

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

_	-	× 1	1
	-		
	_		
	-	-	
	-		
	_	-	_

Job	Truss		Truss Type		Qty	Ply	AH	IP - SMITH	I RESI	DENC	E ROOF	
72402902	C2		Truss		2	·	1 _{Jo}	.lob Reference (optional)				
UFP Mid Atlantic LLC, 5631 S. N	I I											
ID:hzpe3jf_ov?Fik6hcB67BozqF2S-qmChPJnTUh2v8kJcMW4f8b4bMX1VvX7XDVrLOIzpXAc												
		1-2-8	5-11-14 9- 5-11-14 3-	<u>1-12 11-10-12 1</u> 1-14 2-9-0 2	14-3-8 2-4-12	<u>16-8-4</u> 2-4-12	19-5-4 2 2-9-0	4 <u> 22-7-</u>) 1 3-1-1	-2 14		<u>28-7-0</u> 5-11-14	1-2-8
					54	e						
					6	0						
T É				5x1	, 🔨	\searrow	5x6					
	5315	5 7										
1-12	6-5		1	$\begin{array}{c} 300 \\ 2 \\ 4 \\ 13 \end{array}$			- 12 13	5xo 8				
ά.	+ ` `		5x6				-		5x6			
2-12						4			\searrow			
÷				W3		8	9	s wa	×	\searrow		
	4 4 	5x8	TI				ć				TI -	
۲ ۱		2									5x	⁸ 10
	- 2-		W2		9	-10-0					N2	11
\perp \sim .	\top $\frac{1}{2}$			B1		Ť				B2	¥	12
		⊠0 3x6		15 5×6		7~9	9	13 5×6			≥ 3)	
		1193 ID/-261 ແ ເ	9-1-12	L	19-5	i-4	0	5x0 L		28-7-	1193 lb/ 0	-261 ID L
Scale = 1:70.1			9-1-12	1	10-3	-8		1		9-1-1	2	1
Plate Offsets (X, Y): [2:0	0-5-0,0-1-0],	[6:0-3-0,Edge], [7:0-2	-9,0-2-4], [10:0-5-0,0-1-0]						-			
Loading TCLL (roof)	(psf) S 20.0 Pl	pacing late Grip DOL	1-7-3 1.15	CSI TC	0.95 V	EFL ert(LL)	in -0.18	(loc) 13-15	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0 Lu	umber DOL	1.15	BC	0.56 V	ert(CT)	-0.28	13-15	>999	180		
BCDL	0.0 R	ep Stress Incr ode	IRC2015/TPI2014	WB Matrix-MSH	0.26 H	orz(CT) ttic	0.01	12 13-15	n/a >999	n/a 360	Weight: 278 lb	FT = 20%
				BR			-					
TOP CHORD 2x6 SP No.2	2 *Except* T3	3:2x4 SP No.2		TO			Structu Bigid o	ral wood she	eathing o	directly	applied, except er	nd verticals.
WEBS 2x6 SP No.2	2 *Except* W	4:2x4 SP No.2, W2:2	x4 SP No.3	во	I CHURD		Rigiu C	ening directly	applied	101 10-	0-0 oc bracing.	
REACTIONS (lb/siz	e) 12=1	010/0-3-8, (min. 0-1-	8), 16=1010/0-3-8, (min. 0-	1-8)								
Max I	Jplift 12=-2	261 (LC 11), 16=-261	(LC 10)									
Max (Grav 12=1 (lb) - Max C	193 (LC 19), 16=119 Comp /Max Ten - All	3 (LC 18) forces 250 (lb) or less exce	nt when shown								
TOP CHORD	2-17=-1457/2	/252, 3-17=-1327/274	, 3-4=-1297/295, 4-5=-102	1/328, 5-6=-153/464, 6-7	7=-153/463	3, 7-8=-1	1021/328, 8	-9=-1297/29	5, 9-18=	-1327/	274, 10-18=-1457/	252, 2-16=-1082/324,
BOT CHORD	15-16=-476/	/835, 14-15=-102/114	6, 13-14=-102/1146, 12-13	=-331/596								
NOTES	8-13=-51/43	8, 4-15=-52/438, 5-7=	1569/539, 2-15=-163/773	, 10-13=-178/786								
1) Unbalanced roof live l	loads have	been considered f	for this design.		-05 6	0-4-11-1	F D . F					
MWFRS (envelope) e	xterior zone	e and C-C Exterior	r(2) - 1 - 2 - 8 to $1 - 9 - 8$, Int	erior (1) 1-9-8 to 11-3	3-8, Exte	rior (2)	Ехр Б, Ег 11-3-8 to	17-0-3,				
Interior (1) 17-0-3 to 2 exposed;C-C for mem	26-9-8, Extenders and fo	erior (2) 26-9-8 to 2 orces & MWFRS f	29-9-8 zone; cantilever or reactions shown; Lui	left and right expose nber DOL=1.60 plate	d ; end v e grip DC	ertical I)L=1.60	left and rig D	ght				
 3) This truss has been d 4) * This truss has been 	3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.											
2-00-00 wide will fit between the bottom chord and any other members.												
6) Bottom chord live load	d (40.0 psf)	and additional bo	ttom chord dead load (0.0 psf) applied only	to room.	13-15						
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 16 and 261 lb uplift at joint 12. 												
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.												
9) Attic room checked for L/360 deflection.												
This design is based upon para	meters show	n, and is for an individual	dual building component to	be installed and loaded	vertically.	Applica	ability of dea	sign paramet	ers and	proper	incorporation of	

component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss meets only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type		Qty	Ply	AHP - SMITH RESIDENCE ROOF					
72402902	C3	Truss		3	1	Job Reference (optional)					
UFP Mid Atlantic LLC, 5631 S. N	IC 62, Burlington, NC, Eric C	2, Burlington, NC, Eric Graham Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Thu Feb 01 11:56:55 Page: 1									
ID:30jEOhXmbKCuyyBjN0wEfCzqF1J-qmChPJnTUh2v8kJcMW4f8b4eXX1ZvXIXDVrLOIzpXAc											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	5x6										
			5x1	0	5x6						
	-+->		5 5x8 T2	w		5x8					
		:	3^{12} 4 13^{12}			8 8					
a		5x6				TT	5x6				
-2-12		$\langle \rangle$			1		\searrow				
÷			W3		ø	φ w ₃		$\langle \rangle$			
	7-4-7	11 T1				Ű			J4 5	v5	
	2		· · · · · · · · · · · · · · · · · · ·	9-1	10-0	ł				ູ້10	
		W2							W2	2	
\perp 、		5	B1					B2		11 ⊠1	
	1195 lb	- x6 -261 lb	14 5x6		7x8	12 5x6			3 1124 H	Bx6 b/-220 lb	
Casta = 1:70 1		9-1-12	k	19-5-4	4			28-7-	-0		
Plate Offsets (X, X): [2:	0 5 0 0 1 0] [6:0 3 0 Edge]	9-1-12	1	10-3-8	8			9-1-1	2		
		7.0-2-9,0-2-4j, [10.0-1-0,0-1-0]									
Loading TCLL (roof)	(psf) Spacing 20.0 Plate Grip DOL	1-7-3 1.15	CSI TC	0.75 Vert	=L :(LL) -	in (loc) 0.18 12-14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
TCDL	10.0 Lumber DOL	1.15	BC	0.55 Vert	(CT) -	0.27 12-14	>999	180 p/o			
BCDL	10.0 Code	IRC2015/TPI2014	Matrix-MSH	Attic	; ·	0.08 12-14	>999	360	Weight: 275 lb	FT = 20%	
LUMBER			BR	ACING							
TOP CHORD 2x6 SP No.1	*Except* T3:2x4 SP No.2,	1,T4:2x6 SP No.2	TO	P CHORD	Stu ve	ructural wood she rticals.	eathing di	irectly	applied or 5-1-5 o	c purlins, except end	
WEBS 2x6 SP No.2	2 *Except* W4:2x4 SP No.2,	W2:2x4 SP No.3	BO	T CHORD	Rig	gid ceiling directly	y applied	or 10-	0-0 oc bracing.		
REACTIONS (Ib/siz	ze) 11=939/0-3-8, (min.	0-1-8), 15=1011/0-3-8, (min. 0-	1-8)								
Max I	Jplift 11=-220 (LC 11), 15	=-261 (LC 10)									
FORCES	Grav 11=1124 (LC 19), 1 (lb) - Max. Comp./Max. Ter	=1195 (LC 18) - All forces 250 (lb) or less exc	ept when shown.								
TOP CHORD	2-16=-1468/256, 3-16=-133 10-11=-1041/250	7/278, 3-4=-1308/299, 4-5=-10	25/331, 5-6=-166/487, 6-7	/=-170/489, 7	7-8=-1031/3	36, 8-9=-1313/29	0, 9-17=-	-1322/2	267, 10-17=-1453/	/259, 2-15=-1090/331,	
BOT CHORD	14-15=-488/813, 13-14=-12	2/1140, 12-13=-122/1140, 11-1	2=-238/433								
NOTES	6-12=-36/416, 4-14=-33/44	, 5-7=-1012/572, 2-14=-105/78	4, 10-12=-136/691								
1) Unbalanced roof live	loads have been consid	red for this design.	6 Anof: DODI =6 Anof:	h-05ft Ca	t III Even D	. Englaged					
MWFRS (envelope) e	exterior zone and C-C Exterior	terior (2) $-1-2-8$ to $1-9-8$, In	terior (1) 1-9-8 to 11-3	1=2511, Ca 3-8, Exterio	or (2) 11-3-	8 to 17-0-3,					
Interior (1) 17-0-3 to 2 exposed;C-C for men	25-4-4, Exterior (2) 25-4- nbers and forces & MWF	4 to 28-4-4 zone; cantileve RS for reactions shown; Lu	r left and right expose Imber DOL=1.60 plate	d ; end ver grip DOL:	tical left an =1.60	id right					
 This truss has been d * This truss has been 	 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) This truss has been designed for a live load of 20 option the better about in all stress where a votes all a 200 00 to the built of the best stress and the better about in all stress where a votes all a 200 00 to the built of the best stress and the best stress and										
2-00-00 wide will fit between the bottom chord and any other members.											
 b) Ceiling dead load (5.0 pst) on member(s). 4-5, 7-8, 5-7 Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14 											
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 15 and 220 lb uplift at joint 11 											
8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPL 1											
9) Attic room checked for	r L/360 deflection.										
LOAD CASE(S) Standa	iu										
This design is based upon para	meters shown, and is for an	individual building component t	o be installed and loaded	vertically. A	pplicability o	f design parame	ters and p	proper	incorporation of		
component is responsibility of the governing codes and ordinance	he Building Designer. Buildi s. Building Designer accep	ng Designer shall verify all designs responsibility for the correction	on information on this she	et for confor	mance with ion as it may	conditions and re relate to a spec	quiremen	nts of ti ng. Cei	he specific building rtification is valid o	g and only when	
truss is tabricated by a UFPI pla (BCSI) for general guidance reg	ant. Bracing shown is for lat garding storage, erection an	eral support of truss members of bracing available from SBCA a	nıy and does not replace and Truss Plate Institute.	erection and	i permanent	pracing. Refer to	o Building	g Comp	oonent Safety Info	rmation	

component is responsibility of the Building Designer. Building Designer shall verify all design information on this sheet for conformance with conditions and requirements of the specific building and governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information (BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute.

Job	Truss	Truss Type	Qty	Ply	AHP - SMITH RESIDENCE ROOF
72402902	C6	Truss	1	2	Job Reference (optional)

UFP Mid Atlantic LLC, 5631 S. NC 62, Burlington, NC, Eric Graham

Run: 8.62 S Sep 22 2022 Print: 8.620 S Sep 22 2022 MiTek Industries, Inc. Thu Feb 01 11:56:57 Page: 2 ID:XMa1D1jEor7AJjv_Svbc?SzqEwd-m9KSq_oj0IIdN1T?Ux67D0AyOKcFNWUqgpKSSAzpXAa

15) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent at 26-7-4 from the left end to connect

truss(es) B4 (1 ply 2x4 SP) to front face of bottom chord.

16) Fill all nail holes where hanger is in contact with lumber.

17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (Ib/ft)

Vert: 1-3=-90, 3-4=-105, 4-5=-90, 5-6=-90, 6-7=-105, 7-9=-90, 11-15=-30, 10-16=-30, 4-6=-15

Concentrated Loads (lb)

Vert: 14=-206 (F), 19=-209 (F), 20=-206 (F), 21=-206 (F), 22=-206 (F), 23=-974 (F), 24=-966 (F), 25=-1214 (F)

Job	Truss	Truss Type		Qty	Ply	AHP - SMITH	H RESIDEN	CE ROOF			
72402902	V6	Truss		1	1	Job Reference	ce (optional)				
UFP Mid Atlantic LLC, 5631 S. N	NC 62, Burlington, NC, Eric Graf	am	Run: 8.62 S Se	p 22 2022 Pr	int: 8.620 S) S Sep 22 2022 MiTek Industries, Inc. Thu Feb 01 11:57:01 Page:					
				ID:TK	_4p1U8Woa	aSOCsGfx0b4dzr	tqg-fwZygMrE	4Xo3sfnmjnA4NsKp	LxBLJO0PbRIfbyzpXAW		
			I	104	30	3-6-9					
			t -	1-9-4	1-5	-2					
						0-4-2					
					3x4						
	\		. 12	2	2 1						
	0	2-5	10 🖻	T	TI	,					
	-1-	÷									
			\sim ¹			3					
		6	\boxtimes								
				1452,4p/-39 lb		3x4					
			1			1					
Scale = 1:28.9			<u>/</u>		3-6-9						
Plate Offsets (X, Y): [2:	0-2-0,Edge]		I			I					
Loading	(psf) Spacing	2-0-0	CSI	DEF	 ΈL	in (loc)	l/defl L/d	PLATES	GRIP		
TCLL (roof) TCDL	20.0 Plate Grip DOL 10.0 Lumber DOL	1.15 1.15	TC BC	0.09 Vert 0.08 Vert	(LL) (TL)	n/a - n/a -	n/a 999 n/a 999	MT20	244/190		
BCLL	0.0* Rep Stress Incr	YES	WB Matrix MB	0.00 Hori	z(TL)	0.00 3	n/a n/a	Weight: 11 lb	ET - 20%		
	TO.0 Code	IRC2013/1712014							FT - 20%		
LUMBER TOP CHORD 2x4 SP No.2	2		BF TC	RACING OP CHORD	St	ructural wood she	eathing direct	y applied or 3-6-9 oc	purlins.		
BOT CHORD 2x4 SP No.2	2 $(1-1/2)^3 \in Q (\min \ Q \ 1)^3$	$(3) 3-142/3 \in Q \ (min \ 0 \ 1 \ 8)$	BC	OT CHORD	Ri	gid ceiling directly	y applied or 1	0-0-0 oc bracing.			
Max H	Horiz 1=46 (LC 7)	o, (4)									
FORCES	Uplift 1=-39 (LC 10), 3=-39 (L (lb) - Max. Comp./Max. Ten A	C 11) Il forces 250 (lb) or less exce	ept when shown.								
NOTES											
 Unbalanced roof live Wind: ASCE 7-10; VL 	loads have been considere ult=155mph (3-second gust)	d for this design. Vasd=123mph; TCDL=6	0.0psf; BCDL=6.0psf	f; h=25ft; Ca	at. II; Exp E	3; Enclosed;					
MWFRS (envelope) e exposed;C-C for men	exterior zone and C-C Exter nbers and forces & MWFRS	ior (2) zone; cantilever le 6 for reactions shown; Lui	ft and right exposed mber DOL=1.60 plat	; end vertic te grip DOL	al left and =1.60	right					
 Gable requires contin This truss has been d 	nuous bottom chord bearing designed for a 10.0 psf botto	m chord live load nonco	ncurrent with any oth	ner live load	S.						
5) * This truss has been	designed for a live load of	20.0psf on the bottom ch	ord in all areas whe	re a rectang	le 3-06-00	tall by					
 6) Provide mechanical c at joint 2 	connection (by others) of tru	ss to bearing plate capat	ble of withstanding 3	9 lb uplift at	joint 1 and	d 39 lb uplift					
 7) This truss is designed referenced standard 	d in accordance with the 20	15 International Resident	ial Code sections R	502.11.1 an	d R802.10	.2 and					
LOAD CASE(S) Standard	ard										

governing codes and ordinances. Building Designer accepts responsibility for the correctness or accuracy of the design information as it may relate to a specific building. Certification is valid only when truss is fabricated by a UFPI plant. Bracing shown is for lateral support of truss members only and does not replace erection and permanent bracing. Refer to Building Component Safety Information

(BCSI) for general guidance regarding storage, erection and bracing available from SBCA and Truss Plate Institute

