all areas wh 0-00 wide will fit er members, witl	iere a rectan between the h BCDL = 10	gle bottom .0psf.
BOT CHORD	2-0-0 oc purins (3-5 Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 23	-2 max.): 6-10. applied or 10-0-0 oc -28			21-23=-934/202, 23 -35=-879/223, 6-29 35-36=-131/17, 36-3 -357/635, 9-33	-35=-8 9=0/11 37=-30	94/225, 39, 34-36=-12 /5, 8-37=-217, /817	2/48, /83,	11) Ref 12) On rec	fer to gird e H2.5A ommend	der(s) f Simps led to c	or truss to truss on Strong-Tie co connect truss to l	connections. nnectors pearing walls	due to
NEBS	1 Row at midpt	5-31, 11-19, 12-19, 6 29-34 21-35	-31,	1	10-21=0/1422	1234	017,		onl	y and do	es not	consider lateral	forces.	upint
JOINTS	1 Brace at Jt(s): 34, 35, 36	20 0 1, 21 00	NOTES 1) Unbala	nced	roof live loads have	e been (considered fo	r	13) Thi Inte R80	s truss is ernationa 02 10 2 a	desig Resid	ned in accordand dential Code sec erenced standar	ce with the 20 tions R502.17 d ANSI/TPI 1)18 1.1 and
FORCES	(3/26) 15= Miedri 33=0-5-8 Max Horiz 33=-187 (Max Uplift 20=-198 (Max Grav 15=2250 (37), 33=27 (Ib) - Maximum Com Tension 6-7=-2919/122, 7-8= 8-9=-3281/329, 9-10 10-11=-3272/209, 17 12-14=-3749/108, 14 2-33=-2536/141, 1-2 2-52536/141, 1-2	LC 12) LC 12) LC 15), 33=-116 (LC (LC 45), 20=1009 (LC 651 (LC 35) pression/Maximum 3214/323, I=-2897/119, 1-12=-3261/143, 4-15=-4060/100, I=0228, 2-3=-2975/117 -0205/100	2) Wind: . Vasd= 14) Cat. II; zone a 4-5-15 Interior 53-2-0 and for DOL=1 3) TCLL: Plate E DOL=1 , Cs=1.0	ASCE 103mp Exp E nd C-(to 10- (1) 38 zone; ces & .60 pl ASCE 0CL=1 .15); I 0; Ct=	7-16; Vult=130mph bh; TCDL=6.0psf; B 8; Enclosed; MWFR C Exterior(2E) -0-9- 1-12, Exterior(2R) 3-11-4 to 47-10-3, E end vertical left ex, MWFRS for reaction ate grip DOL=1.60 7-16; Pr=20.0 psf (L s=1.0; Rough Cat I 1.10	n (3-sec CCDL=6 2S (env. 14 to 4 10-1-12 Exterior posed;(posed;(pos sho (roof LL Lum DC 3; Fully	cond gust) .0psf; h=25ft; elope) exterio -5-15, Interior 2: to 38-11-4, (2E) 47-10-3 2-C for memb wm; Lumber .: Lum DOL= ² DL=1.15 Plate Exp.; Ce=0.9	r (1) to bers 1.15		We transferre		SEA 0363	RO(11) L 22	
	3-5=-3371/163, 5-6=	-3395/284	4) Unbala design	nced	snow loads have b	een cor	nsidered for th	nis			in the	A. C	ELER	

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 21,2023

Job	Truss	Truss Type		Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A03	Piggyback Base		8	1	Job Reference (optional)	162656565
Carter Components (Sanford, NC	c), Sanford, NC - 27332,	F	Run: 8.63 S Nov 1 2	023 Print: 8.6	330 S Nov 1	2023 MiTek Industries, Inc. Tue Dec 19 16:58:12	Page: 2

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:12 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A04	Piggyback Base	3	1	Job Reference (optional)	162656566

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:13 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.4

Plate Offsets (X, Y): [20:0-2-8,0-4-8], [28:0-3-0,0-3-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.64 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.59 0.09	(loc) 25-27 23-25 15	l/defl >999 >916 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 500 lb	GRIP 244/190 FT = 20%	
LUMBER Top Chord 30t Chord Webs	2x6 SP No.2 2x6 SP No.2 *Excep 2400F 2.0E, 27-22:2 2x4 SP No.3 *Excep 2-31,6-30,10-19,7-26 SP No.2	t* 18-21,21-29:2x6 SF x4 SP No.2 t* 32-2:2x6 SP No.2, 3,9-20,6-28,10-20:2x4	BO	OT CHORD 3 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31-32=-113/225, 30 28-30=0/2705, 26-2 20-24=0/2869, 19-2 17-19=-79/2134, 16 15-16=-332/1311, 2 23-25=-74/34, 22-2 5-26=-209/0, 23-2)-31=-1 28=0/28 20=0/25 3-17=-3 25-27=- 3=-74/3 4=-245/	14/2523, 69, 24-26=0/ 59, 32/1311, 74/34, 4 0, 22/2	2869,	 5) Thi loa: ove 6) 200 fror 7) Prc 8) All 	s truss h d of 12.0 erhangs r).0lb AC n left end vide ade plates ar	as bee psf or non-co unit loa d, supp equate re 2x4 l	n designed for gr 1.00 times flat ro ncurrent with othe ad placed on the l ported at two poin drainage to preve MT20 unless othe	eater of min roo of load of 20.0 or live loads. oottom chord, 2 ts, 5-0-0 apart. ont water pondin rwise indicated	of live psf on 24-6-8 ng. I.
BRACING TOP CHORD BOT CHORD	Structural wood shea 3-10-10 oc purlins, of 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. Except: 6-0.0 oc bracing, 22	athing directly applied except end verticals, a -0 max.): 6-10. applied or 10-0-0 oc	or and	1 3 6 1 1 2 7 7	14-16=-2331/325, 2 3-31=-806/99, 3-30: 5-30=-306/595, 14- 12-17=-1111/145, 1 11-19=-469/168, 10 27-28=-555/253, 27 7-33=-495/272, 20-:	2-31=-3/ =0/512, 17=-65/ 2-19=-2 1-19=-5/ 2-33=-5 22=-894	2619, 5-30=-592/2 1857, 24/781, 39/0, 10/275, 4/225,	201,	9) Thi chc 10) * Ti on 3-0 chc 11) Rei	s truss h ord live lo nis truss the botto 6-00 tall ord and a fer to gird	as bee bad nor has be m choi by 2-0 iny oth der(s) f	n designed for a aconcurrent with a een designed for a rd in all areas who 0-00 wide will fit b er members, with or truss to truss c	10.0 psf bottom any other live lo a live load of 20 ere a rectangle between the bot BCDL = 10.0p onnections.	ads. .0psf ttom sf.
WEBS	1 Row at midpt	5-30, 6-30, 11-19, 10- 28-33, 20-34	-19,	2	22-34=-873/246, 9-3 5-28=0/1160, 33-35	34=-85 =-42/82	1/243, 2, 34-35=-18	0/37,	12) Pro bea	vide me aring plat	chanica e capa	al connection (by ble of withstandir	others) of truss Ig 193 lb uplift a	to at
JOINTS	1 Brace at Jt(s): 33, 34, 35	,		8 ç	3-35=-230/82, 7-35 9-35=-294/803, 10-2	=-321/6 20=0/18	80, 321		joir 13) On	t 15. e H2.5A	Simps	on Strong-Tie cor	inectors	
REACTIONS	(size) 15= Mech 32=0-5-8 Max Horiz 32=-187 (Max Uplift 15=-193 (32=-99 (L 32=-99 (L 32=2581 (anical, 16=0-5-8, LC 12) LC 14), 16=-299 (LC ⁻ C 14) .C 35), 16=2638 (LC 3 (LC 35)	NO 1) 15), 2) 37),	DTES Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-0	roof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior(2E) -0-9-	e been o n (3-sec SCDL=6 RS (envo -14 to 4	considered fo ond gust) .0psf; h=25ft elope) exterio -5-15, Interio	or ;; or or (1)	rec UP onl	ommend LIFT at ji y and do	led to c t(s) 32 es not	connect truss to b and 16. This conn consider lateral for the CA	earing walls du nection is for up prces.	e to Jlift
FORCES	(lb) - Maximum Com Tension 6-7=-2838/126, 7-8= 8-9=-3190/337, 9-10 10-11=-2816/229, 17 12-14=-2424/221, 14 2-32=-2468/140, 1-2 3-5=-3269/136, 5-6=	-3190/337, 3190/337, 2414/126, 1-12=-2798/136, 4-15=-1526/445, 028, 2-3=-2890/97, 3292/257	3) 4)	4-5-15 to 10- Interior (1) 35 53-2-0 zone; vertical left at forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15; I Cs=1.00; Ct= Unbalanced a design.	1-12, Exterior(2R) 3-11-4 to 47-10-3, E cantilever left and nd right exposed;C FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (10); South Cat F (10); South Cat F (10	10-1-12 Exterior right ex -C for n shown; (roof LL Lum DC B; Fully een cor	to 38-11-4, (2E) 47-10-3 posed ; end nembers and Lumber : Lum DOL= L=1.15 Plate Exp.; Ce=0.9 sidered for t	to 1.15 9; his		The rest of the second s		SEA 03632	ER AT	Manning

December 21,2023

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTesk connectors. This design is based only upon parameters and received to be added to be adde and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A04	Piggyback Base	3	1	Job Reference (optional)	162656566

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:13 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 15) Graphical purlin representation does not depict the size
- (5) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	DAVID WEEKLEY - 125	SERENITY	0507
23120116	A05	Attic Girder		1	4	Job Reference (optional)	16265	1000
Carter Components (Sanford, NC	C), Sanford, NC - 27332,		Run: 8.63 E Nov 1 20)23 Print: 8.6		2023 MiTek Industries, Inc. W	ed Dec 20 09:17:01	Page: 1
-0-10-8 	5-7-5 10-9-3 1 5-7-5 5-1-13	17-8-0 <u>3-5-5 16-1-12 20</u> 2-8-2 2-8-7 <u>1-6-4</u> 2- 8x10 ≈	28 1-6-1 23-2-625-10-10 10-1 2-8-5 2-8-5 2	3-6-15 	32-10-8 5-0 0-1 1-5-8 4x8 \$	39-4-9 4 6-6-1 6	6-3-2 52-11-{ -10-9 6-8-6	3
0-8-1- 0-8-1- 0-8-2-1- 0-0-2- 0-0-0-2- 0-0-0-0-	$\begin{array}{c} 6 \\ 1^{2} \\ 4 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 $	6x8 = 7∞ 8x10 = 6 48 48 48 48 48 57 57 58 36534 3 = 4x8 = 12x16 = 16-10-4 15-9-3 16-4-8 5-0-1 0-7-5 0-7-512 1-10-7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	■ 11 43 = 4×6 ■ 2523 2 24 60 2 3x6 = -15 30-1-13 15 2-5-15	12x16= 12 13 47 47 47 47 2 32-7-12 32-7-12 32-7-12 32-7-12 32-9 2-5-15 0-1-8 0-1-4	$ \begin{array}{c} 8x10 \\ 1455 \\ 55 \\ 61 \\ 8 \\ 61 \\ 8 \\ 4 \\ 39-4-9 \\ 6-6-1 \\ 6 \\ 4 \\ 4 \\ 6-6-1 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	6 15 17 8x10= 6-3-2 -10-9 6-8-6	
[7:0-6-4] Plate Offsets (X, Y): [46:0-2-	4,0-2-4], [12:1-1-0,0-4-0], [14 2-12,0-2-8]	0-5-0,0-4-8], [16:Edge	,0-1-5], [17:0-5-0,0-4-8],	[21:0-8-0,0)-5-0], [34:(0-3-4,Edge], [35:0-8-0,0-4-	12], [39:0-3-8,0-3-0],	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL	(psf)Spacing20.0Plate Grip DOL20.0Lumber DOL10.0Rep Stress Incr0.0*Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-MSH	94 Vert(L 60 Vert(C 97 Horz(Attic	L) -0.: CT) -0.: CT) 0. -0.	in (loc) l/defl L/d 37 33-36 >999 240 56 33-36 >703 180 11 16 n/a n/a 18 21-35 >999 360	PLATES GRIP MT20 244/190 Weight: 2405 lb ET = 20) 9/
LUMBER TOP CHORD 2x6 SP No.2 30T CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 40-2,6-36,13 No.2, 39-2:2 WEDGE Right: 2x4 SI BRACING TOP CHORD Structural wo 4-7-10 oc pur BOT CHORD Rigid ceiling bracing. Exc 10-0-0 oc br JOINTS 1 Brace at JI 41, 42, 43, 4 REACTIONS All bearings 2 (lb) - Max Horiz 40 Max Uplift Al ex (L 12 Max Grav Al (s 17 46 FORCES (lb) - Max. C (lb) or less e	2 *Except* 5-7:2x4 SP No.1 DF 2.0E *Except* :2x4 SP No.2, 38-40,17-16:2 3 *Except* 3-19,45-36,46-6,46-13:2x6 SI x4 SP No.2 PP No.3 cod sheathing directly applie urlins, except end verticals, a rlins (6-0-0 max.): 7-12. 9 directly applied or 10-0-0 oc cept: racing: 21-35 It(s): 35, 44 20-5-8, except 40=0-5-8 0=-182 (LC 10) II uplift 100 (lb) or less at join xcept 16=-151 (LC 13), 17=- C 12), 18=-241 (LC 13), 9=-1024 (LC 46), 40=-694 (2), 49=-151 (LC 13) II reactions 250 (lb) or less at s) except 16=3001 (LC 46), 7=7107 (LC 23), 18=-4185 (LC 6), 19=1026 (LC 12), 40=118 LC 46), 49=3001 (LC 46) Comp./Max. Ten All forces 2 except when shown.	TOP CHORD 66 BOT CHORD d or nd WEBS (s) 20 .C joint 276 50 NOTES	$\begin{array}{c} 2-3=-13593/787, 3-4=-\\ 4-6=-18800/1123, 6-7=\\ 7-8=-2690/499, 8-9=-21\\ 9-10=-2405/1763, 10-1\\ 11-12=-2057/988, 12-1\\ 13.15=-18186/1097, 15\\ 2-40=-11688/713\\ 39-40=-130/432, 37-39\\ 36-37=-844/16241, 33-\\ 31-33=-395/17238, 29-\\ 27-29=0/19361, 24-27-\\ 20-24=-378/14781, 18-\\ 16-18=-241/4880, 32-3\\ 30-32=-2935/0, 28-30=\\ 22-25=-2415/0, 21-22=\\ 22-25=-2415/0, 21-22=\\ 35-36=-620/7425, 6-35\\ 19-21=-665/7226, 13-2\\ 14-18=-7993/467, 15-1\\ 32-33=-860/0, 33-35=0\\ 31-32=0/1900, 29-30=(\\ 24-25=-683/0, 22-24=0\\ 9-41=-141/2636, 8-42=\\ 11-43=-637/113, 15-18\\ 20-21=0/2270, 14-19=-\\ 41-42=-11969/710, 41-\\ 43-44=-17475/1058, 43\\ 5-37=-2623/131, 3-39=\\ -37=-245/4959, 2-39=\\ 3-37=-245/4959, 2-39=\\ 7-42=-5736/320, 11-44\\ 9-44=-6454/395\\ \end{array}$	17404/1036 -5901/493, -5901/493, -5901/493, -583/500, 1=-2405/17 3=-3882/38 -383/500, 1=5584 =-737/1215 36=-708/14 31=-71855 -551/8027 20=-735/13 5=-1124/0, -3797/0, -309/6 44=-11972 3-47=-1317 7=-719/158 =-4491/349 7=-301/0, -150/2340, =-789/354,	5, 763, 30, 7229, 52, 4054, 96, , 3005, 331=-612/0, 27=0/1449, 27=0/1449, 27=0/1449, 27, 563, 7710, 2/824, 3, 9, 9,	 4-ply truss to be c (0.131"x3") nais a Top chords conner staggered at 0-9-0 Bottom chords constaggered at 0-9-0 Web connected at 0-4-0 oc, Except r at 0-4-0 oc, memb 0-9-0 oc, 2x4 - 1 r Attach BC w/ 1/2" center of the mem All loads are cons except if noted as CASE(S) section. provided to distrib unless otherwise Unbalanced roof I this design. 	onnected together with 10c s follows: cted as follows: 2x6 - 2 rov 0 cc, 2x4 - 1 row at 0-9-0 or nnected as follows: 2x6 - 2 1 oc, 2x4 - 1 row at 0-9-0 or s follows: 2x6 - 2 rows stag nember 36-45 2x6 - 3 rows er 13-19 2x6 - 2 rows stag ow at 0-9-0 oc. diam. bolts (ASTM A-307) ber w/washers at 4-0-0 oc. dered equally applied to al front (F) or back (B) face in Ply to ply connections hav ute only loads noted as (F) ndicated. ve loads have been consider SEAL 036322	d vs c. rows c. gered at staggered gered at in the I plies, h the LOAD e been or (B), dered for

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Safety Information, available from the Structural Building Component Association (www shearcomponent Association) (when the structural Building Component Association (when the structural Building Component Association) (when the structure and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A05	Attic Girder	1	4	Job Reference (optional)	162656567
Carter Components (Sanford NC	Sanford NC - 27332	Run: 8.63 E. Nov. 1	2023 Print: 8	330 E Nov 1	2023 MiTek Industries Inc. Wed Dec 20 09:17:01	Page: 2

ID:VIY0g5gMUgwQZRyxiBXYItzRA f-lo2GNGeRYsocH1nhV2QbxHc jzQRoB9jLjZ3hNy76oH

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 6) desian.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 8)
- All plates are 4x5 MT20 unless otherwise indicated. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 12) Ceiling dead load (5.0 psf) on member(s). 6-48, 42-48, 41-42, 41-44, 43-44, 43-47, 13-47; Wall dead load (5.0psf) on member(s).6-35, 13-21
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-35, 30-32, 28-30, 26-28, 25-26, 22-25, 21-22
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10247 lb uplift at joint 19.
- 15) N/A

16) N/A

- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20)
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 Ib down and 52 lb up at 28-7-12, and 9100 lb down and 774 lb up at 16-0-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-16=-60, 40-49=-20, 21-35=-30, 6-48=-10, 42-48=-10, 41-42=-10, 41-46=-10, 44-46=-10, 43-44=-10, 43-47=-10, 13-47=-10 Drag: 35-45=-10, 6-45=-10, 13-21=-10 Concentrated Loads (lb)
 - Vert: 36=-4881 (F), 60=-326 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A06	Attic Girder	1	4	Job Reference (optional)	162656568

OTHERS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

JOINTS

FORCES

TOP CHORD

Continued on page 2

2x4 SP No.3

bracing. Except:

44, 45, 46, 47

Max Grav

Tension

1 Brace at Jt(s): 37,

10-0-0 oc bracing: 23-37

42=0-5-8

Max Horiz 42=-184 (LC 10)

Right 2x4 SP No.3 -- 1-6-0

Structural wood sheathing directly applied or

5-10-15 oc purlins, except end verticals, and

18= Mechanical, 21=0-5-8,

18=8868 (LC 46), 21=778 (LC 12),

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 18=-407 (LC 12), 21=-5346 (LC

42=11748 (LC 46)

(Ib) - Maximum Compression/Maximum

16-18=-17673/875, 2-42=-11551/690

1-2=0/28, 2-3=-13440/761, 3-4=-17245/1003, 4-6=-18787/1093, 6-7=-18557/1088, 7-8=-6795/521, 8-9=-3060/520, 9-10=-3052/521 10-11=-3686/695 11-12=-1499/1776, 12-13=-1499/1776, 13-14=-4279/403, 14-16=-17885/1059.

45), 42=-671 (LC 12)

2-0-0 oc purlins (6-0-0 max.): 8-13.

37-38=-690/7934, 7-37=-533/8793,

21-23=-707/6501, 14-23=-503/7222,

13-43=-192/3352, 10-44=-123/2381

9-45=-491/57 12-46=-351/67 11-47=0/150

15-20=-203/194, 16-19=-10/165,

31-32=-94/441, 22-24=-1354/0.

16-20=-133/748, 22-23=0/2778,

15-21=-653/214, 7-50=-9711/621

5-39=-2558/130, 4-39=-582/164,

3-39=-235/4941, 3-41=-5343/364

2-41=-653/12740, 8-45=-5641/303

10-45=-4582/341, 10-47=-4771/280

13-46=-5478/306, 11-46=-2964/283,

8-50=-137/2045, 6-38=-129/1480

45-50=-9334/598 44-45=-10702/622

44-47=-10628/617.46-47=-15316/892

43-46=-12562/763, 14-43=-13142/795,

- 0-9-0 oc, 2x4 1 row at 0-9-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 30-31=-160/10, 28-29=-381/0, 34-35=-848/0, 2) All loads are considered equally applied to all plies. 35-37=0/3509, 32-33=-482/0, 33-34=0/1645. except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Plv to plv connections have been 26-27=-821/0, 24-26=0/2910, 27-29=0/1803, provided to distribute only loads noted as (F) or (B),
 - unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design.

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal

WEBS

NOTES

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A06	Attic Girder	1	4	Job Reference (optional)	162656568

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Dec. 19.16:58:17

ID:pGeZvt1?IwruiNEY xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOI = 1 60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 7-50, 45-50, 44-45, 44-47, 46-47, 43-46, 14-43; Wall dead load (5.0psf) on member(s).7-37, 14-23
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-37, 32-34, 30-32, 28-30, 27-28, 24-27, 23-24
- 14) Refer to girder(s) for truss to truss connections.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 407 lb uplift at joint 18 and 5346 lb uplift at joint 21.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 42. This connection is for uplift only and does not consider lateral forces.
- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 Ib down and 774 lb up at 15-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-60, 2-8=-60, 8-13=-60, 13-18=-60, 42-51=-20, 23-37=-30, 7-50=-10, 45-50=-10, 44-45=-10, 44-49=-10, 47-49=-10, 46-47=-10, 43-46=-10, 14-43=-10

Drag: 37-48=-10, 7-48=-10, 14-23=-10 Concentrated Loads (lb)

Vert: 38=-4881 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	I				-					
Job	Truss		Truss Type		Qty	Ply	DAV	D WEEKLEY - 125	SERENITY	162656569
23120116	A07		Attic		1	1	Job F	Reference (optional)		10200000
Carter Compone	nts (Sanford, NC), Sanfor	d, NC - 27332,		Run: 8.63 S No ID:1d5INYb_Sr	ov 1 2023 Prin pjqifH0e1reGz	t: 8.630 S No RBHO-RfC?	ov 1 2023 N PsB70Hq3N	liTek Industries, Inc. Tu ISgPqnL8w3uITXbGKW	e Dec 19 16:58: /rCDoi7J4zJC?f	19 Page: 1
0	10.8 0.4 0	10.1.1	20-6-1	28	3-6-15	32-8-12		40.0.0		50 5 0
-0- H	8-4-0	16-1-1	2 17-0-0	2-8-5 2-8-5	31-5- 2-8-5 2-10-	0	39-4-9	46-3-2		53-5-0 7-1-14
0-1	0-4-0	1-0-12	6x8=	2-0-0 2-0-0 2	2-0-0 2-10-	1-3-12 4x8	0-7-10	0-10-5		7-1-14
0.00 0.00	5 5x8 = 50 5x8 = 2 5 18HS 3x10 = 8-4-0 8-4-0	6^{12} $8\times10 =$ 352^{53} 1 38 5x8 = 13-11-0 5-7-0	$4 \times 8 \neq 4$ 5×6 $4 \times 2 \times 4$ $2 \times 4 \times 4$ $2 \times 4 \times 4$ $37 \times 35 \times 33$ $4 \times 6 = 3 \times 10 =$ $5 \times 8 = 3 \times 8 =$ $16 - 1 - 12 \times 21 - 22$ $2 - 2 - 12 \times 2 - 4 - 3 \times 2 - 5 - 1$ 0 - 2 - 12	x5 = 2x4 = 4x5 x5 = 2x4 = 4x5 x5 = 2x4 = 4x5 x5 = 2x4 = 20 x5 = 120 x5 = 120 x5 = 120 x5 = 3x5 = 3x6 = 3x8 = 5x6 = 3x8 = 5x6 = 3x6 =	= 4x5= 9 405 3x6= 4x8 ⊪ 243 24 24 229 3x8= 3x6= 5x8= 5x8 3x6= 2-15 30.5x ² 29-10-0.3 15 2-2-1 2 0-3-1	6x8= 10 11 41 3x6 II 208 12x16= 32-8-12 2-6-0 2-4-3 3 0-2-12	3 7-6-0 4 -9-4	8×10≈ 56257 7 16 x6= 6×10= 39-4-9 46-3-2 1-10-9 6-10-9	4x5 13 5 15 2x4 ₁₁	9 14+7 0 5x8= 5x8= 5x8=
Plate Offsets (2	[2:0-2-12,0-2-0 [21:0-3-8,0-2-8 X, Y): [44:0-3-8,0-2-0], [3:0-5-0,0-4-8], [5:0], [22:0-2-2,0-1-8], [2], [45:0-3-8,0-2-0]	4:0-3-8,0-2-8], [25:0-3-	8,0-1-8], [26:0-3-8	4-8], [14:Edg ,0-1-8], [31:0	e,0-0-11], -3-8,0-1-8];	[16:0-4-0,0 , [33:0-3-8	,0-1-8], [19:0-3-8,0-2- ,0-1-8], [34:0-3-8,0-1	-8], [20:0-0-12, -8], [38:0-3-8,	Edgej, 0-2-8],
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.97 V 0.99 V 0.93 H A	EFL ert(LL) ert(CT) orz(CT) ttic	in -0.48 2 -0.77 2 0.14 -0.35 2	(loc) I/defl L/d 9-32 >819 240 9-32 >506 180 14 n/a n/a 0-36 >568 360	PLATES MT20 MT18HS Weight: 453	GRIP 244/190 244/190
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 *Excep 2400F 2.0E, 37-39:2 2x4 SP No.3 *Excep No.2, 40-11,38-2.40 36-33,34-31,32-28,2 2x4 SP No.1 Right: 2x4 SP No.3 Structural wood she 2-10-14 oc purlins, 2-0-0 oc purlins (3-8 Rigid ceiling directly bracing, Except:	t* 14-17,37-22:2x4 S tx4 SP No.1 t* 4-35,11-18:2x6 SF -4:2x4 SP No.2, 1-24,25-26,20-19,16 athing directly applie except end verticals, -13 max.): 5-10. applied or 10-0-0 oc	BOT CHORD P -20: WEBS d or and	34-36=-1865/0, 3 29-32=-3215/0, 2 25-27=-3215/0, 2 20-21=-42/2036, 35-38=-16/3320, 31-33=0/4818, 20 24-26=0/4203, 19 18-19=-2254/0, 14 3-38=-653/76, 35 18-20=-1417/167 12-16=-258/97, 1 42-44=-2000/10, 43-46=-1704/122 41-45=-2170/28,	2-34=-3331/ 7-29=-3215/ 1-25=-1305/ 38-39=-108/ 33-35=0/321 3-31=0/6229, 9-24=0/1393, 9-24=0/1393, -36=-42/292 , 11-20=-32/ 3-15=0/244, 43-44=-1792 2, 45-46=-19 11-41=-2301	0, 0, 739, 219, 4, 26-28=0/6 0, 3 , 4-36=0/11 1161, 4-42=-206 1/595, 111/441, /28,	2) 1113, 162, 3) 0/9, 4)	Wind: ASCE 7-16; Vasd=103mph; TC Cat. II; Exp B; Enc zone and C-C Ext 4-6-4 to 10-1-6, E; (1) 38-11-10 to 48 zone; cantilever le and right exposed MWFRS for reacti- grip DOL=1.60 TCLL: ASCE 7-16 Plate DOL=1.15); DOL=1.15); Is=1.0 Cs=1.00; Ct=1.10 Unbalanced snow	Vult=130mph ;DL=6.0psf; B losed; MWFR erior(2E) -0-9- ;terior(2R) 10- -0-14, Exterior ft and right exj C-C for memb ons shown; Lu Pr=20.0 psf (L ; Rough Cat E loads have be	(3-second gust) (3-second gust) (3-second gust) S (envelope) exterior 14 to 4-6-4, Interior (1) 1-6 to 38-11-10, Interior (2E) 48-0-14 to 53-5-0 posed ; end vertical left wers and forces & mber DOL=1.60 plate roof LL: Lum DOL=1.15 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9; ten considered for this

31-34=0/1554, 28-32=-407/60,

7-43=-200/79, 6-44=-432/119,

8-46=-245/65, 9-46=-139/830,

3-35=-148/350, 19-20=0/3892,

16-20=0/5036, 12-20=-587/316

5-44=-297/1339, 6-43=-168/659

1) Unbalanced roof live loads have been considered for

9-45=-481/114, 10-45=-292/1458,

8-43=-158/110, 13-16=-518/208,

19-21=-1376/0, 24-25=-932/0, 21-24=0/2977,

25-26=0/2025, 10-41=0/529, 5-42=0/295,

- design 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTesk connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES

this design.

2-4-13 oc bracing: 18-19

3-0-9 oc bracing: 16-18.

10-0-0 oc bracing: 20-36

39=0-5-8

Max Horiz 39=-189 (LC 12)

3-35, 12-20

14=2299 (LC 46), 18=1776 (LC

14= Mechanical, 18=0-5-8,

Max Uplift 18=-62 (LC 15), 39=-30 (LC 14)

38), 39=2998 (LC 36)

(lb) - Maximum Compression/Maximum

1-2=0/26, 2-4=-3883/11, 4-5=-1900/104, 5-6=-2872/339, 6-7=-3491/494, 7-8=-3491/494, 8-9=-3499/484,

9-10=-2718/358, 10-11=-1709/127,

11-13=-3769/50, 13-14=-4287/33,

1 Row at midpt

44, 45, 46

Max Grav

Tension

2-39=-2868/73

1 Brace at Jt(s): 43,

WEBS

JOINTS

FORCES

TOP CHORD

Continued on page 2

REACTIONS (size)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A07	Attic	1	1	Job Reference (optional)	162656569

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 10) Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 43-44, 43-46, 45-46, 41-45, 11-41; Wall dead load (5.0psf) on member(s).4-36, 11-20
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-36, 32-34, 29-32, 27-29, 25-27, 21-25, 20-21
- 12) Refer to girder(s) for truss to truss connections.
 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 39 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:19 ID:1d5INYb SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A08	Attic	6	1	Job Reference (optional)	162656570

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Dec 19.16:58:21 Carter Components (Sanford, NC), Sanford, NC - 27332.

818 Soundside Road

Edenton, NC 27932

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2

WARNING

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A08	Attic	6	1	Job Reference (optional)	162656570

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 3-39, 39-41, 41-42, 42-44, 43-44, 40-43, 10-40; Wall dead load (5.0psf) on member(s).3-33, 10-19
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 31-33, 29-31, 27-29, 25-27, 24-25, 20-24, 19-20
- 10) Refer to girder(s) for truss to truss connections.11) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 37 and 17. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:21 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A09	Attic Supported Gable	1	1	Job Reference (optional)	162656571

Carter Compone	ents (Sanford, NC), Sanfor	rd, NC - 27332,		Run:	8.63 S Nov 1 202	3 Print: 8.630 S N	lov 1 2023	3 MiTek Industrie	s, Inc. Tu	e Dec 19 16:5	8:23	Page: 1
				ID:8	kdnaNVfrXy7X5iJov	J26tzRBB2-RfC?F	PsB70Hq3	3NSgPqnL8w3ul1	TXbGKWı	rCDoi7J4zJC?	'n	
		16-1-12	17-8-020-6-1	23-2-62	28-6-15 5-10-10	32-8-12 31-5-0			53-	5-0		
		16-1-12	1-6-4 2-10-1	2-8-5	2-8-5 2-8-5	2-10-1			20-8	3-4		
			6x8=			1-3-12 4x8≈						
		10	4x8≠ 4	x5=	4x5 = 4x5	6x8=						
Т		6	9			15 16	i					
		8x10≠ 8					17	40 4.0				
		6	5	9 00 (6∎ 5x)	8= 4x5 II 3x6	= 05		10 4x0 ×				
		577			5>	6 II		81	21 02			
9-0-	75 ⁴⁷⁶								22	2		
÷	3									23	4	
1	x511 2 4										825	
₽											26	
2-10							l					278
⊥ 1⊥ 64											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
3	3x5 1 03 02 01	00 59 56 5ø 3x6	i= 5x8∎ 3x5=	3x5= 3	x5= 3x5=	4420 309 3x6= 5x8 m	57 .	30 35 34 33 3x6=	5 32	31 30	29 20	4x5=
			3x5=	3x5=	3x5= 3x5=	3x5=						
			16-4-8	2	27-7-15 _{3x6} 25-2-0	፻ <u>፲-^{ቆዾቒ}</u> 32-8-12	2					
	13-1 13-1	11-0 11-0 2	-1-1218-8-1121-2	<u>-9 23-8-8</u> 5 2-5-15	29-1 1-5-82-5-15 2-2	<u>0-0 32-6-0</u> -1 2-4-3	<u>37-6-0</u> 4-9-4			<u>53-5-0</u> 15-11-0		———————————————————————————————————————
Scale = 1:90.8			0-2-12	0 2 0 10	1-0-02 0 10 2 2	0-3-13 0-2-12	2			10 11 0		
Plate Offsets (X, Y): [6:0-5-0,0-4-8],	, [10:0-5-8,0-3-0], [15:0-	5-8,0-3-0], [39:0-4-0),0-2-4], [5	54:0-4-0,0-2-4], [6	6:0-2-11,0-1-8]]					
Loading	(psf)	Spacing 2	2-0-0	csi		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL 1	.15	TC	0.43	Vert(LL)	n/a	- n/a	999	MT20	244/19	D
TCDL	20.0	Rep Stress Incr	ES	WB	0.12	2 Horiz(TL)	0.02	- n/a 27 n/a	999 n/a			
BCLL	0.0*	Code I	RC2018/TPI2014	Matrix	-MSH							
BCDL	10.0									Weight: 50	14 lb + 1 = 20)%
LUMBER	2x6 SP No 2			Max Uplif	t 28=-89 (LC 14 30=-17 (LC 14), 29=-189 (LC) 31=-49 (LC 1	15), 15)	BOT CHORD	63-64 61-62	=-79/168, 62 =-79/168_60	2-63=-79/168,)-61=-79/168	
BOT CHORD	2x4 SP No.2 *Excep	ot* 35-27,57-42:2x4 SP			32=-43 (LC 15), 33=-44 (LC 1	15),		59-60	=-79/168, 58	B-59=-79/168,	
WEBS	2400F 2.0E, 57-64:2 2x4 SP No 3 *Excep	2x4 SP No.1 ht* 9-55 16-38 64-1:2x6			34=-45 (LC 15 37=-124 (LC 3), 36=-46 (LC 1 8), 38=-1 (LC 1	15), 10),		56-58 53-55	=-79/168, 55 =-85/183, 51	5-56=-79/168, 1-53=-63/129,	
	SP No.2, 16-66,66-9	2:2x4 SP No.2			56=-115 (LC 3	8), 58=-45 (LC	14),		49-51	=-57/117, 47	7-49=-68/129,	
OTHERS	2x4 SP No.3 *Excep 0-0,0-0,0-0,0-0,0-0,0	ot*)-0:2x4 SPF No.2(flat)			61=-47 (LC 14), 60=-37 (LC 1), 62=-28 (LC 1	14), 14),		38-41	=-58/112, 4 =-80/140, 37	7-38=-78/164,	
BRACING				Max Gray	63=-119 (LC 1	4), 64=-109 (LC	C 15)		36-37	=-78/164, 34 =-78/164, 33	4-36=-78/164, 2-33=-78/164	
TOP CHORD	Structural wood she 6-0-0 oc purlins. ex	athing directly applied o cept end verticals, and	r	IVIAX GIAV	30=215 (LC 2)	, 31=164 (LC 4	9), 9),		31-32	=-78/164, 30	0-31=-78/164,	
	2-0-0 oc purlins (4-2	2-4 max.): 10-15.			32=177 (LC 37 34=234 (LC 43	7), 33=216 (LC 3) 36=217 (LC	43), 43)		29-30 27-28	=-78/164, 28 =-78/164 52	3-29=-78/164, 2-54=-16/38_5	0-52=-21/50
BOICHORD	bracing. Except:	applied or 6-0-0 oc			37=142 (LC 49), 38=1161 (LC	C 38),		48-50	=-14/38, 46-	48=-14/38, 45	-46=-14/38,
WERS	10-0-0 oc bracing: 3	9-54 2×4 SPE No 2 0 54			41=327 (LC 20 47=230 (LC 20), 44=301 (LC)), 49=231 (LC	20), 20),		40-45	=-22/54, 39-	40=-19/51	
WEBS	T-Diace.	16-39, 17-37, 18-36,			51=301 (LC 20), 53=330 (LC	20),					
	Fasten (2X) T and I	8-56, 7-58 braces to narrow edge			58=228 (LC 4), 59=239 (LC	41),					
	of web with 10d (0.1	31"x3") nails, 6in			60=223 (LC 41 62=164 (LC 56), 61=191 (LC 6) 63=286 (LC	35), 47)					
	Brace must cover §	m end distance. 90% of web length.			64=100 (LC 50))))	,,				uuun.	
JOINTS	1 Brace at Jt(s): 68,	· ·	FORCES	(lb) - Ma Tension	ximum Compres	sion/Maximum				"TH	CARO	11.
REACTIONS	(size) 27=53-5-0	0, 28=53-5-0, 29=53-5-0	, TOP CHORD	1-2=-53	/118, 2-3=-37/99,	3-4=-52/127,			1 ST	OREE	SSI	NE
	30=53-5-(0, 31=53-5-0, 32=53-5-0),	4-5=-70/ 8-9=-10	/149, 5-7=-107/2 5/267 9-10=-926	11, 7-8=-122/25 /239	50,	6	ès	10	1 May	P
	33=53-5-0 37=53-5-0	0, 34=53-5-0, 36=53-5-0 0, 38=53-5-0, 41=53-5-0	,),	10-11=-	2068/439, 11-12=	-2800/569,			Ξ.	·Q.		
	44=53-5-(51=53-5-(0, 47=53-5-0, 49=53-5-0),	12-13=-: 14-15=-	2800/569, 13-14= 1991/436, 15-16=	=-2724/564, =-812/241,			E :	S	EAL	1 E
	56=53-5-(0, 58=53-5-0, 59=53-5-0 0, 58=53-5-0, 59=53-5-0),),	16-17=-	104/278, 17-18=-	123/270,			3	03	6322	1 E -
	60=53-5-0 63=53-5-0	0, 61=53-5-0, 62=53-5-0 0, 64=53-5-0),	21-22=-	70/199, 22-23=-5	o9/222, 2/176,						1 3
	Max Horiz 64=-222 ((LC 15)		23-24=- 25-26-	48/153, 24-25=-6 156/123, 26-27-	9/135, 142/144			11	N.S.NG	INFER.	13
				1-64=-6	6/91	· · ∠/ · · · * ,			11	NO A	BE	and a
										"Inthe	GIL	No
										Decen	nber 21,20	23

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	A09	Attic Supported Gable	1	1	Job Reference (optional)	162656571

LOAD CASE(S) Standard

Carter Components (Sanford, NC), Sanford, NC - 27332,

ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Tue Dec 19 16:58:23

Page: 2

WEBS 54-55=-1090/1.9-54=-1078/106.

38-39=-1116/28, 16-39=-1101/123, 48-49=-115/0. 46-47=-115/0. 52-53=-171/0. 53-54=-57/22, 50-51=-147/0, 51-52=-13/11, 49-50=-11/13, 40-41=-173/0, 44-45=-148/0, 40-44=-3/15, 45-47=-10/17, 15-65=-48/11, 9-67=-16/694, 67-69=-15/688 68-69=-279/2058, 68-71=-412/2714, 70-71=-276/1982, 65-70=-11/565, 16-65=-13/579, 10-67=-15/15, 12-68=-256/65, 11-69=-470/113 14-70=-483/114, 15-70=-281/1498, 13-71=-239/66, 14-71=-148/778, 13-68=-66/182, 39-41=-27/17, 10-69=-279/1447, 11-68=-145/779, 17-37=-86/159, 18-36=-176/71, 19-34=-194/69, 21-33=-177/67, 22-32=-128/68, 23-31=-118/69, 24-30=-144/52, 25-29=-31/163, 26-28=-346/91, 8-56=-87/150, 7-58=-187/70, 6-59=-199/74, 5-60=-183/61, 4-61=-145/69, 3-62=-120/62, 2-63=-168/118

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 to 10-1-6, Exterior(2R) 10-1-6 to 38-11-10, Interior (1) 38-11-10 to 48-0-14, Exterior(2E) 48-0-14 to 53-5-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 9-67, 67-69, 68-69, 68-71, 70-71, 65-70, 16-65; Wall dead load (5.0psf) on member(s).9-54, 16-39
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at ioint 64. 1 lb uplift at ioint 38. 124 lb uplift at ioint 37. 46 Ib uplift at joint 36, 45 lb uplift at joint 34, 44 lb uplift at joint 33, 43 lb uplift at joint 32, 49 lb uplift at joint 31, 17 Ib uplift at joint 30, 189 lb uplift at joint 29, 89 lb uplift at joint 28, 115 lb uplift at joint 56, 45 lb uplift at joint 58, 50 Ib uplift at joint 59, 37 lb uplift at joint 60, 47 lb uplift at joint 61, 28 lb uplift at joint 62 and 119 lb uplift at joint 63.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 17) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	B01	Common	1	1	Job Reference (optional)	162656572

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:25 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.1

Plate Offsets (X, Y): [15:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)	-0.47	15-18	>442	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.76	15-18	>272	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	B/TPI2014	Matrix-MSH								==
BCDL	10.0											Weight: 134 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2 ⁻ Structural wood she	1-6-0 athing directly applied	3) 4) d or ⁵⁾	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat I :1.10 snow loads have b s been designed for	(roof LL Lum DC B; Fully een cor or greate	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for t er of min root	1.15 9 9; his flive					
BOT CHORD	5-6-15 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc	6)	overhangs no This truss ha	on-concurrent with s been designed for	other liv or a 10.0	/e loads.) psf bottom						
REACTIONS	(size) 2=0-5-8, ' Max Horiz 2=264 (LC Max Uplift 2=-75 (LC 14=-24 (L Max Grav 2=892 (LC 14=901 (L	13=0-3-8, 14=0-5-8 C 13) C 14), 13=-100 (LC 15 C 14) C 5), 13=492 (LC 25) -C 22)	7) 5), , 8)	* This truss h on the botton 3-06-00 tall b chord and an One H2.5A S	as been designed n chord in all areas y 2-00-00 wide will y other members, impson Strong-Tie	for a liv where fit betw with BC connect	e load of 20. a rectangle veen the bott DL = 10.0ps ctors	om f.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		UPLIFT at jt(s) 2, 13, and 14. The solution of the solution	his conr	nection is for	uplift					
TOP CHORD	1-2=0/34, 2-4=-1144 6-8=-597/176, 8-9=- 10-11=0/44, 10-12=-	4/150, 4-6=-639/184, 303/117, 9-10=-247/0 -224/37	9) D,	This truss is International R802 10 2 ar	designed in accord Residential Code s	ance w sections	ith the 2018 R502.11.1 a	and					9 .5
BOT CHORD WEBS	2-14=-251/721, 13-1 6-15=-97/412, 4-15= 9-13=-269/293, 8-14	4=0/167, 12-13=0/16 368/237, 8-15=-45/4 =-827/75	67 LC 421,	DAD CASE(S)	Standard						A. 1.	HTH CA	ROLIN
NOTES										/	53	FEE	NI SIA
1) Unbalance	ed roof live loads have	been considered for								4			BILL
this design	1.									-	- 8		
 Wind: ASC Vasd=103 Cat. II; Exp zone and 0 2-1-8 to 8- (1) 14-6-12 zone; cant and right e MWFRS fc grip DOL= 	∠E /-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 .6-12, Exterior(2R) 8-6 2 to 21-1-8, Exterior(2I tillever left and right exy exposed; C-C for memb pr reactions shown; Lu :1.60	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (* -12 to 14-6-12, Interior E) 21-1-8 to 24-1-8 posed; end vertical le pers and forces & imber DOL=1.60 plat) or eft							1111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	ER.K.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	B02	Common Girder	1	2	Job Reference (optional)	162656573

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:26

Page: 1

Scale = 1:73.9				-
Plate Offsets (X, Y): [1:Edge,0-2-13], [2:0-1-12,0-2-0], [4:0-1-7	12,0-2-0], [5:Edge,0-2-13	3], [6:0-8-0,0-5-0], [8:0-	-8-0,0-8-0], [9:0-8-0,0-5	5-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.36 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.02	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 429 lb	GRIP 244/190 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood she	athing directly applie	2) 3) d or 4)	All loads are except if note CASE(S) see provided to d unless other Unbalanced this design. Wind: ASCE	considered equally d as front (F) or ba tion. Ply to ply com istribute only loads vise indicated. roof live loads have 7-16; Vult=130mph	applie ck (B) nection noted been o	d to all plies, face in the LC s have been as (F) or (B), considered for cond gust)	DAD r	13) Use 11- ma: con 14) Use 11- 17- face	Simpso 10dx1 1/ c. startin nect trus Simpso 10dx1 1/ 10-0 fror of botto	on Stro 2 Trus g at 2- ss(es) on Stro 2 Trus n the l om cho	Ing-Tie HTU26 (2 ss) or equivalent s 0-0 from the left of to back face of bo ng-Tie HTU26 (2 ss, Single Ply Girc eft end to connect ord.	D-10d Girder, paced at 2-0-0 oc ind to 15-10-0 to ittom chord. D-16d Girder, ler) or equivalent a t truss(es) to back	at
BOT CHORD WEBS REACTIONS	4-9-14 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-5-8, 5 Max Horiz 1=226 (LC Max Uplift 5=-507 (L Max Grav 1=8852 (L 6=12886 /	applied or 6-0-0 oc 2-8 5=0-7-12, 6=0-5-8 C 36) C 13) .C 5), 5=648 (LC 19) (LC 6)	5) ,	Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct	h; TCDL=6.0psf; B ; Enclosed; MWFR ver left and right ex osed; Lumber DOL 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L s=1.0; Rough Cat E 1.10	CDL=6 S (env posed =1.60 (roof LL um DC 3; Fully	.0psf; h=25ft; elope) exterio ; end vertical olate grip :: Lum DOL= ⁻ DL=1.15 Plate Exp.; Ce=0.9	or left 1.15);	15) Use 11- spa enc bott 16) Fill LOAD (1) De	Simpso 10dx1 1/ ced at 2 to 21-1/ om chor all nail h CASE(S) ead + Sn crease=	on Stro 2 Trus -0-0 oc 0-0 to d. oles w) Sta ow (ba 1.15	ng-Tie HTU26 (2 s, Single Ply Girc c max. starting at connect truss(es) there hanger is in ndard alanced): Lumber	D-10d Girder, ier) or equivalent 19-10-0 from the le to back face of contact with lumbe Increase=1.15, Pl	eft er. late
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-9848/0, 2-3=-5 4-5=-82/408 1-9=0/7512, 8-9=0/7	pression/Maximum 015/0, 3-4=-5020/0, 2512, 6-8=-301/0,	6) 7) 8) 9)	Unbalanced design. All plates are The Fabricat 16% This truss ha	vise indicate 6%, joint 6 =) psf bottom	d.	Uniform Loads (lb/ft) Vert: 1-3=-60, 3-5=-60, 10-13=-20 Concentrated Loads (lb)							
WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn	4-8=0/5533, 4-6=-73 4-8=0/5533, 4-6=-73 4-8=0/5533, 4-6=-73 5 connected toget y) nails as follows: s connected as follows at 0-9-0 oc. ords connected as follows at 0-4-0 oc. ected as follows: 2x4 -	08/0, 3-8=0/5958, 949/0 ther with 10d s: 2x6 - 2 rows ows: 2x10 - 3 rows • 1 row at 0-5-0 oc.	10 11 12	chord live loa) * This truss h on the botton 3-06-00 tall b chord and an) One H2.5A S recommende UPLIFT at jt(does not con) This truss is International R802.10.2 ar	d nonconcurrent w as been designed to a chord in all areas y 2-00-00 wide will y other members. impson Strong-Tie d to connect truss t d to connect truss t s) 5. This connectic sider lateral forces. designed in accorda Residential Code s d referenced stance	in any for a liv where fit betv conne- to bear on is for ance w ections lard AN	ether live load e load of 20.0 a rectangle veen the botto tors ng walls due uplift only an ith the 2018 R502.11.1 a ISI/TPI 1.	as.)psf om to id		Contraction of the second seco	A MARTINE AND A	SEA 0363	EREPTION OF THE PROVIDENCE OF	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.stearonponent.scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	B02	Common Girder	1	2	Job Reference (optional)	162656573

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:26 ID:IFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Vert: 7=-1909 (B), 9=-1909 (B), 18=-1909 (B), 19=-1909 (B), 20=-1909 (B), 21=-1909 (B), 22=-1909 (B), 23=-1909 (B), 24=-876 (B), 25=-876 (B), 26=-876 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	B03	Common Structural Gable	1	1	Job Reference (optional)	162656574

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:26 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				17-3-4					5-6-0	0-4	1	
Scale = 1:70.2										0 1	•	
Plate Offsets (X, Y):	[10:0-2-8,Edge	9], [25:0-1-12,0-1-4]										
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	0.05	22-23	>999	240	MT20	244/190
		1 <u></u>										

Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.04	22-23	>999	180	
TCDL	10.0	Rep Stress Incr	YES	040/TD10044	WB	0.16	Horz(CT)	0.00	21	n/a	n/a	
BCLL	0.0^	Code	IRC2	018/19/2014	Matrix-MR							
BCDL	10.0					-						vveight: 188 lb F1 = 20%
LUMBER TOP CHORD	2x4 SP No.2			TOP CHORD	1-2=0/38, 2-3=-28 4-5=-218/164, 5-3 8-9=-230/342, 9-3	89/209, 3- 7=-199/19 10=-143/1	-4=-219/164, 91, 7-8=-188/2	43,	4) TC Pla	CLL: ASC ate DOL=	E 7-16 :1.15); : ls=1 (; Pr=20.0 psf (roof LL: Lum DOL=1.15 Pf=20.0 psf (Lum DOL=1.15 Plate): Bound Cat B: Fully Exp : Ce=0.9:
WERS	2x4 SP NO.2				10-11=-144/196	11-12=-2	33/343		Cs	=1 00 C	t=1 10	, Rough Out D, 1 any Exp., Oc-0.0,
OTHERS	2x4 SP No.3				12-13=-169/231,	13-15=-1	48/167,		5) Ur	ibalanced	d snow	loads have been considered for this
BRACING					15-16=-88/59, 16	-17=-137	/31,		Ó de	sign.		
TOP CHORD	Structural wood she	eathing directly applie	d or		17-18=-172/26, 1	8-19=0/3	8, 2-35=-272/1	42,	6) Th	is truss h	as bee	en designed for greater of min roof live
	6-0-0 oc purlins, ex	cept end verticals.			18-20=-187/35				loa	ad of 12.0) psf or	1.00 times flat roof load of 20.0 psf on
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 oc		BOT CHORD	34-35=-59/167, 3	3-34=-59	/167,		0V	erhangs	non-co	ncurrent with other live loads.
	bracing.				32-3339/107, 3	9-30=-59	/167		7) All 8) Tr	plates al	fully s	heathed from one face or securely
WEBS	1 Row at midpt	9-29, 11-28, 8-30, 12	2-27		28-29=-59/167.2	7-28=-59	/167.		bra	aced ada	inst lat	eral movement (i e diagonal web)
REACTIONS	(size) 21=0-3-8	, 24=17-5-0, 26=17-5	-0,		26-27=-59/167, 2	4-26=-59	/167,		9) Ga	able stude	s space	ed at 2-0-0 oc.
	2/=1/-5-	0, 28=17-5-0, 29=17-	5-0,		23-24=-59/167, 2	2-23=-59	/167,		10) Th	is truss h	las bee	en designed for a 10.0 psf bottom
	30=17-5-	0, 31=17-5-0, 32=17-	5-0,		21-22=-59/167, 2	0-21=-59	/167		, ch	ord live lo	oad noi	nconcurrent with any other live loads.
	33=17-5-	(1, 34=17-5-0, 35=17-	5-0	WEBS	9-29=-242/122, 1	1-28=-24	3/123,		11) * T	his truss	has be	een designed for a live load of 20.0psf
	Max Holiz 33=-202	(LC 12) (LC 15) 26- 2 (LC 1)	4)		8-30=-153/156, 7	-31=-169	/112,		on	the botto	om cho	rd in all areas where a rectangle
	27=-168	(LC 15), 20 - 2 (LC 12)	+ <i>)</i> , 13)		5-32=-129/96, 4-3	33=-130/9	94, 3-34=-131/	154,	3-0	06-00 tall	by 2-0	0-00 wide will fit between the bottom
	29=-55 (I	(LC 13), 20=-33 (LC 13), 30=-113 (LC 13)	13), 14)		12-27=-166/163,	13-26=-1	32/80,	7/00	ch	ord and a	any oth	er members, with BCDL = 10.0psf.
	31=-84 (1	_C 14), 32=-76 (LC 14	4).		15-24=-252/165,	16-23=-5	0/70, 17-22=-6	67/62				
	33=-54 (I	_C 14), 34=-201 (LC	14),	NOTES								
	35=-178	(LC 10)		1) Unbalance	d roof live loads ha	ave been o	considered for					
	Max Grav 21=321 (LC 24), 24=497 (LC 2	29),	this design.	E 7 40. \/		· · · · · · · · · · · · · · · · · · ·					WAH CARO
	26=112 (LC 22), 27=211 (LC 2	22),	2) Wind: ASC	E 7-16; Vuit=130m		cona gust)				A	RUSSON
	28=247 (LC 15), 29=258 (LC 1	5),	Cot II: Evo	B: Enclosed: MW	, BCDL-0 EPS (onv	olono) ovtorior			/	5.	U. SSIV.
	30=174 (LC 21), 31=211 (LC 5	5),	zone and C	C Corner(3E) -0-	10-8 to 2-	1-8 Exterior(2	N)				
	32=196 (LC 24), 33=195 (LC 2	24),	2-1-8 to 8-6	-12 Corner(3R) 8	-6-12 to 1	4-6-12 Exteri	or				.2
	34=221 (LC 24), 35=349 (LC 2	(9)	(2N) 14-6-1	2 to 21-0-0. Corne	er(3E) 21-	0-0 to 24-0-0			-		SFAL : =
FORCES	(lb) - Maximum Cor	npression/Maximum		zone; canti	ever left and right	exposed	; end vertical l	eft		=	:	
	rension			and right ex	posed;C-C for me	mbers an	d forces &			-		036322 =
				MWFRS fo	r reactions shown;	Lumber I	DOL=1.60 plat	e		-	1 8	V. 4 5
				grip DOL=1	.60						-	N. 2 2 2 2
				3) Truss desi	gned for wind load	ls in the p	lane of the true	SS			- 1	A SNOWEER. A
				only. For s	tuds exposed to w	ind (norm	al to the face)	,			1	A GINE A
				see Standa	rd Industry Gable	End Deta	ils as applicab	le,			1	A CILBENT
				or consult of	ualified building d	esigner a	s per ANSI/TP	11				1. 1. 11

grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTesk connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY			
23120116	B03	Common Structural Gable	1	1	Job Reference (optional)	162656574		
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.63 S Nov 1 2023 Print: 8.63 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:26						

ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) ^{N/A}

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	C01	Half Hip	4	1	Job Reference (optional)	162656575

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:27 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9 Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8], [9:0-2-8,0-3-4]

Loading FCLL (roof) Snow (Pf) FCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.68 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD WEBS REACTIONS FORCES TOP CHORD 30T CHORD WEBS NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex zone and 2-1-8 to 1 end vertic MWFRS f grip DOL= 2) TCLL: AS Plate DOL DOL=1.15	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 11-8:2x6 SP No.2 Left 2x4 SP No.3 - 1 Structural wood shea 4-9-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2-0-5-8, 8 Max Horiz 2=386 (LC Max Grav 2=948 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-4=-1361 6-7=-164/105, 7-8=-2 2-10=-397/1163, 8-1 4-10=0/264, 4-9=-58 6-8=-953/226 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFRS C-C Exterior(2E) -0-10 7-3-12, Exterior(2E) 17- or reactions shown; Lu 1.60 CE 7-16; Pr=20.0 psf (Lt); Is=1.0; Rough Cat B	t* 7-8:2x4 SP No.2, -6-0 athing directly applie peptend verticals. applied or 10-0-0 oc 7-8, 6-8 =0-5-8 2 14) 14), 8=-343 (LC 14) 5), 8=1731 (LC 21) pression/Maximum /28, 4-6=-813/0, 271/93 0=-317/1163 8/185, 6-9=0/584, (3-second gust) DL=6.0psf; h=25ft; 6 (envelope) exterior -8 to 2-1-8, Interior (-3-12 to 20-3-12 zon members and forces members and forces members and forces members and forces mod LL: Lum DOL=1.15 Plate ; Fully Exp.; Ce=0.9	3) 4) 5) d or 6) 7) 8) 9) 9) LC 1) 1) e; 8 & e e .15	Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International R802.10.2 at Hanger(s) or provided suff lb down and design/selec responsibility DAD CASE(S) Dead + Sno Increase=1 Uniform Lo. Vert: 1-7 Concentrate	snow loads have I as been designed f psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi ny other members, Simpson Strong-Ti ed to connect truss (s) 8 and 2. This ci t consider lateral fi designed in accor Residential Code nd referenced star other connection ficient to support ci 128 lb up at 20-5 tion of such connect of others. Standard bw (balanced): Lur 15 ads (lb/ft) =-60, 8-12=-20 ed Loads (lb) 747	been con for great lat roof lin o ther lin for a 10. with any d for a 10. with any d for a liv s where s where e conne s to bear onnectio orces. dance w sections ndard AH device(s oncentra- 8 on bo ection de	nsidered for the er of min roo load of 20.0 p ve loads. 0 psf bottom other live loa ore load of 20.0 pue load pue load pue load of 20.0 pue load pue load state l	this of live posf on ads. .0psf tom sf. e to only and 747 The Plate				SEA 0363	ROUL 22	and an and an and and and and and and an

grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building** Component **5**, the form the structure. Building component divergence of the prevent collapse with possible form the Structure. Building Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI

munum December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	C02	Half Hip	1	1	Job Reference (optional)	162656576

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:27 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0 1 1 70 0			6-11-11		6-8-3		1	-1-11				
Scale = 1:70.8												
Plate Offsets (X, Y):	ate Offsets (X, Y): [1:0-4-1,0-0-5], [7:0-1-12,0-1-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.92	Vert(LL)	-0.10	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.17	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 146 lb	FT = 20%

LUMBER		3)	Unbalanced snow loads have been considered for this
TOP CHORD	2x4 SP No.2		design.
BOT CHORD	2x4 SP No.2	4)	Provide adequate drainage to prevent water ponding.
WEBS	2x4 SP No.3 *Except* 11-7:2x6 SP No.2,	5)	All plates are 3x5 MT20 unless otherwise indicated.
	6-7:2x4 SP No.2	6)	This truss has been designed for a 10.0 psf bottom
SLIDER	Left 2x4 SP No.3 1-6-0		chord live load nonconcurrent with any other live loads
BRACING		7)	* This truss has been designed for a live load of 20.0ps
TOP CHORD	Structural wood sheathing directly applied or		on the bottom chord in all areas where a rectangle
	2-2-0 oc purlins.		3-06-00 tall by 2-00-00 wide will fit between the bottom
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc		chord and any other members, with BCDL = 10.0psf.
	bracing.	8)	One H2.5A Simpson Strong-Tie connectors
WEBS	1 Row at midpt 6-7, 5-7		recommended to connect truss to bearing walls due to
REACTIONS	(size) 1=0-4-0, 7=0-5-8		UPLIFT at jt(s) 7 and 1. This connection is for uplift onl
	Max Horiz 1=370 (LC 14)		and does not consider lateral forces.
	Max Uplift 1=-29 (I C 14) 7=-343 (I C 14)	9)	This truss is designed in accordance with the 2018
	Max Grav 1=896 (LC 5), 7=1717 (LC 20)		International Residential Code sections R502.11.1 and
FORCES	(lb) - Maximum Compression/Maximum	10)	R802.10.2 and referenced standard ANSI/1P11.
IONOLO	Tension	10)	Hanger(s) of other connection device(s) shall be
	1-3=-1328/28 3-5=-803/0 5-6=-152/81		b down and 120 lb up at 20.0 12 on bettern abord. Th
BOT CHORD	$1_{-10} = -1020/20, 0_{-0} = -000/0, 0_{-0} = -102/01$		design/selection of such connection device(s) is the
	7-8=-157/661		responsibility of others
WEBS	6-7251/80 3-10-0/254 5-8-0/503		
WLD0	5-7=-972/229 3-8=-562/184		AD CASE(S) Standard
			$-10000 \pm 50000000000000000000000000000000$

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-8 to 3-1-8, Interior (1) 3-1-8 to 17-3-12. Exterior(2E) 17-3-12 to 20-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-6=-60, 7-12=-20 Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

and does not consider lateral forces. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Hanger(s) or other connection device(s) shall be

provided sufficient to support concentrated load(s) 747 Ib down and 129 lb up at 20-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	D01	Common Supported Gable	1	1	Job Reference (optional)	162656577

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:28 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0000 = 1.00.0

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-5-1 17=18-5-1 24=18-5-1 Max Horiz 24=224 (I 16=-47 (L 21=-114 (I 23=-168 (I Max Grav 14=189 (I 16=173 (I 16=225 (I 21=225 (I 21=253 (I)	athing directly applied cept end verticals. applied or 6-0-0 oc 0, 15=18-5-0, 16=18-4 0, 18=18-5-0, 20=18-4 0, 22=18-5-0, 23=18-4 0 -C 13) .C 11), 15=-163 (LC 1 (LC 14), 22=-47 (LC 1 (LC 14), 22=-47 (LC 1 (LC 14), 24=-69 (LC 1 -C 28), 15=219 (LC 2 -C 22), 20=225 (LC 2 -C 22), 20=225 (LC 2 -C 22), 22=173 (LC 2	W 1) 1 or 5-0, 5-0, 5-0, 5-0, 5-0, 5), 5), 5), 2), 2), 1), 4)	EBS 6 4 9 0 TES Unbalanced 1 this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C (2N) 2-2-12 tr Exterior(2N) 19-3-8 zone; vertical left at forces & MW DOL=1.60 pla Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.45.1	2-20=-185/8, 8-18= -22=-133/94, 3-23 1-17=-213/162, 10- 1-15=-155/167 roof live loads have 7-16; Vult=130mpl h; TCDL=6.0psf; E ; Enclosed; MWFF C Corner(3E) -0-10 0 6-2-8, Corner(3E) 12-2-4 to 16-2-4, C cantilever left and h right exposed; C FRS for reactions : ate grip DOL=1.60 red for wind loads ds exposed to wind l ndustry Gable Er alified building des 7-16; Pr=20.0 psf (1 -5-10; Peruch Cat	-185/6, =-159/1 16=-13 be been of h (3-sec 3CDL=6 RS (env- -8 to 2- c) 6-2-8 corner(3 right ex- c-C for n shown; in the p d (norm nd Deta igner a (roof LL um DC Be Sculwork	5-21=-213/16 59, 3/92, considered for wond gust) .0psf; h=25ft; elope) exterior to 12-2-4, iE) 16-2-4 to posed ; end nembers and Lumber lane of the tru al to the face) is as applicat s per ANS/TP .: Lum DOL=1 bL=1.15 Plate Evp : Ca=0.0	2, r ss , ble, 11. .15	 12) * Th on tl 3-06 chor 13) Prov beau 24, 5 uplif joint 15. 14) This Inter R80 LOAD C 	is truss ne botto -00 tall d and a vide mer ing plat 50 lb up t at join 17, 47 truss is nationa 2.10.2 a ASE(S)	has be m cho by 2-0 ny oth chanic e capae t 22, 11 lb uplif d desigg a desigg a l Resid and ref) Sta	een designed for rd in all areas wi 0-00 wide will fit er members. al connection (by able of withstand oint 14, 114 lb up 68 lb uplift at join ft at joint 16 and ned in accordan- dential Code sec ferenced standar ndard	a live load o liere a rectan between the r others) of th ng 69 lb upli lift at joint 2° t 23, 116 lb u 163 lb uplift a xe with the 2 tions R502.1 d ANSI/TPI	f 20.0psf igle bottom russ to ift at joint 1, 47 lb uplift at at joint 018 J1.1 and 1.
FORCES TOP CHORD BOT CHORD	20-220 (i (lb) - Maximum Com Tension 2-24=-167/63, 1-2=(3-4=-104/90, 4-5=-9 6-7=-91/169, 7-8=-9 9-10=-77/115, 10-1 12-13=0/39, 12-14= 23-24=-106/187, 22 21-22=-106/187, 12 18-20=-106/187, 15 14-15=-106/187	D/39, 2-3=-165/140, 2/115, 5-6=-114/233, 1/169, 8-9=-114/233, 1/169, 8-9=-114/233, 1-54/47 -23=-106/187, -23=-106/187, -18=-106/187, -16=-106/187,	5) 5) (^{/116,} 7) 8) 9) 10 11	Cs=1.00; Ct= Unbalanced s design. This truss hai load of 12.0 p overhangs no All plates are Gable require Truss to be ft braced again) Gable studs s) This truss hai chord live load	1.10 snow loads have b s been designed for sof or 1.00 times fit on-concurrent with 2x4 MT20 unless es continuous botto IIIy sheathed from st lateral movement spaced at 2-0-0 oc s been designed for d nonconcurrent w	een cor or great at roof k other liv otherwi om chor one fac one fac one fac one fac or a 10.	nsidered for the er of min roof pad of 20.0 ps ve loads. se indicated. d bearing. e or securely iagonal web). D psf bottom other live load	is live f on ds.		A transferre	A MARINE AND A MAR	SEA 0363	L 22 EER.	A A A A A A A A A A A A A A A A A A A

December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	D02	Common Girder	1	3	Job Reference (optional)	162656578

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:28 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.3 Plate Offsets (X, Y): [1:0-9-0,0-5-0], [5:0-9-0,0-5-0], [6:0-9-12,0-6-0], [8:0-9-12,0-6-0]

Loading	((psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	:	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.09	8-14	>999	240	MT20	244/190
Snow (Pf)	:	20.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.15	8-14	>999	180		
TCDL		10.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.02	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 544 lb	FT = 20%
LUMBER				4)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)			Vert: 7=	-1900	(B), 8=-1900 (B),	6=-1900 (B),
TOP CHORD	2x6 SP No.2			,	Vasd=103m	oh; TCDL=6.0psf; E	3CDL=6	.0psf; h=25ft;			15=-548	7 (B),	16=-1904 (B), 18	=-1900 (B),
BOT CHORD	2x12 SP 2400	0F 2.0E			Cat. II; Exp E	; Enclosed; MWFF	RS (env	elope) exterio	r		19=-190	0 (B),	20=-1900 (B)	
WEBS	2x4 SP No.3	*Except	t* 8-3.6-3:2x4 SP No	.2	zone; cantile	ver left and right ex	xposed	end vertical	left					
WEDGE	Left: 2x4 SP I	No.3 '			and right exp	osed; Lumber DO	L=1.60	olate grip						
	Right: 2x4 SF	P No.3			DOL=1.60									
BRACING	Ū.			5)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL='	1.15					
TOP CHORD	Structural wo	od shea	athing directly applie	d or	Plate DOL=1	.15); Pf=20.0 psf (Lum DC	L=1.15 Plate						
	6-0-0 oc purli	ins.	5 5 11		DOL=1.15);	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9);					
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc		Cs=1.00; Ct=	=1.10								
	bracing.	-		6)	Unbalanced	snow loads have b	een cor	isidered for th	nis					
REACTIONS	(size) 1=	0-5-8, 5	=0-5-8	7	aesign.	a haan daalamad f) nof hottom						
	Max Horiz 1=	-180 (L	C 8)	7)	I his truss ha	is been designed to	or a 10.	J psi bottom	do					
	Max Grav 1=	14904 (LC 21), 5=10832 (LC	C 6) 💦			for a liv	ollier live load	us. Inof					
FORCES	(lb) - Maximu	ım Com	pression/Maximum	, 0	on the bottor	n chord in all areas	whoro	a rectangle	ры					
	Tension				3-06-00 tall b	v 2-00-00 wide wil	ll fit hetv	een the hotto	m					
TOP CHORD	3-4=-12461/0), 4-5=-^	12592/0, 1-2=-14114	/0,	chord and ar	v other members	with BC	DI = 10.00sf						
	2-3=-14046/0)	,	. 91	This truss is	designed in accord	dance w	ith the 2018						
BOT CHORD	1-8=0/10837,	, 6-8=0/	7190, 5-6=0/9583	-,	International	Residential Code	sections	R502.11.1 a	nd					
WEBS	2-8=-232/269	9, 3-8=0	/10561, 3-6=0/7003,		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	4-6=-148/268	3		1()) Use Simpsor	n Strong-Tie HTU2	10 (32-	10d Girder,						11.
NOTES					14-10dx1 1/2	2 Truss, Single Ply	Girder)	or equivalent					W'LL CA	DUL
1) 3-ply truss	to be connecte	ed toaet	her as follows:		spaced at 2-	0-0 oc max. startin	g at 4-4	-4 from the let	ft			1	THUA	ROUT
Top chord	ls connected wit	th 10d (0.131"x3") nails as		end to 16-4-4	to connect truss(es) to ba	ack face of				X	n' rece	6.9/A.11
follows: 2	k6 - 2 rows stag	gered a	t 0-9-0 oc.		bottom chore	l.					/	22	interest	NI SAA
Bottom ch	ords connected	with Si	mpson SDS 1/4 x 4-	1/2 1	I) Fill all nail ho	les where hanger	is in cor	ntact with lum	ber.					
screws as	follows: 2x12 -	3 rows	staggered at 0-4-0 o	oc. 12	Hanger(s) or	other connection of	device(s) shall be					· × ·	- ~
Web chore	ds connected w	ith 10d	(0.131"x3") nails as		provided suf	icient to support co	oncentra	ated load(s) 8	833		-		SEA	L 18 E
follows: 2	4 - 1 row at 0-9	9-0 oc.			Ib down and	522 lb up at 2-6-8	on bott	om chord. Th	ne		Ξ.		0000	
All loads a	are considered e	equally	applied to all plies,		design/selec	tion of such conne	ction de	vice(s) is the			=		0363	22 : :
except if r	oted as front (F) or bac	ck (B) face in the LO	AD	responsibility	of others.					-	6		· · · · · · · · · · · · · · · · · · ·
CASE(S)	section. Ply to p	bly conn	ections have been	L	DAD CASE(S)	Standard						-	·	A 1. 3
provided t	o distribute only	/ loads I	noted as (⊢) or (B),	1)	Dead + Sno	w (balanced): Lun	nber Inc	rease=1.15, F	late			2.0	NO.NOINI	Enix
2) Unless off	erwise indicate	u.	haan aanaidarad far		Increase=1	.15 						1	No. Gill	E. E. M. N
5) Unbalance		is nave	Deen considered for		Uniform Los	aus (ID/IT)							A G	ILBUIN
uns desigi	ı.				ven: 3-5	=-00, 1-3=-00, 9-12	∠≕-20						1111.0	un un
					Concentrate	ed Loads (lb)								

minin December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	E01	Common	1	1	Job Reference (optional)	162656579

4-2-13

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:28 ID:5YjLyPhGJKHB5AEdSp6x7Qy7LK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

-0-10-8 3-9-0 7-6-0 8-4-8 3-9-0 3-9-0 0-10-8 0-10-8 3-3-12 4x5 = 3 £ 10 3-3-12 12 13

Scale = 1:41.9 -

Loading	(psf)	Spacing	1-11-	4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	o I	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	-0.01	8	>999	240	MT20	244/190
Snow (Pf)	20.0	0	Lumber DOL	1.15		BC	0.29	Vert(CT)	-0.02	8	>999	180		
TCDL	10.0	0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0	0*	Code	IRC2	018/TPI2014	Matrix-MR								
BCDL	10.0	0											Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins, Rigid ceiling dire bracing. (size) 7=0-3 Max Horiz 9=-11. Max Uplift 7=-38 Max Grav 7=46C	shea exce ctly a -8, 9= 4 (LC (LC) (LC	thing directly applied ept end verticals. applied or 10-0-0 oc =0-3-8 \$ 12) 15), 9=-38 (LC 14) 22), 9=460 (LC 21)	or	 This truss ha load of 12.0 j overhangs no This truss ha chord live loa This truss h on the botton 3-06-00 tall b chord and ar H10A Simpsi connect truss and 7. This c consider late 	s been designed for osf or 1.00 times fla on-concurrent with s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. on Strong-Tie conn to bearing walls d onnection is for up ral forces.	or great at roof k other liv or a 10. ith any for a liv where fit betv ectors ue to U lift only	er of min roof pad of 20.0 p: /e loads.) psf bottom other live loa e load of 20.0 a rectangle veen the botto recommende PLIFT at jt(s) and does not	live sf on Opsf om d to 9 t					
FORCES	(lb) - Maximum (Comr	vession/Maximum		This truss is International	designed in accord	ance w	ith the 2018	and					
1 ONOLO	Tension					d referenced stan	dard AN	ISI/TPI 1	ind					
TOP CHORD	1-2=0/49, 2-3=-2 4-5=0/49, 2-10=-	269/9 -375/	3, 3-4=-269/91, 176, 4-6=-375/174		LOAD CASE(S)	Standard								
BOT CHORD	9-10=-11/120, 8- 6-7=-11/120	-9=-1	1/120, 7-8=-11/120,											
WEBS	3-8=-26/84													
NOTES														
1) Unbalance	ed roof live loads h	ave b	been considered for											111.
 this design Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 5- cantilever right export for reaction DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; Unbalance design. 	n. CE 7-16; Vult=130r imph; TCDL=6.0ps p B; Enclosed; MW C-C Exterior(2E) -(4-8, Exterior(2E) 5 left and right expos sed;C-C for membran s shown; Lumber) CE 7-16; Pr=20.0 ps); Is=1.0; Rough C Ct=1.10 ed snow loads have	mph (f; BC /FRS)-10-4 i-4-8 sed ; ers a DOL osf (ro sf (Lu sat B; e bee	(3-second gust) DL=6.0psf; h=25ft; (envelope) exterior 8 to 2-1-8, Exterior(2) to 8-4-8 zone; end vertical left and nd forces & MWFRS =1.60 plate grip poof LL: Lum DOL=1.1 m DOL=1.15 Plate Fully Exp.; Ce=0.9; en considered for this	R)									SEA O363	ROUL L 22 LBERTIN

December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	G01	Monopitch	5	1	Job Reference (optional)	162656580

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:29 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [3:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.66 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >909 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=271 (LC Max Uplift 7=-219 (L Max Grav 7=824 (LC (lb) - Maximum Com Tension 4-7=-321/119, 2-9=-4 2-4=-674/91, 4-5=-11 8-9=-323/217, 7-8=-	t* 9-2:2x6 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 4-7, 3-7 unical, 9=0-5-8 C 14) C 5), 9=750 (LC 5) upression/Maximum 643/88, 1-2=0/28, 2/0 198/540, 6-7=0/0	4) 5) ed or 6) c 7) 8) 9) LC	This truss ha load of 12.0 j overhangs no This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to girdd Provide mec bearing plate joint 7. This truss is International R802.10.2 ar	s been designed for psf or 1.00 times fla on-concurrent with s been designed for ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will y other members, er(s) for trus to tru hanical connection a capable of withsta designed in accord Residential Code s nd referenced stand Standard	or greats at roof k other liv or a 10.0 vith any for a liv where fit betw with BC ss conr (by oth nding 2 ance w sections dard AN	er of min roo bad of 20.0 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott iDL = 10.0ps ers) of truss the 2018 ith the 2018 ith the 2018 is R502.11.1 a ISI/TPI 1.	f live osf on ads. Opsf com f. to t t						
NEBS	3-8=0/310, 3-7=-686	6/257, 2-8=0/486												
1) Wind: ASC Vasd=103	CE 7-16; Vult=130mph Smph; TCDL=6.0psf; B((3-second gust) CDL=6.0psf; h=25ft;	r								ALL.	HTH CA	ROUL	14
Cat. II; EX Zone and 2-2-2 to 12 cantilever exposed;0 reactions s DOL=1.60	p b; Enclosed; MWFR3; C-C Exterior(2E) -0-9- 2-11-0, Exterior(2E) 12 left and right exposed C-C for members and fo shown; Lumber DOL=1) CE 7-16: Pr=20.0 nsf ((s (envelope) exteriol 14 to 2-2-2, Interior (:11-0 to 15-11-0 zor ; end vertical left orces & MWFRS for 1.60 plate grip	r 1) ne;							William	i J	SEA 0363	L 22	

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER A. GILBER December 21,2023

> TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	162656581

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:29 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.9 Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge]

Loading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.21 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP 24 No.3 2x4 SP N Left: 2x4 S Structural 6-0-0 oc p Rigid ceili bracing, 10-0-0 oc (size) Max Horiz Max Uplift Max Grav	o.2 o.2 400F 2.0E ⁻ o.3 SP No.3 I wood sheat purlins. ing directly Except: bracing: 1 2=10-1-8, 14=10-1-8, 14=10-1-8, 2=210 (LC 2=-3 (LC ⁻ 13=-11 (L 15=-155 (2=1 (LC 2 13=98 (LC 15=171 (L 2=11 (L 2=11 (L)))	*Except* 17-9:2x4 Sf athing directly applie applied or 6-0-0 oc 1-12. 12=10-1-8, 13=10-1 3, 15=10-1-8, 16=10-1 4, 15=10-1-8, 16=10-1 5, 10), 21=210 (LC 10 14), 12=-264 (LC 11 10), 21=-26 (LC 12 11), 12=893 (LC 21), 5, 7), 14=202 (LC 21) C 21), 16=253 (LC 12)	1) P d or 2) -8, 3) 1-8,), 4)), 4) 0), 5) 4) , 6) 1), 7)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 2-0-0 to 13-1 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs no All plates are Gable studs	7-16; Vult=130mpl bh; TCDL=6.0psf; E 5; Enclosed; MWFF C Exterior(2E) -0-11 -8, Exterior(2E) 13 t and right exposed d;C-C for members shown; Lumber DC hed for wind loads i ds exposed to wind l ndustry Gable Er alified building des 7-16; Pr=20.0 psf (I s=1.0; Rough Cat I -1.10; snow loads have b snow loads have b so ben designed for post or 1.00 times fla on-concurrent with 2x4 MT20 unless spaced at 2-0-0 oc	n (3-sec CDL=6 S (envi-)-8 to 2 -1-8 to ; end v and for DL=1.60 n the pi d (norm d Deta (roof LL um DC 3; Fully een cor r greate t roof k other his other wis	ond gust) .0psf; h=25ft; lope) exteric -0-0, Interior 16-1-8 zone; ertical left an ces & MWFR plate grip ane of the tr. al to the face Is as applical s per ANSI/TF : Lum DOL=' L=1.15 Plate Exp.; Ce=0.9 isidered for the er of min roof pad of 20.0 ps re loads. se indicated.	(1) d (2) (1) d (2) (2) (2) (2) (2) (3) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	12) This Inter R80 LOAD C	truss is rnationa 2.10.2 a ASE(S)	desig IResid Ind ref Star	ned in accordance iential Code sect erenced standard ndard	e with the 201 ions R502.11. I ANSI/TPI 1.	8 1 and
FORCES	(lb) - Max Tension 1-2=0/17, 4-5=-474/	2-3=-535/3 /378, 5-7=-4	pression/Maximum 377, 3-4=-531/378, 435/359, 7-8=-437/4:	8) 9) 32,	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	s been designed fo ad nonconcurrent w as been designed n chord in all areas ov 2-00-00 wide will	r a 10.0 ith any for a liv where fit bety) psf bottom other live loa e load of 20.0 a rectangle reen the botto	ds.)psf		4	i	OFESS	Real	. North
BOT CHORD	8-9=-579/ 2-16=-339 14-15=-33 12-13=-33 12-17=-8	/743, 9-10= 9/244, 15-1 39/244, 13- 39/244, 11- 70/552, 8-1	-29/0 6=-339/244, 14=-339/244, 12=0/0 7=-396/210,	10	chord and an Provide mech bearing plate 2, 264 lb upli uplift at joint	y other members. hanical connection capable of withsta ft at joint 12, 155 lb 14, 11 lb uplift at jo	(by oth nding 3 uplift a int 13 a	ers) of truss t Ib uplift at joi t joint 15, 26 nd 3 lb uplift ;	o int Ib at		11110 Mars		0363	22	unnun
NOTES	9-17=-810 5-14=-16	0/584, 3-16 7/99, 7-13=	=-153/3, 4-15=-120/ -29/60	154, 11	joint 2.) Non Standar	d bearing condition	. Revie	w required.				in the	A. G	ILBER I	

December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	H02	Monopitch	6	1	Job Reference (optional)	162656582

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Dec. 19.16:58:29 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL LUMBER 2x4 SP No 2 TOP CHORD 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 *Except* 5-9:2x4 SP 2400F 2.0E WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 8-5-13 oc bracing. REACTIONS 2=0-3-0.9=0-5-8 (size) Max Horiz 2=210 (LC 10) Max Uplift 2=-99 (LC 10), 9=-379 (LC 10) Max Grav 2=379 (LC 1), 9=1090 (LC 21) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-368/225, 3-5=-447/428, 5-6=-594/757, 6-7=-29/0 BOT CHORD 2-10=-447/338, 9-10=-447/338, 8-9=0/0 WEBS 9-11=-840/532, 5-11=-358/182, 3-10=-315/219, 3-9=-563/753, 6-11=-825/599 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

Scale = 1:46

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 13-1-8, Exterior(2E) 13-1-8 to 16-1-8 zone; cantilever left exposed ; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2)

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

3) Unbalanced snow loads have been considered for this design.

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5)

chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

- chord and any other members. 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 2. This connection is for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

VIIIIIIIIIIII SEAL 036322 G munn December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	J01	Common	5	1	Job Reference (optional)	162656583

8-7-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

2)

3)

4)

4-5-9

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:30 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-0-8

12-9-7

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	PBA	Piggyback	2	1	Job Reference (optional)	162656584

5-10-15

5-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-3-10

0-4-3

3-5-4

. . . .

-0-11-1

0-11-1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:30 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

11-9-14

5-10-15

Page: 1

12-8-15

0-11-1

8

3x5 =

9

5 1<u>2</u> 6 ∟ 6 4 Þ 22 23 3 7 ø 2 0 8 ю 14 13 12 11 10 3x5 = 11-9-14

Scale = 1:31.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-MSH	0.08 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 52 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=11-9-1/ 13=11-9- 15=11-9- Max Horiz 2=52 (LC Max Uplift 2=-9 (LC 10=-45 (L 15=-9 (LC Max Grav 2=123 (LC 10=237 (I 12=143 (L 12=143 (L 19=123 (L	eathing directly applie r applied or 10-0-0 oc 4, 8=11-9-14, 10=11- 14, 12=11-9-14, 14, 14=11-9-14, 14, 19=11-9-14 18), 15=52 (LC 18) 15), 8=-11 (LC 15), C 14), 14=-45 (LC 14) C 14), 14=-45 (LC 14) C 14), 14=-45 (LC 14) C 14), 14=-44 (LC 22) LC 22), 11=244 (LC 22) LC 21), 15=123 (LC 22) LC 21), 15=123 (LC 22) LC 22)	2) Wind Vasc Cat. zone 3-4-3 d or 2006 and MWU 9-14, 3) Trus only see or co 4) TCL Plate 5), DOL 65), DOL 75) Unbi 1, cs= 0 5) Unbi 1, load 21), over 7) All p	d: ASCE 7-16; Vult=130 j=103mph; TCDL=6.0ps II; Exp B; Enclosed; MW a and C-C Corner(3E) 0- 3 to 3-10-8, Corner(3R) 0- 3 to 3-10-8, Corner(3R) 0- 9-10-8 to 10-4-13, Corn ; cantilever left and righ right exposed;C-C for m FRS for reactions shown DOL=1.60 ss designed for wind loa . For studs exposed to w Standard Industry Gable onsult qualified building of to Standard Industry Gable onsult qualified building of a DOL=1.15; Pf=20.0 ps =1.15; Is=1.0; Rough C 1.00; Ct=1.10 alanced snow loads hav gn. truss has been designe of 12.0 psf or 1.00 time: hangs non-concurrent w lates are 2x4 MT20 unle	nph (3-sec f; BCDL= \in (FRS (env 4-3 to 3-4- 3-10-8 to 9 er(3E) 10- exposed embers ar ; Lumber I ds in the p vind (norm End Deta lesigner a: ss f(roof Ll df (Lum DC at B; Fully e been cool d for great i flat roof I i flat roof I i flat roof I f or great i flat roof I i th other Ii ss otherwis	cond gust) .0psf; h=25ft; elope) exterior 3, Exterior(2N -10-8, Exterior 4-13 to 13-4-1 end vertical I d forces & DOL=1.60 pla' lane of the tru al to the face) ils as applicata s per ANSI/TP .: Lum DOL=1 JL=1.15 Plate Exp.; Ce=0.9 Insidered for th er of min roof pad of 20.0 ps ve loads. se indicated	r I) I3 eft te ss J, I15 ; is live if on	13) This Inte R80 14) See Deta con: LOAD C	s truss is rnationa 02.10.2 a Standa ail for C sult qua CASE(S)	s desig Il Resic and ref rd Indu onnect lified b) Star	ned in accordanc dential Code sect erenced standard ustry Piggyback T ion to base truss uilding designer. ndard	e with the 2018 ions R502.11.1 and 1 ANSI/TPI 1. fruss Connection as applicable, or
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) Gab	le requires continuous b	ottom chor	d bearing.					TH CA	RO
TOP CHORD	1-2=0/17, 2-3=-46/3 4-5=-63/116, 5-6=-6 7-8=-29/25, 8-9=0/1	3, 3-4=-56/49, 3/116, 6-7=-56/49, 7	9) Gab 10) This chor	truss has been designed truss has been designed tive load nonconcurrer	d for a 10. t with any) psf bottom other live load	ds.		4	X	OF FEST	Diver
BOT CHORD	2-14=-9/67, 13-14=- 11-12=-9/67, 10-11=	·9/67, 12-13=-9/67, =-9/67, 8-10=-9/67	on th	ne bottom chord in all are	ed for a live as where	a rectangle	psi				SFA	
WEBS	5-12=-102/0, 4-13=- 6-11=-208/125, 7-10	208/125, 3-14=-181/)=-181/113	113, 3-06 113, chor 12) Prov	d and any other membe ide mechanical connect	on (by oth	ers) of truss to) D				0363	22
NOTES 1) Unbalance this design	d roof live loads have	been considered for	bear 2, 11 at jo Ib up	ing plate capable of with I lb uplift at joint 8, 47 lb int 14, 47 lb uplift at joint blift at joint 2 and 11 lb u	standing S uplift at joi 11, 45 lb olift at joint	l lb uplift at joi nt 13, 45 lb up uplift at joint 1 8.	nt blift 0, 9			A A A A A A A A A A A A A A A A A A A	A. G December	EER.

- this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	PBA1	Piggyback	18	1	Job Reference (optional)	162656585

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Tue Dec 19 16:58:30 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	PBA2	Piggyback	2	4	Job Reference (optional)	162656586

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:31 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.4													I	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.02 0.01 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-9-0, 9=13-9-0, 12=13-9-0 15=13-9-0 Max Horiz 1=52 (LC Max Uplift 1=-25 (LC (LC 15), 9 15), 11=-2 14), 14=-2 14), 14=-214), 14=-214), 14=-2 14), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 14=-214), 15=-214), 14=-214),	athing directly applied applied or 10-0-0 oc 2=13-9-0, 8=13-9-0, 10=13-9-0, 11=13-9-0, 13=13-9-0, 14=13-9-0, 14) 2:15), 2=-14 (LC 14), 3 2:15), 2=-14 (LC 14), 3 47 (LC 15), 13=-48 (L 44 (LC 14), 15=-14 (L 7 (LC 15), 13=-48 (L 47 (LC 15), 13=-48 (L 18), 2=154 (LC 21), 10= 1=245 (LC 22), 12=1 3=244 (LC 21), 14=2 5=154 (LC 21), 18=1	1) 1) 1 or 2) 1 or 2) 0, 3) 3-0, 4) 8=-7 (LC C C -233 44 34 5) 42	4-ply truss to Top chords of follows: 2x4 - All loads are except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 3-4-3 to 3-10 (1) 9-10-8 to zone; cantile and right exp MWFRS for grip DOL=1.1 Truss design only. For stu	be connected tog connected with 10 - 1 row at 0-9-0 or ds connected with - 1 row at 0-9-0 or considered equal ad as front (F) or t tition. Ply to ply co listribute only load wise indicated. roof live loads hav 7-16; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) 0-4 -8, Exterior(2E) 0-4 -10, Ext	gether as d (0.131' c. 10d (0.1 c. lly applied back (B) onnection ds noted we been of the back (B) we been of the back (B) we been of BCDL=6 RS (env I-3 to 3-4 i-10-8 to (2E) 10-2 exposed mbers an Lumber I s in the p nd (norm End Deta	follows: 'x3") nails as 31"x3") nails as 31"x3") nails as d to all plies, face in the LO s have been as (F) or (B), considered for considered for cond gust) .0psf; h=25ft; elope) exterior -3, Interior (1) 9-10-8, Interio -13 to 13-4-13; end vertical I d forces & DOL=1.60 plat lane of the true al to the face) ils as applicable	as AD r 3 eft ss ,	12) * Th on t 3-0 cho 13) Pro bea 2, 7 join upli 2 au 14) This Inte R80 15) See Det con LOAD (his truss he botto 5-00 tall rd and a vide me ring plat Ib uplift t 9, 48 lt ft at join d 7 lb u s truss is rnationa 02.10.2 a e Standa ail for C sult qua CASE(S	has be born choo by 2-C any oth chanic te capa at joint o uplift t 11, 4. by lift at a desig and ref lifted b) Sta	een designed for rd in all areas wi 00-00 wide will fit eer members. al connection (b able of withstand it 8, 25 lb uplift a 5 lb uplift at joint joint 8. ned in accordan dential Code sec ferenced standar ustry Piggyback tion to base truss wilding designer ndard	a live load of 20.0p pere a rectangle between the bottom y others) of truss to ing 14 lb uplift at joit t joint 1, 2 lb uplift at uplift at joint 14, 47 10, 14 lb uplift at jo ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. Truss Connection as applicable, or	osf m intat 7 Ib oint id
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-56/69, 2-3=-48, 4-5=-62/105, 5-6=-6 7-8=-29/26, 8-9=0/2 2-14=-15/54, 13-14= 11-12=-15/54, 10-11 5-12=-103/0, 4-13=- 6-11=-208/121, 7-10	pression/Maximum /32, 3-4=-55/50, 2/105, 6-7=-55/40, 4 15/54, 12-13=-15/54 =-15/54, 8-10=-15/54 208/121, 3-14=-181/5)=-180/91	6) , 7) , 8) ,0, 9) 10 11	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. All plates are Gable requir) Gable studs) This truss ha chord live loa	ialified building de ; 7-16; Pr=20.0 ps ,15); Pf=20.0 ps is=1.0; Rough Ca =1.10 snow loads have e 2x4 MT20 unles: es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent	signer as if (roof LL (Lum DC t B; Fully been cor s otherwi tom chor c. for a 10.0 with any	s per ANSI/IP :: Lum DOL=1)L=1.15 Plate Exp.; Ce=0.9; hsidered for th se indicated. d bearing. D psf bottom other live loac	1 1. .15 ; is			E. A.	SEA 0363	EEP. A	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB1	Valley	1	1	Job Reference (optional)	162656587

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:31 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932 1111111111

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB2	Valley	1	1	Job Reference (optional)	162656588

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:31 ID:yJIn UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

st.org) B18 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB3	Valley	1	1	Job Reference (optional)	162656589

Scale = 1:50.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:32 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

December 21,2023

1111111111

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB4	Valley	1	1	Job Reference (optional)	162656590

Scale = 1:43.5

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:32 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a			
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-MSH									
BCDL		10.0											Weight: 62 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP N	lo.2			 Truss designed only. For students 	ned for wind loads ids exposed to wi	in the p nd (norm	lane of the tru al to the face	uss),						
BOT CHORD	2x4 SP N	lo.2			see Standar	d Industry Gable E	End Deta	ils as applica	ble,						
OTHERS	2x4 SP N	lo.3			or consult qu	alified building de	signer a	s per ANSI/TI	PI 1.						
BRACING					TCLL: ASCE	7-16; Pr=20.0 ps	f (roof Ll	: Lum DOL=	1.15						
TOP CHORD	Structura 6-0-0 oc	I wood she purlins.	athing directly applie	d or	Plate DOL=1 DOL=1.15);	I.15); Pt=20.0 pst Is=1.0; Rough Cat	(Lum DC t B; Fully	Exp.; Ce=0.9	9;						
BOT CHORD	Rigid cei bracing.	ling directly	applied or 6-0-0 oc		5) Unbalanced	snow loads have	been cor	nsidered for t	nis						
REACTIONS	(size)	1=14-5-2,	5=14-5-2, 6=14-5-2		 Gable requir 	es continuous bot	tom chor	d bearing.							
	Max Horiz	1=-137 (l	C 10)		7) Gable studs	spaced at 4-0-0 o	с.								
	Max Uplift	1=-24 (1 C	2 10) 6=-154 (I C 15)	This truss has	is been designed	for a 10.	0 psf bottom							
	max opine	8=-157 (L	.C 14)	,	chord live loa	ad nonconcurrent	with any	other live loa	ds.						
	Max Grav	1=124 (L	C 24), 5=99 (LC 23),		9) This truss i	nas been designed	a ior a iiv Is whore	a rectande	Jpsi						
		6=454 (L0 8=454 (L0	C 21), 7=403 (LC 23) C 20)	,	3-06-00 tall t	by 2-00-00 wide w	ill fit betw	veen the bott	om						
FORCES	(lb) - Max	kimum Com	pression/Maximum		chord and ar 10) Provide mec	hy other members hanical connection	, with BC n (by oth	ers) of truss t	i. 10						
TOP CHORD	1-2=-152	/141, 2-3=-	176/118, 3-4=-176/1	12,	bearing plate 1. 157 lb upl	e capable of withst ift at ioint 8 and 15	anding 2 54 lb upli	24 lb uplift at j ft at ioint 6.	oint						
	4-5=-121	/106			11) This truss is	designed in accor	dance w	ith the 2018							
BOT CHORD	1-8=-59/	126, 7-8=-5	9/100, 6-7=-59/100,		International	Residential Code	sections	s R502.11.1 a	ind					17.5	
WERS	5-6=-59/	100	5/106 / 6- 375/105		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.					11111 CA	- 11/1 ·	
WEB3	5-7224	/0, 2-037	5/190, 4-05/5/195		LOAD CASE(S)	Standard							TH UA	ROIT	
NOTES	d soof live	laada haya	has a sensidered for									~	ON JESO	tà: Ini	1,
1) Unbalance	ed root live	loads nave	been considered for									23	OFC	PN	1:1
2) Wind AS	ı. CE 7-16' Vı	ult=130mph	(3-second gust)								-	V	ior	120	1
Vasd=103	mph ⁻ TCDI	=6 0psf ⁻ B	CDI = 6 Opsf h = 25 ft								-	1			-
Cat. II; Ex	p B; Enclos	ed; MWFR	S (envelope) exterior								=	:	SEA	L :	1
zone and	C-C Exterio	or(2E) 0-0-5	i to 3-2-14, Interior (1)							=		0363	22	=
3-2-14 to 4	4-2-14, Exte	erior(2R) 4-	2-14 to 10-2-14, Inte	rior									0505		Ξ
(1) 10-2-1	4 to 11-2-1	4, Exterior(2	2E) 11-2-14 to 14-5-6	6								-	1		-
zone; can	tilever left a	nd right exp	posed ; end vertical l	eft								2.	N.En	-cR. A	-
and right e	exposed;C-		umber DOI =1.60 plot	0								21	S, GIN	EFIA	5
		s shown, Lu		6								1	10	, at i	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-14, Interior (1) 3-2-14 to 4-2-14, Exterior(2R) 4-2-14 to 10-2-14, Interior (1) 10-2-14 to 11-2-14, Exterior(2E) 11-2-14 to 14-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB5	Valley	1	1	Job Reference (optional)	162656591

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MITek Industries, Inc. Tue Dec 19 16:58:32 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-0-5, 7=12-0-5, Max Horiz 1=-114 (LC Max Uplift 1=-34 (LC 6=-136 (LC Max Grav 1=91 (LC 2 (LC 21), 7: 20)	athing directly applied applied or 10-0-0 oc 5=12-0-5, 6=12-0-5, 8=12-0-5 C 10) 10), 5=-6 (LC 11), C 15), 8=-139 (LC 14) 24), 5=70 (LC 23), 6=4 =260 (LC 20), 8=434 (3) or 5) 6) 7) 8) 34 C	Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss ha ochord live loa * This truss ha on the bottor 3-06-00 tail k	ned for wind loads uds exposed to wird d Industry Gable E tailified building de 57-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1s=1.0; Rough Cat =1.10 snow loads have I es continuous bott spaced at 4-0-0 o ts been designed ad nonconcurrent tas been designed n chord in all area by 2-00-00 wide wi	in the p dd (norm nd Deta signer a: (roof Ll 'Lum DC B; Fully been cor om chor c. or a 10.' with any for a liv s where Il fit betv	lane of the tru- nal to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.5 insidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bottom	lss), ble, PI 1. 1.15 ; ; ; ds. Dpsf pom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10)	Provide mec	hanical connection	n (by oth	ers) of truss t	0 oint					
TOP CHORD	1-2=-114/101, 2-3=-2 4-5=-88/63	218/115, 3-4=-218/115	3	1, 6 lb uplift	at joint 5, 139 lb up	olift at joi	int 8 and 136	lb					
BOT CHORD WEBS NOTES	1-8=-32/75, 7-8=-31/ 5-6=-31/73 3-7=-172/0, 2-8=-401	73, 6-7=-31/73, 1/220, 4-6=-401/220	11)	This truss is International R802.10.2 a	designed in accor Residential Code nd referenced star Standard	dance w sections idard AN	ith the 2018 8 R502.11.1 a NSI/TPI 1.	nd				TH CA	ROUT

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-10, Exterior(2E) 9-0-10 to 12-0-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY				
23120116	VLB6	Valley	1	1	Job Reference (optional)	162656592			

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:32 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le =	1.33.2	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural 9-7-8 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-115/ 1-4=-214/ 2-4=-595/2	0.0 0.2 0.2 0.2 0.3 wood shead urlins. ng directly 1=9-7-8, 3 1=90 (LC 1=-49 (LC 4=-108 (LI 1=95 (LC (LC 20) mum Com 373, 2-3=-1 172, 3-4=-2 271	athing directly applie applied or 6-0-0 oc i=9-7-8, 4=9-7-8 11) 21), 3=-49 (LC 20), C 14) 20), 3=95 (LC 21), 4 pression/Maximum 115/373 214/172	4 ed or 4 1=772	 TCLL: ASCE Plate DOL=² DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss ha chord live los This truss ha chord live los This truss and on the botton 3-06-00 tall li chord and ai Provide mec bearing plate 1, 49 lb uplif This truss is International R802.10.2 a 	E 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have to spaced at 4-0-0 or as been designed fad nonconcurrent has been designed m chord in all areas by 2-00-00 wide wi ny other members. thanical connectior e capable of withst t at joint 3 and 108 designed in accord Residential Code nd referenced star Standard	(roof LI Lum DC B; Fully been cor om chor c. or a 10. with any for a liv s where Il fit betw h (by oth anding 4 Ib uplifit dance w sections dard AN	L: Lum DOL= L: Lum DOL= L=1.15 Plate Exp.; Ce=0.5 ansidered for the d bearing. 0 psf bottom other live load re load of 20.0 a rectangle veen the botto ers) of truss t 19 lb uplift at j at joint 4. ith the 2018 s R502.11.1 a USI/TPI 1.	1.15); his ds.)psf om o oint nd				weight. 37 ib	11 - 2076
NOTES 1) Unbalance this design	ed roof live lo	oads have	been considered for										mmm	1111

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-7-13, Exterior(2E) 6-7-13 to 9-7-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Contraction and the Manunana SEAL 036322 G A. GILIN December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY				
23120116	VLB7	Valley	1	1	Job Reference (optional)	162656593			

3-7-6

3-7-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S. Nov. 1 2023 MiTek Industries. Inc. Tue Dec 19 16:58:33 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 =2

6-10-9

3-3-4

10 9 3-0-6 2-8-12 10 ∟ 3 4 3x5 🖌 2x4 ı 3x5 💊 7-2-11 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.26 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.26 999 Vert(TL) n/a n/a _ 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 27 lb FT = 20% 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this desian. or 6) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 17 lb uplift at joint 3 and 73 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Contraction and SEAL 036322 G munn December 21,2023 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and information and property damage. 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Loading TCLL (roof)

Scale = 1:29.1

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER		
TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	o.2
OTHERS	2x4 SP N	o.3
BRACING		
TOP CHORD	Structural 7-2-11 oc	wood sheathing directly applied o purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 6-0-0 oc
REACTIONS	(size)	1=7-2-11, 3=7-2-11, 4=7-2-11
	Max Horiz	1=67 (LC 11)
	Max Uplift	1=-17 (LC 21), 3=-17 (LC 20), 4=-73 (LC 14)
	Max Grav	1=105 (LC 20), 3=105 (LC 21), 4=531 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-88/2	28, 2-3=-88/228
BOT CHORD	1-4=-160/	151, 3-4=-160/151
WEBS	2-4=-378/	199

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-3-0, Exterior(2E) 4-3-0 to 7-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLB8	Valley	1	1	Job Reference (optional)	162656594

12 10 ∟

1-8-11

2-0-6

2-4-15

2 - 4 - 15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:33 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-12

2-0-13

4x5 =

4-9-14

Page: 1

GRIP

244/190

FT = 20%

3 Λ 2x4 💊 2x4 🖌 2x4 " 4-9-14 Scale = 1:26 Loading 2-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a n/a 999 MT20 BC Snow (Pf) 20.0 1 15 Lumber DOL 0.11 Vert(TL) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.04 Horiz(TL) 0.00 4 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MP BCDL 10.0 Weight: 17 lb LUMBER 5) Unbalanced snow loads have been considered for this design. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Gable requires continuous bottom chord bearing. 6) 2x4 SP No.3 Gable studs spaced at 4-0-0 oc. OTHERS 7) This truss has been designed for a 10.0 psf bottom 8) BRACING chord live load nonconcurrent with any other live loads. TOP CHORD Structural wood sheathing directly applied or * This truss has been designed for a live load of 20.0psf 9) 4-9-14 oc purlins. on the bottom chord in all areas where a rectangle BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 3-06-00 tall by 2-00-00 wide will fit between the bottom bracing. chord and any other members. **REACTIONS** (size) 1=4-9-14, 3=4-9-14, 4=4-9-14 10) Provide mechanical connection (by others) of truss to Max Horiz 1=43 (LC 13) bearing plate capable of withstanding 7 lb uplift at joint 3 Max Uplift 3=-7 (LC 15), 4=-33 (LC 14) and 33 lb uplift at joint 4. Max Grav 1=88 (LC 20), 3=88 (LC 21), 4=293 11) This truss is designed in accordance with the 2018 (LC 20) International Residential Code sections R502.11.1 and FORCES (Ib) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. Tension LOAD CASE(S) Standard TOP CHORD 1-2=-80/102, 2-3=-80/102 BOT CHORD 1-4=-79/87, 3-4=-79/87 WEBS 2-4=-180/95

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 December 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLD1	Valley	1	1	Job Reference (optional)	162656595

TCDL

BCLL

BCDL

WEBS

NOTES

1)

2)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:33 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLD2	Valley	1	1	Job Reference (optional)	162656596

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:34

Page: 1

GRIP

244/190

FT = 20%

- Tension TOP CHORD 1-2=-154/148, 2-3=-172/123, 3-4=-172/112, 4-5=-122/112
- BOT CHORD 1-8=-62/127, 7-8=-62/101, 6-7=-62/101, 5-6=-62/101 WEBS 3-7=-230/0, 2-8=-375/197, 4-6=-375/195
- NOTES

FORCES

Scale = 1:43.6

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-3-6, Interior (1) 3-3-6 to 4-3-6, Exterior(2R) 4-3-6 to 10-3-6, Interior (1) 10-3-6 to 11-3-6, Exterior(2E) 11-3-6 to 14-6-13 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- bearing plate capable of withstanding 24 lb uplift at joint 1, 158 lb uplift at joint 8 and 155 lb uplift at joint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A Mi Tek Affiliat 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY					
23120116	VLD3	Valley	1	1	Job Reference (optional)	162656597				

6-0-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:34 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-9-4

12-1-6

12-1-6

Scale = 1:39.3

TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psr) Spacin 20.0 Plate G 20.0 Lumber 10.0 Rep Sti 0.0* Code 10.0	Ig 2-0-0 Srip DOL 1.15 r DOL 1.15 ress Incr YES IRC201	18/TPI2014	TC BC WB Matrix-MSH	0.31 0.12 0.08	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	(IOC) - - 5	n/a n/a n/a	L/d 999 999 n/a	Weight: 50 lb	244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing dir 6-0-0 oc purlins. Rigid ceiling directly applied of bracing. (size) 1=12-2-0, 5=12-2-(7=12-2-0, 8=12-2-(7=12-2-0, 8=12-2-(Max Horiz 1=-115 (LC 10) Max Uplift 1=-32 (LC 10), 5=- 6=-136 (LC 15), 8= Max Grav 1=93 (LC 24), 5=72 (LC 21), 7=261 (LC 20)	3 rectly applied or or 10-0-0 oc 0, 6=12-2-0, 0 4 (LC 11), -139 (LC 14) 2 (LC 23), 6=435 C 21), 8=435 (LC	 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b chord and ar 	ned for wind load ids exposed to w d Industry Gable ralified building d 7-16; Pr=20.0 p 1.5); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren has been designed ad nonconcurren bas been designed n chord in all are by 2-00-00 wide 1 y other member	Is in the p vind (norm End Deta esigner a: signer a: signer a: signer a: f (Lum DC at B; Fully been cor oc. been cor oc. f for a 10. t with any ed for a liv as where will fit betv s.	lane of the tru- lal to the face ils as applical is per ANSI/TF .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto	uss), ble, 1 1. 1.15); ds.)psf					
FORCES	(lb) - Maximum Compression Tension	/Maximum 1	0) Provide mec bearing plate	hanical connecti	on (by oth standing 3	ers) of truss t 32 lb uplift at i	o oint					
TOP CHORD	1-2=-118/101, 2-3=-216/117, 4-5=-91/63	3-4=-216/117,	1, 4 lb uplift a uplift a	at joint 5, 139 lb 6.	uplift at joi	int 8 and 136	lb					
BOT CHORD	1-8=-32/78, 7-8=-32/73, 6-7= 5-6=-32/73	-32/73, 1	1) Beveled plate	e or shim require	ed to provi	de full bearino	9				mm	1111
WEBS NOTES	3-7=-174/0, 2-8=-398/218, 4-	6=-398/218 1	2) This truss is International	designed in acco Residential Cod	ordance w e sections	ith the 2018 s R502.11.1 a	nd			JI'	TH CA	ROL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-2-0, Exterior(2E) 9-2-0 to 12-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average component description description (unwe theoremonent) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	DAVID WEEKLEY - 125 SERENITY				
23120116	VLD4	Valley	1	1	Job Reference (optional)	162656598			

4-10-5

4-10-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-9-2

0-0-4

12 10 ∟

3x5 🛷

4-0-13

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:34 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-8

4-6-3

9-8-10

0-4-2

4x5 = 9 9 10 10 10 4 4x5 = $3x5 \approx$

9-8-10

Scale = 1:33.3

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.46	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.43	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.19	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL	10.0		-									Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-8-10 oc purlins. Rigid ceiling directly bracing. (size) 1=9-8-10, Max Horiz 1=-91 (LC Max Uplift 1=-51 (LC Max Grav 1=95 (LC	athing directly applied applied or 6-0-0 oc 3=9-8-10, 4=9-8-10 2 10) 2 21), 3=-51 (LC 20), C 14) 20), 3=95 (I C 21), 4-	d or 6 7 8 9) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) Gable requir) Gable requir) Gable studs) This truss ha chord live lox) * This truss ha on the bottor 3-06-00 tall h chord and ar 	7-16; Pr=20.0 ps .15); Pf=20.0 psf ls=1.0; Rough Cat =1.10 snow loads have l es continuous bott spaced at 4-0-0 or is been designed ad nonconcurrent i has been designed in chord in all area by 2-00-00 wide wi by other members.	f (roof LI (Lum DC t B; Fully been cor tom chor c. for a 10. with any d for a liv is where ill fit betv	:: Lum DOL= ² JL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loar e load of 20.0 a rectangle veen the botto	I.15); ds.)psf om					
	(LC 21)		1	 Provide mec bearing plate 	e capable of withst	n (by oth anding 5	ers) of truss to 51 lb uplift at io	o pint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		1, 51 lb uplif	at joint 3 and 110) lb uplift	at joint 4.						
TOP CHORD	1-2=-117/380 2-3=-	117/380	1	1) This truss is	designed in accor	dance w	Ith the 2018	nd					
BOT CHORD	1-4=-217/174, 3-4=-	217/174			Residential Code	sections	S ROUZ. I I. I A	nu					
WEBS	2-4=-605/274				Stondard	iuaiu Ai	131/TFTT.						
NOTES				0AD 0A3E(3)	Stanualu								
1) Unbalance	ed roof live loads have	been considered for											
this design	n											minin	11111
and doolgi		(a										N'ALL CA	Dalle

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-8-14, Exterior(2E) 6-8-14 to 9-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 21,2023

SEAL

036322

Voumment

anninnan an

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLD5	Valley	1	1	Job Reference (optional)	162656599

Scale = 1:29.3 Loading

TCLL (roof)

Snow (Pf)

TCDL

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:34

GRIP

244/190

FT = 20%

ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-7-14 6-11-11 3-7-14 3-3-12 4x5 = 2 9 10 2-9-2 3-0-13 12 10 ∟ 3 2-0-C 4 3x5 🖋 2x4 II 3x5 💊 7-3-13 (psf) Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (loc) 20.0 Plate Grip DOL 1.15 тс 0.26 Vert(LL) n/a n/a 999 MT20 20.0 BC 0.27 Lumber DOL 1.15 Vert(TL) n/a 999 n/a -10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a eight: 27 lb

SEAL 036322 anninnin an

BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		
BCDL	10.0					W
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-3-13 oc purlins. Rigid ceiling directly bracing. 	eathing directly applie y applied or 6-0-0 oc	 4) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss has chord live log 	7-16; Pr=20.0 psf (roof LI .15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been col es continuous bottom chol spaced at 4-0-0 oc. Is been designed for a 10. ad nonconcurrent with any	L: Lum DOL=1.15 DL=1.15 Plate v Exp.; Ce=0.9; Insidered for this rd bearing. 0 psf bottom v other live loads.	
FORCES	(size) 1=7-3-13 Max Horiz 1=-68 (LI) Max Uplift 1=-19 (LI 4=-75 (LI Max Grav 1=105 (L 4=541 (L (lb) - Maximum Cor	, 3=7-3-13, 4=7-3-13 C 12) C 21), 3=-19 (LC 20), C 14) C 20), 3=105 (LC 21) C 21) npression/Maximum	 * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 19 lb uplifi 	has been designed for a liven n chord in all areas where by 2-00-00 wide will fit betw by other members. hanical connection (by othe capable of withstanding at joint 3 and 75 lb uplift at	re load of 20.0psf a rectangle ween the bottom ners) of truss to 19 lb uplift at joint at joint 4.	
	Tension	1/22/	11) This truss is	designed in accordance w	/ith the 2018	
BOT CHORE) 1-4=-164/154, 3-4=	-164/154	International R802 10 2 a	Residential Code sections	3 R502.11.1 and	
WEBS	2-4=-387/203		LOAD CASE(S)	Standard	NOI/1111.	
NOTES						
 Unbaland this desig Wind: AS Vasd=10 Cat. II; E: zone and 3-0-5 to 4 cantileve right expr for reacti DOL=1.6 	ced roof live loads have gn. GCE 7-16; Vult=130mpl 3mph; TCDL=6.0psf; E yp B; Enclosed; MWFF I C-C Exterior(2E) 0-0- 4-4-2, Exterior(2E) 4-4- r left and right exposed osed;C-C for members ons shown; Lumber DC 0	e been considered for h (3-second gust) GCDL=6.0psf; h=25ft; S (envelope) exterior 5 to 3-0-5, Exterior(2I 2 to 7-4-2 zone; I; end vertical left and and forces & MWFR DL=1.60 plate grip	r R) S			THE REAL PROPERTY OF
 Truss de only. For see Stan or consul 	esigned for wind loads r studs exposed to wind dard Industry Gable Er It qualified building des	in the plane of the tru d (normal to the face) nd Details as applicat igner as per ANSI/TF	ss , ole, 11.			THE TRACT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and the prevention applicable from the Structure Building Component Advance interpreted the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

11. A. C. December 21,2023

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLD6	Valley	1	1	Job Reference (optional)	162656600

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:35 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-0

3

2x4 💊

Page: 1

4-11-0

Scale = 1:26.2

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC20 ⁻	8/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 18 lb	FT = 20%
LUMBER				5) Unbalanced	snow loads have b	been cor	nsidered for th	nis					
TOP CHOR	2x4 SP No.2				design.									
BOT CHOR	2x4 SP No.2			6) Gable require	es continuous botto	om chor	d bearing.						
OTHERS	2x4 SP No.3			7) Gable studs	spaced at 4-0-0 oc) .							
BRACING				8) This truss ha	s been designed fo	or a 10.0) psf bottom						
TOP CHOR	D Structural wo	ood shea	athing directly applie	ed or a	chord live loa	ad nonconcurrent w	vith any	other live loa	ds. Doef					
BOT CHOR	A-11-0 oc pu Rigid ceiling	irlins. directly	applied or 6-0-0 oc	5	on the bottor	n chord in all areas	s where	a rectangle	hai					
201 011014	bracing.	unoonj			3-06-00 tall t	y 2-00-00 wide wil	ll fit betv	veen the botto	om					
REACTION	S (size) 1=	=4-11-0,	3=4-11-0, 4=4-11-0	1	0) Provide mec	hanical connection	ı (bv oth	ers) of truss t	0					
	Max Horiz 1=	=-44 (LC	10)		bearing plate	capable of withsta	anding 7	' lb uplift at jo	int 3					
	Max Uplift 3=	=-7 (LC 1	15), 4=-34 (LC 14)		and 34 lb up	lift at joint 4.	0	. ,						
	Max Grav 1=	=89 (LC :	20), 3=89 (LC 21), 4	1=301 1	1) This truss is	designed in accord	dance w	ith the 2018						
	(L	.0 20)			International	Residential Code s	sections	R502.11.1 a	nd					
FORCES	(Ib) - Maximi	um Com	pression/Maximum		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
		2 2 - 0	1/106	L	OAD CASE(S)	Standard								
	J = 1.2 - 01/100	, 2-30 2 1- 02/	00											
WEBS	2_4=_187/10	3-4–-02/ N	90											
NOTES	2-4107/100													
1) Unhalan	cod roof live load	de hava	haan considered for											
this design														
2) Wind: ASCE 7-16: Vult=130mph (3-second gust)													, in the second	11111
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior												1	"TH CA	Roil
				r								1	R	
zone an	d C-C Exterior(2)	E) zone;	cantilever left and ri	ight								~	FESS	10X Vist
exposed ; end vertical left and right exposed;C-C for											4	Ů	AP.	1 Sille
member	s and forces & N	/WFRS 1	for reactions shown;										.a. ~	
Lumber	DOL=1.60 plate	grip DO	L=1.60								-	:	SEA	1 1 2
Truss d	esigned for wind	loads in	the plane of the tru	SS							=	:	JLA	5 : E
only. Fo	or studs exposed	to wind	(normal to the face)	,							=		0363	22 : =
see Star	see Standard Industry Gable End Details as applicable,													
or consu	III qualified build	ing desig	Iner as per ANSI/TP	11.								-	·	- A. A. S.
4) ICLL: A	SUE /-16; Pr=20	U.U pst (r	DOI LL: LUM DOL=1	.15								10	N.S.Now	FFR. X S
	15) le=1 0. Pour	.u psi (Ll ab Cat P	· Fully Evp · Ce-0.0									1	P. GIN	5. 28 1
Cs=1.00	: Ct=1 10	yn Gal D	, i uny Exp., Ce-0.9	,								1	A CA	BEIN

igne TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

December 21,2023

A. GI A. GIL

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut before the Structure Building former the Advection (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DAVID WEEKLEY - 125 SERENITY	
23120116	VLD7	Valley	1	1	Job Reference (optional)	162656601

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Dec 19 16:58:35 $ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

0-0-4

1-0-13

3x5 =

2x4 💊 2x4 🍫

2-6-3

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 3) Truss des only. For see Stance or consult 4) TCLL: ASI Plate DOI DOL=1.15 Cs=1.00; 5) Unbalance design. 6) Gable reg	2x4 SP No 2x4 SP No 2x4 SP No Structural 1 2-6-3 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxir Tension 1-2=-137/6 1-3=-33/99 ed roof live lo n. CE 7-16; Vult 3mph; TCDL= cp B; Enclosec C-C Exterior(end vertical I and forces & OL=1.60 plat signed for wir cqualified buil CE 7-16; Pr= L=1.15); Pf=2 L=1.10; Pf=2 L=1.10; Ro C=1.10 ed snow load	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	athing directly applied applied or 10-0-0 oc 3=2-6-3 11) (4), 3=-9 (LC 15) 20), 3=114 (LC 21) pression/Maximum 37/62 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri pht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi m chord bearing	7) 8) 9) d or 10 11 LC ght is le, 1. 15 s	Gable studs s This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate and 9 lb uplif) This truss is of International R802.10.2 ar DAD CASE(S)	spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta t at joint 3. designed in accord Residential Code s nd referenced stand Standard	, br a 10.0 vith any for a liv s where I fit betv (by oth anding 9 lance w sections dard AN) psf bottom other live loa e load of 20.0 veen the botto ers) of truss t lb uplift at joi ith the 2018 R502.11.1 a ISI/TPI 1.	ds.)psf om o int 1 nd				SEA 0363	ROUTURE 22 ILBERTITION
	The requires continuous bottom chord bearing. December 21,2023									21,2023				

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

PLATE SIZE

software or upon request.

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.