

RE: 23030066-01 Roof-Jefferson LH Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Project Name: 23030066-01Customer: Lamco Custom Builders LLCProject Name: 23030066-01Lot/Block:Model:Address:Subdivision:City: SanfordState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Seal# I57189489 I57189490 I57189491 I57189492 I57189493 I57189494 I57189495 I57189496 I57189496 I57189498 I57189499 I57189500 I57189501 I57189502	Truss Name T2 T2GE T3 T3GE T4 T4GE T4GR T4GR T4SE T5 T5A T5A T5AGE T5GE V4 V5	Date 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023 3/16/2023
13	157189501	V4	3/16/2023
15 16 17 18	I57189503 I57189504 I57189505 I57189506	V6 V7 V8 V9	3/16/2023 3/16/2023 3/16/2023 3/16/2023
19	157189507	V10	3/16/2023

The truss drawing(s) referenced above have been prepared by

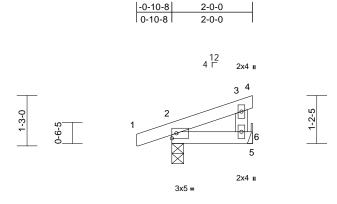
Truss Engineering Co. under my direct supervision

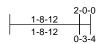
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	Т2	Monopitch	6	1	Job Reference (optional)	157189489

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:21 ID:_sO1ijNYcR1VA9rbqywymny3VWy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.6

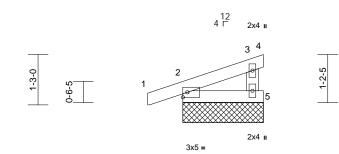
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.06 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI201	4 Matrix-MP							Weight: 8 lb	FT = 20%
	2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=27 (LC Max Uplift 2=-23 (LC Max Grav 2=153 (LC	applied or 10-0-0 oc 5= Mechanical 11) 11), 5=-4 (LC 15) 222), 5=74 (LC 22)	bearin 5. 8) One H recom d or 9) This tr Interna R802.	e mechanical connecti g plate capable of with 2.5A Simpson Strong- mended to connect tru T at jt(s) 2. This conne ot consider lateral forc uss is designed in accor tional Residential Cod 10.2 and referenced st SE(S) Standard	standing ² Tie conne ss to bear ction is for es. ordance w le sections	I b uplift at joi ctors ing walls due r uplift only an ith the 2018 5 R502.11.1 a	int to nd					
TOP CHORD BOT CHORD	Tension DP CHORD 1-2=0/20, 2-3=-51/48, 3-4=-6/0, 3-6=-66/57											
 Vasd=103i Cat. II; Exp Exterior(2E MWFRS fc grip DOL= 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs 5) * This truss on the bott 3-06-00 tal chord and 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi o B; Enclosed; MWFR E) zone;C-C for memb or reactions shown; Lu 1.33 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 dd snow loads have be has been designed fo 0 psf or 2.00 times fla c non-concurrent with c s has been designed f tom chord in all areas tom chord in all areas any other members. rder(s) for truss to trus	CDL=6.0psf; h=25ft; S (envelope) and C-C ers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu een considered for thi r greater of min roof I t roof load of 13.9 psf ther live loads. or a live load of 20.0p where a rectangle fit between the botton	e .15 ully is ive f on psf								SEA 0363	EER RUU

A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	157189490

-0-10-8


0-10-8


Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:24 ID:_sO1ijNYcR1VA9rbqywymny3VWy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-0-0

2-0-0

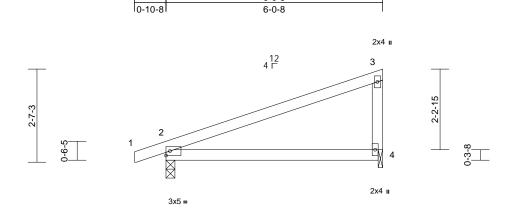
Scale = 1:28.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-MP	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 2=2-0-0, 4 Max Horiz 2=28 (LC Max Uplift 2=-22 (LC 5=-16 (LC Max Grav 2=138 (LC	applied or 10-0-0 oc 4=2-0-0, 5=2-0-0, 6=2 11), 6=28 (LC 11) 11), 4=-25 (LC 22), 15), 6=-22 (LC 11)	6) C 7) C 1 or 8) * -0-0 9) C 10)	oad of 12.0 p overhangs no Gable require Gable studs ¢ This truss h on the botton 3-06-00 tall b chord and an One H2.5A S uPLIFT at jt(does not con	s been designed from the second secon	at roof lo other liv om chor c. for a liv s where Il fit betw e connec to bear ion is for	oad of 13.9 p ve loads. d bearing. e load of 20. a rectangle veen the bott ctors ng walls due	osf on Opsf com					
Vasd=103/ Cat. II; Exp Corner(3E MWFRS fc grip DOL= 2) Truss des only. For s see Stand or consult 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=((lb) - Maximum Com Tension 1-2=0/20, 2-3=-90/50 3-5=-95/132 2-5=-37/17 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B0 p B; Enclosed; MWFR:) zone;C-C for membe or reactions shown; Lu	pression/Maximum 0, 3-4=-13/11, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C rrs and forces & mber DOL=1.60 plate mber DOL=1.60 plate the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat B; Ful	tu c fr 12) E 13) T F E LOA S e, 1. 15	russ to beari connection is forces. Beveled plate surface with t This truss is o nternational	ical connector (by ng walls due to Uf for uplift only and a or shim required truss chord at joint designed in accord Residential Code ad referenced stan Standard	PLIFT at does no to provie (s) 2, 6. dance w sections	jt(s) 5. This ot consider la de full bearin ith the 2018 R502.11.1 a	ateral ng		Na trattana a			EER HUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	ТЗ	Monopitch	4	1	Job Reference (optional)	157189491

6-0-8

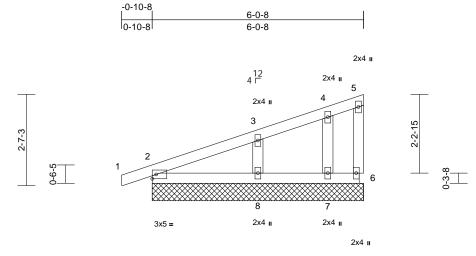

-0-10-8

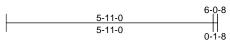
Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:24 ID:_sO1ijNYcR1VA9rbqywymny3VWy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.1


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.66 0.54 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.19 0.15 -0.02	(loc) 4-7 4-7 2	l/defl >374 >485 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=61 (LC Max Uplift 2=-69 (LC Max Grav 2=308 (LC	applied or 10-0-0 oc 4=0-1-8 11) 11), 4=-65 (LC 11) 2 22), 4=266 (LC 22)	 using ANSI/ designer shi 7) Provide met bearing plat d or 8) One H2.5A recommend UPLIFT at jt and does no 9) This truss is Internationa R802.10.2 a 	pint(s) 4 considers TPI 1 angle to grain buld verify capacity chanical connectior e at joint(s) 4. Simpson Strong-Ti ed to connect truss (s) 2 and 4. This co- t consider lateral for designed in accord Residential Code nd referenced star Standard	n formula of bearing to bearing to bearing onnection orces. dance w sections	a. Building ng surface. ers) of truss t ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	to only					
FORCES	(lb) - Maximum Com Tension											
TOP CHORD BOT CHORD	1-2=0/20, 2-3=-83/1 2-4=-110/142	31, 3-4=-187/175										
 Vasd=103r Cat. II; Exp Exterior(2E 5-10-12 zo members a Lumber DC 2) TCLL: ASC Plate DOL=1.15 Exp.; Ce=C 3) Unbalance design. 4) This truss I load of 12. overhangs 5) * This truss on the bott 3-06-00 tal 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi o B; Enclosed; MWFR c) -0-10-3 to 2-1-13, Ir one; porch left and righ and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for 0 psf or 2.00 times flat is non-concurrent with of s has been designed f tom chord in all areas II by 2-00-00 wide will any other members.	CDL=6.0psf; h=25ft; S (envelope) and C-0 tterior (1) 2-1-13 to it exposed;C-C for for reactions shown; iL=1.33 roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu ern considered for thi r greater of min roof I t roof load of 13.9 psi ther live loads. or a live load of 20.0] where a rectangle	.15 Illy s ive f on						M. MILLING.		SEA 0363	22
Design va a truss sy building o	alid for use only with MiTek ystem. Before use, the build design. Bracing indicated is	® connectors. This design ing designer must verify th to prevent buckling of indi	FHIS AND INCLUDED MITEK F is based only upon parameters e applicability of design param vidual truss web and/or chord sible personal injury and prope	s shown, and is for an in eters and properly incor members only. Addition	dividual bu porate this al tempora	ilding componer design into the ary and permane	nt, not overall					NING BY NCO A MiTek Affiliate


a duss system. Belore use, the building designer must verify the application of design plantiteters and properly incorporate rule design must remove and building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DBS-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T3GE	Monopitch Supported Gable	1	1	Job Reference (optional)	157189492

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:24 ID:_sO1ijNYcR1VA9rbqywymny3VWy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.9

BCLL 0.0* Code IRC2018/TP12014 Matrix-MP LUMBER 10.0 10.0 Matrix-MP LUMBER 30 TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DOL=1.15) TOP CHORD 2x4 SP No.2 DOL=1.15); Pg=20.0 psf (root LL: Lum DOL=1.15) WEBS 2x4 SP No.2 DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9	Loading FCLL (roof) Snow (Pf/Pg) FCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.11 0.09 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
TOP CHORD 2X4 SP No.22x4 SP No.2Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Psf (Pampianian); Pampianian; Pampianian; Pampianian; Pampianian; Pampianian; Pa			Code	IRC2018	8/TPI2014	Matrix-MP							Weight: 27 lb	FT = 20%
 1) Wind: ASCE 7-16, Vuller ISOrling QuSt) Vasd=103mph; TCDL=6.Opsf; BCDL=6.Opsf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner(3E) -0-10-3 to 2-1-13, Exterior(2N) 2-1-13 to 5-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 	UMBER TOP CHORD OOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS CORCES TOP CHORD WEBS NOTE	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=6-0-8, 1 8=6-0-8, 1 Max Horiz 2=61 (LC (LC 11), 8 11) Max Grav 2=158 (L0 (LC 22), 8 2) (lb) - Maximum Con Tension 1-2=0/20, 2-3=-145/ 4-5=-13/5, 5-6=-21/2 2-8=-130/48, 7-8=0/ 3-8=-204/251, 4-7=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; B o B; Enclosed; MWFR b O B; Enclosed; MWFR show; Lumber DC igned for wind loads in studs exposed to wind ard Industry Gable En	cept end verticals. applied or 10-0-0 oc 5=6-0-8, 7=6-0-8, 9=6-0-8 11), 9=61 (LC 11) 11), 6=-3 (LC 15), 7= 3=-20 (LC 15), 9=-9 (C 2), 6=31 (LC 22), 7 3=280 (LC 22), 9=156 0, 6=31 (LC 22), 9=156 0, 6=31 (LC 22), 9=156 0, 6=31 (LC 22), 9=156 0, 6=31 (LC 22), 9=157 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	4) d or 5) (7) 8) 4 LC 9) =108 3 (LC 10 10 11 LC C S S S Ie,	Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs no Gable require Gable studs i * This truss h on the bottom 3-06-00 tall b chord and an One MECHA truss to bear This connect lateral forces) One H2.5A S recommende UPLIFT at jt(does not con) This truss is International R802.10.2 ar	15); Pg=20.0 psf ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 snow loads have s been designed of 2.00 times i s continuous bot spaced at 2-0-0 o as been designed n chord in all area y 2-00-00 wide w y other members NICAL connector ng walls due to U ion is for uplift on impson Strong-T d to connect truss s) 2. This connec cider lateral force designed in accor Residential Code and referenced stati	f; Pf=13.9 s=1.0; Ro 10 been cor for great flat roof l h other lin toom chor too d for a liv as where rill fit betv to r (BY OTH IPLIFT at ly and do ie conne s to bear tion is for s.	e load of 20. a rectangle e load of 20. a rectangle veen the bott HERS) recom jt(s) 6, 8, an es not consist ctors ng walls due uplift only a ith the 2018 R502.11.1 a	Fully his f live sf on Opsf om nmended d 7. der		4		ORTH CA	L BERLINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	Т4	Common	2	1	Job Reference (optional)	157189493

11-11-8

Carter Components (Sanford), Sanford, NC - 27332

TCDL

BCLL

BCDL

WEBS

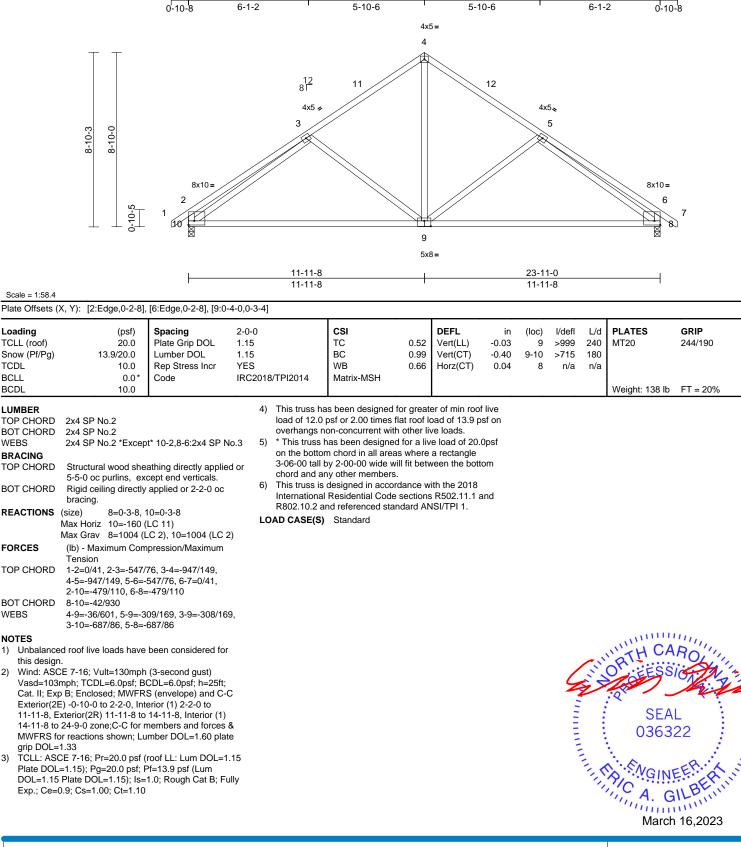
WEBS

2)

3)

-0-10-8

6-1-2


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:24 ID:2DkrjD8d4beCOEuxDT4VVny3VXF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-9-14

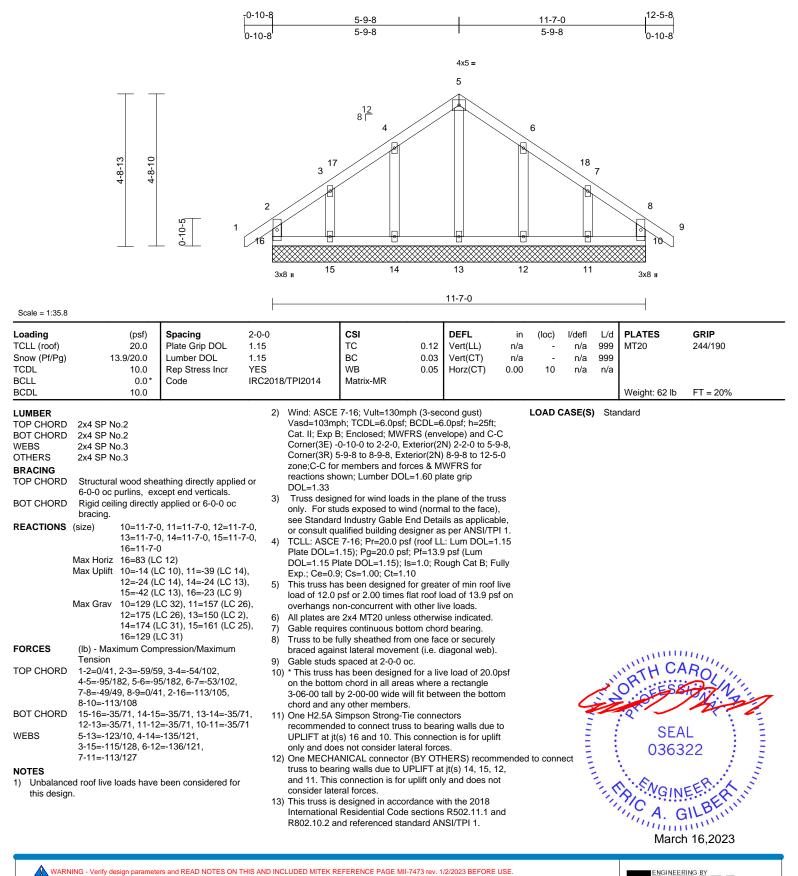
Page: 1

24-9-8

23-11-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

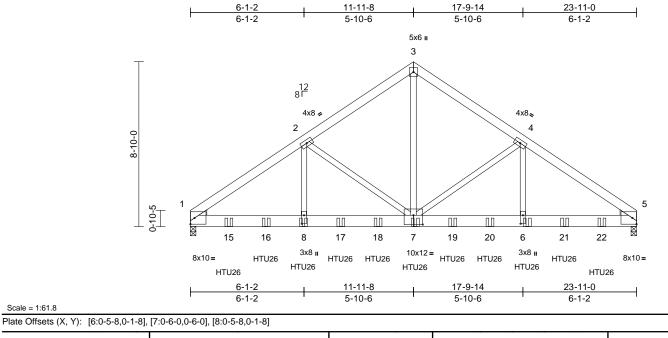
VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T4GE	Common Supported Gable	1	1	Job Reference (optional)	157189494

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:25 ID:2DkrjD8d4beCOEuxDT4VVny3VXF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

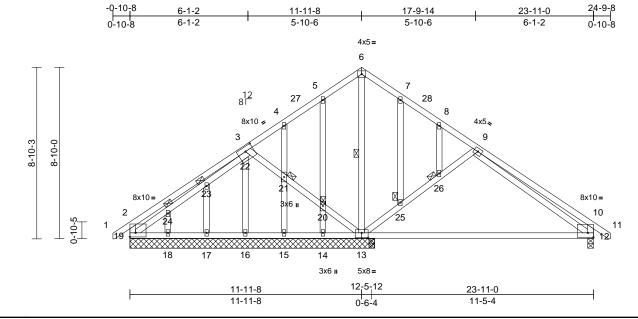
Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T4GR	Common Girder	1	3	Job Reference (optional)	157189495

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:25 ID:aliu3hLgJWfwJi709qNF99y3VX?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-5-8,0-1-8],	[7:0-6-0,0-6-0], [8:0-5	-8,0-1-8											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.40 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.05	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 560 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 3-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn 2) All loads a except in CASE(S) 3 provided to	2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, § Max Horiz 1=-150 (L Max Grav 1=10584 (lb) - Maximum Com Tension	C 5) (LC 20), 5=10708 (LC pression/Maximum 10497/0, 3-4=-10497/ (12327, 5-6=0/12221 141/0, 3-7=0/11131, 4844 ther with 10d s: 2x6 - 2 rows ows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been	5) or 6) 21) 8) 0, 1)	Vasd=103mj Cat. II; Exp E DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 * This truss is International R802.10.2 a Use Simpso/ 11-10dx1 1/2 spaced at 2- end to 22-0- bottom chord Fill all nail ho DAC CASE(S) Dead + Snd Increase=1 Uniform Lo Vert: 1-3 Concentrat Vert: 8=- 15=-132; 18=-132	oles where hanger Standard ow (balanced): Lun .15	BCDL=6 RS (env (roof LL Pf=13.5 =1.0; Rc 0 for a liv s where ll fit betw dance w sections dard AN (6 (20-11 Girder) g at 2-0 s(es) to l is in cor nber Inc 2=-20 (B), 6=-), 17=-1), 20=-1	.0psf, h=25ft elope); Lumb .: Lum DOL= 9 psf (Lum ough Cat B; F e load of 20.1 a rectangle veen the bott ith the 2018 i R502.11.1 <i>e</i> ISI/TPI 1. Jd Girder, or equivalent -12 from the pack face of ttact with lum rease=1.15, I 1324 (B), 324 (B),	er 1.15 Fully Opsf om and t left bber.				SEA 0363	ROUNT	_
	ed roof live loads have	been considered for										201111	16,2023	

Scale = 1:61.8


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

INFERING

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T4SE	Common Structural Gable	1	1	Job Reference (optional)	157189496

Scale = 1:59.4

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:26 ID:tM56zGDOgROL69M5ZjBvl2y3VX9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:Edge,0-2-8], [3:0-5-0,0-2-12], [10:Edge,0-2-12], [13:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI TC	0.54	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		BC	0.54	Vert(LL) Vert(CT)		12-13	>999 >329	240 180	MT20	244/190
Snow (Pf/Pg) TCDL	13.9/20.0	Lumber DOL	1.15 YES		WB	0.82 0.21	Horz(CT)	-0.43	12-13 12	>329 n/a	n/a		
BCLL	10.0 0.0*	Rep Stress Incr				0.21	HOIZ(CT)	0.01	12	n/a	n/a		
BCLL BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 180 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	No.3 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex	/ applied or 10-0-0 oc 6-13	No.2 d or No.2	DTES Unbalanced this design. Wind: ASCE Vasd=103m	6-13=-200/0, 13-25 6-13=-200/0, 13-25 25-26=-350/163, 92 3-21=-168/167, 20- 13-20=-169/168, 11 23-24=-84/106, 22- 9-12=0/182, 5-20=- 4-21=-32/16, 15-21 17-23=-19/24, 18-2 8-26=-1/4 roof live loads have 7-16; Vult=130mp ph; TCDL=6.0psf; E	-26=-35 -21=-16 9-24=-8 -23=-95 -136/66 I=-35/16 24=-7/6, e been h (3-see BCDL=6	3/164, 7/1107, 7/110, 3-22=-1: 14-20=-131// 5, 16-22=-179/ 7-25=-64/34, considered foi cond gust) 6.0psf; h=25ft;	54, ′0,	on t 3-00 cho 10) One recc UPI only 11) One trus con forc 12) This Inte	the bottc 6-00 tall and and a e H2.5A commence LIFT at j y and do e mecha es to bea inection ces. s truss is ernationa	om cho by 2-0 iny oth Simps led to o t(s) 19 es not nical c iring w is for u s desig al Resid	rd in all areas wh 0-00 wide will fit er members. on Strong-Tie co connect truss to b and 12. This con consider lateral f connector recomm alls due to UPLIF uplift only and doe ned in accordance	between the bottom nnectors pearing walls due to nnection is for uplift forces. nended to connect T at jt(s) 14. This as not consider later with the 2018 tions R502.11.1 and
	15=12-7- 18=12-7- Max Horiz 19=160 (Max Uplift 12=-8 (L0 19=-35 (1) Max Grav 12=508 (14=-28 (1) 16=205 (C 14), 14=-171 (LC 17	7-8, ^{(),} 3)), 4)	Exterior(2E) 11-11-8, Ext 14-11-8 to 2 MWFRS for grip DOL=1. Truss desig only. For stu see Standard or consult qu TCLL: ASCE	ned for wind loads uds exposed to win d Industry Gable E ualified building des 5 7-16; Pr=20.0 psf	in the p in the p in the p in d (norm nd Deta signer a (roof Ll	I) 2-2-0 to -8, Interior (1) ers and forces DOL=1.60 pla lane of the tru ial to the face) ils as applicat s per ANSI/TF L: Lum DOL=1	& te ss , ole, Pl 1.	LOAD	CASE(S) Sta		ROL
FORCES		npression/Maximum	,	DOL=1.15 P	I.15); Pg=20.0 psf; late DOL=1.15); Is: 9; Cs=1.00; Ct=1.10	=1.0; R		ully		2		2	2 A A
TOP CHORD		9/109, 6-7=-84/102,)4/60, 9-10=-505/67, 343/162, 10-12=-451/	0)	This truss ha load of 12.0 overhangs n All plates are	as been designed for psf or 2.00 times fla on-concurrent with e 2x4 MT20 unless	or great at roof l other li otherwi	oad of 13.9 ps ve loads. se indicated.			111111		SEA 0363	
	16-19=-84/182, 17- 16-17=-84/182, 15- 14-15=-84/182, 12-	16=-84/182,	7) 8)	braced agair	fully sheathed from nst lateral movement spaced at 2-0-0 oc	nt (i.e. c				HIII WALL		in the second se	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENGINEERING BY RENCO

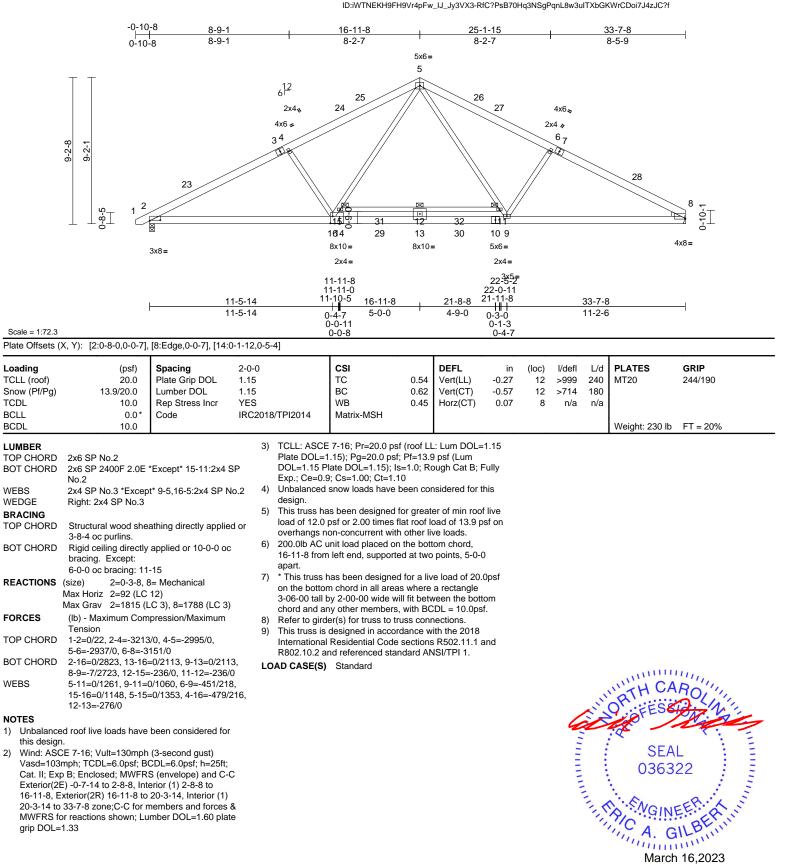
818 Soundside Road Edenton, NC 27932

March 16,2023

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5	Common	5	1	Job Reference (optional)	157189497

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:27

Carter Components (S								nce (optic	, iai,	
	Sanford), Sanford, N	C - 27332,							ic. Wed Mar 15 08:52:2 XbGKWrCDoi7J4zJC?1	•
	-0-10-8	0.0.1		10 11 0			5 4 45		00.44.0	34-9-8
	0-10-8	<u>8-9-1</u> 8-9-1		<u> </u>			<u>5-1-15</u> 8-2-7		<u>33-11-0</u> 8-9-1	0-10-8
	0 10 0				5x6=					0.00
					5					
ΤT			1 <u>2</u> 6							
				22		$\langle - \rangle$	23			
			2x4 、	21		\parallel $>$	24	4x6		
			4x6 ≠					2x4 //		
9-2-8 9-2-1			34	//				67	,	
ත් ත්		/	ur h				\ \	174	\sim	
							$\langle \rangle$			05
		20								25
ى	1 2									8 9
				T T			LT H			
				1312 26		27	1110			×
	3x8=			3x5=			5x6=			3x8=
				5x6=	00 5 0		3x5=		00.44.0	
		<u>11-5-1</u> 11-5-1			<u>22-5-2</u> 10-11-3				<u>33-11-0</u> 11-5-14	
Scale = 1:63.5	. [2:0 0 4 0 0 45		4.0.0.40.0.0.0	[40.0 0 40 0 0 0]						
iale Olisels (X, Y)	2:0-8-4,0-0-15	i], [8:0-8-4,0-0-15], [1	1:0-2-10,0-2-8]	, [12:0-2-10,0-2-8]						
oading CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.41	DEFL Vert(LL)	in (loc) -0.19 10-13		L/d PLATES 240 MT20	GRIP 244/190
now (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.30 10-13		180	244/190
CDL CLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI	WB 2014 Matrix-MSH	0.28	Horz(CT)	0.06 8	n/a	n/a	
CDL	10.0	Code							Weight: 217 lb	FT = 20%
UMBER		-	5) Thi	s truss has been designed	for greate	r of min roof	live		•	
OP CHORD 2x6	SP No.2		loa	d of 12.0 psf or 2.00 times	flat roof lo	ad of 13.9 ps				
	6 SP No.2 I SP No.2 *Excep	ot* 10-6,13-4:2x4 SP		erhangs non-concurrent wi his truss has been designe			psf			
			2.0	the bottom chord in all are 6-00 tall by 2-00-00 wide			m			
	uctural wood she I-14 oc purlins.	athing directly applied	chc	ord and any other member	s, with BC	DL = 10.0psf				
	gid ceiling directly acing.	applied or 10-0-0 oc		s truss is designed in acco ernational Residential Cod			nd			
EACTIONS (size	0	8=0-3-8	R8	02.10.2 and referenced sta						
Max	Horiz 2=-90 (LC			CASE(S) Standard						
Max										
		LC 3), 8=1519 (LC 3) pression/Maximum								
ORCES (lb) Tei	- Maximum Com	pression/Maximum								
ORCES (lb) Ter OP CHORD 1-2	- Maximum Com nsion ==0/22, 2-4=-2530		Ļ,							
ORCES (Ib) Tel OP CHORD 1-2 5-6 OT CHORD 2-1	- Maximum Com nsion =0/22, 2-4=-2530 =-2308/274, 6-8= 3=-123/2227, 10	npression/Maximum)/248, 4-5=-2308/274 =-2530/248, 8-9=0/22	Ļ,							
ORCES (Ib) Tei OP CHORD 1-2 5-6 OT CHORD 2-1 8-1 VEBS 5-1	- Maximum Com hsion =-0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10=	npression/Maximum)/248, 4-5=-2308/274 =-2530/248, 8-9=0/22	l, ?							
ORCES (lb) Tel OP CHORD 1-2 5-6 2-1 OT CHORD 8-1 /EBS 5-1 4-1	- Maximum Com nsion ==0/22, 2-4=-2530 ==-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193	npression/Maximum 0/248, 4-5=-2308/274 =-2530/248, 8-9=0/22 -13=0/1481,	l, ?							
ORCES (Ib) Tel OP CHORD 1-2 5-6 2-1 OT CHORD 2-1 /EBS 5-1 4-1 4-1 OTES)	- Maximum Com hsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199	npression/Maximum 0/248, 4-5=-2308/274 =-2530/248, 8-9=0/22 -13=0/1481,	966,						WITH C	ARO
ORCES (Ib) Ter OP CHORD 1-2 5-6 OT CHORD 2-1 8-1 /EBS 5-1 4-1 OTES 0 Unbalanced root this design. 1	- Maximum Com hsion (=0/22, 2-4=-2530) (=-2308)/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have	pression/Maximum)/248, 4-5=-2308/274 2530/248, 8-9=0/22 -13=0/1481, 505/199, 5-13=-41/9 been considered for	966,						NUMATH C	AROLINI,
ORCES (Ib) Ter OP CHORD 1-2 5-6 5-1 OT CHORD 2-1 /EBS 5-1 4-1 4-1 OTES)) Unbalanced roo this design.) Wind: ASCE 7- Vasd=103mph;	- Maximum Com hsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B	Diversion/Maximum D/248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, =-505/199, 5-13=-41/3 been considered for (3-second gust) CDL=6.0psf; h=25ft;	966,					6	UN OF FES	AROLINI,
ORCES (Ib) Ter OP CHORD 1-2 5-6 OT CHORD 2-1 8-1 8-1 /EBS 5-1 0 Unbalanced roo this design. 4-1 0 Wind: ASCE 7- Vasd=103mph; Cat. II; Exp B; E 5	- Maximum Com hsion =0/22, 2-4=-253 =-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR	D/248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, =-505/199, 5-13=-41/3 been considered for (3-second gust)	966,					Con Con	UNDRICH C	AROLIN
ORCES (Ib) Ter OP CHORD 1-2 OT CHORD 2-1 0T CHORD 2-1 /EBS 5-1 4-1 4-1 OTES 0 0 Unbalanced root this design. 0) Wind: ASCE 7- Vasd=103mph; Cat. II; Exp B; E Exterior(2E) -0- 16-11-8, Exterior	- Maximum Com nsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFr 7-14 to 2-8-14, Ir or(2R) 16-11-8 to	Apression/Maximum D/248, 4-5=-2308/274 =-2530/248, 8-9=0/22 -13=0/1481, =-505/199, 5-13=-41/3 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C tterior (1) 2-8-14 to 20-4-3, Interior (1)	966, C					1 Marin	DEN FES	
ORCES (Ib) Ter OP CHORD 1-2 0-00000000000000000000000000000000000	- Maximum Com nsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR -7-14 to 2-8-14, Ir or(2R) 16-11-8 to 14 zone; C-C for r	Diression/Maximum D/248, 4-5=-2308/274 2530/248, 8-9=0/22 -13=0/1481, 505/199, 5-13=-41/3 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C hterior (1) 2-8-14 to	966, C					Contraction of the second s	SEA 0363	
ORCES (Ib) Ter OP CHORD 1-2 5-6 OT CHORD 2-1 8-1 8-1 /EBS 5-1 UDE 4-1 OTES 9) Unbalanced roo this design. 9) Wind: ASCE 7- Vasd=103mph; Cat. II; Exp B; E Exterior(2E) -0- 16-11-8, Exterior 20-4-3 to 34-6- MWFRS for reag grip DOL=1.33	- Maximum Com hsion =0/22, 2-4=-253 =-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR 7-14 to 2-8-14, Ir or(2R) 16-11-8 to 14 zone;C-C for r actions shown; Lu	Apression/Maximum 2/248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, -505/199, 5-13=-41/3 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C tterior (1) 2-8-14 to 20-4-3, Interior (1) members and forces a imber DOL=1.60 plat	966, C & e					(Bannow)	SEA 0363	
ORCES (Ib) Ter OP CHORD 1-2 OT CHORD 2-1 0T CHORD 2-1 /EBS 5-1 //EBS 5-1 0 Unbalanced root this design. 0) Unbalanced root this design. 0) Wind: ASCE 7-Vasd=103mph; Cat. II; Exp B; E 5-1 Cat. II; Exp B; E 5-1 20-4-3 to 34-6- MWFRS for reaging DOL=1.33 TCLL: ASCE 7- Plate DOL=1.13	- Maximum Com nsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR TCDL=6.0psf; B Enclosed; MWFR to 2-8-14, Ir or(2R) 16-11-8 to 14 zone; C-C for r actions shown; Lu -16; Pr=20.0 psf; I	Apression/Maximum D/248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, -505/199, 5-13=-41/9 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C therior (1) 2-8-14 to 20-4-3, Interior (1) nembers and forces a imber DOL=1.60 plat poof LL: Lum DOL=1. Pf=13.9 psf (Lum	966, 2 2 2 2 4 8 8 8 8 8 9 15					Community of the second	SE/ 0363	
ORCES (Ib) Ter OP CHORD 1-2 5-6 5-6 OT CHORD 2-1 /EBS 5-1 //EBS 5-1 0 Unbalanced root this design. 4-1 OTES 9 0 Unbalanced root this design. 9 10 Wind: ASCE 7- Vasd=103mph; Cat. II; Exp B; I Exterior(2E) -0 16-11-8, Exteriti 20-4-3 to 34-6- MWFRS for rea grip DOL=1.33 10 TCLL: ASCE 7- Plate DOL=1.15 Plate	- Maximum Com nsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR TCDL=6.0psf; B Enclosed; MWFR to 2-8-14, Ir or(2R) 16-11-8 to 14 zone; C-C for r actions shown; Lu -16; Pr=20.0 psf; I	Appression/Maximum (248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, -505/199, 5-13=-41/9 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- otherior (1) 2-8-14 to 20-4-3, Interior (1) nembers and forces 5 umber DOL=1.60 plat roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu	966, 2 2 2 2 4 8 8 8 8 8 9 15					Community of the second second	SE/ 0363	IEER HALL
ORCES (Ib) Ter OP CHORD 1-2 00 CHORD 2-1 01 CHORD 2-1 01 CHORD 8-1 (EBS 5-1 01 CHORD 4-1 01 CHORD 1-2 01 CHORD 8-1 01 CHORD 8-1 01 CHORD 8-1 01 CHORD 9-1 01 CHORD 103mph; Cat. II; Exp B; E Exterior(2E) -0- 16-11-8, Exterior 20-4-3 to 34-6- 20-4-3 to 34-6- MWFRS for reading problematical stream of the	- Maximum Com hsion =0/22, 2-4=-253(=-2308/274, 6-8= 3=-123/2227, 10 0=-122/2193 0=-41/966, 6-10= 3=-505/199 of live loads have 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR 7-14 to 2-8-14, In tor(2R) 16-11-8 to 14 zone; C-C for r actions shown; LL -16; Pr=20.0 psf; (f e DOL=1.15); Is= Cs=1.00; Ct=1.10	Appression/Maximum (248, 4-5=-2308/274 -2530/248, 8-9=0/22 -13=0/1481, -505/199, 5-13=-41/9 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- otherior (1) 2-8-14 to 20-4-3, Interior (1) nembers and forces 5 umber DOL=1.60 plat roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu	966, C & e .15					Community and		EER AL

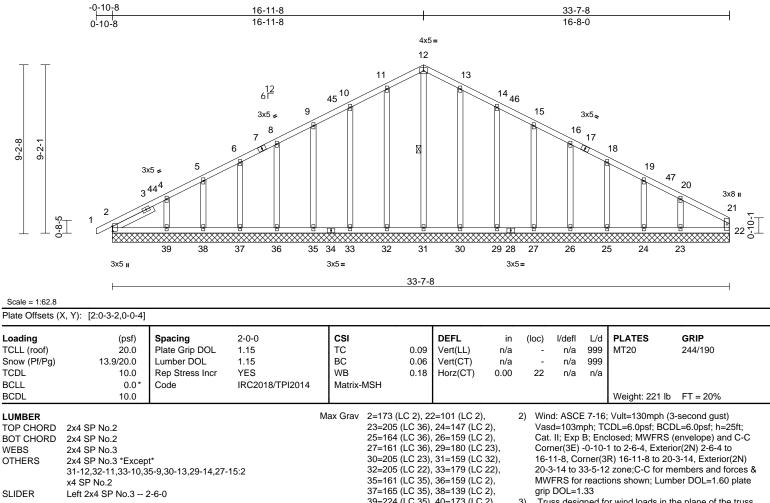


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5A	Common	11	1	Job Reference (optional)	157189498

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:27 ID:iWTNEKH9FH9Vr4pFw_IJ_Jy3VX3-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5AGE	Common Supported Gable	1	1	Job Reference (optional)	157189499

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:28 ID:pIDtOyEfC3e3MTVUh8ENqTy3VX7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Truss designed for wind loads in the plane of the truss 39=224 (LC 35), 40=173 (LC 2) 3) BRACING only. For studs exposed to wind (normal to the face), FORCES (lb) - Maximum Compression/Maximum TOP CHORD Structural wood sheathing directly applied or see Standard Industry Gable End Details as applicable, Tension 6-0-0 oc purlins, except end verticals. or consult qualified building designer as per ANSI/TPI 1. TOP CHORD 1-2=0/28, 2-4=-98/75, 4-5=-95/65, BOT CHORD Rigid ceiling directly applied or 10-0-0 oc TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5-6=-85/82, 6-8=-80/124, 8-9=-73/169, bracing. Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 9-10=-90/214, 10-11=-109/261 WEBS 1 Row at midpt 12-31 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 11-12=-127/303, 12-13=-127/303, **REACTIONS** (size) 2=33-7-8, 22=33-7-8, 23=33-7-8, Exp.; Ce=0.9; Cs=1.00; Ct=1.10 13-14=-109/261, 14-15=-90/214, 24=33-7-8, 25=33-7-8, 26=33-7-8, 5) Unbalanced snow loads have been considered for this 15-16=-72/169, 16-18=-56/124, 27=33-7-8, 29=33-7-8, 30=33-7-8, desian. 18-19=-52/77, 19-20=-56/38, 20-21=-69/20, 31=33-7-8, 32=33-7-8, 33=33-7-8, 6) This truss has been designed for greater of min roof live 21-22=-79/18 35=33-7-8, 36=33-7-8, 37=33-7-8, load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on BOT CHORD 2-39=-18/76, 38-39=-18/76, 37-38=-18/76, 38=33-7-8, 39=33-7-8, 40=33-7-8 overhangs non-concurrent with other live loads 36-37=-18/76, 35-36=-18/76, 33-35=-18/76, Max Horiz 2=94 (LC 12), 40=94 (LC 12) 32-33=-18/76, 31-32=-18/76, 30-31=-18/76, 7) All plates are 2x4 MT20 unless otherwise indicated. 2=-16 (LC 11), 23=-44 (LC 16), 24=-7 (LC 16), 25=-18 (LC 16), Max Uplift 29-30=-18/76, 27-29=-18/76, 26-27=-18/76, 25-26=-18/76, 24-25=-18/76, 23-24=-18/76, 26-151/C16)/27-15(1C16), 29-18/LC16),27-15(1C16), 32-18/LC18),30-11(1C16), 32-11(1C15)/33-10(1C16), 32-18(1C15),38-1(1C15), 37-18(1C15),38-1(1C15), 22-23=-18/76 WEBS 12-31=-201/51, 11-32=-165/69, 10-33=-140/82, 9-35=-120/77, 8-36=-119/77, reters and RE % conner r desi 9 6-37=-123/81, 5-38=-108/69, 4-39=-160/137, 13-30=-165/69, 14-29=-140/82, (LC 15), 40=-16 (LC 11) SEAL 15-27=-120/77, 16-26=-119/77 18-25=-122/80, 19-24=-111/67 20-23=-152/165 NOTES Unbalanced roof live loads have been considered for 1) this design. March 16.2023

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5AGE	Common Supported Gable	1	1	Job Reference (optional)	157189499
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.53 S Mar 9 2	023 Print: 8.	530 S Mar 9	2023 MiTek Industries, Inc. Wed Mar 15 08:52:28	Page: 2

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:28 ID:pIDtOyEfC3e3MTVUh8ENqTy3VX7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8) Gable requires continuous bottom chord bearing.

- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) One MECHANICAL connector (BY OTHERS) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, and 23. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5GE	Common Supported Gable	1	1	Job Reference (optional)	157189500

REACTIONS (size)

Continued on page 2

2=33-11-0, 22=33-11-0,

24=33-11-0, 25=33-11-0,

26=33-11-0. 27=33-11-0.

28=33-11-0. 30=33-11-0.

31=33-11-0, 32=33-11-0,

33=33-11-0. 34=33-11-0.

36=33-11-0. 37=33-11-0.

38=33-11-0. 39=33-11-0.

40=33-11-0, 41=33-11-0,

2=-5 (LC 11), 24=-39 (LC 16),

25=-9 (LC 16), 26=-18 (LC 16),

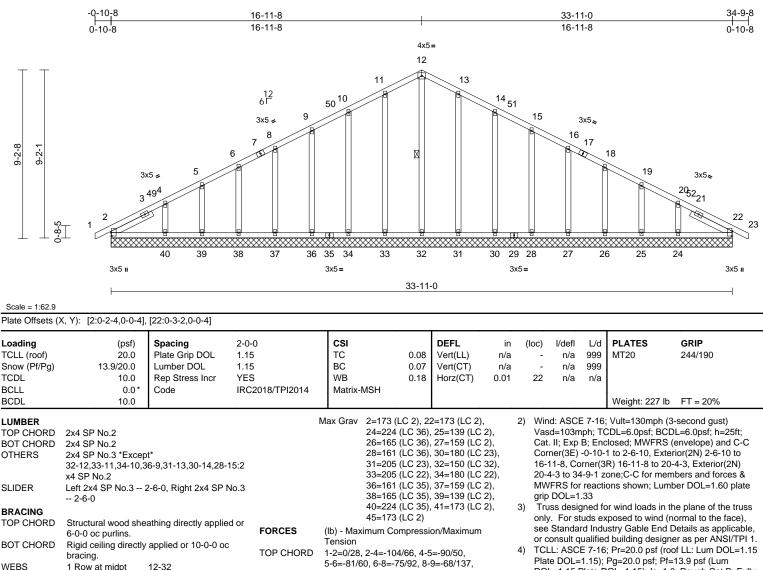
27=-15 (LC 16), 28=-16 (LC 16),

30=-18 (LC 16), 31=-12 (LC 16),

33=-14 (LC 15), 34=-17 (LC 15),

36=-16 (LC 15), 37=-15 (LC 15),

38=-18 (LC 15), 39=-7 (LC 15),


40=-45 (LC 15), 41=-5 (LC 11)

45=33-11-0

Max Uplift

Max Horiz 2=91 (LC 14), 41=91 (LC 14)

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:28 ID:I8LdpeGvkgvnbnfsoZGrvuy3VX5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-10=-80/182, 10-11=-99/229,

11-12=-116/271, 12-13=-116/271

15-16=-62/137, 16-18=-54/92, 18-19=-53/45,

10-34=-140/81, 9-36=-120/77, 8-37=-119/77,

6-38=-123/81, 5-39=-108/68, 4-40=-160/141,

19-20=-63/13, 20-22=-99/37, 22-23=0/28

13-14=-99/229, 14-15=-80/182,

2-40=-38/135, 39-40=-38/135,

38-39=-38/135, 37-38=-38/135,

36-37=-38/135, 34-36=-38/135,

33-34=-38/135, 32-33=-38/135

31-32=-38/135, 30-31=-38/135,

28-30=-38/135, 27-28=-38/135,

26-27=-38/135, 25-26=-38/135,

24-25=-38/135, 22-24=-38/135

12-32=-174/42, 11-33=-165/70,

13-31=-165/70, 14-30=-140/81,

15-28=-120/77, 16-27=-119/77,

18-26=-123/81, 19-25=-108/67,

20-24=-160/139

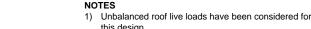
DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Page: 1

5) Unbalanced snow loads have been considered for this desian.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

7) All plates are 2x4 MT20 unless otherwise indicated.



Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

this design.

BOT CHORD

WFBS

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	T5GE	Common Supported Gable	1	1	Job Reference (optional)	157189500

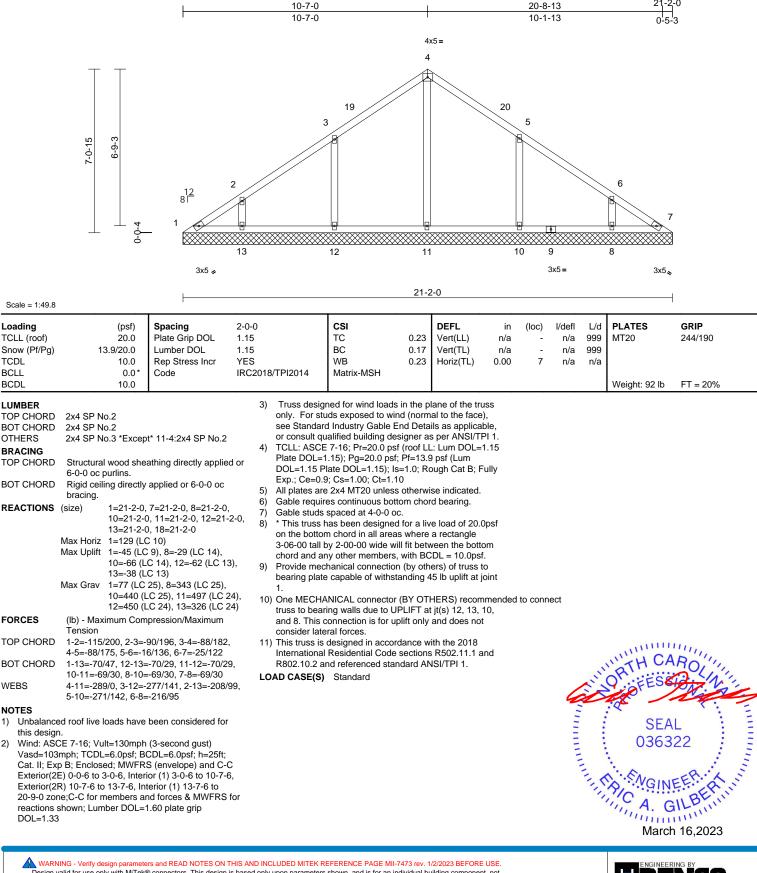
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:28 ID:I8LdpeGvkgvnbnfsoZGrvuy3VX5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) One MECHANICAL connector (BY OTHERS) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 33, 34, 36, 37, 38, 39, 40, 31, 30, 28, 27, 26, 25, and 24. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V4	Valley	1	1	Job Reference (optional)	157189501

BCDL

2)

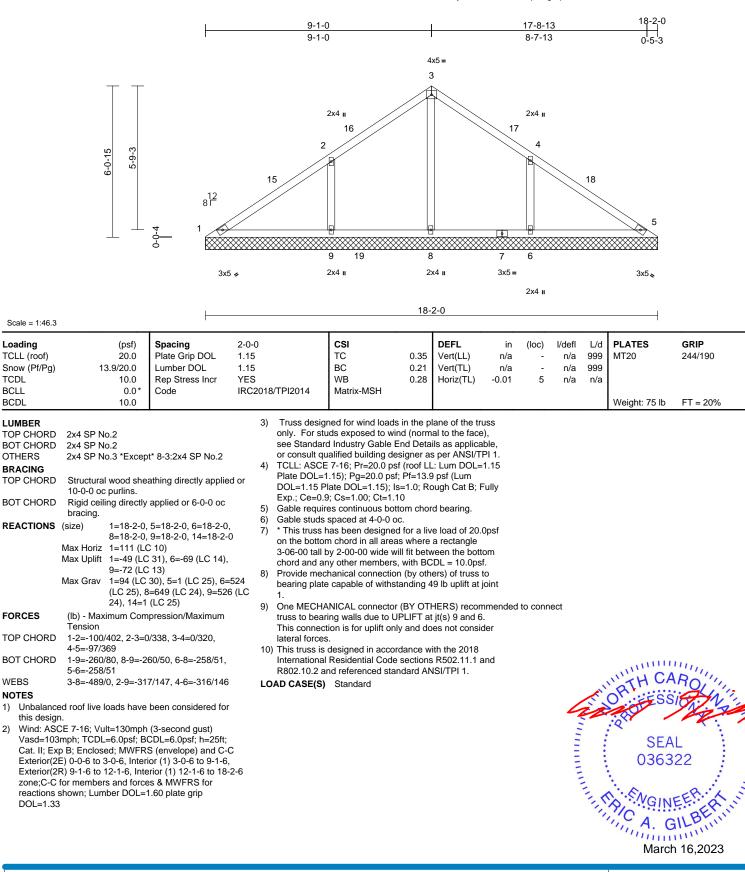
Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:29 ID:I8LdpeGvkgvnbnfsoZGrvuy3VX5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V5	Valley	1	1	Job Reference (optional)	157189502

BCLL

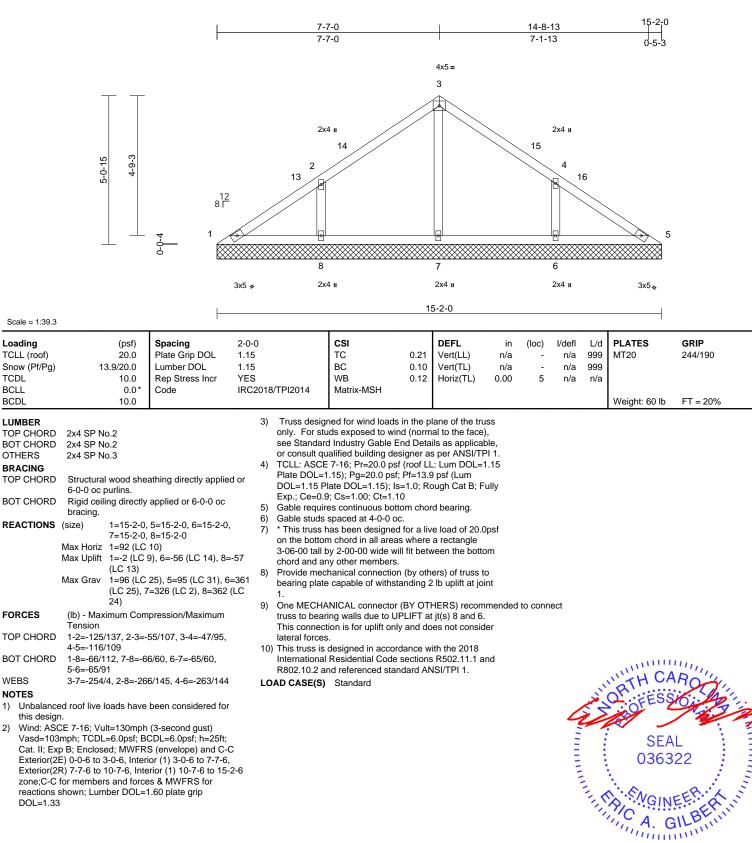

BCDL

1)

2)

Run: 8 53 S. Mar. 9 2023 Print: 8 530 S. Mar. 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:29 ID:DKv?0_HXV_1eDxE3MGn4S5y3VX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V6	Valley	1	1	Job Reference (optional)	157189503

1)

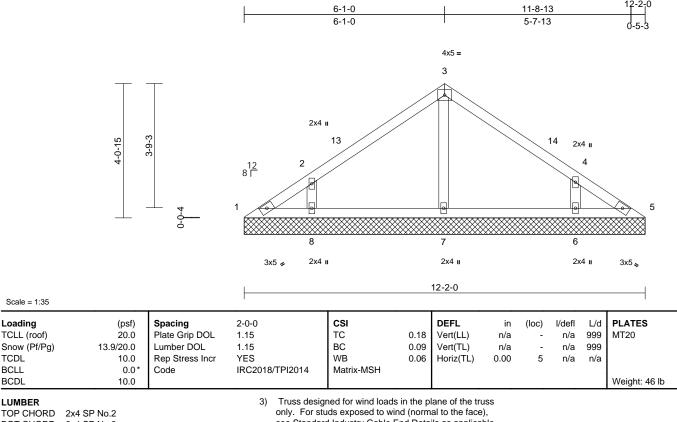
2)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:30 ID:DKv?0_HXV_1eDxE3MGn4S5y3VX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 16,2023

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V7	Valley	1	1	Job Reference (optional)	157189504


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Wed Mar 15 08:52:30 ID:DKv?0_HXV_1eDxE3MGn4S5y3VX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

	274 01 14	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=12-2-0, 5=12-2-0, 6=12-2-0, 7=12-2-0, 8=12-2-0
	Max Horiz	1=73 (LC 10)
	Max Uplift	1=-13 (LC 9), 6=-47 (LC 14), 8=-50 (LC 13)
	Max Grav	1=66 (LC 25), 5=59 (LC 2), 6=306 (LC 25), 7=263 (LC 2), 8=310 (LC 24)

Scale = 1:35 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

Snow (Pf/Pg)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-84/67, 2-3=-117/93, 3-4=-114/92, 4-5=-72/39 BOT CHORD 1-8=-15/54. 7-8=-15/47. 6-7=-15/48. 5-6=-15/55

WEBS 3-7=-177/15, 2-8=-256/176, 4-6=-248/171 NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-1-6, Exterior(2R) 6-1-6 to 9-1-6, Interior (1) 9-1-6 to 12-2-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.33

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint

One MECHANICAL connector (BY OTHERS) recommended to connect 9) truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V8	Valley	1	1	Job Reference (optional)	157189505

4-7-0

4-7-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:30 ID:DKv?0_HXV_1eDxE3MGn4S5y3VX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-13

4-1-13

4x5 =2 2-9-3 3-0-15 12 8 Г 3 4 2x4 🍬 2x4 ı 2x4 💊 9-2-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 999 MT20 244/190 BC 0.22 13 9/20 0 1 15 Lumber DOL Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.12 Horiz(TL) 0.00 3 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 32 lb FT = 20%Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) * This truss has been designed for a live load of 20.0psf 7) 2x4 SP No.3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 18 lb uplift at joint 1 and 15 lb uplift at joint 3. 9) This truss is designed in accordance with the 2018 1=9-2-0, 3=9-2-0, 4=9-2-0 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 1=-18 (LC 31), 3=-15 (LC 30) LOAD CASE(S) Standard 1=73 (LC 30), 3=77 (LC 31), 4=654 (LC 2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

2x4 SP No.2 2x4 SP No.2

OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 9-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) Max Horiz 1=-54 (LC 11)

Max Grav FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-89/296, 2-3=-87/289 BOT CHORD 1-4=-210/139, 3-4=-205/137 WFBS 2-4=-493/208

NOTES

Scale = 1:29.3 Loading

TCLL (roof)

TCDL

BCLL

BCDL

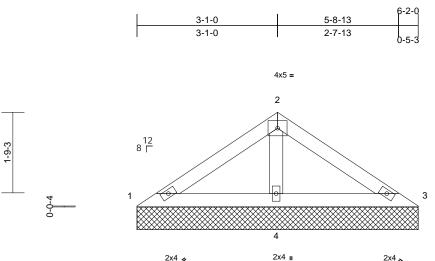
LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-7-6, Exterior(2R) 4-7-6 to 7-7-6, Interior (1) 7-7-6 to 9-2-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Roof-Jefferson LH	
23030066-01	V9	Valley	1	1	Job Reference (optional)	157189506

2-0-15

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:30 ID:iWTNEKH9FH9Vr4pFw_IJ_Jy3VX3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🍫

6-2-0

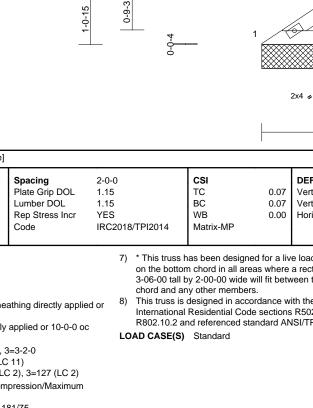
2x4 💊

818 Soundside Road Edenton, NC 27932

Scale = 1:25.3				I								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 22 BOT CHORD 22 OTHERS 22 BRACING TOP CHORD S 6 BOT CHORD R bot CHORD R BOT CHORD R MA MA MA FORCES (II TOP CHORD 1- BOT CHORD 1- SES NOTES 1) Unbalanced ra this design. 2) Wind: ASCE 7 Vasd=103mpl Cat. II; Exp 8; Exterior(2E) 2 MWFRS for re grip DOL=1.3: 3) Truss design only. For stuc see Standard or consult qua 4) TCLL: ASCE 1 Plate DOL=1. DOL=1.15 Pla Exp.; Ce=0.9;	 44 SP No.2 44 SP No.2 44 SP No.3 tructural wood shead or purlins. igid ceiling directly racing. te) 1=6-2-0, 3 x Horiz 1=36 (LC x Uplift 3=-2 (LC x Uplift 3=-2 (LC 2) x Grav 1=67 (LC 2) b) - Maximum Comersion -2=-62/152, 2-3=-6 -4=-127/109, 3-4=-4=-261/135 boof live loads have 7-16; Vult=130mph n; TCDL=6.0psf; Bt Enclosed; MWFR: one;C-C for membractions shown; Lu 	s has been designe tom chord in all area ill by 2-00-00 wide v any other members echanical connectic ate capable of withs is designed in acco hal Residential Code and referenced sta S) Standard	as where vill fit betv s. on (by oth standing 2 ordance w e sections	a rectangle veen the botto ers) of truss t 2 lb uplift at jo ith the 2018 \$ R502.11.1 a	om o int				OR DEESS SEA 0363	L 22 EFER A		
6) Gable studs s	paced at 4-0-0 oc.	-									201111	16,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

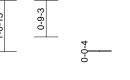
Job	Truss	Truss Type	Qty	Ply Roof-Jefferson LH		
23030066-01	V10	Valley	1	1	Job Reference (optional)	157189507

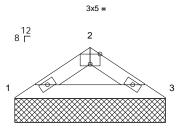

Run: 8,53 S Mar 9 2023 Print: 8,530 S Mar 9 2023 MiTek Industries, Inc. Wed Mar 15 08:52:31 ID:I8LdpeGvkgvnbnfsoZGrvuy3VX5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-13

1-1-13

3 - 2 - 0


Page: 1



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3-2-0

1-7-0

1-7-0

2x4 💊

Scale = 1:24.2

Plate Offsets (X, Y): [2:0-2-8.Edge]

Plate Offsets ()	K, Y): [2:0-2-8,Edge]	-									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance- this design 2) Wind: ASC Vasd=1037 Cat. II; Exp Exterior(2E MWFRS fo grip DOL=7 3) Truss desis only. For s see Standa or consult of 4) TCLL: ASC Plate DOL= DOL=1.15 Exp; Ce=0 5) Gable requ	Max Horiz 1=-17 (LC Max Grav 1=127 (LC (lb) - Maximum Com Tension 1-2=-181/75, 2-3=-1: 1-3=-50/145 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B(B; Enclosed; MWFR:) zone;C-C for memb r reactions shown; Lu	applied or 10-0-0 or 3=3-2-0 (11) C 2), 3=127 (LC 2) apression/Maximum 81/75 been considered for (3-second gust) CDL=6.0pst; h=25ft; S (envelope) and C-i ers and forces & mber DOL=1.60 plat in the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu	c c c c c c c c c c c c c c c c c c c	ss has been designe ittom chord in all area all by 2-00-00 wide w d any other members is is designed in acco nal Residential Code 2 and referenced sta (S) Standard	as where vill fit betv s. rdance w e sections	a rectangle veen the botto ith the 2018 5 R502.11.1 a	om		Antitute.		ORTH CA ORTH CA OFESS SEA 0363	• -

