

RE: 23-7315-A RVF-LOT #28 ROOF Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 23-7315-A Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 33 individual, dated Truss Design Drawings and 0 Additional Drawings.

No	Seal#	Truss Name	Date	No	Seal#	Truss Name	Date
No.				No.			
1	160459538	CJ01	8/30/2023	21	l60459558	T05S	8/30/2023
2	160459539	HG01	8/30/2023	22	160459559	T06	8/30/2023
3	160459540	J01	8/30/2023	23	160459560	T07	8/30/2023
4	160459541	M01	8/30/2023	24	160459561	V01	8/30/2023
5	160459542	M02	8/30/2023	25	160459562	V02	8/30/2023
6	160459543	M03	8/30/2023	26	160459563	V03	8/30/2023
7	160459544	PB01	8/30/2023	27	160459564	V04	8/30/2023
8	160459545	PB01GE	8/30/2023	28	160459565	V05	8/30/2023
9	160459546	PB02	8/30/2023	29	160459566	V06	8/30/2023
10	160459547	T01GE	8/30/2023	30	160459567	V07	8/30/2023
11	160459548	T02G	8/30/2023	31	160459568	V08	8/30/2023
12	160459549	T02SGE	8/30/2023	32	160459569	V09	8/30/2023
13	160459550	T03	8/30/2023	33	160459570	V10	8/30/2023
14	160459551	T03A	8/30/2023				
15	160459552	T03GE	8/30/2023				
16	160459553	T04	8/30/2023				
17	160459554	T04A	8/30/2023				

8/30/2023

8/30/2023

8/30/2023

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

T05

T05A

T05GE

based on the parameters provided by Riverside Roof Truss.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

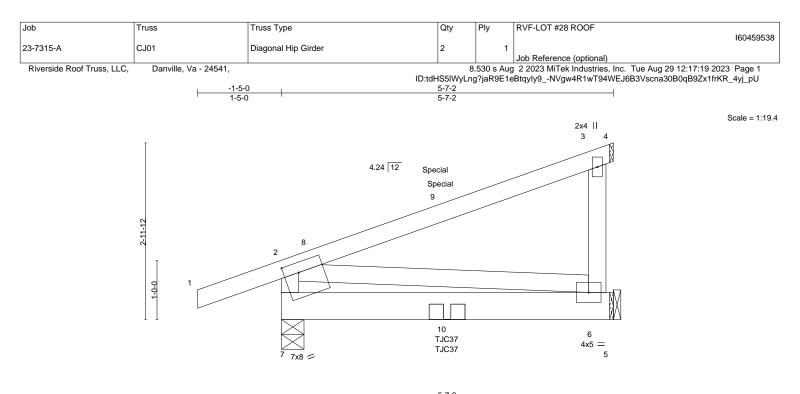
North Carolina COA: C-0844

160459555

160459556

160459557

18


19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

5-7-2
570

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNO	CSI. TC 0.57 BC 0.15 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP						Weight: 35 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2			BRACING- TOP CHORD	Structura	al wood	sheathir	g directly app	plied or 5-7-2 oc purlir	IS,

BOT CHORD 2x6 SP No.2 except end verticals. BOT CHORD 2x4 SP No.3 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-4-9, 6=Mechanical Max Horz 7=95(LC 9) Max Uplift 7=-87(LC 12), 6=-37(LC 12)

Max Grav 7=315(LC 2), 6=231(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-263/94

NOTES-

WEBS

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 7 and 37 lb uplift at joint 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie TJC37 (4 nail, 30-90) or equivalent at 2-9-8 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the left, sloping 0.0 deg. down.
- Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 2-9-8 from the left end to connect truss(es) to back face of bottom 11) chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 48 lb down and 17 lb up at 2-9-8, and 48 lb down and 17 lb up at 2-9-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

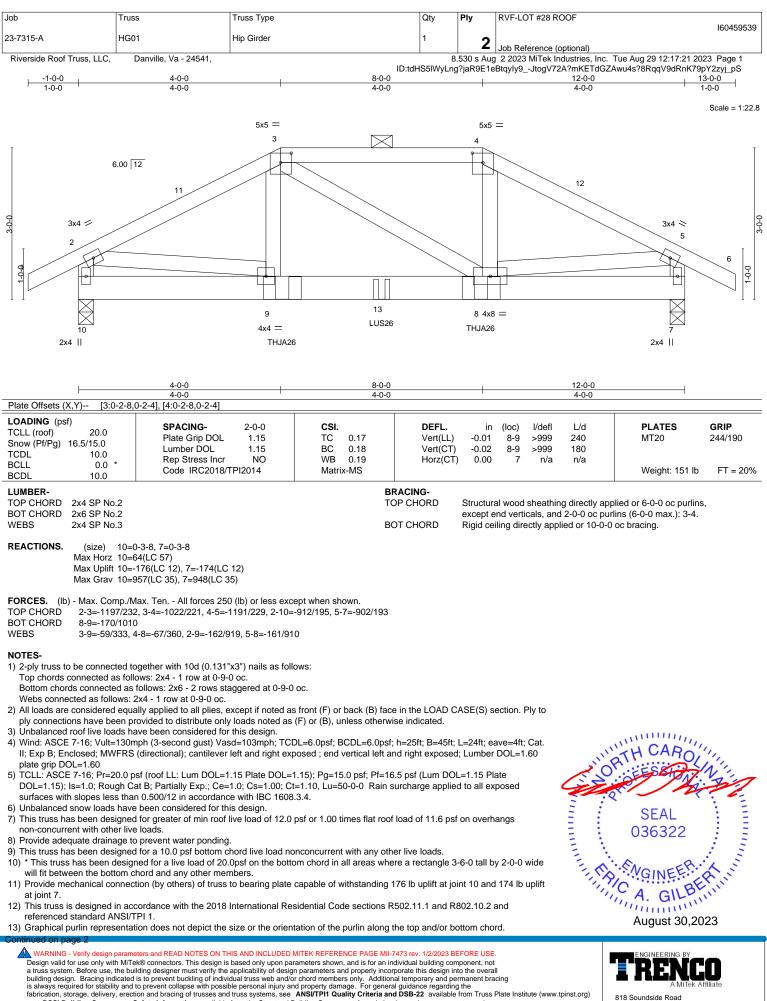
14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE FAGE MILT 473 TeV. IN2202 DEL ONE DOL: Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF			
						160459538			
	23-7315-A	CJ01	Diagonal Hip Girder	2	1				
						Job Reference (optional)			
	Riverside Roof Truss, LLC,	Danville, Va - 24541,	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:19 2023 Page 2						
			ID:tdHS5IWyLng?jaR9E1eBtqyIy9NVgw4R1wT94WEJ6B3Vscna30B0qB9Zx1frKR_4yj_pU						


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-3=-43, 3-4=-43, 5-7=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

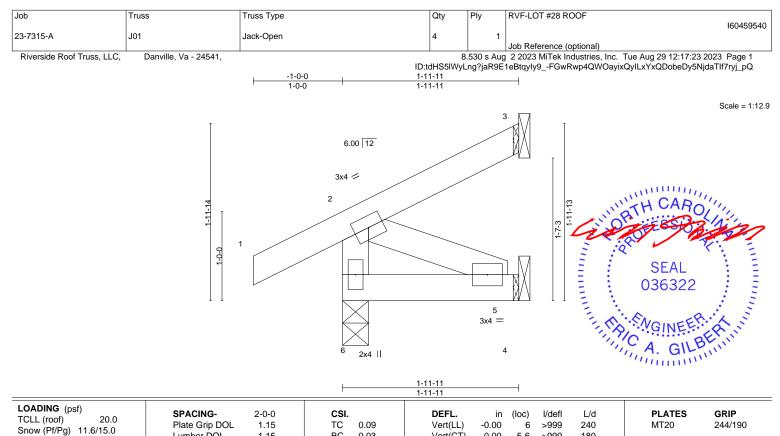
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF			
						160459539			
	23-7315-A	HG01	Hip Girder	1	2				
					_	Job Reference (optional)			
	Riverside Roof Truss, LLC,	Danville, Va - 24541,	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:21 2023 Page 2						
			ID:tdHS5IWyLng?jaR9E1eBtqyIy9JtogV72A?mKETdGZAwu4s?8RqqV9dRnK79pY2zyj_pS						

NOTES-

- 14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 4-0-6 from the left end to connect truss(es) to back face of bottom chord.
- Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 6-0-0 from the left end to connect truss(es) to back face of bottom chord.
 Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 7-11-10 from the left end to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-2=-43, 2-3=-43, 3-4=-53, 4-5=-43, 5-6=-43, 7-10=-20

Concentrated Loads (lb)

Vert: 9=-336(B) 8=-336(B) 13=-134(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

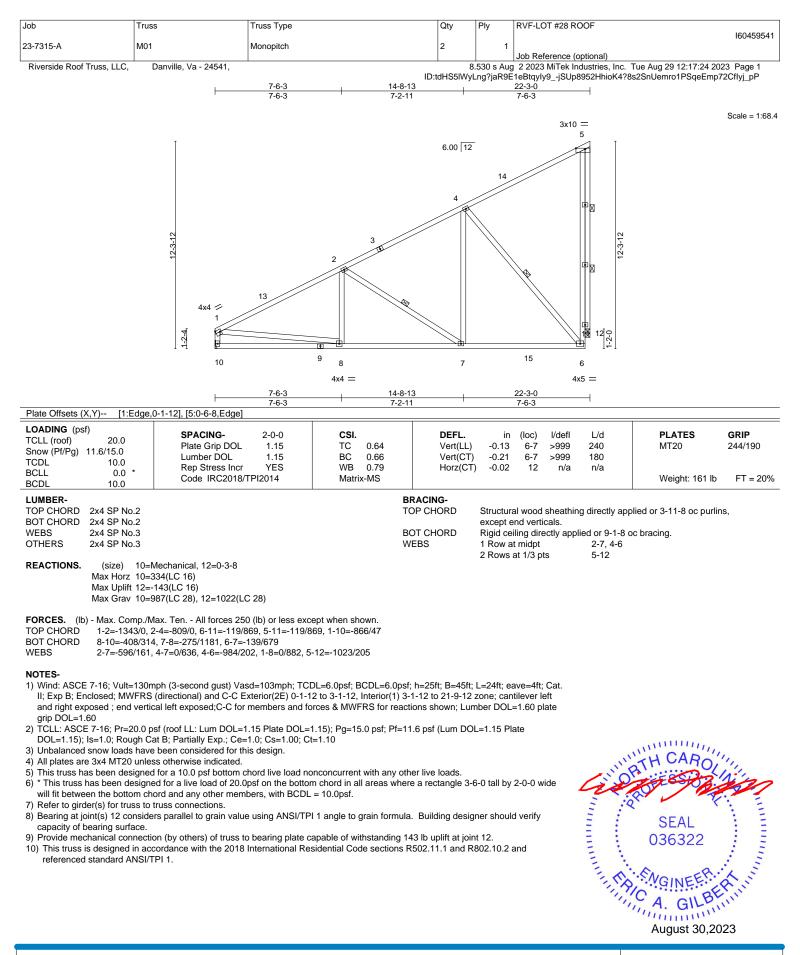
TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.03 Matrix-MP	Vert(CT) Horz(CT)	-0.00 5-6 -0.00 3	>999 n/a	180 n/a	Weight: 11 lb	FT = 20%
LUMBER-			BI	RACING-					
TOP CHORD	2x4 SP No.2		тс	OP CHORD	Structural wood	d sheathin	g directly app	blied or 1-11-11 oc purli	ns,
BOT CHORD	2x4 SP No.2				except end ver	ticals.			
WEBS	2x4 SP No.3		BO	OT CHORD	Rigid ceiling di	rectly appl	ied or 10-0-0	oc bracing.	

BOT CHORD

REACTIONS. (size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=68(LC 16) Max Uplift 6=-24(LC 16), 3=-10(LC 13), 4=-14(LC 16)

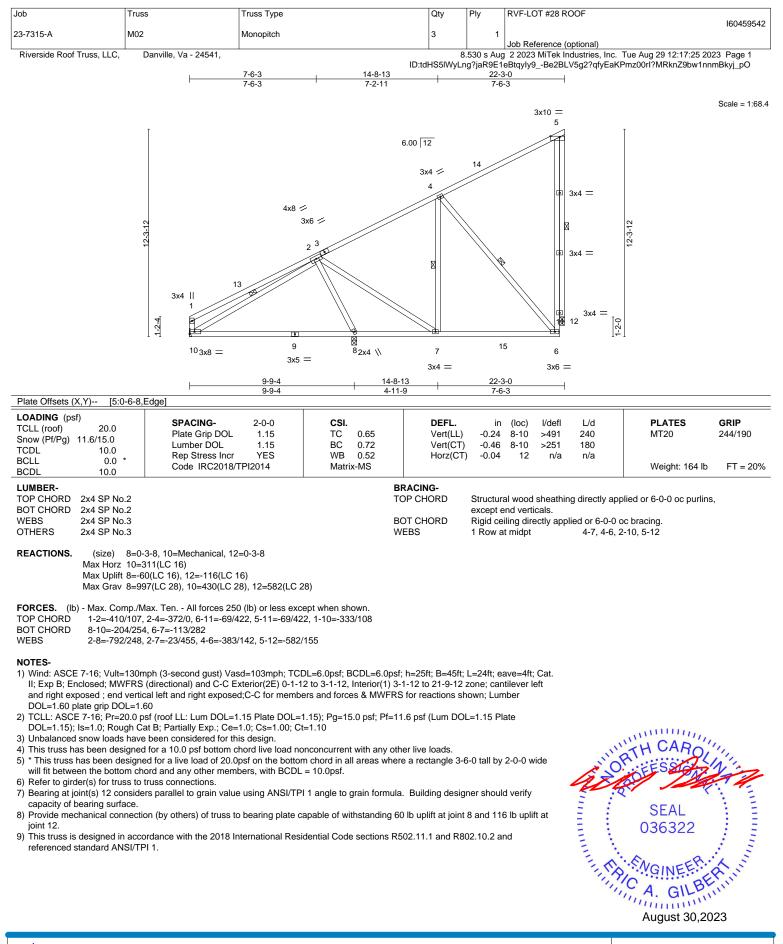
Max Grav 6=168(LC 21), 3=34(LC 21), 4=36(LC 7)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

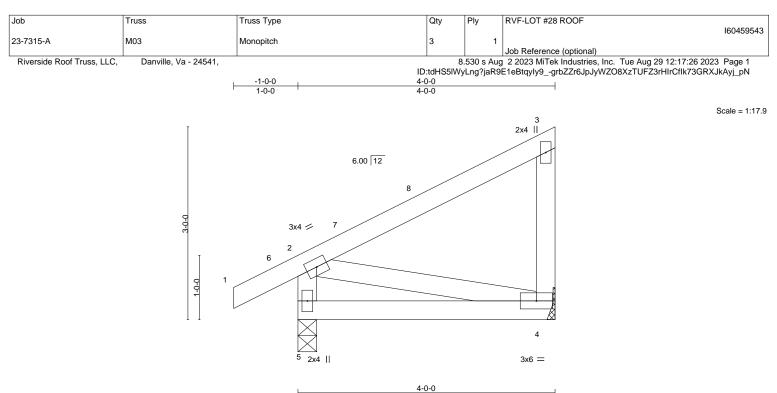
NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 6, 10 lb uplift at joint 3 and 14 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 30,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

A MiTek /

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek . 818 Soundside Road Edenton, NC 27932

			4-0-0			1			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.25 BC 0.16 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP						Weight: 24 lb	FT = 20%
LUMBER-		BF	RACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

REACTIONS. (size) 5=0-3-8, 4=Mechanical

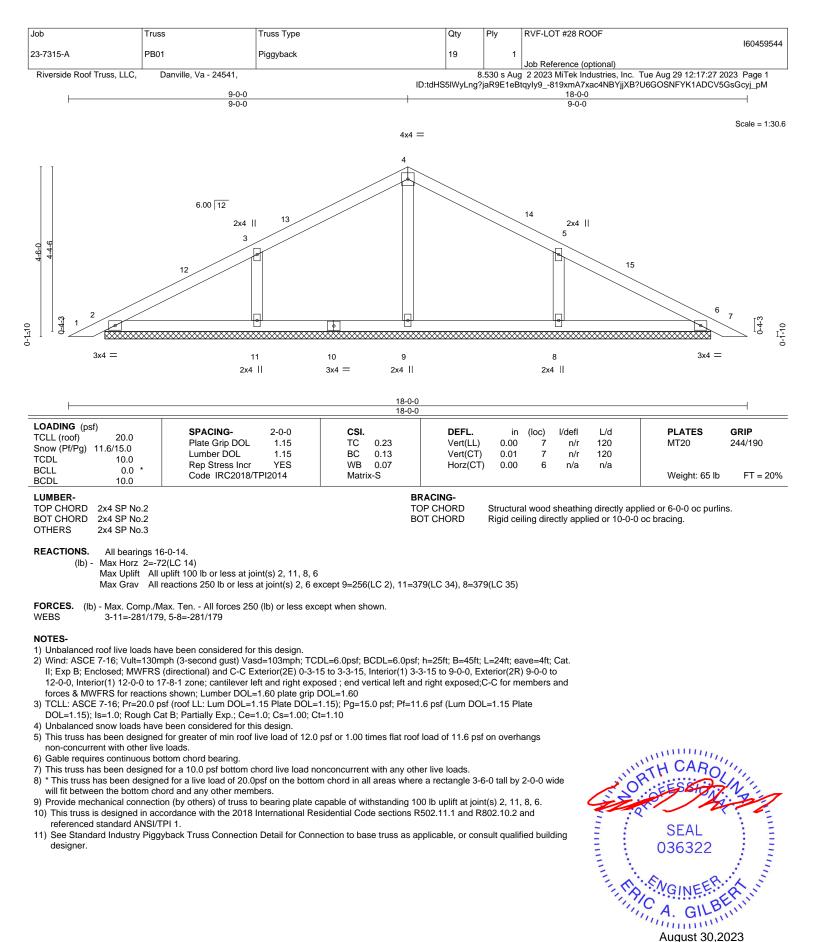
Max Horz 5=98(LC 15) Max Uplift 5=-42(LC 16), 4=-26(LC 13)

Max Grav 5=228(LC 2), 4=154(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 5 and 26 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Plate Offsets (X,Y)	[16:0-2-8.0-3-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.04 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2			RACING- DP CHORD	Structura	al wood	sheathin	g directly ap	plied or 6-0-0 oc purlir	IS.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

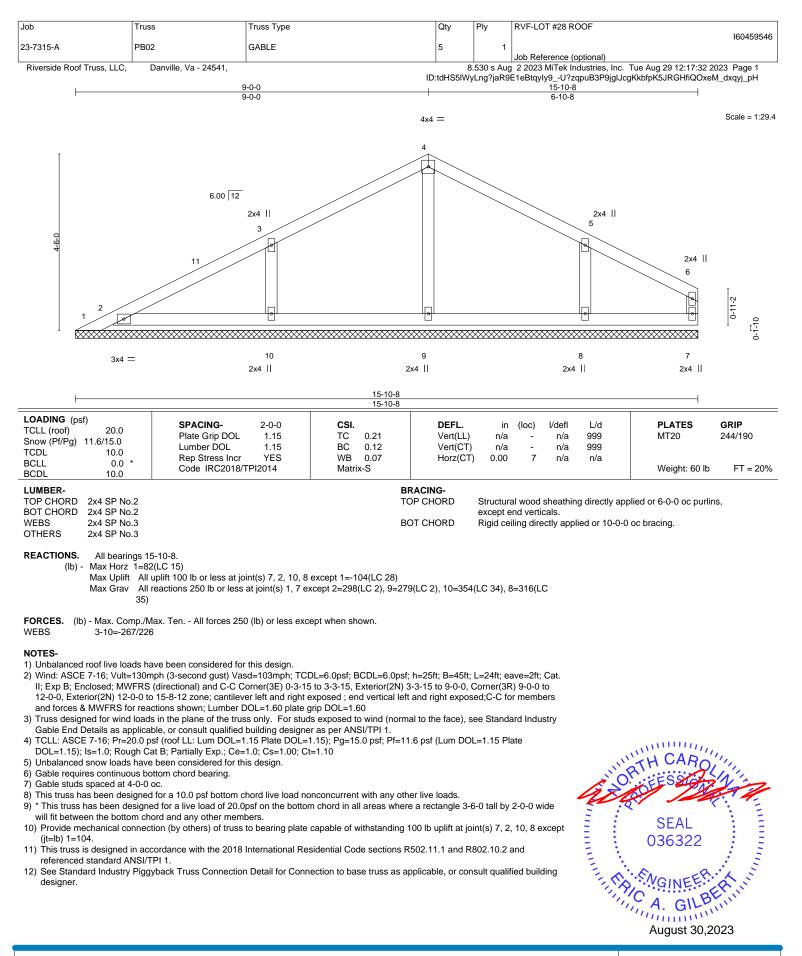
REACTIONS. All bearings 18-0-0.

(lb) - Max Horz 1=72(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 11, 2, 15, 16, 17, 18, 14, 13, 12, 10

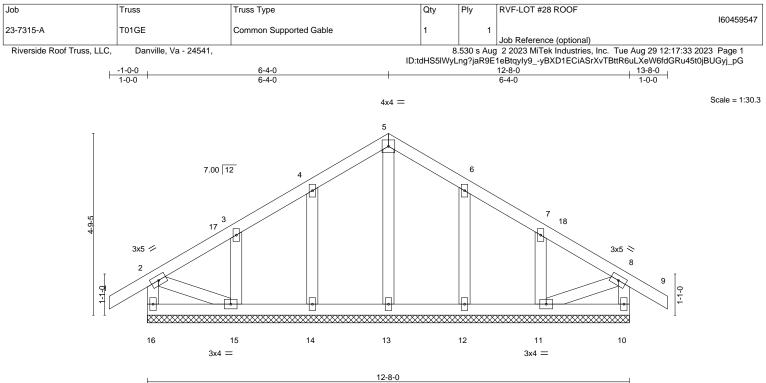
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-15 to 3-3-15, Exterior(2N) 3-3-15 to 9-0-0, Corner(3R) 9-0-0 to 12-0-0, Exterior(2N) 12-0-0 to 17-8-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 2, 16, 17, 18, 14, 13, 12, 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek . 818 Soundside Road Edenton, NC 27932

		12-8-	0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.09 BC 0.04 WB 0.04 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 9 9 10	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2			RACING- DP CHORD	Structura	ıl wood	sheathir	ig directly ap	plied or 6-0-0 oc purlir	ıs,

BOT CHORD

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

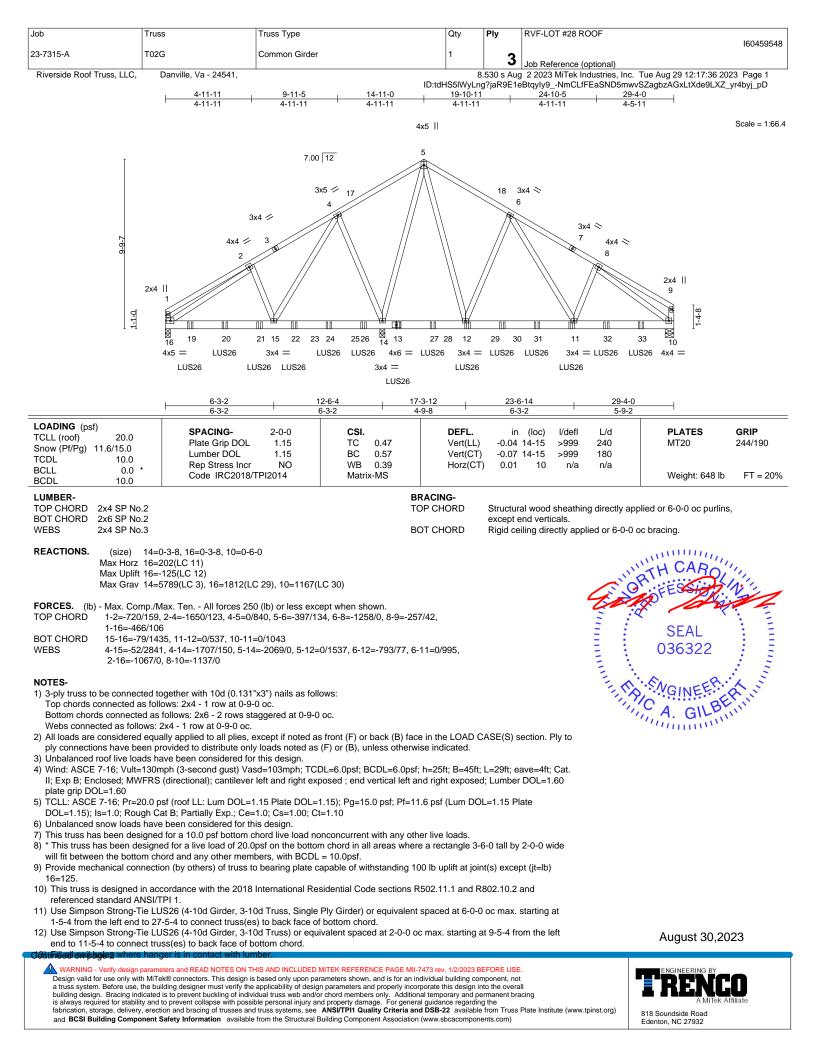
REACTIONS. All bearings 12-8-0.

Max Horz 16=-113(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 6-4-0, Corner(3R) 6-4-0 to 9-4-0, Exterior(2N) 9-4-0 to 13-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12.11.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

except end verticals

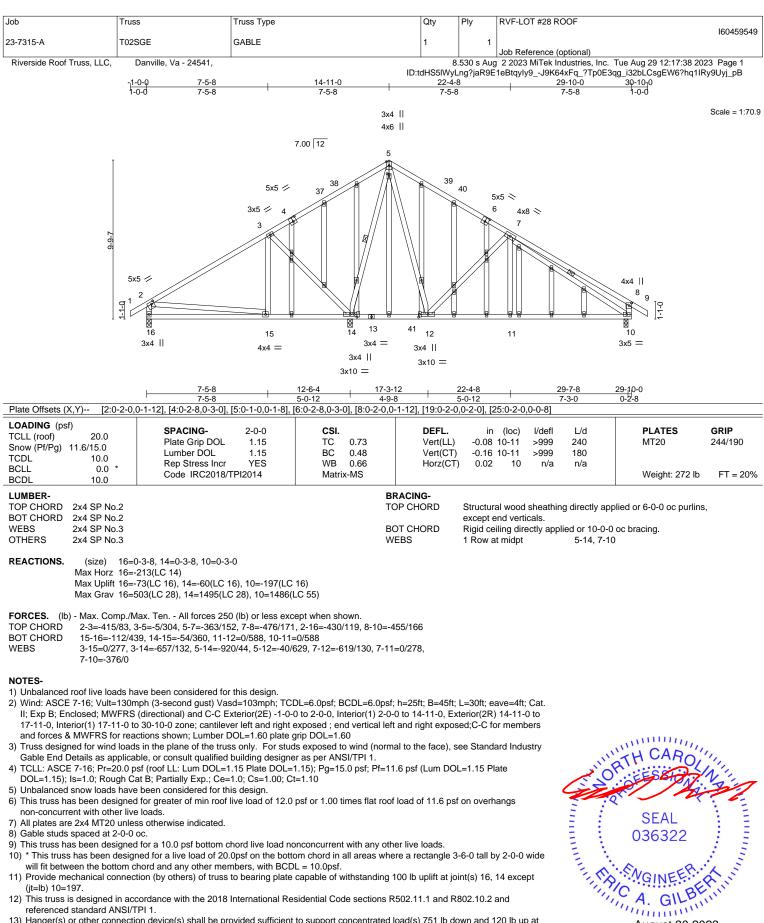
Rigid ceiling directly applied or 6-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF				
	00 7045 4	T000	Common Cinder			160459548				
	23-7315-A	T02G	Common Girder	1	3	Job Reference (optional)				
ι	Riverside Roof Truss, LLC.	Danville. Va - 24541.		8	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:36 2023 Page 2					
		Bartino, va 24041,	ID:tdHS5IWyLng?jaR9E1eBtqj/y9NmCLFFEaSND5mwvSZagbzAGxLtXde9LXZ_yr4byj_D							

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-5=-43, 5-9=-43, 10-16=-20 Concentrated Loads (lb)

Vert: 13=-300(B) 12=-300(B) 11=-134(B) 19=-501(B) 20=-501(B) 21=-501(B) 22=-499(B) 24=-686(B) 26=-686(B) 27=-300(B) 30=-135(B) 31=-134(B) 32=-134(B) 33=-134(B) 33=-1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

referenced standard ANSI/TPI 1. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 751 lb down and 120 lb up at

29-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

August 30,2023

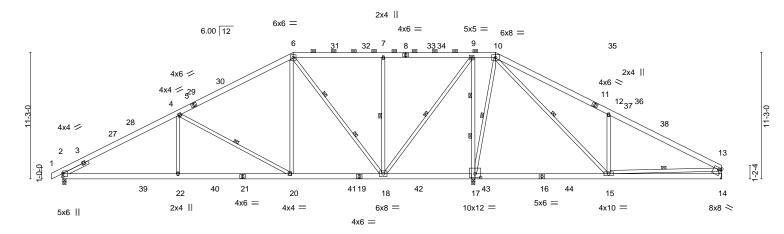
Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF
					160459549
23-7315-A	T02SGE	GABLE	1	1	
					Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	.530 s Aug	2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:38 2023 Page 2

ID:tdHS5IWyLng?jaR9E1eBtqyIy9_-J9K64xFq_?Tp0E3qg_i32bLCsgEW6?hq1IRy9Uyj_pB


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-43, 2-5=-43, 5-8=-43, 8-9=-43, 10-16=-20

Concentrated Loads (lb) Vert: 10=-604

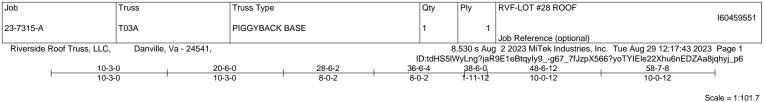

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:102.5

818 Soundside Road Edenton, NC 27932

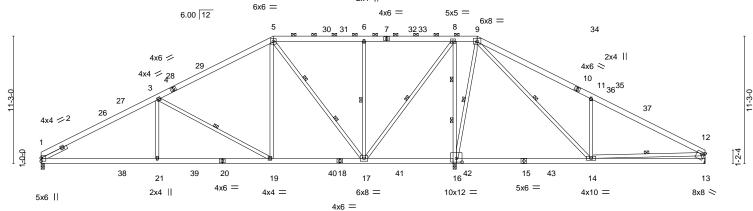
L	10-3-0	20-6-0	28-6-2	36-6-4	48-6-12		58-7-8	
Diata Offecto (V	10-3-0		8-0-2	8-0-2	12-0-8	I	10-0-12	1
Plate Offsets (X		e,0-2-4], [17:0-6-0,0-4-0]						
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 1 TCDL	20.0 6.5/15.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.64 WB 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.26 15-17 >999 -0.39 15-17 >668 0.04 17 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-MS		0.01 17 174	1,0	Weight: 461 lb	FT = 20%
BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	3 2-6-0	Т	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathin, except end verticals, and Rigid ceiling directly appli 1 Row at midpt	2-0-0 oc purlins ied or 6-0-0 oc b	(6-0-0 max.): 6-10.	
REACTIONS.	(size) 2=0- Max Horz 2=23 Max Uplift 2=-1	3-8, 14=Mechanical, 17=0-3-8	16)		2 Rows at 1/3 pts	6-18, 9-17	10, 10, 17, 10, 10, 1	
FORCES. (lb) TOP CHORD BOT CHORD	2-4=-2259/235 10-12=-746/30 2-22=-136/215	lax. Ten All forces 250 (lb) or less exc 5, 4-6=-1298/246, 6-7=-477/238, 7-9=-4 35, 12-13=-682/120, 13-14=-522/110 50, 20-22=-136/2150, 18-20=0/1130, 17	77/238, 9-10=0/854,	22/151,				
WEBS	,	-20=-1168/190, 6-20=0/963, 6-18=-1188 20, 9-17=-1917/233, 10-17=-1356/176, 1	, , ,	=-696/302,				
 2) Wind: ASCE II; Exp B; Enc 28-6-2, Interior ; end vertical DOL=1.60 3) TCLL: ASCE DOL=1.15); I surcharge ap 4) Unbalanced sist 5) This truss har non-concurre 6) Provide adeq 7) This truss har non-concurre 8) This truss har non-concurre 8) This truss har non	7-16; Vult=130m closed; MWFRS pr(1) 28-6-2 to 3 left and right exp 7-16; Pr=20.0 p s=1.0; Rough Ca plied to all expos snow loads have s been designed nt with other live uate drainage to s been designed as been designed n the bottom cho er(s) for truss to the	o prevent water ponding. If for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the botton ord and any other members, with BCDL truss connections.	0 to 4-10-6, Interior(1) 4- erior(1) 46-9-8 to 58-5-1. WFRS for reactions sho 1.15); Pg=15.0 psf; Pf=1 =1.10, Lu=50-0-0; Min. i)/12 in accordance with psf or 1.00 times flat roc onconcurrent with any ot n chord in all areas whe = 10.0psf.	10-6 to 20-6-0, E 2 zone; cantilever wn; Lumber DOL 6.5 psf (Lum DOI flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. are a rectangle 3-6	xterior(2R) 20-6-0 to left and right exposed =1.60 plate grip d governs. Rain on overhangs	A DATE OF THE PARTY OF THE PART	SEAL 036322	A MANUTURA
capacity of l 11) Provide me	bearing surface.	lers parallel to grain value using ANSI/T tion (by others) of truss to bearing plate					August 30,20	023
Design valid fo a truss system building design is always requ	Verify design parame or use only with MiTe . Before use, the bui n. Bracing indicated ired for stability and t	ters and READ NOTES ON THIS AND INCLUDED k® connectors. This design is based only upon pa liding designer must verify the applicability of desig is to prevent buckling of individual truss web and/c to prevent collapse with possible personal injury ar ion and breing of trusses and truss svetams sea	rameters shown, and is for an i n parameters and properly inco r chord members only. Additio nd property damage. For gene	individual building com orporate this design into onal temporary and per aral guidance regarding	ponent, not o the overall rmanent bracing i the	1	ENGINEERING BY	D ffillate

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Γ	Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF				
						160459550				
	23-7315-A	T03	Piggyback Base	3	1					
						Job Reference (optional)				
	Riverside Roof Truss, LLC,	Danville, Va - 24541,	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:40 2023 Page 2							
			ID:tdHS5IWyLng?jaR9E1eBtqyIy9FXSsVdH5WcjXFYDDoPkX70QXHUsPatT7Ucw2DMyj_p9							

NOTES-

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

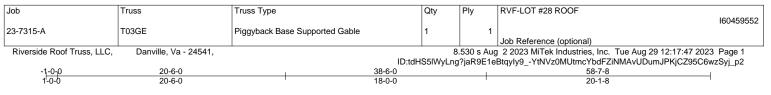

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

2x4 ||

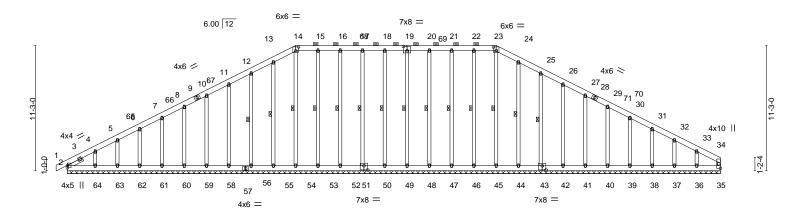
10-3-0	20-6-0	28-6-2	36-6-4	48-6-12		58-7-8	
10-3-0	10-3-0	8-0-2	8-0-2	12-0-8	1	10-0-12	
Plate Offsets (X,Y) [13:Edge,	.0-2-4], [16:0-6-0,0-4-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 POLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.64 WB 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) l/defl -0.26 14-16 >999 -0.39 14-16 >668 0.04 16 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS				Weight: 458 lb	FT = 20%
Max Horz 1=22 Max Uplift 1=-86	3-8, 13=Mechanical, 16=0-3-8	т В V	RACING- OP CHORD OT CHORD VEBS	Structural wood sheathin, except end verticals, and Rigid ceiling directly appl 1 Row at midpt 2 Rows at 1/3 pts	2-0-0 oc purli ied or 6-0-0 oc	ins (6-0-0 max.): 5-9. c bracing. , 8-17, 9-16, 9-14, 12-1	,
TOP CHORD 1-3=-2255/245 11-12=-683/12 BOT CHORD 1-21=-136/215 13-14=-85/358 WEBS 3-21=0/507, 3-	19=-1171/191, 5-19=0/964, 5-17=-118 0, 8-16=-1916/233, 9-16=-1355/174, 9-	79/242, 8-9=0/851, 9-11: -17=-865/179, 14-16=-62 7/80, 6-17=-667/168,	20/147,				
 2) Wind: ASCE 7-16; Vult=130m II; Exp B; Enclosed; MWFRS I 28-6-2, Interior(1) 28-6-2 to 35 ; end vertical left and right exp DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 ps DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) This truss has been designed 7) * This truss has been designed 7) * This truss has been designed 7) * This truss has been designed 7) bearing at joint(s) 16 consider capacity of bearing surface. 10) Provide mechanical connect (jt=lb) 16=147. 	prevent water ponding. for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the botto ord and any other members, with BCDL) to 5-10-6, Interior(1) 5- erior(1) 46-9-8 to 58-5-1: IWFRS for reactions sho 1.15); Pg=15.0 psf; Pf=1 t=1.10, Lu=50-0-0; Min 1 0/12 in accordance with 1 0/12 in accordance with 1 onconcurrent with any ott m chord in all areas whe . = 10.0psf. I 1 angle to grain formula capable of withstanding	10-6 to 20-6-0, É 2 zone; cantileve wn; Lumber DOL 6.5 psf (Lum DO flat roof snow loa IBC 1608.3.4. her live loads. re a rectangle 3-f a. Building desig 100 lb uplift at jo	 tterior(2R) 20-6-0 to left and right exposed =1.60 plate grip =1.15 Plate d governs. Rain 6-0 tall by 2-0-0 wide ner should verify int(s) 1, 13 except 	A COMMUNICATION OF THE PARTY OF	SEAL 036322	23

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Contract Contra

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF				
23-7315-A	T03A	PIGGYBACK BASE	1	1	I60459551				
231313-4	1057		1		Job Reference (optional)				
Riverside Roof Truss, LLC,	Danville, Va - 24541,	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:43 2023 Page 2							
		ID:tdHS5IWyLng?jaR9E1eBtqyly9g67_7fJzpX566?yoTYIEIe22Xhu6nEDZAa8jqhyj_p6							

NOTES-


12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

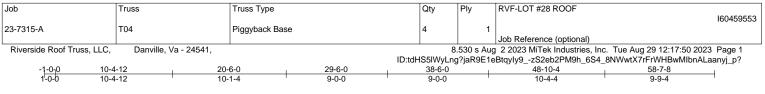
Scale = 1:103.4

<u> </u>		58-7-							
Plate Offsets (X,Y) [14:0-3-0	,0-4-0], [19:0-4-0,0-4-8], [23:0-3-0,0-4-0	<u>58-7-</u>)], [43:0-4-0,0-4-8], [51:0	-						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.14 BC 0.05 WB 0.17	DEFL. Vert(LL) Vert(CT)	-0.00 0.00	(loc) 1 1	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.17 Matrix-S	Horz(CT)	0.01	35	n/a	n/a	Weight: 589 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3	3 1-6-4	Т	SOT CHORD	except en	d vertion ng dire	cals, and	2-0-0 oc pu ied or 10-0-0 23-45, 22	plied or 6-0-0 oc purlins rlins (6-0-0 max.): 14-2:) oc bracing. 2-46, 21-47, 20-48, 19-4 3-52, 15-53, 14-54, 13-5 5-43	3. 9, 18-50,
64, 4 Max Grav All r 59, 6 FORCES. (lb) - Max. Comp./M TOP CHORD 11-12=-120/25		45, 46, 47, 48, 49, 50, 5 , 38, 37, 36 ept when shown. 4-15=-123/322, 15-16=-1	1, 52, 53, 54, 55, 23/322,						
 NOTES- Unbalanced roof live loads ha Wind: ASCE 7-16; Vult=130m II; Exp B; Enclosed; MWFRS 26-6-0, Exterior(2N) 26-6-0 to exposed; end vertical left and grip DOL=1.60 Truss designed for wind loads Gable End Details as applicat TCLL: ASCE 7-16; Pr=20.0 pr DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to All plates are 2x4 MT20 unless Gable requires continuous bo Gable studs spaced at 2-0-011 This truss has been designed * This truss has been designed mon-concurrent with other live 	for greater of min roof live load of 12.0 loads. prevent water ponding. is otherwise indicated. ttom chord bearing.	DL=6.0psf; BCDL=6.0ps to 4-10-6, Exterior(2N) ixterior(2N) 44-6-0 to 58 prces & MWFRS for reac ds exposed to wind (norr er as per ANSI/TPI 1. 1.15); Pg=15.0 psf; Pf=1 t=1.10, Lu=50-0-0; Min. J/12 in accordance with psf or 1.00 times flat roo	4-10-6 to 20-6-0, (-5-12 zone; cantile tions shown; Lum nal to the face), se 6.5 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 11.6 psf bther live loads.	Corner(3R ever left an ber DOL= ee Standar =1.15 Plat governs. on overha) 20-6-(id right 1.60 pla d Indus te Rain ngs	0 to ate stry	The second secon	SEAL 036322	Humming Humming Hum
Design valid for use only with MiTel a truss system. Before use, the buil building design. Bracing indicated is always required for stability and t fabrication, storage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDED (& connectors. This design is based only upon pa ding designer must verify the applicability of design is to prevent buckling of individual truss web and/c o prevent collapse with possible personal injury ar on and bracing of trusses and truss systems, see afety Information available from the Structural E	rameters shown, and is for an i in parameters and properly inco or chord members only. Additio d property damage. For gene ANSI/TPI1 Quality Criteria a	individual building comported this design into proporate this design into pral temporary and perion ral guidance regarding nd DSB-22 available f	oonent, not o the overall manent braci the rom Truss Pl	-	ute (www.t	pinst.org)	ENGINEERING BY AMITAK A 818 Soundside Road Edenton, NC 27932	O ffiliate

Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF	
23-7315-A	T03GE	Piggyback Base Supported Gable	1	1	160459552	
23-7315-A	TUSGE	Figgyback base Supported Gable	1	· ·	Job Reference (optional)	
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	.530 s Aug	2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:48 2023 Page 2	
ID:tdHS5IWyLng?jaR9E1eBtqyly904xtAMN6e3kPCnqlG5tPSil3WilZSeplKssUWvy						

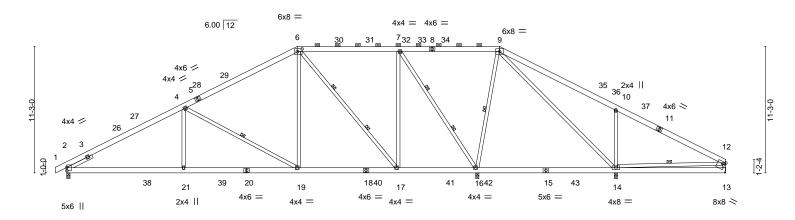
NOTES-

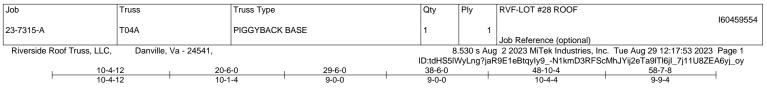
13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 62, 63, 64, 44, 43, 42, 41, 40, 39, 38, 37, 36.


14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

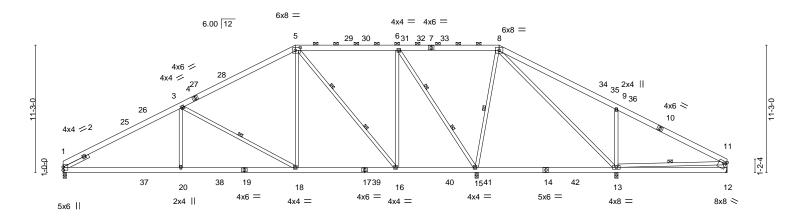
15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Scale = 1:102.5

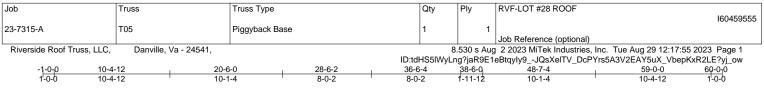
818 Soundside Road Edenton, NC 27932



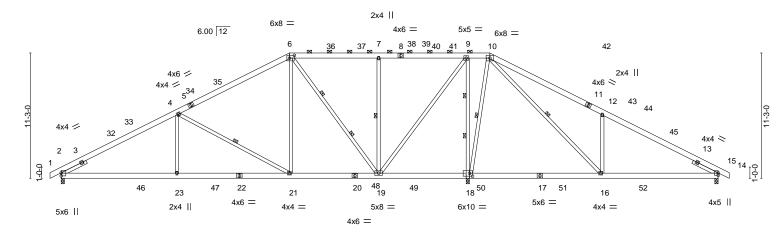
L	10-4-12	20-6-0	29-6-0	36-6-4	48-10-4		58-7-8	
Plate Offsets (X	10-4-12	10-1-4)-3-0], [13:Edge,0-2-4]	9-0-0	7-0-4	12-4-0	1	9-9-4	
•								
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 1 TCDL	20.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.79 BC 0.68 WB 0.94	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.21 14-16 >693 -0.31 14-16 >477 0.06 16 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-MS	1012(01)	0.00 10 11/a	1#a	Weight: 446 lb	FT = 20%
SLIDER	2x6 SP No.2 2x4 SP No.3 *Ex 7-16: 2x4 SP No Left 2x4 SP No.3	.1 3 2-6-0	Т	BRACING- TOP CHORD BOT CHORD VEBS	Structural wood sheathin except end verticals, and Rigid ceiling directly appl 6-0-0 oc bracing: 14-16. 1 Row at midpt 2 Rows at 1/3 pts	2-0-0 oc pur	lins (6-0-0 max.): 6-9. oc bracing, Except: 6, 12-14	ins,
	Max Horz 2=23 Max Uplift All u Max Grav All r - Max. Comp./M 2-4=-2369/256 2-21=-150/224 4-21=0/507, 4-	3-8 except (jt=length) 13=Mechanical. 7(LC 15) µplift 100 lb or less at joint(s) 16 except 2 eactions 250 lb or less at joint(s) 13 exc ax. Ten All forces 250 (lb) or less exca , 4-6=-1404/267, 6-7=-517/264, 7-9=0/6 5, 19-21=-150/2245, 17-19=0/1252, 16- 19=-1167/189, 6-19=0/998, 6-17=-1214 , 9-14=-25/274, 10-14=-714/307, 12-14	ept 2=1627(LC 28), 16= ept when shown. i40, 9-10=-47/486, 10-1: 17=0/545, 14-16=-466/ /61, 7-17=0/1209, 7-16=	=2882(LC 28), 14= 2=-83/410 137				
 Wind: ASCE I; Exp B; Enc. 28-9-8, Interior ; end vertical DOL=1.60 TCLL: ASCE DOL=1.15); I: surcharge ap Unbalanced as	7-16; Vult=130m losed; MWFRS left and right exp 7-16; Pr=20.0 ps s=1.0; Rough Ca plied to all expos show loads have s been designed nt with other live uate drainage to s been designed as been designed as been designed n the bottom cho r(s) for truss to t chanical connect 134. designed in acc standard ANSI/T	prevent water ponding. for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the bottom ord and any other members, with BCDL russ connections. ion (by others) of truss to bearing plate ordance with the 2018 International Res) to 4-10-6, Interior(1) 4- rrior(1) 46-9-8 to 58-5-1; WFRS for reactions sho 1.15); Pg=15.0 psf; Pf=1 =1.10, Lu=50-0-0; Min. 1 /12 in accordance with 1 psf or 1.00 times flat roc nconcurrent with any oth n chord in all areas whe = 10.0psf. capable of withstanding sidential Code sections I	10-6 to 20-6-0, É: 2 zone; cantilever wn; Lumber DOL: 6.5 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 11.6 psf her live loads. re a rectangle 3-6 100 lb uplift at joi R502.11.1 and R8	 kterior(2R) 20-6-0 to left and right exposed =1.60 plate grip =1.15 Plate d governs. Rain on overhangs -0 tall by 2-0-0 wide ht(s) 16 except (jt=lb) 402.10.2 and 	and a summing the second secon	SEAL 036322	23
Design valid fo a truss system building desigr is always requ fabrication, sto	r use only with MiTel . Before use, the buil n. Bracing indicated ired for stability and t rage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDED N & connectors. This design is based only upon par ding designer must verify the applicability of design is to prevent buckling of individual truss web and/or o prevent collapse with possible personal injury an on and bracing of trusses and truss systems, see after Information available from the Structural B	ameters shown, and is for an i n parameters and properly inco r chord members only. Additio d property damage. For gene ANSI/TPI1 Quality Criteria an	individual building com orporate this design int onal temporary and per ral guidance regarding nd DSB-22 available	ponent, not o the overall manent bracing the irom Truss Plate Institute (www.tį	binst.org)	ENGINEERING BY A MITER A 818 Soundside Road	D ffiliate

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:101.7



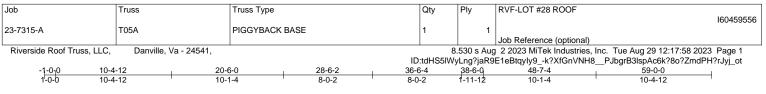
Phase Offset (X,Y)- 10:14 <th>Prise Offseis (XV)- [5:0-5:4:0-3:0], [12:Edge:0-2:4] LOADING (psi) Stacking (princip) Stacking (princip) Stacking (princip) Plate Gip DOL 1.15 DEFL. In (loc) Identify PLATES GRIP DCLL (noi) 0.0 Plate Gip DOL 1.15 EC 0.67 VertiCLI -0.21 13:15 -477 180 DCLL 0.0 Code IRC2018/TPI2014 Wassissing (PS) VertiCLI -0.21 13:15 -477 180 DCLL 0.0 Code IRC2018/TPI2014 Wassissing (PS) VertiCLI -0.21 13:15 -477 180 BCDL 0.0 Code IRC2018/TPI2014 Matrix-MS BRACING- TOP CHORD Stackural wood abaeting directly applied or 3.11:15 or 0.07 -0.00 or buning, Except Except 4.00 or pulsing, Except Except 4.00 or pulsing, Except Except 4.00 or pulsing, Except: E-0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.01 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 <td< th=""><th>10-4-12</th><th>20-6-0</th><th>29-6-0</th><th>36-6-4</th><th>48-10-4</th><th></th><th>58-7-8</th><th></th></td<></th>	Prise Offseis (XV)- [5:0-5:4:0-3:0], [12:Edge:0-2:4] LOADING (psi) Stacking (princip) Stacking (princip) Stacking (princip) Plate Gip DOL 1.15 DEFL. In (loc) Identify PLATES GRIP DCLL (noi) 0.0 Plate Gip DOL 1.15 EC 0.67 VertiCLI -0.21 13:15 -477 180 DCLL 0.0 Code IRC2018/TPI2014 Wassissing (PS) VertiCLI -0.21 13:15 -477 180 DCLL 0.0 Code IRC2018/TPI2014 Wassissing (PS) VertiCLI -0.21 13:15 -477 180 BCDL 0.0 Code IRC2018/TPI2014 Matrix-MS BRACING- TOP CHORD Stackural wood abaeting directly applied or 3.11:15 or 0.07 -0.00 or buning, Except Except 4.00 or pulsing, Except Except 4.00 or pulsing, Except Except 4.00 or pulsing, Except: E-0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.01 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, Except: E-0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 -0.00 or buning, 1.55 <td< th=""><th>10-4-12</th><th>20-6-0</th><th>29-6-0</th><th>36-6-4</th><th>48-10-4</th><th></th><th>58-7-8</th><th></th></td<>	10-4-12	20-6-0	29-6-0	36-6-4	48-10-4		58-7-8	
LoADING (psf) SPACING- TCLL (root) 2-0-0 Plate Grip DOL CSL TCL DEFL TC in (coc) Ideal Ideal PLATES GRIP MT20 Some (RIPP) 165/15.0 EUCL 10.0 Plate Grip DOL 1.15 Lumber DOL TC 0.79 Plate Grip DOL 1.15 BC 0.67 Plate Grip DOL 0.61 Structural wood sheathing directly applied or 31-15 Structural wood sheathing directly applied or 34-11-15 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals	LDADNG (pd) SPACING- TOL (root) SPACING- 20:0 2:0:0 CSI. TO (root) DEFL Vert(L) in (loc) I/deft L/d BCL 0:0 0:0 SPACING- TOL 2:0:0 TO 0:0 PLATES GRIP BCL 0:0 0:0 Code IRC2018/PI2014 DEFL in (loc) I/deft L/d MIZO 244(190 BCL 0:0 0:0 Code IRC2018/PI2014 Matrix:MS BRACING- TOP CHORD 2:6 SP No.2 Weight: 443 b FT = 20% BCT CHORD 2:6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3:11:15 or putins, except: 6:6:20 or bracing: 13:15. WEBS 2:0:0 or bracing: 13:15. WEBS 1:0:0 or bracing: 13:15. 1:0:0:0 or bracing: 13:15. 1:0:0:0 or bracing: 13:15. 1:0:0:0 or bracing: 13:15. 1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0		-	9-0-0	7-0-4	12-4-0	1	9-9-4	
LUMBER- TOP CHORD Zx6 SP No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals, and 2-00 oc purlins (6-00 max.): 5-8. WEBS Zx4 SP No.3 "Except" BOT CHORD Structural wood sheathing directly applied or 10-00 oc bracing. Except: 6-15: 2x4 SP No.3 2-6.0 SLIDER Left Zx4 SP No.3 -26.0 WEBS 1 Row at midpt 3-18, 6-15, 11-13 SLIDER All bearings 0-3-8 except (li=length) 12=Mechanical. WEBS 1 Row at midpt 3-18, 6-15, 11-13 REACTIONS. All bearings 0-3-8 except (li=length) 12=Mechanical. WEBS 1 Row at midpt 3-18, 6-15, 11-13 REACTIONS. All bearings 0-3-8 except (li=length) 12=Mechanical. WEBS 1 Row at midpt 3-18, 6-15, 11-13 REACTIONS. All preatings 250 (lb) or less at joint(s) 1, 15 except 13=-135(LC 27), 15=2879(LC 27), 13=1060(LC 48) FORCES. (lb) - Max. Comp.Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-32-e323277, 35=-1408/273, 5-6=-518/280, 6-4=.0/537, 8-9=-46/484, 9-11=-83/08 BOT CHORD 3-20-508, 3-18=-1170(190, 5-18-e0.0926, 7.16=-1979/179, 8-15=57(EC 7-16, Vult-135, Pal-160, 906, 27-16, Vult-135, Pal-160, 906, 27-16, Vult-135, Pal-26/272, 9-13=-714/307, 11-13=-493/182, 9-26-20, Exterior(2R) 20-6-0, Exterior(2R) 20-6-0, Exterior(2R) 20-6-0, Exterior(2R) 20-6-0, Exterior(2R) 20-6-0, Exterior(2R) 20-6-0	LUMBER- TOP CHORD BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals, and 2-00 oc purlins (6-00 max); 5-8. WEBS 2x4 SP No.3 "Except" BOT CHORD Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals, and 2-00 oc purlins (6-00 max); 5-8. Rigid celling directly applied or 10-0-0 oc bracing. Except end verticals, and 2-00 oc purlins (6-00 max); 5-8. SLIDER Left 2x4 SP No.3 2-6-0 WEBS 1 Row at midpt 3-18. SLIDER Left 2x4 SP No.3 2-6-0 WEBS 1 Row at midpt 3-18. 8-15. REACTONS. All bearings 0-3-8 except (dielength) 12=Mechanical. WEBS 1 Row at midpt 3-18. 8-15. 1 Row at midpt 3-18. 18. 1 Row at midpt 3	LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.79 BC 0.67 WB 0.94	Vert(LL) Vert(CT)	-0.21 13-15 >693 -0.31 13-15 >477	240 180	MT20	244/190
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.	August 30,2023	LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *E 6-15: 2x4 SP No. SLIDER Left 2x4 SP No. REACTIONS. All bearings 0 (lb) - Max Horz 1=2: Max Uplift All Max Grav All FORCES. (lb) - Max. Comp./N TOP CHORD 1-3=-2363/26 BOT CHORD 1-20=-151/22! WEBS 3-20=0/508, 3 8-15=-766/13 NOTES- 1) Unbalanced roof live loads hi 2) Wind: ASCE 7-16; Vult=130r II; Exp B; Enclosed; MWFRS 28-9-8, Interior(1) 28-9-8 to 3 ; end vertical left and right ex DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surcharge applied to all expo 4) Unbalanced snow loads have 5) Provide adequate drainage tt 6) This truss has been designed 7) * This truss is designed in ac referenced standard ANSI/T	xcept* 5.1 3 2-6-0 -3-8 except (jt=length) 12=Mechanical. 29(LC 15) uplift 100 lb or less at joint(s) 1, 15 exce reactions 250 lb or less at joint(s) 12 exc fax. Ten All forces 250 (lb) or less exc 7, 3-5=-1408/273, 5-6=-518/269, 6-8=0/6 51, 18-20=-151/2251, 16-18=0/1256, 15- -18=-1170/190, 5-18=0/999, 5-16=-1213 5, 8-13=-25/272, 9-13=-714/307, 11-13= ave been considered for this design. nph (3-second gust) Vasd=103mph; TCI (directional) and C-C Exterior(2E) 0-0-0 8-6-0, Exterior(2E) 38-6-0 to 46-9-8, Int posed;C-C for members and forces & M sf (roof LL: Lum DOL=1.15 Plate DOL=' at B; Partially Exp.; Ce=1.0; Cs=1.00; C been considered for this design. p prevent water ponding. d for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the bottor ord and any other members, with BCDL truss connections. on (by others) of truss to bearing plate c cordance with the 2018 International Re: TPI 1.	E T T F T F F F F F F F F F F F F F	TOP CHORD 30T CHORD WEBS =2879(LC 27), 13 -83/408 133 =-1979/179, af; h=25ft; B=45ft; 10-6 to 20-6-0, Ex 2 zone; cantilever wn; Lumber DOL 6.5 psf (Lum DOI flat roof snow loar IBC 1608.3.4. her live loads. re a rectangle 3-6 100 lb uplift at join R502.11.1 and R4	except end verticals, and Rigid ceiling directly appl 6-0-0 oc bracing: 13-15. 1 Row at midpt 2 Rows at 1/3 pts =1060(LC 48) =1060(LC 48) L=59ft; eave=7ft; Cat. tterior(2R) 20-6-0 to r left and right exposed =1.60 plate grip L=1.15 Plate d governs. Rain 6-0 tall by 2-0-0 wide t(s) 1, 15 except 302.10.2 and	2-0-0 oc purlin ied or 10-0-0 oc 3-18, 8-15, 1 5-16, 6-15	ed or 3-11-15 oc puril s (6-0-0 max.): 5-8. c bracing, Except: 11-13 TH CAR SEAL 036322 WGINEEE	


A MITEK Affiliate

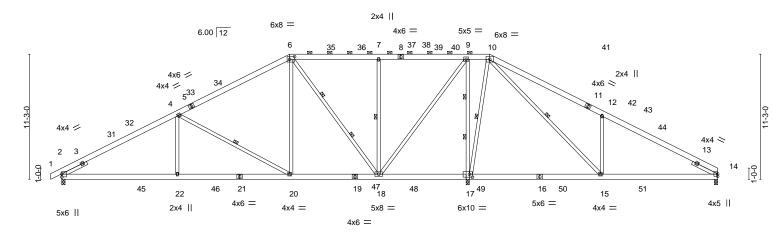
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:103.5

L	10-4-12	20-6-0	28-6-2	36-6-4	48	-7-4	1	59-0-0	
	10-4-12	10-1-4	8-0-2	8-0-2	12	-1-0		10-4-12	1
Plate Offsets ()	X,Y) [6:0-5-4,0	0-3-0], [18:0-3-4,0-3-4]		1				-	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL	20.0 16.5/15.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.77 BC 0.67 WB 0.86	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.26 16-18 -0.40 16-18 0.05 18	l/defl >999 >682 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-MS	1012(01)	0.05 10	n/a	Π/a	Weight: 454 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 (size) 2=0-3	3 2-6-0, Right 2x4 SP No.3 2-6-0 3-8, 14=0-3-8, 18=0-3-8	T	Bracing- Top Chord Bot Chord Webs	Structural wood 2-0-0 oc purlins Rigid ceiling diru 1 Row at midpt 2 Rows at 1/3 p	(6-0-0 ma ectly applie	x.): 6-10. ed or 6-0-0	19, 10-18, 10-16	s, except
		23(LC 15) 33(LC 16), 14=-107(LC 16), 18=-109(l 502(LC 28), 14=832(LC 29), 18=3322(l							
FORCES. (Ib TOP CHORD BOT CHORD WEBS	2-4=-2320/270 10-12=-987/34 2-23=-125/220 14-16=-36/700 4-23=0/520, 4-	ax. Ten All forces 250 (lb) or less ex), 4-6=-1344/276, 6-7=-532/275, 7-9=- !8, 12-14=-808/168 !6, 21-23=-125/2206, 19-21=0/1202, 1) :21=-1183/185, 6-21=0/964, 6-19=-115 '8, 9-18=-1897/208, 10-18=-1353/166,	532/275, 9-10=0/798, 8-19=-773/139, 16-18=-5 75/46, 7-19=-667/170,						
 Wind: ASCE II; Exp B; Er 28-10-2, Intk exposed; eu grip DOL=1. TCLL: ASCE DOL=1.15; surcharge a Unbalanced This truss his non-concurr Provide ade Pr	E 7-16; Vult=130m closed; MWFRS erior(1) 28-10-2 to nd vertical left and 60 E 7-16; Pr=20.0 ps Is=1.0; Rough Ca pplied to all expos snow loads have as been designed that been designed that been designed has been designed has been designed that been des	ave been considered for this design. the disconsidered for this design. the disconsidered for this design. the disconsidered for this design. 38-6-0, Exterior(2R) 38-6-0 to 46-10- disconsidered; C-C for members and sf (roof LL: Lum DOL=1.15 Plate DOL- at B; Partially Exp.; Ce=1.0; Cs=1.00; Cs=1.00; been considered for this design. for greater of min roof live load of 12. been considered for this design. for greater of min roof live load of 12. boads. prevent water ponding. for a 10.0 psf bottom chord live load r ad for a live load of 20.0psf on the botto ord and any other members, with BCD rs parallel to grain value using ANSI/T tion (by others) of truss to bearing plate cordance with the 2018 International R	0-0 to 4-10-13, Interior(1) 2, Interior(1) 46-10-2 to 6 forces & MWFRS for read =1.15); Pg=15.0 psf; Pf=1 Ct=1.10, Lu=50-0-0; Min. 00/12 in accordance with 0 psf or 1.00 times flat roo nonconcurrent with any ot om chord in all areas whe IL = 10.0psf. Pl 1 angle to grain formul e capable of withstanding	4-10-13 to 20-6-0, 0-0-0 zone; cantile ctions shown; Lum 16.5 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. ere a rectangle 3-6 la. Building design 100 lb uplift at joi	Exterior(2R) 20- aver left and right ber DOL=1.60 p = 1.15 Plate d governs. Rain on overhangs -0 tall by 2-0-0 w her should verify nt(s) except (jt=lt	-6-0 to t late		SEAL 036322	
Design valid a truss syste building design is always req fabrication, s	for use only with MiTel m. Before use, the buil gn. Bracing indicated i juired for stability and t torage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDEL k® connectors. This design is based only upon p lding designer must verify the applicability of des is to prevent buckling of individual truss web and to prevent collapse with possible personal injury on and bracing of trusses and truss systems, ser- afety Information available from the Structura	parameters shown, and is for an ign parameters and properly inc Vor chord members only. Additio and property damage. For gene e ANSI/TPI1 Quality Criteria a	individual building com orporate this design int onal temporary and per aral guidance regarding and DSB-22 available	ponent, not o the overall manent bracing the from Truss Plate Insti	itute (www.tp	inst.org)	Alta Soundside Road Edenton, NC 27932	ffiliate


	Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF				
	23-7315-A	T05	Piggyback Base	4	1	160459555				
	23-7315-A	105	Job Reference (optional)							
L						Job Relefence (optional)				
	Riverside Roof Truss, LLC,	Danville, Va - 24541,	8.530 s Aug 2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:56 2023 Page 2							
			ID:tdHS5IWyLng?jaR9E1eBtqyIy9ncPvr5T7IXkGA?RIkm1HnO5GdxKkK53UA5ovnRyj_ov							

NOTES-

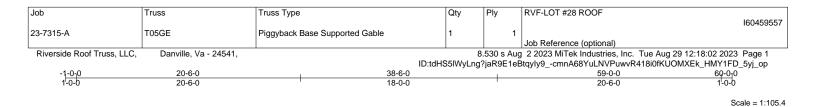

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

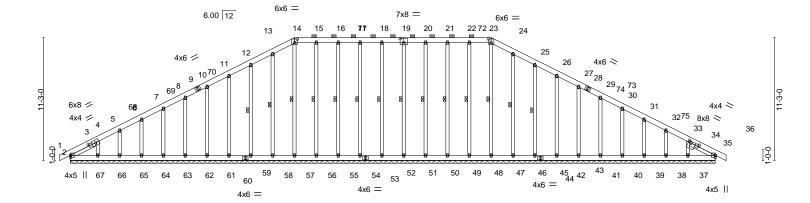
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:103.6

1	10-4-12	20-6-0	28-6-2	36-6-4	48-7-4	1	59-0-0	1
Plate Offsets (X	10-4-12	<u>10-1-4</u> D-3-0], [17:0-3-4,0-3-4]	8-0-2	8-0-2	12-1-0	I	10-4-12	
	· / •	J-3-0j, [17.0-3-4,0-3-4]						
LOADING (psf TCLL (roof) Snow (Pf/Pg)	20.0 16.5/15.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.77 BC 0.67 WB 0.86	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.26 15-17 >999 -0.40 15-17 >683 0.05 17 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2018/TPI2014	Matrix-MS	11012(01)	0.00 11 184	n/u	Weight: 452 lb	FT = 20%
WEBS	2x6 SP No.2 2x4 SP No.3	3 2-6-0, Right 2x4 SP No.3 2-6-0	T	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathin except 2-0-0 oc purlins (6-0-0 m Rigid ceiling directly appl 1 Row at midpt 2 Rows ot 1/2 ptc	ax.): 6-10. ied or 6-0-0 4-20, 7-1	oc bracing. 8, 10-17, 10-15	ns,
REACTIONS.	Max Horz 2=22 Max Uplift 2=-13	3-8, 14=0-3-8, 17=0-3-8 20(LC 15) 31(LC 16), 14=-72(LC 16), 17=-114(LC 504(LC 28), 14=779(LC 29), 17=3317(L			2 Rows at 1/3 pts	6-18, 9-1	T	
FORCES. (Ib) TOP CHORD	2-4=-2324/268	lax. Ten All forces 250 (lb) or less exc 3, 4-6=-1348/273, 6-7=-534/273, 7-9=-5 31, 12-14=-817/171						
BOT CHORD		05, 20-22=-150/2205, 18-20=0/1201, 17	-18=-766/131, 15-17=-5	23/101,				
WEBS	4-22=0/520, 4-	-20=-1183/185, 6-20=0/964, 6-18=-1173 76, 9-17=-1896/210, 10-17=-1352/168, 7		=-699/297				
 Wind: ASCE II; Exp B; En 28-10-2, Inter exposed; en grip DOL=1. TCLL: ASCE DOL=1.15); surcharge ap Unbalanced This truss ha non-concurre Provide adee This truss ha will fit betwee Bearing at jo capacity of b Provide me 2=131, 17= 	7-16; Vult=130m closed; MWFRS irior(1) 28-10-2 to dvertical left and 60 i 7-16; Pr=20.0 ps Is=1.0; Rough Ca oplied to all expos snow loads have is been designed as been designed int with other live uate drainage to is been designed ints been designed int(s) 17 consider earing surface. ichanical connect i114.	ave been considered for this design. hph (3-second gust) Vasd=103mph; TCI (directional) and C-C Exterior(2E) -1-0- b 38-6-0, Exterior(2R) 38-6-0 to 46-10-2 d right exposed;C-C for members and for sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; C sed surfaces with slopes less than 0.500 b been considered for this design. I for greater of min roof live load of 12.0 b loads. p prevent water ponding. I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottom ord and any other members, with BCDL rs parallel to grain value using ANSI/TP tion (by others) of truss to bearing plate	0 to 4-10-13, Interior(1) , Interior(1) 46-10-2 to 5 proces & MWFRS for read 1.15); Pg=15.0 psf; Pf=1 t=1.10, Lu=50-0-0; Min. D/12 in accordance with psf or 1.00 times flat roo proconcurrent with any of m chord in all areas whe = 10.0psf. I 1 angle to grain formul	4-10-13 to 20-6-0, 9-0-0 zone; cantile ctions shown; Lum 16.5 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. ere a rectangle 3-6 la. Building design	Exterior(2R) 20-6-0 to ver left and right ber DOL=1.60 plate =1.15 Plate governs. Rain on overhangs -0 tall by 2-0-0 wide er should verify		SEAL 036322	23
Continued on pa	•						a total second and a	
Design valid f a truss systen building desig is always requ fabrication, st	or use only with MiTel n. Before use, the buil n. Bracing indicated uired for stability and t orage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDED k® connectors. This design is based only upon pa diding designer must verify the applicability of desig is to prevent buckling of individual truss web and/c to prevent collapse with possible personal injury and ion and bracing of trusses and truss systems, see safety Information available from the Structural F	rameters shown, and is for an in parameters and properly incor or chord members only. Addition do property damage. For gene ANSI/TPI1 Quality Criteria a	individual building com corporate this design intro- onal temporary and per eral guidance regarding and DSB-22 available f	conent, not o the overall manent bracing the rom Truss Plate Institute (www.t	pinst.org)	AMITER A B18 Soundside Road Edenton, NC 27932	D fillate

[Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF
						160459556
	23-7315-A	T05A	PIGGYBACK BASE	1	1	
						Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	.530 s Aug	2 2023 MiTek Industries, Inc. Tue Aug 29 12:17:58 2023 Page 2
			ID	:tdHS5IWy	Lng?jaR9	E1eBtqyly9k?XfGnVNH8PJbgrB3lspAc6k?8o?ZmdPH?rJyj_ot


NOTES-


11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

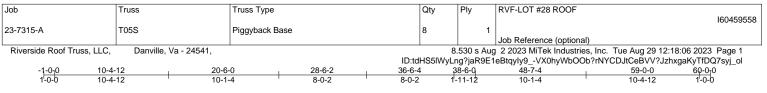
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 		<u> </u>						
Plate Offsets (X,Y) [2:1-10-1	2,0-2-0], [14:0-3-0,0-4-0], [19:0-4-0,0-4		-2-12,0-2-1], [35:1	-8-10,0-2-0]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.05 BC 0.02 WB 0.17	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 35 -0.00 35 0.01 35	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 598 lb	FT = 20
	3 2-6-0, Right 2x4 SP No.3 2-6-0	TC	2 DT CHORD F	Structural wood 2-0-0 oc purlins Rigid ceiling diru Row at midpt	(6-0-0 ma	ax.): 14-23. ed or 10-0-0 23-47, 22	-48, 21-49, 20-50, 19-5 -55, 15-56, 14-57, 13-5	51, 18-52,
46, 4 Max Grav All		, 48, 49, 50, 51, 52, 54, 55						
TOP CHORD 12-13=-104/26 17-18=-113/29	lax. Ten All forces 250 (lb) or less ex 52, 13-14=-120/301, 14-15=-113/290, 1 90, 18-19=-113/290, 19-20=-113/290, 2 90, 23-24=-120/301, 24-25=-104/262	5-16=-113/290, 16-17=-11	,					
 Wind: ASCE 7-16; Vult=130rr II; Exp B; Enclosed; MWFRS to 26-6-0, Exterior(2N) 26-6-0 exposed; end vertical left and grip DOL=1.60 Truss designed for wind loads Gable End Details as applical TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough Ca 	ave been considered for this design. nph (3-second gust) Vasd=103mph; TC (directional) and C-C Corner(3E) -1-0- 0 to 38-6-0, Corner(3R) 38-6-0 to 44-6-4 d right exposed;C-C for members and f s in the plane of the truss only. For stu ble, or consult qualified building design sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; C sed surfaces with slopes less than 0.5C	0 to 4-10-13, Exterior(2N) 0, Exterior(2N) 44-6-0 to 6 orces & MWFRS for reacti ds exposed to wind (norm- er as per ANSI/TPI 1. =1.15); Pg=15.0 psf; Pf=16 Ct=1.10, Lu=50-0-0; Min. fil	4-10-13 to 20-6-0, D-0-0 zone; cantile ons shown; Lumb al to the face), see .5 psf (Lum DOL= at roof snow load g	Corner(3R) 20 ever left and rig er DOL=1.60 p e Standard Indu 1.15 Plate	-6-0 ht late istry	ALL	SEAL	N. N
 Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to All plates are 2x4 MT20 unles Gable requires continuous bo Gable studs spaced at 2-0-0 This truss has been designed * This truss has been designed 	e been considered for this design. I for greater of min roof live load of 12.(b loads. b prevent water ponding. ss otherwise indicated. bittom chord bearing.) psf or 1.00 times flat roof nonconcurrent with any ot	load of 11.6 psf o her live loads.	Ū		Contraction of the second	SEAL 036322	23
Design valid for use only with MiTe a truss system. Before use, the bui building design. Bracing indicated is always required for stability and	eters and READ NOTES ON THIS AND INCLUDED k® connectors. This design is based only upon p Iding designer must verify the applicability of desi is to prevent buckling of individual truss web and to prevent collapse with possible personal injury a ion and bracing of trusses and truss systems see	arameters shown, and is for an in gn parameters and properly incor or chord members only. Addition and property damage. For genera	dividual building compo porate this design into al temporary and perm I guidance regarding th	onent, not the overall anent bracing ne	tuto (verse t		ERENGINEERING BY A MITCH A	f iliate

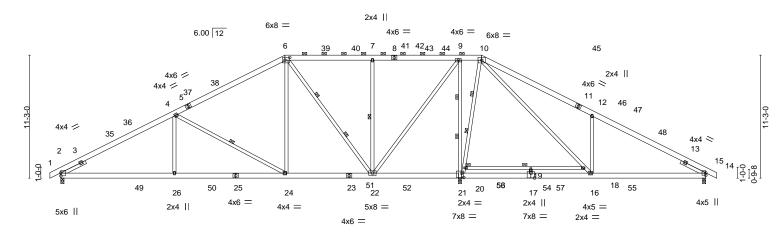
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF
	23-7315-A	T05GE	Piggyback Base Supported Gable	1	1	160459557
						Job Reference (optional)
	Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	530 s Aug	2 2023 MiTek Industries, Inc. Tue Aug 29 12:18:03 2023 Page 2
			ID:td	IHS5IWyLı	ng?jaR9E1	eBtqyly94yLYJUZW5gdGW4TeekfxZstf8ltTTRXVnh_mWXyj_oo

NOTES-


13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 49, 50, 51, 52, 54, 55, 58, 59, 61, 62, 63, 64, 65, 66, 67, 46, 45, 43, 42, 41, 40, 39, 38, 37.

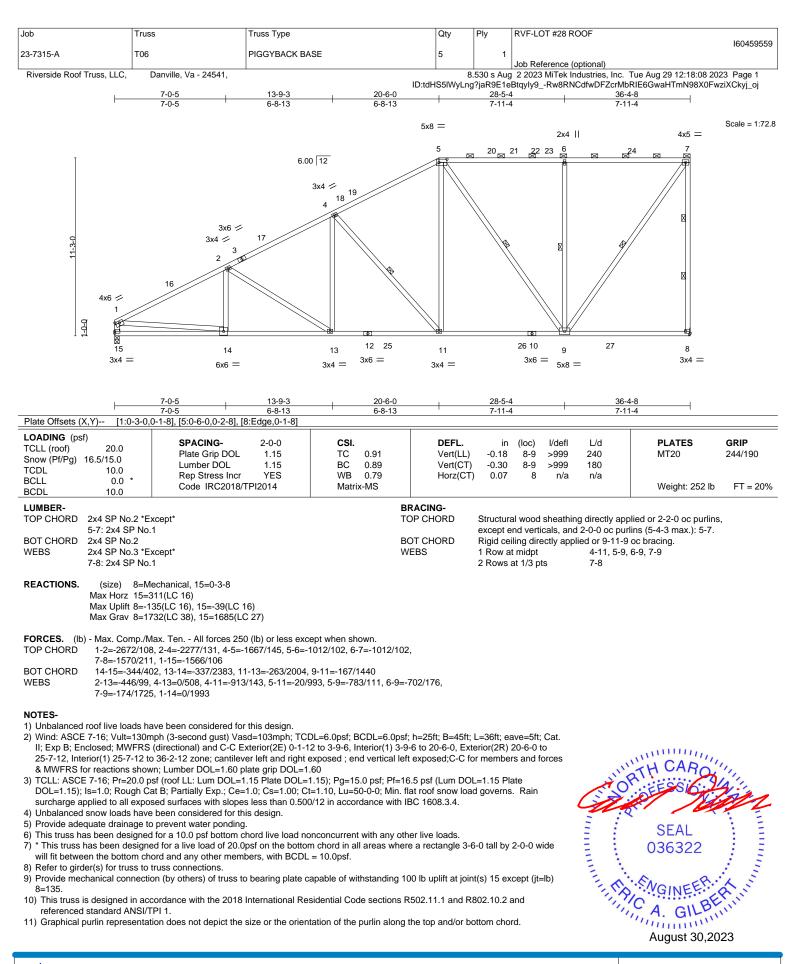
14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

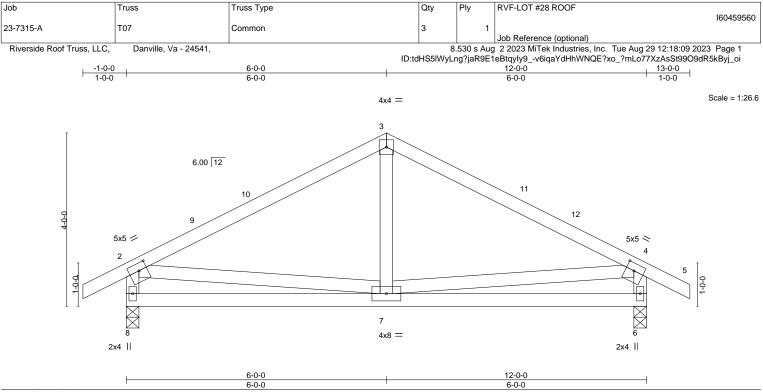
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:105.4

L	10-4-12	20-6-0	28-6-2	36-6-4	48-7-4		59-0-0	
Diata Offacta (X	10-4-12		8-0-2	8-0-2	12-1-0	I	10-4-12	
Plate Offsets (X)-3-0], [17:0-4-0,0-5-4], [21:0-2-4,0-4-	12					
LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL	20.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Data Strates LearVES	CSI. TC 0.76 BC 0.87	DEFL. Vert(LL) Vert(CT)	-0.37 19-20 -0.58 19-20 -0.58	l/defl L/d >720 240 >462 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 1.00 Matrix-MS	Horz(CT)	0.03 21	n/a n/a	Weight: 471 lb	FT = 20%
BOT CHORD WEBS SLIDER REACTIONS.	2x4 SP No.3 *E> 10-21,10-16: 2x. Left 2x4 SP No.3 (size) 2=0- Max Horz 2=-2: Max Uplift 2=-1 Max Grav 2=15 - Max. Comp./M 2-4=-2292/291	6 SP No.2, 18-20: 2x4 SP No.1 kcept* 4 SP No.2 3 2-6-0, Right 2x4 SP No.3 2-6-0 3-8, 14=0-3-8, 21=0-3-8	٦ E V (LC 28) xcept when shown.	BRACING- FOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (6	-0-0 max.): 6-10. Ily applied or 6-0- 18-20 4-24, 7 6-22, 9	0 oc bracing. Except: -22 -21, 10τ20 	s, except
BOT CHORD WEBS	16-17=-258/10 4-26=0/522, 4- 9-22=-114/195	11, 24-26=-144/2181, 22-24=0/1176, 2 19, 14-16=-1/908, 19-20=-353/0, 18-1 -24=-1184/183, 6-24=0/970, 6-22=-11 11, 9-21=-1923/204, 20-21=-1645/66, 137, 12-16=-689/300, 17-19=-292/0	9=-353/0 93/31, 7-22=-661/169,			The second s	A. GILBE	A. L.
 2) Wind: ASCE II; Exp B; En 28-10-2, Inte exposed; en grip DOL=1.4. TCLL: ASCE DOL=1.15); surcharge ag Unbalanced This truss ha non-concurre Provide aded This truss ha * This truss ha 8) * This truss ha 	7-16; Vult=130m closed; MWFRS rior(1) 28-10-2 tc d vertical left and 30 7-16; Pr=20.0 pi s=1.0; Rough Ca show loads have s been designed ant with other live juate drainage to s been designed as been designed in the bottom chd int(s) 21 conside earing surface.	ave been considered for this design. hph (3-second gust) Vasd=103mph; T (directional) and C-C Exterior(2E) -1- 38-6-0, Exterior(2R) 38-6-0 to 46-10 d right exposed;C-C for members and sf (roof LL: Lum DOL=1.15 Plate DOL at B; Partially Exp.; Ce=1.0; Cs=1.00; sed surfaces with slopes less than 0.5 been considered for this design. for greater of min roof live load of 12 loads. p prevent water ponding. for a 10.0 psf bottom chord live load d for a live load of 20.0psf on the bot ord and any other members, with BCI rs parallel to grain value using ANSI/	0-0 to 4-10-13, Interior(1) -2, Interior(1) 46-10-2 to 6 forces & MWFRS for read =1.15); Pg=15.0 psf; Pf=1 Ct=1.10, Lu=50-0-0; Min. i00/12 in accordance with .0 psf or 1.00 times flat roo nonconcurrent with any ot tom chord in all areas whe DL = 10.0psf.	4-10-13 to 20-6-0 0-0-0 zone; cantilu- ctions shown; Lum 16.5 psf (Lum DOI flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. are a rectangle 3-6	Exterior(2R) 20-6- ever left and right uber DOL=1.60 plat _=1.15 Plate d governs. Rain on overhangs	at. 0 to e	August 30,20	023
WARNING Design valid f a truss system building desig is always requ fabrication, st	Verify design parame or use only with MiTe n. Before use, the buil n. Bracing indicate irred for stability and to orage, delivery, erecti	ters and READ NOTES ON THIS AND INCLUDE k® connectors. This design is based only upon Iding designer must verify the applicability of de is to prevent buckling of individual truss web an to prevent collapse with possible personal injury on and bracing of trusses and truss systems, sr afety Information available from the Structure	parameters shown, and is for an sign parameters and properly inco d/or chord members only. Addition and property damage. For gene ee ANSI/TPI1 Quality Criteria a	individual building corr orporate this design in onal temporary and pe aral guidance regarding and DSB-22 available	ponent, not o the overall manent bracing the from Truss Plate Institute	e (www.tpinst.org)	ENGINEERING BY A MITOR A 818 Soundside Road Edenton, NC 27932	D ffiliate


Job	Truss	Truss Type	Qty	Ply	RVF-LOT #28 ROOF
					I60459558
23-7315-A	T05S	Piggyback Base	8	1	
					Job Reference (optional)
Riverside Roof Truss, LLC,	Danville, Va - 24541,		8	.530 s Aug	2 2023 MiTek Industries, Inc. Tue Aug 29 12:18:06 2023 Page 2
		ID:td	HS5IWyLr	ng?jaR9E1	eBtqyly9VX0hyWbOOb?rNYCDJtCeBVV?JzhxgaKyTfDQ7syj_ol

NOTES-


- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=144.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Plate Offsets (X,Y) [2:0-2-4,0	-2-0], [4:0-2-4,0-2-0]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.60 BC 0.31 WB 0.10 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.02 7-8 -0.05 7-8 0.00 6	>999 >999	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3			CHORD	Structural woo except end ver Rigid ceiling di	ticals.	0 1	plied or 6-0-0 oc purlir 0 oc bracing.	ns,

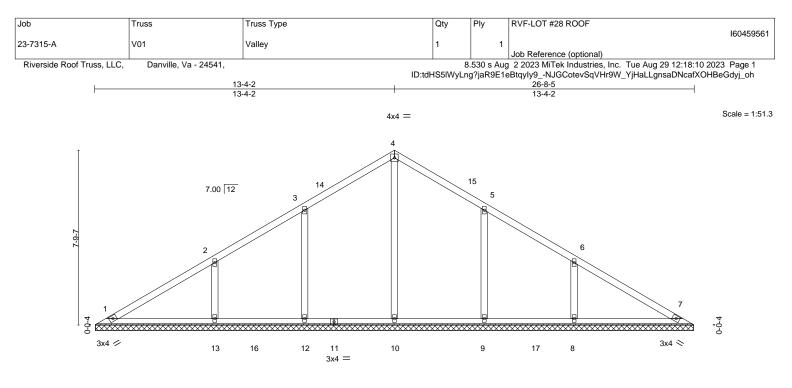
REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-83(LC 14) Max Uplift 8=-64(LC 16), 6=-64(LC 16) Max Grav 8=537(LC 2), 6=537(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-537/175, 3-4=-537/175, 2-8=-484/232, 4-6=-484/232

BOT CHORD 7-8=-165/272. 6-7=-121/253

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L		26-7-14					26-8-5		
26-7-14							0-0-7		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.28 BC 0.20 WB 0.21 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.2			ACING- P CHORD S	Structural wood	sheathin	g directly app	plied or 6-0-0 oc purlins	5.	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. All bearings 26-7-7.

Max Horz 1=-149(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=390(LC 27), 12=422(LC 27), 13=493(LC 27), 9=421(LC 28), 8=494(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-13=-300/128, 6-8=-300/128

WEBS

NOTES-

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 13-4-2, Exterior(2R) 13-4-2 to 16-4-2, Interior(1) 16-4-2 to 26-1-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

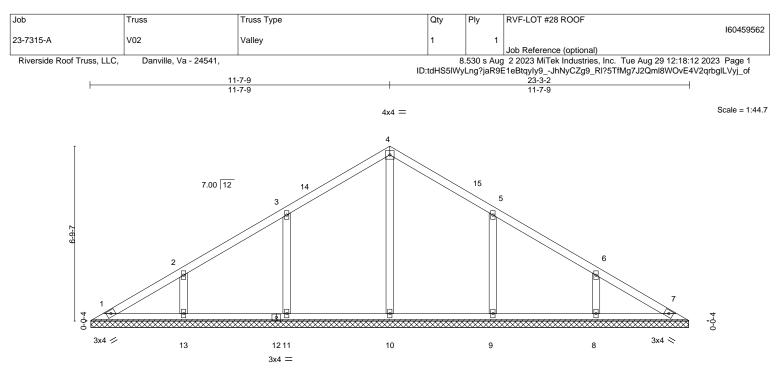
4) Unbalanced snow loads have been considered for this design.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 9, 8. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

¹⁾ Unbalanced roof live loads have been considered for this design.

F		23-2-11 23-2-11				<u>23-</u> 3-2 0-0-7	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.20 BC 0.17 WB 0.15 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 7	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2			ACING- P CHORD S	structural wood s	sheathing directly ap	oplied or 6-0-0 oc purlir	ıs.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. All bearings 23-2-5.

Max Horz 1=129(LC 15) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=380(LC 27), 11=431(LC 27), 13=366(LC 27), 9=430(LC 28), 8=367(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-11=-263/125, 5-9=-263/125

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-7-9, Interior(1) 3-7-9 to 11-7-9, Exterior(2R) 11-7-9 to 14-7-9, Interior(1) 14-7-9 to 22-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

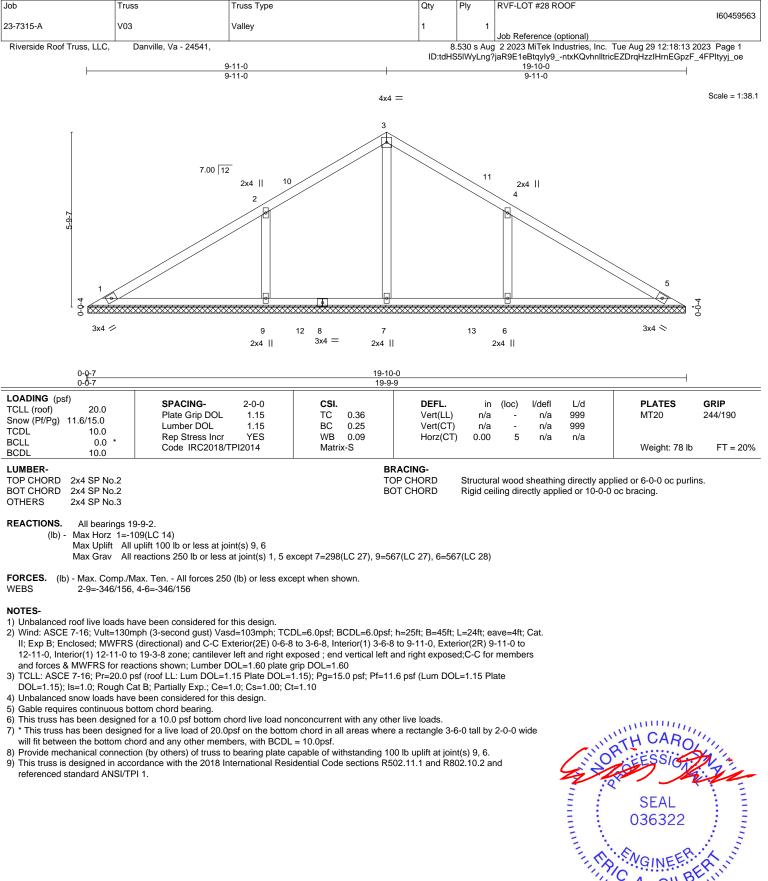
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

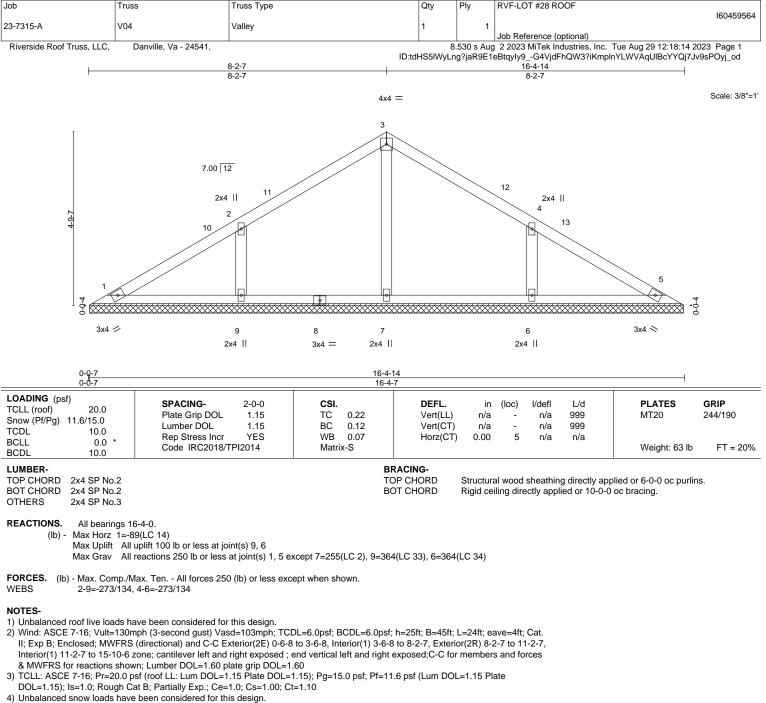
5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

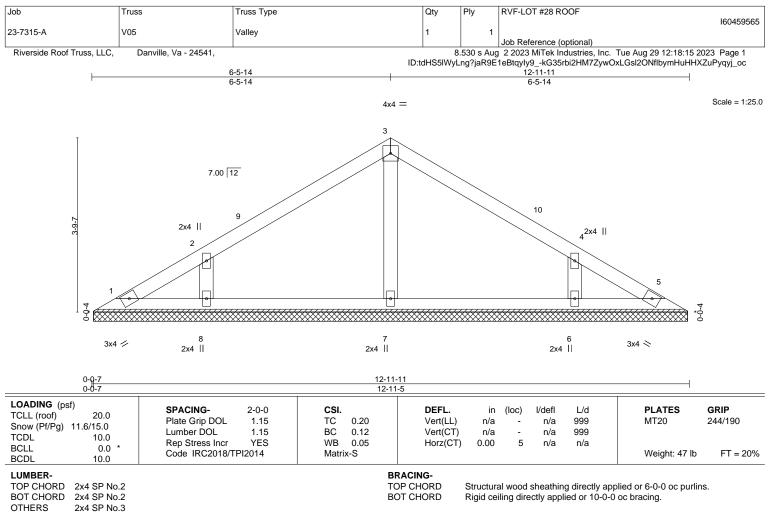
7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 13, 9, 8. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. All bearings 12-10-14.

(lb) - Max Horz 1=-69(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

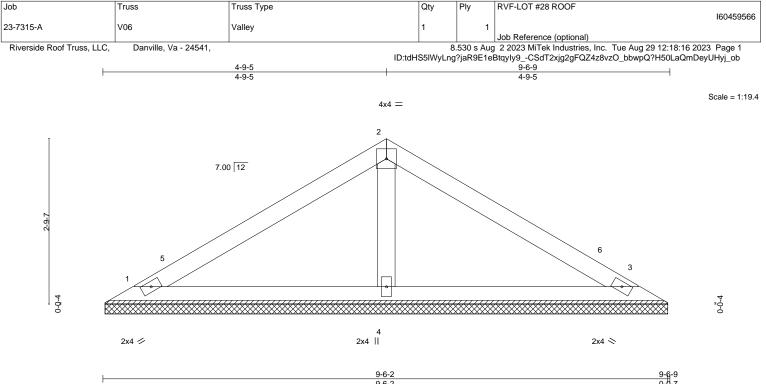
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=277(LC 2), 8=307(LC 20), 6=307(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 6-5-14, Exterior(2R) 6-5-14 to 9-5-14, Interior(1) 9-5-14 to 12-5-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

		9-6-2					0-0-7	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.27 BC 0.18 WB 0.05	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 32 lb	FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=9-5-11, 3=9-5-11, 4=9-5-11

Max Horz 1=49(LC 15)

Max Uplift 1=-20(LC 16), 3=-20(LC 16)

Max Grav 1=160(LC 2), 3=160(LC 2), 4=357(LC 2)

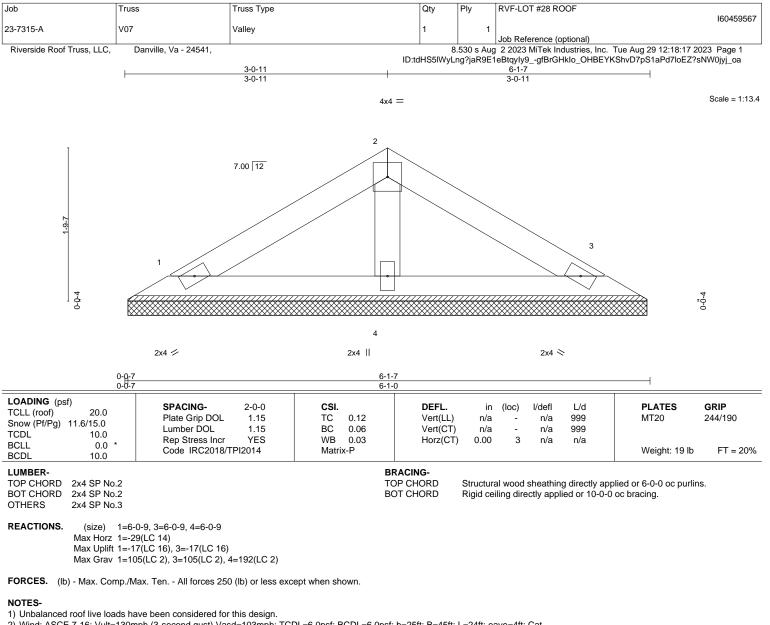
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 4-9-5, Exterior(2R) 4-9-5 to 7-9-5, Interior(1) 7-9-5 to 9-0-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

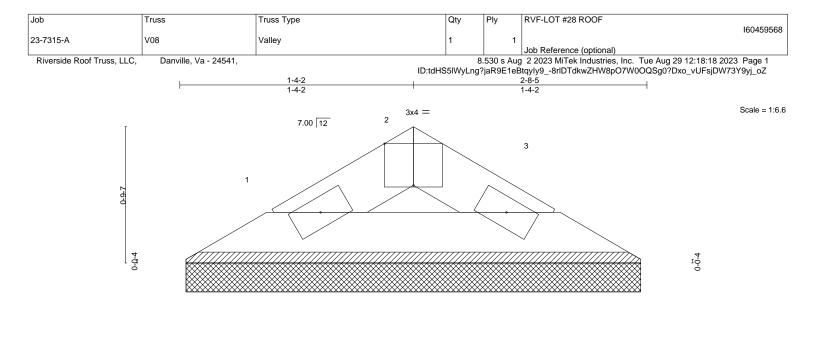
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



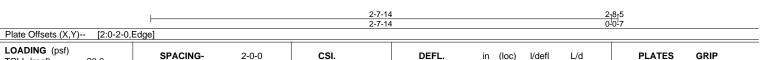
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

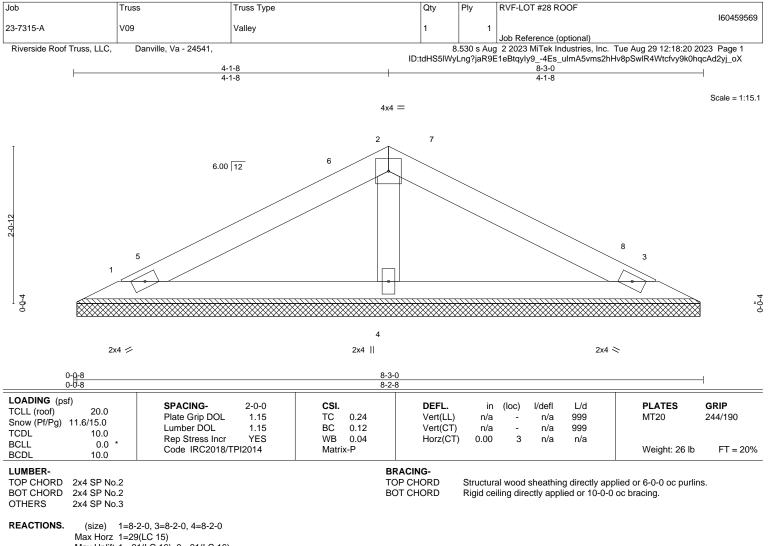
2x4 💋

2x4 📎

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.01 BC 0.03 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2		TC						plied or 2-8-5 oc pur) oc bracing.	lins.

REACTIONS. (size) 1=2-7-7, 3=2-7-7 Max Horz 1=9(LC 15) Max Uplift 1=-4(LC 16), 3=-4(

Max Uplift 1=-4(LC 16), 3=-4(LC 16) Max Grav 1=64(LC 2), 3=64(LC 2)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift 1=-21(LC 16), 3=-21(LC 16)

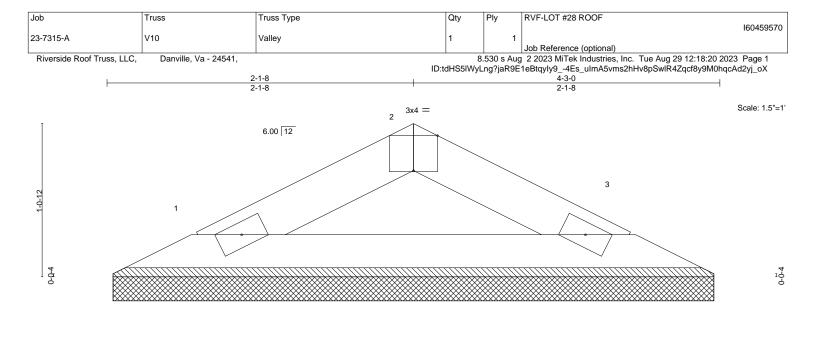
Max Grav 1=145(LC 20), 3=145(LC 21), 4=276(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 4-1-8, Exterior(2R) 4-1-8 to 7-1-8, Interior(1) 7-1-8 to 7-7-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

2x4 💋

2x4 📚

Structural wood sheathing directly applied or 4-3-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0 ₁ 0 ₁ 8 0-0-8		4-3- 4-2-							
Plate Offsets (X,Y) [2:0-2-0,I	Edge]								
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.05 BC 0.11 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 11 lb	FT = 20%
LUMBER-	•	BF	RACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=4-2-0, 3=4-2-0

Max Horz 1=-12(LC 14) Max Uplift 1=-7(LC 16), 3=-7(LC 16)

Max Grav 1=120(LC 2), 3=120(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

¹⁾ Unbalanced roof live loads have been considered for this design.

