

Job	Trus	6	Truss Type	9		Qty	Ply					
22040108	A02		Piggybac	k Base		2	1	Job Refe	rence (optional)			
Carter Componer	nts, Sanford, NC, user		1		Run: 8.53 S Mar	28 2022	Print: 8.530 S	Mar 28 2022 M	Tek Industries, Inc	Fri Nov 18 1	7:05:51	Page: 1
	100					I	D:GDSS49NZEC	2 IUAV JW2010	ayialo-v papa Gaak	DQRQMPI_u	DOAqizkDuo	2/ 11 0
	-1-0-0 //-	5-7-12	<u>11-3</u> 5-7	3-1 -4	<u> </u>		22-8-7		28-3-12		<u>33-11-8</u> 5-7-12	
	1-0-0	5-7-12	5-7	-4	3-6-11		5-0-11	,	5-7-4	I	5-7-12	1-0-0
				5	6x8= 25	2x4 6	" 26	6x8= 7				
10-6-0		10 ¹ 3 3 11 11 11 11 11	3x5 2 4 x5 +	3 * 12 W	2 3 X 4 3 X 4 7 16 27	W5 M 15	13 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	W3 14 13	3x5 x 8 W2	3x5 9 W1 B1 12	Н	
	3x8	3u 2>	(4 II	Зх:	5=	3x8	=	3x5=		2x4∎		3x8॥
	Ļ	5-7-12 l	<u> </u>	<u>-5</u>	3x5= 16-11-12		22-10-3	3x5: 3	= 28-3-12		33-11-8	
Scale = 1:65.9	1	5-7-12 1	5-5-	-8 1	5-10-7	1	5-10-7	1	5-5-8	1	5-7-12	1
Plate Offsets ()	X, Y): [2:0-3-8,Edge	e], [5:0-6-4,0-2-0], [7:0-	-6-4,0-2-0],	10:0-3-8,E	dge]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC201	2-0-0 1.15 1.15 YES 8/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.71 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc -0.10 15-1 -0.18 15-1 0.08 1	:) I/defl L/d 7 >999 240 7 >999 180 0 n/a n/a	PLATES MT20 Weight: 22	GRIF 244/1 26 lb FT =	, 190 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	Iding (pf) Spacing (p-04-6)(2-20) (
WEBS NOTES 1) Unbalance design.	7-26=-1356/240, 7-8=-1574/238, 8-9=-1663/213, 9-10=-1966/174 R802.10.2 and referenced standard ANSI/TPI 1. 9 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 16-17=0/1223, 16-27=0/1223, 15-27=0/1223, 15-28=0/1194, 14-28=0/1194, 13-14=0/1194, 12-13=-31/1441, 10-12=-31/1441 9) 3-17=-407/140, 5-17=-25/523, 5-15=-85/390, 6-15=-386/104, 7-15=-85/390, 7-13=-25/523, 9-13=-407/140 Standard											

AVIG WY

4x8*1*/

2x4 14-5-12 12-10-15 12-5-8 11-1-512-10-1 ++++ 1-1-5 ^

0-4-9 -4-3 1-6-13 0-0-13

20

24 23 22

B3

19-5-12

5-0-0

B2

WF 1046 7

21-0-9

16

2x4 II

Ó-9-Ò

28-3-12

4-4-4

15 14 13

23-11-8

⁴x8**,** 22-10-3 21-6-0 21-1-7 23-1

-6-13 1-4-3 0-0-13 1-1-5 0-4-9

HWI 10

4x81

B1

33-11-8

5-7-12

12

2x4∎

****11

Scale = 1:80.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-6-4,0-2-0], [7:0-6-4,0-2-0], [10:0-3-8,Edge]

4x81

5-7-12

5-7-12

B1 25

2x4∎

10-0-0

4-4-4

2

0-7-11 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code If	RC20	2-0-0 1.15 1.15 YES 18/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.95 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.11	(loc) 16-20 16-20 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-11-6 oc purlins, ex 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 17 1 Row at midpt MiTek recommends required cross brac truss erection, in ac Installation quide	athing directly applied or ccept -7 max.): 5-7. applied or 10-0-0 oc -20. -21 6-15, 6-22 that Stabilizers and ing be installed during ccordance with Stabilizer	1) 2) 3)	Unbalanced design. Wind: ASCE Vasd=103mp II; Exp B; En Exterior(2E) Exterior(2R) 22-8-7, Exter to 34-10-14 ; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 roof snow lor exposed sur accordance '	roof live loads have 7-16; Vult=130mpł ph; TCDL=6.0psf; E closed; MWFRS (e -0-11-6 to 2-5-6, In 11-3-1 to 14-7-13, rior(2R) 22-8-7 to 2 zone; cantilever left nd right exposed;C /FRS for reactions ; late grip DOL=1.33 ; 7-16; Pr=20.0 psf; late DOL=1.15); Is ; Cs=1.00; Ct=1.10; ad governs. Rain s faces with slopes le with IBC 1608.3.4.	e been of h (3-sec 3CDL=6 envelope terior (1 Interior 26-1-3, I t and rig 2-C for r shown; (roof LL Pf=18.9 =1.0; Re 0, Lu=5 surcharg ess thar	considered for cond gust) .0psf; h=25ff e) and C-C) 2-5-6 to 11 (1) 14-7-13 t Interior (1) 26 th exposed ; nembers and Lumber .: Lum DOL= 2) psf (Lum bugh Cat B; I)-0-0; Min. fil ge applied to 1 0.500/12 in construction	or this ;; Cat. -3-1, io -1-3 end 1 1.15 Fully at all					
REACTIONS	(Ib/size) 2=1437/0- 10=1437/0 Max Horiz 2=-192 (L' Max Grav 2=1814 (L	-3-8, (min. 0-2-2), 0-3-8, (min. 0-2-2) C 11) .C 3), 10=1814 (LC 3)	4) 5)	load of 12.0 overhangs n 200.0lb AC u 16-11-12 from	psf or 2.00 times fla on-concurrent with init load placed on m left end, supporte	at roof le other li the bott ed at tw	or of min 100 bad of 13.9 p ve loads. om chord, o points, 5-0	-0					
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces 250	6)	Provide adeo	quate drainage to p	revent	water pondin	g.					
TOP CHORD	2-3=-2364/0, 3-4=-2 5-32=-1582/39, 6-32 6-33=-1582/39, 7-33 7-8=-1981/11, 8-9=-2	067/0, 4-5=-1981/11, ?=-1582/39, 3=-1582/39, 2067/0, 9-10=-2364/0	7) 8)	All plates are * This truss f on the bottor 3-06-00 tall b chord and ar	3x5 MT20 unless has been designed in chord in all areas by 2-00-00 wide will by other members	otherwi for a liv where I fit betv with BC	se indicated. e load of 20. a rectangle veen the bott	Opsf com f					
BOT CHORD	2-25=-69/1832, 24-2 22-23=0/1535, 20-22 15-16=0/1804, 14-19 12-13=0/1742, 10-12 18-19=-1317/0, 17-1	25=0/1832, 23-24=0/1832 2=0/1804, 16-20=0/2776, 5=0/1506, 13-14=0/1742, 2=0/1742, 19-21=-1317/0 8=-1317/0	^{2,} 9) ^{9,} 10)	This truss is International R802.10.2 a Graphical pu or the orienta bottom chore	designed in accord Residential Code s and referenced stan- rlin representation ation of the purlin a d.	dance w sections dard AN does no long the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size					
WEBS	3-23=-395/151, 5-23 9-14=-395/151, 6-17 15-17=-691/0, 21-22 5-22=0/707, 7-15=0/ 20-21=0/1243	3=-51/396, 7-14=-51/398, '=-300/122, ?=-691/0, 6-21=-300/122, /707, 16-17=0/1243,	LO	AD CASE(S)	Standard								
NOTES													

Job	Truss	Truss Type	Qty	Ply	
22040108	A04	Piggyback Base	4	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:51 Page: 1

ID:we3z1SdqP4nInPdL7VYUJayI9J5-VB9baG9akDQRQmPI_uIDoAqr1KAG8Ow6_GiguqyI3S_

Scale = 1:80.6

Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-6-4,0-2-0], [7:0-6-4,0-2-0], [9:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC201	2-0-0 1.15 1.15 YES 8/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.95 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.11	(loc) 14-18 14-18 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 3-0-12 oc purlins, e 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing. Except:	ot* W5:2x4 SP No.2 eathing directly applied o xcept 4-4 max.): 5-7. / applied or 10-0-0 oc	1) U 2) V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jnbalanced Jesign. Wind: ASCE /asd=103m I; Exp B; Er Exterior(2R) 22-8-7, Exte o 33-11-8 z vertical left orces & MW DOL=1.60 p	roof live loads ha 7-16; Vult=130n ph; TCDL=6.0psf iclosed; MWFRS -0-11-6 to 2-5-6, 11-3-1 to 16-0-1 rior(2R) 22-8-7 tt one; cantilever le and right exposed VFRS for reaction late grip DOL=1.	ave been ph (3-sec ; BCDL=6 (envelop Interior (7 1, Interior 0 27-6-2, I ft and right; C-C for r s shown; 33	considered for cond gust) .0psf; h=25ff a) and C-C) 2-5-6 to 11 (1) 16-0-11 t nterior (1) 27 tt exposed ; e nembers anc Lumber	t; Cat. -3-1, o 7-6-2 end					
WEBS	2-2-0 oc bracing: 1/ 5-1-0 oc bracing: 1/ 1 Row at midpt MiTek recommender required cross brace truss erection, in au Installation guide.	4-18. 5-19 6-13, 6-20 s that Stabilizers and cing be installed during ccordance with Stabilizer	3)	 DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 									
REACTIONS	(Ib/size) 2=1438/0 9=1391/ Max Horiz 2=187 (L0 Max Grav 2=1814 (L	-3-8, (min. 0-2-2), Mechanical, (min. 0-1-8) C 10) LC 3), 9=1766 (LC 3)	5) 2	oad of 12.0 overhangs n 200.0lb AC u 16-11-12 fro apart	psf or 2.00 times ion-concurrent wi unit load placed o m left end, suppo	flat roof l ith other li on the bot orted at tw	oad of 13.9 p ve loads. om chord, o points, 5-0	osfon -0					
	(lb) - Max. Comp./M (lb) or less except w	lax. Ten All forces 250 /hen shown.	6) F 7) A	Provide ade All plates are	quate drainage to e 3x5 MT20 unles	o prevent ss otherw	water pondin se indicated.	ıg.					
TOP CHORD	2-30=-2365/0, 3-30= 4-31=-1989/0, 4-5=- 6-32=-1583/1, 6-33= 7-34=-1976/0, 8-34= 9-35=-2368/0	=-2213/0, 3-31=-2068/0, -1982/0, 5-32=-1583/1, =-1583/0, 7-33=-1583/0, =-2068/0, 8-35=-2216/0,	8) * ((9) F	This truss I on the botto 3-06-00 tall chord and a Refer to gird	has been designe m chord in all are by 2-00-00 wide v ny other member ler(s) for truss to	ed for a liv eas where will fit betw rs, with BC truss con	e load of 20. a rectangle veen the bott DL = 10.0ps	.0psf tom sf.					
BOT CHORD	2-23=-76/1826, 22-2 20-21=0/1529, 18-2 13-14=0/1805, 12-1 10-11=0/1745, 9-10 16-17=-1317/0, 15-2	23=0/1826, 21-22=0/182 0=0/1805, 14-18=0/2777 3=0/1507, 11-12=0/1745 =0/1745, 17-19=-1317/0 16=-1317/0	6, 10) , I , I , I , I , I , I	This truss is nternational R802.10.2 a Graphical pu or the orient	designed in acco l Residential Cod ind referenced sta urlin representation ation of the purlin	ordance w le sections andard AN on does n along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size					
WEBS	3-21=-395/136, 5-2 ⁻ 8-12=-399/137, 6-1 13-15=-692/0, 19-20 5-20=0/708, 7-13=0 14-15=0/1243	1=-43/396, 7-12=-44/398 5=-300/122, D=-692/0, 6-19=-301/122 /709, 18-19=0/1243,	, LOA	D CASE(S)	Standard								
NOTES													

Job		Truss		Tr	uss Ty	ре			Qty		Ply									
22040108		A05		Pi	iggyba	ack Base St	ructura	l Gable	1	·	1	Job F	Referen	ice (opt	ional)					
Carter Compone	ents, Sanford, NC	, user		•			Run	: 8.53 S Mar 2	8 2022	2 Print: 8 ID:s0Bj	.530 S Ma S7e5xh1T	ar 28 202 OjnkEwa	22 MiTek ayO?yl9	k Industri J3-zNj_r	ies, Inc ncACV)	. Fri Nov 1 XYI2w_VY	8 17:05 cGSLC	5:52 0N63kdb	l tslGCwSEP0	Page: 1 3yl3Rz
		-1-0-0	5-7-12			11-3-1	Ļ	16-11-12			22-8-7		ļ	28-3-	12	ļ	33-	-11-8		
		1-0-0	5-7-12	1		5-7-4	1	5-8-11	1		5-8-11		1	5-7-	4	1	5-7	7-12	1	
10-6-0	0-7- <u>11</u>	2 1 3x	4 5 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 7 2 5 5 7 2 5 5 7 2 5 5 5 5	10 ¹² 3x 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 3 43 42	5 # 7 57 514 52 814 52 815 41	10 3x5 ¢ 12 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6x8= 11 12 5T 5T 5T 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 13 19 5 5 5 10 48 5 10 48 5 12 10 48 5 12 10 48 5 12 12 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14	61 14 W W S 35 3x	4 62 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 16 ST1 3 3x 5 13 3x 5 13 3x 5 1 3x5=	6: 15 8 II 16	x8= 17 W3 31 3x5=	18 5 17 5 38 3 38 3 30	15 57 19 7254 5320 29	9 3x5 63 20 21 8 721 9 721 22 7	512 512 26	22 22 5 5 23 22	23 123 24 ₩11 5 3x6॥	
Scale = 1:67.6		┢	<u>5-7-12</u> 5-7-12	\rightarrow		<u>11-1-5</u> 5-5-8	+	<u>16-11-12</u> 5-10-7			<u>22-10-3</u> 5-10-7		+	<u>28-3-</u> 5-5-	12 8		<u>33-</u> 5-7	- <u>11-8</u> 7-12	\rightarrow	
Plate Offsets ((X, Y): [11:0-6-	4,0-2-0]	, [17:0-6-4,0-2-	·0]																
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/2	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DO Lumber DOL Rep Stress In Code	r Cr	IRC20	2-0-0 1.15 1.15 YES 018/TPI2014	CSI TC BC WB Matrix-	MSH	0.26 0.50 0.44	DEFL Vert(L Vert(C Horz(L) -(CT) -(CT) (in 0.05 2 0.10 2 0.03	(loc) 29-30 29-30 24	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATE MT20	S : 355 I	GR 244	IP /190 = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP Right: 2x4 SP Structural wo 4-10-2 oc pu 2-0-0 oc purl Rigid ceiling bracing. 1 Row at mic 1 Brace at J	*Excep No.3 No.3 No.3 Nod she rlins, ex ins (6-0 directly dpt (s): 46,	athing directly a ccept I-0 max.): 11-17 applied or 6-0- 11-39, 14-35, 1	No.2 applied c 7. 0 oc 0-50	BO WE or 1) 2)	EBS (brtes) Unbalanced design. Wind: ASCE	38-39=-1 36-37=-1 33-34=0/ 30-31=0/ 27-28=0/ 24-25=0/ 5-42=-72 50-51=0/ 11-49=-4 35-48=-3 17-31=-1 53-54=-3 roof live 7-16; Vi	2/420, 37-3; 2/420, 35-3; (752, 32-33= 1001, 29-30 (1001, 26-27) 1001, 26-27 (100, 6-52=0) (708, 39-50= 5/664, 48-45; 99/603, 14-3; 64/114, 20-5 (10ads have ult=130mph	8=-12/ 6=-12/ 0/752 =0/10/ 667, 5 0/661 9=-43/ 5=-263 53=-38 54=-35 been (3-sec	420, 420, 32 31-32 01, 28- 01, 25- 51-52=(, 11-39 623, 3/32, 83/127, 53/113 conside cond gu	I-35=0/73 =0/752, 29=0/100 26=0/100 D/679, =-325/0, ered for the st)	9) 52, 01, 01, 10 11 12 13 his	* This on th 3-06- chord) Refei) One recor UPLI is for ?) This Interr R802 8) Grap or the botto	s truss i e botto 00 tall d and a r to girc H2.5A s mmend FT at jt uplift o truss is national 2.10.2 a hical pu e orient m chor ASE(S)	has be m cho by 2-0 ny oth ler(s) f Simps ed to c (s) 2, 4 nly an desig l Resid nd ref urlin re ation c d. Stan	een desig rd in all a 0-00 wide er memb for truss t on Strong connect ti 40, 41, 45 d does n ned in ac dential Cc erenced epresenta of the pur	ined for reas v e will f ers. to trus g-Tie of russ to 3, 44, ot con corda ode se standa tion de lin alo	or a live where a fit betwo s connect b bearin and 45 isider la isider la isider la ard ANS oes not ong the	load of 20 rectangle een the bot ors ng walls du This conn teral force: h the 2018 R502.11.1 SI/TPI 1. c depict the top and/or	.0psf .tom e to ection s. and size
	47, 48, 49, 5 54 MiTek recon required cro truss erectio Installation g	1, 53, nmends ss brac on, in ac guide.	that Stabilizers ing be installed cordance with	s and during Stabilize	r	Vasd=103m II; Exp B; En Exterior(2E) Exterior(2R) 22-8-7, Exte to 33-11-8 zo vertical left a	ph; TCD closed; l -0-11-6 11-3-1 t rior(2R) one; can	L=6.0psf; BC MWFRS (en to 2-8-7, Inte o 16-0-11, In 22-8-7 to 27 tilever left ar exposed C-1	CDL=6 velope erior (1 terior -6-2, 1 nd righ C for r	5.0psf; f e) and (1) 2-8-7 (1) 16- (nterior nt expos	a=25ft; C C-C to 11-3- 0-11 to (1) 27-6- sed ; end	at. 1, -2		432(3)	Star	lualu				
(lb) - FORCES TOP CHORD	Max Horiz 2= Max Uplift All 40 (LC Max Grav All (s) 24 42 (lb) - Max. Cc (lb) or less ex 6-7=-505/61, 9-10=-588/15 11-12=-732/1 13-61=-732/1 15-16=-732/1 15-16=-732/1 15-16=-732/1 19-63=-1006 20-21=-1228 22-23=-1360	187 (LC uplift 11, 41, 43 C 11), 5 reactio 2, 41, 4 =1086 (=1086 (=746 (L pmp./Ma kcept wi 7-8=-5 54, 10-1 63, 12- 163, 12- 163, 12- 163, 12- 163, 14- 163, 15- 163, 15- 163, 16- 196, 18- /91, 20- /114, 21 /14, 21 /14, 21	C 10), 55=187 (1 00 (lb) or less a , 44, 45 except 5=-144 (LC 11) ns 250 (lb) or le 43, 44, 45, 55 e (LC 2), 40=251 .C 2) ax. Ten All for hen shown. 74/88, 8-9=-50 1=-553/164, .13=-732/163, .62=-732/163, .17=-732/163, .19=-1021/126, .63=-1061/80, 1-22=-1313/107 .24=-1361/23	LC 10) LC 10) at joint(s) 22-144 22-144 22-144 22-144 (LC 25), rces 250 5/97,	3) nt 4) 5) 6) 7) 8)	forces & MW DOL=1.60 p Truss desig only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 roof snow lo exposed sur accordance This truss ha load of 12.0 overhangs n Provide ade All plates are Gable studs	/FRS for late grip ned for v Jds expo d Industr Jalified b 5 7-16; P 1.15); P Clate DOI 9; Cs=1.1 ad gover faces wi with IBC as been o psf or 2. on-conc quate dr e 2x4 MT spaced	reactions sl DOL=1.33 wind loads in soed to wind ry Gable Enc puilding desig rr=20.0 psf; P L=1.15); Is= ⁻ 00; Ct=1.10, rns. Rain su th slopes les : 1608.3.4. designed for 00 times flat urrent with o ainage to pro f20 unless o at 2-0-0 oc.	hown; the p (norm d Detain port autorial to a the second the	Lumbe lane of al to th iils as a s per A : Lum 9 psf (L ough C 0-0-0; h ge appli n 0.500, er of m oad of ve load water p ise indie	r the truss e face), pplicable NSI/TPI DOL=1.1 um at B; Full din. flat ed to all '12 in in roof liv 13.9 psf s. onding. cated.	s a, 1. I5 Iy ve on								

Job	Truss		Truss Type		Qty	F	Ply						
22040108	B01		Roof Special Supp	orted Gable	1		1	Job Re	eferen	ce (opt	ional)		
Carter Component	ts, Sanford, NC, user			Run: 8.53 S Mar 2	8 2022 ייסו	Print: 8.	.530 S Mai	r 28 2022	2 MiTek 43 Ivio	Industri	es, Inc	. Fri Nov 18 17:05:5	2 Page: 1
		l	11-7-15		10.	0011110	25-2-8		400 y 10 c	JD-214 <u>J</u> 1	I	(112w_v1000E0140	
		ŕ	11-7-15	t t			13-6-9)			-1		
				4x5= 7									
	1244 1044	2 1 ST1 2-7-11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 ¹² 5 4 11 33 3 ST4 ST2 5 12	6 ST5 Ø S	8	3x5 ♦ 910 ST4	11 ST3	12 572				- -	
		28	27 26 25	24 23 2	21	20	19	18	1716	B3			
	Ţ	3x01			3x5=				3X:	b= 	15		
									1	l0∟ 12			
		ļ		22-6-3						24 24-11-0	5-2-8		
Scale = 1:73.2				22-6-3					I	2-4-13 C	∣ I -3-8		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.13 0.10 0.21	DEFL Vert(L Vert(T Horiz(L) L) (TL) 0	in (n/a n/a).00	loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD WEBS REACTIONS A (lb) - M M FORCES TOP CHORD WEBS NOTES 1) Unbalanced design. 2) Wind: ASCE Vasd=103m II; Exp B; ET (3E) 0-0-0 tr (3R) 11-7-11 zone; cantilia and right ex	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt Il bearings 25-2-8. 1 Row at midpt Il bearings 25-2-8. 1 Row at midpt Il bearings 25-2-8. 1 Row at midpt Il bearings 25-2-8. 29=-152 (I 1ax Grav All reaction (s) 1, 15, 25, 26, 27 (LC 14) (lb) - Max. Comp./Ma (b) or less except will 5-6=-219/321, 6-7=- 8-9=-219/321 7-23=-421/225 I roof live loads have E 7-16; Vult=130mph ph; TCDL=6.0psf; Bir closed; MW/FRS (er o 3-0-0, Exterior(2N) 5 to 147-715, Exterior 5 to 147-715, Exterior 5 to 147-715, Exterior	athing directly applie cept end verticals. applied or 10-0-0 oc 7-23, 6-24, 8-22 C 9), 29=-217 (LC 9) 00 (lb) or less at join , 19, 20, 22, 23, 24, 1 except 1=-152 (LC 9) ns 250 (lb) or less at 16, 17, 18, 19, 20, 22 , 28, 29 except 23=3 ax. Ten All forces 2 hen shown. 254/382, 7-8=-254/3 been considered for (3-second gust) CDL=6.0psf; h=25ft; nvelope) and C-C Cc a3-0-0 to 11-7-15, Cc r(2N) 14-7-15 to 25-fposed ; end vertical bers and forces &	 4) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 5) All plates are 6) Gable requir 7) Gable studs 8) * This truss I on the bottom 3-06-00 tall I chord and ar 9) Provide mec bearing plate (j=1b) 1=152 10) Beveled plat surface with 27, 28, 22, 2 11) This truss is International 2, 24, R802.10.2 a 24 LOAD CASE(S) 50 82, * this 	 7-16; Pr=20.0 psf (r 1.15); Pg=20.0 psf; P late DOL=1.15); Is=1 0; Cs=1.00; Ct=1.10 2x4 MT20 unless of es continuous botton spaced at 2-0-0 oc. has been designed for n chord in all areas v yo 2-00-00 wide will f yo other members. hanical connection (le capable of withstan 4, 25, 26, 27, 28, 22, 1, 1=152. e or shim required to truss chord at joint(s 0, 19, 18, 17, 29. designed in accorda Residential Code send referenced standard Standard 	oof LL f=13.5 c.0; Ro therwin n chor or a liv vhere it betv py oth ding 1 20, 19 provi) 16, 2 ncce w cctions ard AN	L: Lum I Depsf (Li Dough Ca se indic re load of a recta veen th ers) of 100 Ib u 9, 18, 1 de full t 1, 23, 2 ith the 2 s R502. ISI/TPI	DOL=1.1 um at B; Fully cated. ng. of 20.0ps ngle e bottom truss to plift at joi 7 except bearing 4, 25, 26 2018 11.1 and 1.	5 y int					

grip DOL=1.33
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job		Truss			Truss Ty	уре		Qty	,	Ply						
22040108		B02			Roof S	pecial		9		1	Job Re	eferen	ice (opt	ional)		
Carter Component	nts, Sanford, N	C, user					Run: 8.53	3 S Mar 28 202	2 Print:	8.530 S Ma	ar 28 2022	2 MiTek	(Industri	es, Inc.	Fri Nov 18 17:05:5	53 Page: 1
									ID:	KDk5fTfji?/		d5BwD	yl9J2-Ra	aHM_y/	AqFrg9g4Zh5Jnhtb	vCP8yqcAlPRaBnyjyl3Ry
				5	- <u>10-3</u> -10-3		1-7-15 5-9-12	17-1-	- <u>1</u> 2	1	<u>22-4-7</u> 5-3-6		<u>25-2-</u> 2-10-	8 1		
								4x5=								
	1244		-7- <u>11</u> 1	1 11НW1 3х6ш		10 ¹² 1 3x5 2 2 8 8 9 12 2x4	6 W2 R	3	3x1 17 W 10 3x8=	5× 6x8× 4 5 4 82	WEE	25 9 55	x4 II 6 x10=	5×6 ×	-0	
													10∟ 12	⊠ 2x4∎		
				Į	7-6-6		15-0	0-5	_	22-0	6-3	,	24-11-	25-2-8 -0		
Scale = 1:71.1				ļ	7-6-6	Ι	7-5-	-15	I	7-5-	-15		2-4-1	3 0-3-8		
Plate Offsets ()	X, Y): [7:0-3-0	0,0-1-12	?], [9:0-5-8 -	3,0-2-4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Gr Lumber Rep Str Code	g rip DOL DOL ess Incr	IRC20	2-0-0 1.15 1.15 YES 018/TPI2014	CSI TC BC WB Matrix-MSI	0.60 0.56 0.96 H	DEF Vert(Vert(Horz	L (LL) (CT) (CT)	in (0.15 9 0.36 9 0.25	(loc) 9-10 9-10 8	l/defl >999 >828 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP Structural w 2-8-3 oc pur Rigid ceiling bracing. 1 Row at mi MiTek recor required cru truss erecti Installation	2 3 *Excep 9 No.3 rood she rlins, ex 9 directly idpt mmends oss brac on, in ac guide.	ot* W2,W3 eathing dir ccept end y applied of 2-10 s that Stal cing be ins ccordance	3:2x4 SP N verticals. or 10-0-0 o bilizers and stalled duri e with Stab	3) o.2 4) ed or c 5) 6) Ing lizer LC	TCLL: ASC Plate DOL= DOL=1.15 R Exp.; Ce=0. * This truss on the botto 3-06-00 tall chord and a Refer to girt Bearing at ji using ANSI/ designer sh This truss is Internationa R802.10.2 a	E 7-16; Pr=20 1.15); Pg=20 Plate DOL=1. 9; Cs=1.00; (has been de m chord in a by 2-00-00 w my other mer der(s) for trus oint(s) 8 cons TPI 1 angle t ould verify ca designed in I Residential and reference) Standard	0.0 psf (roof L 0.0 psf; Pf=13. .15); Is=1.0; R Ct=1.10 signed for a li II areas where vide will fit bet mbers. ss to truss cor siders parallel to grain formu apacity of bea accordance v Code section ad standard A	L: Lum 9 psf (ough (ve load a rect ween t nection to grai la. Bu ring su vith the s R502 NSI/TF	DOL=1.4 Lum Cat B; Ful d of 20.0p angle he botton ns. n value ilding rface. 2018 2.11.1 and 21.1.	15 ly sf 1					
REACTIONS	(Ib/size) 1=	=849/ M =849/0-3	echanical 3-8 (min	l, (min. 0-1- 0-1-8)	·8),											
FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 1- Max Graz 1= (lb) - Max. C (lb) or less e 1-2=-1269/1 3-16=-722/1 4-17=-1128/ 5-6=-2065/3 1-12=-124/9 9-10=-7/103 2-10=-490/1 5-10=-513/2 7-9=-138/23	=-223 (L =1003 (L comp./M except w 40, 2-16 79, 3-17 225, 4-5 72, 6-7= 32, 11-1 9 09, 3-10 00, 5-9= 29	C 9) LC 2), 8=1 lax. Ten /hen show 6=-845/15 7=-1106/2 5=-1227/2 =-2978/21 12=0/982, 0=-150/91 =-229/172	1003 (LC 2 All forces vn. 66, 209, 14, 7-8=-10 10-11=0/9) 250 24/89 82,											
NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E Exterior(2E 25-0-12 zo vertical left forces & M DOL=1.60	d roof live loa E 7-16; Vult= nph; TCDL=6 Enclosed; MV 0 0-0 to 3-0 R) 11-7-15 to ne; cantilevei and right exp WFRS for rea plate grip DC	ads have 130mph 5.0psf; B /FRS (e 0-0, Intel 14-7-15 r left and coosed;C actions s DL=1.33	e been co n (3-secor 3CDL=6.0 nvelope) : rior (1) 3-1 , Interior (d right exp -C for me shown; Lu	nsidered fo nd gust) psf; h=25ft and C-C 0-0 to 11-7 (1) 14-7-15 oosed ; end oosed ; end umber and	or this ; Cat. -15, to											

Job	Truss	Truss Type	Qty	Ply		
22040108	C01	Common Supported Gable	1	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.53 S Mar 28	3 2022 Print:	8.530 S Ma	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:53	Page: 1

Page: 1 ID:1spSB4aKMrHJIoJaufTY8kyI9J9-RaHM_yAqFrg9g4Zh5JnhtbvKa83KcNoPRaBnyjyI3Ry

Scale = 1:65.8

Plate Offsets (X, Y): [6:0-1-9,Edge], [12:0-1-9,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.08 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 185 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS (Ib) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt All bearings 24-8-8. Max Horiz 2=-202 (L Max Uplift All uplift 1 2, 16, 18, 27, 28, 29 Max Grav All reactio (s) 2, 16,	t* ST6:2x4 SP No.2 eathing directly applied of applied or 10-0-0 oc 9-23, 8-24, 10-22 C 11), 30=-202 (LC 11) 00 (lb) or less at joint(s 19, 20, 21, 22, 24, 26, 9, 30, 33 ons 250 (lb) or less at jo 18, 19, 20, 21, 22, 23, 2	 5) This truss has load of 12.0 overhangs r 6) All plates ar 7) Gable requiti 8) Gable studs 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mean bearing plats (s) 2, 16, 24 11) This truss is Internationa 0) R802.10.2 at LOAD CASE(S) 	as been designed psf or 2.00 timess ion-concurrent wi e 2x4 MT20 unlea es continuous bo spaced at 2-0-0 has been designe m chord in all are by 2-00-00 wide to y 0-ther member chanical connecti e capable of with, 26, 27, 28, 29 designed in acco Residential Cod nd referenced sta Standard	d for great s flat roof I ith other In ss otherwin ottom chor oc. ed for a live eas where will fit betv rs. ion (by oth standing 1 22, 21, 20 ordance w le sections andard AN	er of min roo pad of 13.9 p ve loads. se indicated. d bearing. e load of 20. a rectangle veen the bott ers) of truss 00 lb uplift a 19, 18, 2, 1 14, 18, 2018 i R502.11.1 a ISI/TPI 1.	f live osf on Opsf tom to to t joint 6. and					

26, 27, 28, 29, 30, 33 FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-11-6 to 2-0-10, Exterior(2N) 2-0-10 to 12-4-4, Corner(3R) 12-4-4 to 15-4-4, Exterior(2N) 15-4-4 to 25-7-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Even: Con 00: Cos=1.00; Ct=1.10;
- 4) Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Tr	russ	Truss	з Туре		Qty	Ply	y I					
22040108	С	:03	Com	imon Girder		1	2	J	ob Refere	nce (opt	ional)		
Carter Compone	nts, Sanford, NC, u	iser			Run: 8.53 S Mar 2	8 2022	Print: 8.53	30 S Mar 2	8 2022 MiTe	k Industri	es, Inc	. Fri Nov 18 17:05:5	4 Page: 1
							ID:hAY	_iBjrXXocl	eEubAhMdO	Syl9lz-vm	rkCIBT	08o0HE8tf1lwQpSL	.ZYHaLdgZgExLU9yl3Rx
			4-1-1	2 8-3-0 2 4-1-4	4-1-4	1	<u>6-5-8</u> 4-1-4	<u> </u>	6-12 1-4	<u>24-8-</u> 4-1-1	8 2	ŕ	
					4	4x8∎ 5							
		\uparrow			//	Ê.							
				1012		\square							
				10 3x5≉	4x5 ≠ 72 4		TS :	3x10 ∖ ∖ 6					
		~		5x10 🕫		M5			3x5 ∾	2.vE			
		11		3x5# 3				$\langle \rangle$	7 4x!	5x5&			
		10		2	vv3 vv4		yy6	wx	3	3			
			3x5 🎻	HUT				·		AVX1 3	x5、		
			1			$\parallel / /$						0	
		<u>0-7-11</u>					00	ΠΩ		ПП	<u> </u>	9	
			^{⊠ 15} 24	2514 26 272	8 1 3 29 1230	1 3 1	32	33 34	35 10 8×10	- 36	Ø		
			8x10= HTU26	HTU26 HTU26	HTU26 HTU26 H	ITU26	HTU26 H	HTU26 H	TU26 HTU2	- ²⁶ нтих	4x8 %	=	
			111020	HTU2 HTU	26 126					11102	.0		
Scalo - 1:72 3			4-1-1	<u>2 8-3-0</u>	12-4-4		20	-6-12		24-8-	8	ł	
Plate Offsets ()	X Y) [.] [1·0-3-9 0.	-6-8] [4:0-0-12 0-2-0	4-1-1	2 4-1-4	4-1-4	-41 [13	8 3.0-5-0 0	-2-8	·0-6-0 0-1-	4-1-1	2		
	(nc], [0:0 1 12	1 11 4		, i], [i0			n (loo)		L /d		CRIP
TCLL (roof)	(pa 20	0.0 Plate Grip DO	L	1.15	TC	0.70	Vert(LL)) -0.1	8 10-11	>999	240	MT20	244/190
Snow (Pf/Pg) TCDL	13.9/20 10	0.0 Lumber DOL 0.0 Rep Stress Inc	cr	1.15 NO	WB	0.53	Vert(CT Horz(CT) -0.3 T) 0.0	6 10-11 5 9	>820 n/a	180 n/a		
BCLL BCDL	0 10	.0* Code .0	IR	C2018/TPI2014	Matrix-MSH							Weight: 441 lb	FT = 20%
				2) All loads are		annlier	t to all pli	ios					
TOP CHORD	2x4 SP No.2	0.05		except if not	ed as front (F) or bac	ck (B) f	ace in th	e LOAD					
WEBS	2x8 SP 2400F 2x4 SP No.3 *E	2.0E Except* W5:2x4 SP N	No.1	provided to c	listribute only loads	noted a	as (F) or	(B),					
SLIDER	Left 2x4 SP No 4-8-0	0.3 4-8-0, Right 2x4	SP No.3	3) 2x8 SP 2400	F 2.0E bearing bloc	k 12" lo	ong at jt.	1					
BRACING TOP CHORD	Structural woo	d sheathing directly a	applied or	nails spaced	3" o.c. 16 Total fast	eners p	per block	. Bearing					
	3-4-9 oc purlins	s. rectly applied or 10-0)-0 oc	4) Unbalanced	o be SP 2400F 2.0E roof live loads have	been c	onsidere	ed for this	;				
Boronona	bracing.		, , , ,	5) Wind: ASCE	7-16; Vult=130mph	(3-sec	ond gust)					
REACTIONS	(lb/size) 1=80 (req.)22/(0-3-8 + bearing 0-3-14), 9=6103/0-3	block), -8, (min.	Vasd=103mp II; Exp B; En	oh; TCDL=6.0psf; B0 closed; MWFRS (en	CDL=6. velope	.0psf; h≕ e); cantile	25ft; Cat. ver left					
	0-3-0 Max Horiz 1=18	D) 35 (LC 8)		and right exp Lumber DOL	osed ; end vertical l =1.60 plate grip DO	eft and L=1.33	l right exp 8	posed;					
	Max Grav 1=93	370 (LC 20), 9=7172	(LC 2)	 TCLL: ASCE Plate DOL=1 	7-16; Pr=20.0 psf (i .15): Pa=20.0 psf; P	roof LL 9f=13.9	: Lum DO	OL=1.15 n					
FURCES	(lb) or less exce	ept when shown.	ces 250	DOL=1.15 P Exp.: Ce=0.9	late DOL=1.15); ls= : Cs=1.00: Ct=1.10	1.0; Ro	ugh Cat	B; Fully					
TOP CHORD	1-2=-7701/0, 2- 4-5=-6702/0, 5-	-3=-9038/0, 3-4=-898 -6=-6710/0, 6-7=-968	36/0, 52/0,	 7) * This truss h on the bottor 	nas been designed for	or a live	e load of a rectand	20.0psf					
BOT CHORD	7-8=-9705/0, 8- 1-15=0/9117, 1	-9=-6138/0 5-24=0/9117, 24-25=	=0/9117,	3-06-00 tall t	by 2-00-00 wide will	fit betw	veen the $DI = 10$	bottom					
	14-25=0/9117, 27-28=0/9053,	14-26=0/9053, 26-27 13-28=0/9053, 13-29	7=0/9053, 9=0/6903,	8) This truss is	designed in accorda	ince wi	th the 20	0031.)18					
	12-29=0/6903, 11-31=0/5776.	12-30=0/6903, 11-30 31-32=0/5776, 32-33	0=0/6903, 3=0/5776.	R802.10.2 a	nd referenced stand	ard AN	SI/TPI 1.	. i anu					
	33-34=0/5776, 10-36=0/7429.	34-35=0/5776, 10-3 9-36=0/7429	5=0/5776,	9) Use Simpsoi 11-10dx1 1/2	Truss, Single Ply G	(20-10 irder) (or equiva	lent					
WEBS	2-14=0/4099, 2	2-13=-3013/0, 4-13=0)/4448, 1358/0	spaced at 2- end to 22-8-8	0-0 oc max. starting 3 to connect truss(es	at 1-8- s) A04 (8 from th	ne left 4 SP),					
	6-10=0/3292, 8	3-10=0/336	1000/0,	A05 (1 ply 2) bottom chore	(4 SP), B02 (1 ply 2) I.	(4 SP)	to front f	ace of					
1) 2-ply truss	to be connected	together with 10d (0).131"x3")	10) Fill all nail ho	les where hanger is Standard	in con	tact with	lumber.					
nails as fol Top chords	lows: s connected as fo	ollows: 2x4 - 1 row a	t 0-9-0	1) Dead + Sno	ow (balanced): Lumb	er Incr	ease=1.	15, Plate					
oc. Bottom cho	ords connected a	as follows: 2x8 - 2 ro	ws	Uniform Loa	ads (lb/ft)	- 40							
staggered Web conne	at 0-6-0 oc. ected as follows:	: 2x4 - 1 row at 0-9-0	OC.	vert: 1-5 Concentrate	4ο, ວ-9=-4ο, 16-20 ed Loads (lb)	=-19							
				Vert: 10= 26=-1372	-829 (F), 24=-1372 (2 (F), 27=-944 (F), 28	(F), 25= 8=-829	=-1372 (F (F), 29=	F), 829 (F),					
				30=-829 35=-829	(F), 31=-829 (F), 32 (F), 36=-829 (F)	=-829 ((F), 33=-8	829 (F),					

Job	Truss	Truss Type	Qty	Ply	
22040108	D01	Common Supported Gable	1	1	Job Reference (optional)
Carter Components, Sanford, No	C, user	Run: 8.53 S Mar 28	3 2022 Print:	8.530 S Ma	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:54 Page
			ID:9N	l6MwXkUIrw	TMop49uCbAUyl9ly-vmrkClBT08o0HE8tf1lwQpSU4YOiLrCZgExLU9yl3F

Scale = 1:56.8			,		18-	-5-0						
											-1 -	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code I	1-11-4 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.07 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sha 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt All bearings 18-5-0. Max Horiz 25=-177 Max Uplift All uplift 1 14, 15, 10 except 22 (LC 9) Max Grav All reaction (s) 14, 15 23, 24, 25	eathing directly applied or coept end verticals. y applied or 6-0-0 oc 7-20 (LC 11) 100 (lb) or less at joint(s) 5, 17, 18, 21, 22, 23 I=-114 (LC 10), 25=-115 ons 250 (lb) or less at join 5, 16, 17, 18, 20, 21, 22, 5	 5) This truss haload of 12.0 overhangs m 6) All plates arr 7) Gable requir 8) Truss to be the braced again 9) Gable studs 10) * This truss loot of and and and and and and and and and and	as been designed psf or 2.00 times f on-concurrent with e 2x4 MT20 unless res continuous bot jully sheathed from st lateral moveme spaced at 2-0-0 o has been designed m chord in all area by 2-00-00 wide w hy other members shanical connection e capable of withst 2, 23, 18, 17, 16, 1 designed in accor Residential Code nd referenced star Standard	for great flat roof I in other I is s otherwittom chorn n one face ent (i.e. c c. d for a liv is where d for a liv s where ill fit betw. n (by oth tanding 1 5 excep dance w sections indard AN	er of min roof bad of 13.9 p ve loads. se indicated. d bearing. e or securely liagonal web) re load of 20.1 a rectangle veen the bott ers) of truss i 100 lb uplift ai t (jt=lb) 25=1 ith the 2018 s R502.11.1 a ISI/TPI 1.	f live sf on). Opsf om t joint 15, and					
FORCES TOP CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103 II; Exp B; I (3E) -0-11. Corner(3R	(lb) - Max. Comp./N (lb) or less except w 6-7=-148/293, 7-8= 7-20=-303/95 ed roof live loads have 2E 7-16; Vult=130mpl mph; TCDL=6.0psf; E Enclosed; MWFRS (e 6 to 2-0-10, Exterior(2) 9-2-8 to 12-2-8, Ext	lax. Ten All forces 250 /hen shown. -148/293 e been considered for this h (3-second gust) 3CDL=6.0psf; h=25ft; Cat. nvelope) and C-C Corner 2N) 2-0-10 to 9-2-8, erior(2N) 12-2-8 to										

- 19-4-6 Zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber
- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Ig=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss		Truss Type		Qty	Ply					
22040108	D02		Common		2	1	Job Refe	ence (on	tional)		
Carter Componer	nts, Sanford, NC, user			Run: 8.53 S Mar	28 2022	Print: 8.530 S I	Mar 28 2022 M	Tek Indust	ries, Inc	. Fri Nov 18 17:05:5	4 Page: 1
						ID:9N6MwXkL	IlrwTMop49uC	bAUyl9ly-v	mrkCIB	T08o0HE8tf1lwQpS	StYH2LI2ZgExLU9yI3Rx
			4-9-0	9-2-8	I	13-8-0	T	18-5-0	1	9-5-0	
			4-9-0	4-5-8	ľ	4-5-8	ľ	4-9-0	1		
					4x5=						
					3						
			-	1012	\mathbb{A}	\sim					
				4x5 🗸		\mathcal{N}					
				11			2 4x5				
	6	-		2 1	W4		12 4				
	-6-8										
				w.s		W3					
			3x51				,	* //</td <td>3x</td> <td>5.</td> <td></td>	3x	5.	
			1		\mathbb{N}					5	
		1-1-3 1		B1			B2			× 6	
			⊠ 3x5=		9	8			⊠ 3x5	:=	
					3x8=	= 3x5=					
			ļ	9-2-8	L		18-5-0			,	
Scale = 1:58.2			1	9-2-8	1		9-2-8		1		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (loc) l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 13.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.30 0.56	Vert(LL) Vert(CT)	-0.01 9-10) >999) >999	240 180	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB Matrix-MSH	0.45	Horz(CT)	0.02	/ n/a	n/a		
BCDL	10.0	Code	11(02010/11/2014	Matrix-Mort						Weight: 116 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing.	eathing directly applie xcept end verticals. y applied or 10-0-0 oc	5) * This truss on the botto 3-06-00 tall chord and a 6) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been designed m chord in all areas by 2-00-00 wide wil ny other members. designed in accorc I Residential Code s and referenced stan Standard	for a liv where I fit betw dance w sections dard AN	e load of 20.0 a rectangle veen the botto ith the 2018 i R502.11.1 at ISI/TPI 1.	ipsf om nd				
	MiTek recommend required cross bra truss erection, in a Installation guide.	Is that Stabilizers and cing be installed durin accordance with Stabil	ng izer								
REACTIONS	(lb/size) 7=667/0- 10=612/0 Max Horiz 10=-177	3-8, (min. 0-1-8), D-3-8, (min. 0-1-8) (LC 11)									
	Max Grav 7=793 (L	.C 2), 10=723 (LC 2)									
FORCES	(Ib) - Max. Comp./N (Ib) or less except v	/lax. Ten All forces 2 when shown.	250								
TOP CHORD	1-2=-268/75, 2-11= 3-12=-539/145, 4-1	-636/114, 3-11=-539/1 2=-634/113,	146,								
	4-5=-291/103, 5-7=	-327/117									
WEBS	3-9=-78/444, 2-10=	-567/70, 4-7=-547/36									
NOTES 1) Unbalance	d roof live loads hav	e been considered for	r this								
design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E Exterior(2F zone; canti and right e, MWFRS fo	E 7-16; Vult=130mp mph; TCDL=6.0psf; I Enclosed; MWFRS (c 2) 0-1-12 to 3-1-12, I R) 9-2-8 to 12-2-8, In Ilever left and right e xposed;C-C for men or reactions shown: I	h (3-second gust) BCDL=6.0psf; h=25ft; envelope) and C-C nterior (1) 3-1-12 to 9- terior (1) 12-2-8 to 19- xposed ; end vertical hbers and forces & umber DOL=1.60 pla	Cat. -2-8, -4-6 left te								
grip DOL=1	1.33 CE 7-16 [,] Pr=20 0 nef	(roof LL · I um DOI =1	.15								
Plate DOL: DOL=1.15	=1.15); Pg=20.0 psf; Plate DOL=1.15); Is	Pf=13.9 psf (Lum =1.0; Rough Cat B; F	ully								
4) This truss I load of 12.0 overhangs	has been designed f 0 psf or 2.00 times fl non-concurrent with	o or greater of min roof at roof load of 13.9 ps other live loads.	live sf on								

Job		Truss		Tr	uss Type		Qty	F	Ply					
22040108		D03		C	ommon		1	_ '	1	Job Refere	nce (opt	ional)		
Carter Componer	nts, Sanford, NC	, user				Run: 8.53 S Mar 2	8 2022	Print: 8 ID:VI	530 S Ma (vFzEoc6N	r 28 2022 MiTe NYmTZh1xRor	k Industr ntXyl9lt-v	ies, Inc. mrkCIE	. Fri Nov 18 17:05:5 3T08o0HE8tf1IwQpS	4 Page: 1 StYH2LltZgExLU9yl3Rx
				-	4-9-0	9-2-8		13	3-8-0 -5-8		18-5-0		7	
				I	4-9-0	1 4-0-0	4x5=	+	-0-0	ļ	4-9-0		Ι	
					10 4	2 x5 ¢	3		11					
		8-9-4			2		W4		T	4x5 x				
				2x4 II		W3			W3	X			2x4 II	
			1-1-3	1 WL									₽ ₽	
			<u> </u>	X		B1	× × ×	• 7		B2		<u>\</u>	6	
				3x5:	•		3x8=					3	8x5=	
				I.	9-2	2-8	I.	3x5=		18-5-0			I.	
Scale = 1:54.6				1	9-2	2-8	1			9-2-8			7	
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(13.9/2	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr		2-0-0 1.15 1.15 YES	CSI TC BC WB	0.30 0.56 0.46	DEFL Vert(L Vert(C Horz(L) -0 CT) -0 CT) 0	in (loc) 0.01 8 0.14 8-9 0.02 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL		0.0* 10.0	Code		IRC2018/1P12014	Matrix-MSH							Weight: 114 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc purl Rigid ceiling	ood she ins, ex directly	athing directly app cept end verticals. applied or 10-0-0	lied o	5) This truss is International R802.10.2 a LOAD CASE(S)	designed in accordar Residential Code se nd referenced standa Standard	nce w ctions ard AN	ith the : R502. ISI/TPI	2018 11.1 and 1.					
	bracing. MiTek recon required cro truss erection Installation of	nmends ss brac on, in ac guide.	that Stabilizers an ing be installed du cordance with Sta	nd Iring Ibilize	ŗ									
REACTIONS ((lb/size) 6= 9= Max Horiz 9=	614/0-3 614/0-3 -166 (L	8-8, (min. 0-1-8), 8-8, (min. 0-1-8) C 9)											
FORCES	Max Grav 6= (lb) - Max. Co	725 (LC omp./Ma	2 2), 9=725 (LC 2) ax. Ten All forces	s 250										
TOP CHORD	(ID) or less ex 1-2=-268/75, 3-11=-542/14	2-10=- 6. 4-11	nen snown. 638/114, 3-10=-54 =-638/114, 4-5=-2	2/146 68/75	,									
BOT CHORD WEBS	8-9=-56/571, 3-8=-79/446,	7-8=-4 2-9=-5	5/537, 6-7=-45/53 70/70, 4-6=-570/7	7 D										
NOTES 1) Unbalance	d roof live loa	ds have	been considered	for thi	s									
design. 2) Wind: ASC Vasd=103m II; Exp B; E Exterior(2E Exterior(2F zone; canti and right e: MWFRS fo	E 7-16; Vult= nph; TCDL=6. Enclosed; MW (2) 0-1-12 to 3- (3) 9-2-8 to 12- lever left and xposed;C-C for r reactions sh	130mph .0psf; B FRS (er 1-12, In 2-8, Inte right ex or meml own; Lu	(3-second gust) CDL=6.0psf; h=25 nvelope) and C-C terior (1) 3-1-12 to erior (1) 12-2-8 to posed ; end vertic bers and forces & umber DOL=1.60 p	ft; Ca 9-2-8 18-3-4 al left olate	t. 3, 4									
 grip DOL=1 3) TCLL: ASC Plate DOL= DOL=1.15 Evp : Op=20 	1.33 E 7-16; Pr=2(=1.15); Pg=20 Plate DOL=1.	0.0 psf (0.0 psf; l 15); ls=	(roof LL: Lum DOL Pf=13.9 psf (Lum :1.0; Rough Cat B;	=1.15 Fully	i									
 4) * This truss on the botto 3-06-00 tal chord and a 	s, e, es= 1.00; (s has been de om chord in a l by 2-00-00 w any other mer	signed f ll areas vide will nbers.	for a live load of 20 where a rectangle fit between the bo	0.0psf • •ttom										

Job	Truss	Truss Type	Qty	Ply	
22040108	E01	Monopitch Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1 ID:dZfl7sl6382K_yOGibjqjhyl9lx-NyO6PeC5nSwtvOj3Dkp9y0?eByh_4lvivugu0byl3Rw

6-0-0

Scale = 1:28.7

6) Gable requires continuous bottom chord bearing.7) Gable studs spaced at 2-0-0 oc.

											_	
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%
			8) * This truss	has been designe	ed for a liv	e load of 20	0psf					
TOP CHORD	2x4 SP No 2		on the botto	m chord in all are	eas where	a rectangle						
BOT CHORD	2x4 SP No.2		3-06-00 tall	by 2-00-00 wide \	will fit bet	veen the bot	tom					
WEBS	2x4 SP No.3		chord and a	ny other member	rs.							
OTHERS	2x4 SP No.3		Provide med	chanical connection	on (by oth	ers) of truss	to					
BRACING			bearing plat	e capable of with	standing '	00 lb uplift a	at joint					
TOP CHORD) Structural wood she	athing directly applied	or (s) 2, 2.									
	6-0-0 oc purlins, ex	cept end verticals.	10) This truss is	designed in acco	ordance w	ith the 2018						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	Internationa	Residential Cod	le sections	8 R502.11.1	and					
	bracing.	,	R802.10.2 a	ind referenced sta	andard Ar	ISI/TPI1.						
REACTIONS	All bearings 6-0-0		LUAD CASE(S)	Standard								
(lb) -	Max Horiz 2=49 (LC	14), 7=49 (LC 14)										
()	Max Uplift All uplift 1	100 (lb) or less at ioint(s)									
	2, 7	···() , (,									
	Max Grav All reaction (s) 2, 5, 7	ons 250 (lb) or less at jo ′ except 6=340 (LC 22)	int									
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250)									
	(lb) or less except w	/hen shown.										
WEBS	3-6=-260/287											
NOTES												
1) Wind: AS	CE 7-16; Vult=130mpl	h (3-second gust)										
Vasd=103	3mph; TCDL=6.0psf; E	3CDL=6.0psf; h=25ft; C	at.									
II; EXP B;	Enclosed; MVVFRS (e	envelope) and C-C Corn	er									
(3E) -0-1	I-13 to 2-0-3, Exterior(ZN) 2-0-3 to 5-10-4 ZON	ie;									
right ever	sed C_C for members	and forces & MW/ERS										
for reactiv	ons shown I umber D	$\Omega = 1.60 \text{ plate arin}$										
DOI = 1.3	3	OL-1.00 plate grip										
2) Truss de	signed for wind loads	in the plane of the truss										
only. For	studs exposed to wind	d (normal to the face),										
see Stand	dard Industry Gable Er	nd Details as applicable	·,									
or consul	t qualified building des	igner as per ANSI/TPI ´	1.									
3) TCLL: AS	CE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.1	5									
Plate DO	L=1.15); Pg=20.0 psf;	Pt=13.9 psf (Lum										
DOL=1.1	5 Plate DOL=1.15); ls:	=1.0; Rough Cat B; Full	y									
Exp.; Ce=	=0.9; CS=1.00; Ct=1.10	J; WIN. TAT FOOT SNOW IO	aa									
governs.	ad anour loada have h	oon oppoidered for this										
4) Unbalanc	eu snow loads nave b	een considered for this										
5) This trues	s has been designed fo	or greater of min roof liv	0									
load of 12	2 0 net or 2 00 times fl	at roof load of 13.9 pef of	n									
overhang	s non-concurrent with	other live loads.										

Job	Truss	Truss Type	Qty	Ply	
22040108	E02	Monopitch	8	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1

ID:dZfl7sl6382K_yOGibjqjhyl9lx-NyO6PeC5nSwtvOj3Dkp9y0?Yxyfn4JJivugu0byl3Rw

3x5 =

One H2.5A

				6-0-0						
			1			1				
(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MP	.60 Vert(LL) .40 Vert(CT .00 Horz(CT	in 0.06) -0.12) 0.02	(loc) 4-7 4-7 2	l/defl >999 >576 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
									Ŭ	
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	athing directly applied a cept end verticals. applied or 10-0-0 oc	 7) Provide mec bearing plats 8) One H2.5A s recommend UPLIFT at jt does not cor 9) This truss is International DP02 40.2 s 	chanical connection (by e capable of withstand Simpson Strong-Tie co ed to connect truss to I (s) 2. This connection isider lateral forces. designed in accordant Residential Code sec	y others) of tru ing 7 lb uplift a nnectors bearing walls is for uplift onl ce with the 20 tions R502.11	iss to at joint 4. due to y and 18 .1 and					
bracing. MiTek recommends required cross brac truss erection, in ac Installation guide.	that Stabilizers and ing be installed during cordance with Stabilize	LOAD CASE(S)	nd referenced standar Standard	a ANSI/TPT1.						
(lb/size) 2=249/0-3 Mechanic Max Horiz 2=51 (LC Max Uplift 2=-30 (LC Max Grav 2=331 (LC	8-8, (min. 0-1-8), 4=194 al, (min. 0-1-8) 14) 5 11), 4=-7 (LC 15) 5 22), 4=252 (LC 22)	I								
(lb) - Max. Comp./M	ax. Ten All forces 250)								
E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (ei)-0-11-13 to 2-0-3, Ir ilever left and right ex xposed; C-C for memi or reactions shown; Lu 1.33)E 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed fo 0 psf or 2.00 times fla onon-concurrent with s has been designed fo om chord in all areas I by 2-00-00 wide will any other members. rder(s) for truss to tru-	(3-second gust) CDL=6.0psf; h=25f; Ca nvelope) and C-C therior (1) 2-0-3 to 5-10 posed ; end vertical left bers and forces & umber DOL=1.60 plate (roof LL: Lum DOL=1.1: Pf=13.9 psf (Lum 1.0; Rough Cat B; Fully r, Min. flat roof snow load seen considered for this or greater of min roof livult troof load of 13.9 psf of other live loads. for a live load of 20.0ps where a rectangle fit between the bottom ss connections.	at. -4 t 5 y ad e n								
	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommends required cross brack truss erection, in ac Installation guide. (b/size) 2=249/0-3 Mechanic (lb/size) 2=249/0-3 Mechanic (lb/size) 2=249/0-3 Mechanic (lb/size) 2=249/0-3 Mechanic (lb/size) 2=249/0-3 Mechanic (lb) - 2=249/0-3 Mechanic (lb) - Max. Comp./M. (lb) or less except w E 7-16; Vult=130mph nph; TCDL=6.0psf; B Enclosed; MWFRS (ei E) -0-11-13 to 2-0-3, In ilever left and right ex xposed; C-C for mem xposed; C-C for mem xposed; C-C for mem yr reactions shown; Lu 1.33 2E 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); pg=20.0 psf (=1.15); pg=20.0 psf (=1.15); ps=20.0 psf (=1.1	(psf) Spacing 20.0 Plate Grip DOL 13.9/20.0 Lumber DOL 10.0 Rep Stress Incr Code Code 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied of 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. (b/size) 2=249/0-3-8, (min. 0-1-8), 4=194 Mechanical, (min. 0-1-8) Max Horiz 2=51 (LC 14) Max Uplift 2=-30 (LC 11), 4=-7 (LC 15) Max Grav 2=331 (LC 22), 4=252 (LC 22) (lb) or less except when shown. EF 7-16; Vult=130mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25f; C. nph; TCDL=6.0psf; BCDL=6.0psf; h=25f; C. Enclosed; MWFRS (envelope) and C-C :) -0-11-13 to 2-0-3, Interior (1) 2-0-3 to 5-10 Ilever left and right exposed ; end vertical lexposed; C-C for members and forces & reactions shown; Lumber DOL=1.60 plate 1.33 2E 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.1 1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15); Is=1.0; Rough Cat B; Full .9; Cs=1.00; Ct=1.10; Min. flat roof snow load d snow loads have been considered for this has been designed for greater of min roof liv <td>(psf) 20.0Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code2-0-0 I.15 IRC2018/TPI201410.0 0.0* 10.0Test Stress Incr CodeIRC2018/TPI20142x4 SP No.2 2x4 SP No.37)Provide mee bearing plat 8.Structural wood sheathing directly applied or 6-0-0 co purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.7)MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.7)(Ib/size) Wax Horiz 2=51 (LC 14) Max Grav 2=331 (LC 22), 4=252 (LC 22) (b) or less except when shown.Charlen Comp./Max. Ten All forces 250 (b) or less except when shown.E7-16; Vult=130mph (3-second gust) mph; TOLD=6.0psf; BCDL=6.0psf; h=25f; Cat. inclosed; MWFRS (envelope) and C-C E) -0-11-13 to 2-0-3, Interior (1) 2-0-3 to 5-10-4 liever left and right exposed ; end vertical left xposed; C-C for members and forces & ar reactions shown; Lumber DOL=1.60 plate 1.33E7-16; Pr=20.0 psf; (pof LL: Lum DOL=1.15 =1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15); Is=1.0; Rough Cat B; Fully .9; Cs=1.00; Ct=1.10; Min. flat roof snow loadd snow loads have been considered for this has been designed for greater of min roof live 0 ps or 2.00 times flat roof load of 13.9 ps for non-oncourrent with other live loads. s has been designed for a live load for 20.0 psf om chord in all areas where a rectangle Il by 2-00-00 wide will fit between the bottom any other members. rder(s) for truss to truss connections.</td> <td>(psf) Spacing 2-0-0 CSI 13.9/20.0 Lumber DOL 1.15 EC 0 10.0 Rep Stress Incr YES WB 0 2x4 SP No.2 Code IRC2018/TPI2014 WB 0 2x4 SP No.2 2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 0 Structural wood sheathing directly applied or 10-0-0 corracing. 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x5 Structural wood sheathing directly applied or 10-0-0 corracing. 7 This truss is designed in accordance with Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizers and threation guide. 7 (b):3x4 SP No.2 2=249/0-3-8. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8). 7 This truss is designed in accordance with stabilizers and right exposed : end vertical left xposed (-C for members and forces 8) 7 This truss of truss to 10.20 stice 1.10. <</td> <td>(psf) Spacing 2-0-0 CSI DEFL 13.9/20.0 Lumber DOL 1.15 TC 0.60 Ver(LT) 0.0 Rep Stress Incr RC2016/TPI2014 Matrix-MP Ver(CT) 10.0 Code IRC2016/TPI2014 Matrix-MP Horz(CT) 2x4 SP No.2 2x4 SP No.3 7) Provide mechanical connection (by others) of tr. Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) Provide mechanical connect trus to bearing valis. Rigid ceiling directly applied or 10-0-0 oc bracing. This truss is designed in accordance with the 20 International Residential Code sections R502.11 Riguer 2 249/0-3-8, (min. 0-1-8), 4=194/ Metchanical, (min. 0-1-8) This truss is designed in accordance with NSUHI2PI 1. DAD CASE(S) Standard Its russ erection, in accordance with Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizers and truss erection, in accordance with Stabilizers and required for 22.0 (C 11), 4-7 (LC 15) Max Horiz 2-51 (LC 14) Max Comp./Max. TenAll forces 250 (b) or less except when shown. E7-16; Vult=130mph (3-second gust) Prob_102.5.10.0; Diff. Pr=20.0 psf; Pr=13.9 psf (Lum Pis Cas-100; Cell-1.0; Min. flat roof snow lead d snow loads have been considered f</td> <td>(psf) Spacing 2-0-0 (201 Plate Grip DOL 1.15 TC 0.60 13.9/20.0 Lumber DOL 1.15 TC 0.60 0.0.* Fee Stress hard Fee Stress hard Fee Stress hard 2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb upilf at joint 4. 3 Structural wood sheathing directly applied or 10-0-0 oc This truss is designed in accordance with the 2018 MTek recommends that Stabilizers and required cross braicing be installed during truss erection, in accordance with Stabilizer Structural week-anical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=202.10.2 and referenced standard ANSI/TPI 1. DAD CASE(S) Standard Wax Grav 2=33 (LC 21), 4=252 (LC 22) (b) - Max. Comp./Max. Ten All forces 250 (b) - Max. Comp./Max. Ten All forces 250 (c) - 0.04 Structural week been considered for this Kar Prezion Structure in droft sep St (Cut 1.10, 0-20, 15, 1-0.4 Iwer actions shown; Lumber DOL=1.60 plate 1.33 Zi - Tais; Urg=200, psf (mord L1: Lum DOL=1.16 Tais; Deg=200, psf (mord L1: Lum DOL=1.60 plate 1.33</td> <td>(nsf) Spacing 2-0-0 CSI 0.0 DEFL in floor 13.9/20.0 Lumber DOL 1.15 BC 0.60 Vert(CT) 0.02 2 0.0* Code IRC2018/TPI2014 Matrix-MP Vert(CT) 0.02 2 2x4 SP No.2 2x4 SP No.2 2 Structural wood sheathing directly applied or 10-0-0 c No 0.0* Code Iteration of the second of the second</td> <td>6-0-0 (psf) Spacing 2-0-0 CSi 0.6 DEFL in (hoc) 1/deft 13.9/20.1 10.0 1.15 TC 0.60 Vert(LL) 0.60 <</td> <td>(pst) Spacing 2-0-0 CSI 0.0 DEFL in (loc) I/deft L/deft 10.0 10.0 1.15 TC 0.60 Ver(LL) 0.06 4.7 >999 240 20.4 SP No.2 Code IRC2018/TPI2014 Matix-MP 0.00 Horz(CT) 0.02 2 n/a n/a 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 10-0-0 1 1.5 BC 0.00 Horz(CT) 0.02 2 n/a n/a Structural wood sheathing directly applied or 10-0-0 Code Incode Incode 1</td> <td>6-0-0 (pst) Spacing 2-0-0 CSI 0.0 DEFL in (icc) Vident Lifts Def 13.920.0 10.0 Code IRC2018/TESI With 0.00 DEFL in (icc) Vident MT20 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or intercention (by others) of truss to bearing plate capable of withstanding T b upfilt at joint 4. 0.0 One FL2 SA Simpson Strong-Tie connectors Structural wood sheathing directly applied or into connect truss to truss</td>	(psf) 20.0Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code2-0-0 I.15 IRC2018/TPI201410.0 0.0* 10.0Test Stress Incr CodeIRC2018/TPI20142x4 SP No.2 2x4 SP No.37)Provide mee bearing plat 8.Structural wood sheathing directly applied or 6-0-0 co purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.7)MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.7)(Ib/size) Wax Horiz 2=51 (LC 14) Max Grav 2=331 (LC 22), 4=252 (LC 22) (b) or less except when shown.Charlen Comp./Max. Ten All forces 250 (b) or less except when shown.E7-16; Vult=130mph (3-second gust) mph; TOLD=6.0psf; BCDL=6.0psf; h=25f; Cat. inclosed; MWFRS (envelope) and C-C E) -0-11-13 to 2-0-3, Interior (1) 2-0-3 to 5-10-4 liever left and right exposed ; end vertical left xposed; C-C for members and forces & ar reactions shown; Lumber DOL=1.60 plate 1.33E7-16; Pr=20.0 psf; (pof LL: Lum DOL=1.15 =1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15); Is=1.0; Rough Cat B; Fully .9; Cs=1.00; Ct=1.10; Min. flat roof snow loadd snow loads have been considered for this has been designed for greater of min roof live 0 ps or 2.00 times flat roof load of 13.9 ps for non-oncourrent with other live loads. s has been designed for a live load for 20.0 psf om chord in all areas where a rectangle Il by 2-00-00 wide will fit between the bottom any other members. rder(s) for truss to truss connections.	(psf) Spacing 2-0-0 CSI 13.9/20.0 Lumber DOL 1.15 EC 0 10.0 Rep Stress Incr YES WB 0 2x4 SP No.2 Code IRC2018/TPI2014 WB 0 2x4 SP No.2 2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 0 Structural wood sheathing directly applied or 10-0-0 corracing. 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x4 SP No.3 7 Provide mechanical connection (b) bearing plate capable of withstand 10 connect truss to 1 UPLIFT at jt(s) 2. This connection. (b):2x5 Structural wood sheathing directly applied or 10-0-0 corracing. 7 This truss is designed in accordance with Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizers and threation guide. 7 (b):3x4 SP No.2 2=249/0-3-8. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8). 7 This truss is designed in accordance with stabilizers and right exposed : end vertical left xposed (-C for members and forces 8) 7 This truss of truss to 10.20 stice 1.10. <	(psf) Spacing 2-0-0 CSI DEFL 13.9/20.0 Lumber DOL 1.15 TC 0.60 Ver(LT) 0.0 Rep Stress Incr RC2016/TPI2014 Matrix-MP Ver(CT) 10.0 Code IRC2016/TPI2014 Matrix-MP Horz(CT) 2x4 SP No.2 2x4 SP No.3 7) Provide mechanical connection (by others) of tr. Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) Provide mechanical connect trus to bearing valis. Rigid ceiling directly applied or 10-0-0 oc bracing. This truss is designed in accordance with the 20 International Residential Code sections R502.11 Riguer 2 249/0-3-8, (min. 0-1-8), 4=194/ Metchanical, (min. 0-1-8) This truss is designed in accordance with NSUHI2PI 1. DAD CASE(S) Standard Its russ erection, in accordance with Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizers and truss erection, in accordance with Stabilizers and required for 22.0 (C 11), 4-7 (LC 15) Max Horiz 2-51 (LC 14) Max Comp./Max. TenAll forces 250 (b) or less except when shown. E7-16; Vult=130mph (3-second gust) Prob_102.5.10.0; Diff. Pr=20.0 psf; Pr=13.9 psf (Lum Pis Cas-100; Cell-1.0; Min. flat roof snow lead d snow loads have been considered f	(psf) Spacing 2-0-0 (201 Plate Grip DOL 1.15 TC 0.60 13.9/20.0 Lumber DOL 1.15 TC 0.60 0.0.* Fee Stress hard Fee Stress hard Fee Stress hard 2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb upilf at joint 4. 3 Structural wood sheathing directly applied or 10-0-0 oc This truss is designed in accordance with the 2018 MTek recommends that Stabilizers and required cross braicing be installed during truss erection, in accordance with Stabilizer Structural week-anical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=194/ Mechanical. (min. 0-1-8), 4=202.10.2 and referenced standard ANSI/TPI 1. DAD CASE(S) Standard Wax Grav 2=33 (LC 21), 4=252 (LC 22) (b) - Max. Comp./Max. Ten All forces 250 (b) - Max. Comp./Max. Ten All forces 250 (c) - 0.04 Structural week been considered for this Kar Prezion Structure in droft sep St (Cut 1.10, 0-20, 15, 1-0.4 Iwer actions shown; Lumber DOL=1.60 plate 1.33 Zi - Tais; Urg=200, psf (mord L1: Lum DOL=1.16 Tais; Deg=200, psf (mord L1: Lum DOL=1.60 plate 1.33	(nsf) Spacing 2-0-0 CSI 0.0 DEFL in floor 13.9/20.0 Lumber DOL 1.15 BC 0.60 Vert(CT) 0.02 2 0.0* Code IRC2018/TPI2014 Matrix-MP Vert(CT) 0.02 2 2x4 SP No.2 2x4 SP No.2 2 Structural wood sheathing directly applied or 10-0-0 c No 0.0* Code Iteration of the second	6-0-0 (psf) Spacing 2-0-0 CSi 0.6 DEFL in (hoc) 1/deft 13.9/20.1 10.0 1.15 TC 0.60 Vert(LL) 0.60 <	(pst) Spacing 2-0-0 CSI 0.0 DEFL in (loc) I/deft L/deft 10.0 10.0 1.15 TC 0.60 Ver(LL) 0.06 4.7 >999 240 20.4 SP No.2 Code IRC2018/TPI2014 Matix-MP 0.00 Horz(CT) 0.02 2 n/a n/a 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 10-0-0 1 1.5 BC 0.00 Horz(CT) 0.02 2 n/a n/a Structural wood sheathing directly applied or 10-0-0 Code Incode Incode 1	6-0-0 (pst) Spacing 2-0-0 CSI 0.0 DEFL in (icc) Vident Lifts Def 13.920.0 10.0 Code IRC2018/TESI With 0.00 DEFL in (icc) Vident MT20 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or intercention (by others) of truss to bearing plate capable of withstanding T b upfilt at joint 4. 0.0 One FL2 SA Simpson Strong-Tie connectors Structural wood sheathing directly applied or into connect truss to truss

Job	Truss	Truss Type	Qty	Ply	
22040108	G01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1 ID:18Ltlun_L3QvrP7rOjHXKKyl9lu-NyO6PeC5nSwtvOj3Dkp9y0?glyko4J0ivugu0byl3Rw

4x5 =

5-0-0

Scale = 1:35.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%
LUMBER			5) This truss ha	as been designed t	for great	er of min roo	f live					
TOP CHORD	2x4 SP No.2		load of 12.0	psf or 2.00 times f	lat roof l	oad of 13.9 p	osf on					
BOT CHORD	2x4 SP No.2		overhangs n	on-concurrent with	n other li	ve loads.						
OTHERS	2x4 SP No.3		Gable requir	res continuous bot	tom choi	rd bearing.						
WEDGE	Left: 2x4 SP No.3		Gable studs	spaced at 2-0-0 o	с.							
	Right: 2x4 SP No.3		8) * This truss	has been designed	d for a liv	e load of 20.	.0psf					
BRACING			on the botto	m chord in all area	s where	a rectangle	tam					
TOP CHORD	Structural wood she	athing directly applied o	r shord and a	by 2-00-00 wide wi		veen the bot	lom					
	5-0-0 oc purlins.		9) Provide med	chanical connection	n (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 oc	bearing plate	e capable of withst	anding 1	100 lb uplift a	it ioint					
	bracing.		(s) 2, 4, 2, 4									
	MiTek recommends	s that Stabilizers and	10) This truss is	designed in accor	dance w	ith the 2018						
	required cross brac	ing be installed during	Internationa	Residential Code	sections	s R502.11.1 a	and					
	truss erection, in a	ccordance with Stabilizer	. R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	installation guide.		LOAD CASE(S)	Standard								
REACTIONS	All bearings 5-0-0.											
(lb) -	Max Horiz 2=54 (LC	12), 7=54 (LC 12)										
	Max Uplift All uplift 1	00 (lb) or less at joint(s)										
	2, 4, 7, 11											
	Max Grav All reaction	ons 250 (lb) or less at joir	nt									
	(s) 2, 4, 6	, 7, 11										
FORCES	(lb) - Max. Comp./M	ax. Ten All forces 250										
	(lb) or less except w	hen shown.										
NOTES												
 Unbalance design. 	d roof live loads have	e been considered for thi	S									
2) Wind: ASC	E 7-16; Vult=130mpl	n (3-second gust)										
Vasd=103r	mph; TCDL=6.0psf; E	CDL=6.0psf; h=25ft; Ca	t.									
II; Exp B; E	Enclosed; MWFRS (e	nvelope) and C-C Corne	r									
(3E) -0-11-	6 to 2-0-10, Exterior(2N) 2-0-10 to 2-6-0,										
Corner(3R) 2-6-0 to 5-6-0, Exte	rior(2N) 5-6-0 to 5-11-6										
zone; cant	vposed C-C for mom	bers and forces &										
MWFRS fr	r reactions shown.	umber DOI =1.60 plate										
arip $DOI =$	1.33											
3												

grip DOL=1.33
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	
22040108	G02	Common	1	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1 ID:Sy?ErkNScu1FrzVZWJdtEvyI43j-NyO6PeC5nSwtvOj3Dkp9y0?g4yko4Jsivugu0byI3Rw

5

2-8-11

3-2-8

Scale = 1:40.3

chord and any other members.

			· · · ·										
Loading		(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roo	f)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	6-12	>999	240	MT20	244/190
Snow (Pf/	Pa)	13.9/20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	6-9	>999	180		
TCDL	57	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCLL		0.0*	Code	IRC2018/TPI2014	Matrix-MP		()						
BCDI		10.0	0000									Weight [.] 26 lb	FT = 20%
												····g···· _• ···	
LUMBER				6) One H2.5A	Simpson Strong	-Tie conne	ctors						
TOP CHO	RD 2x4 SP	No 2		recommend	ed to connect tr	uss to bear	ina walls du	e to					
BOT CHO	RD 2x4 SP	No 2		UPLIFT at it	(s) 2 and 4. This	s connectio	n is for uplif	t only					
WEBS	2x4 SP	No.3		and does no	t consider later	al forces.	•						
WEDGE	Left: 2x	4 SP No 3		This truss is	designed in ac	cordance w	ith the 2018						
	Right: 2	2x4 SP No.3		Internationa	Residential Co	de sections	8 R502.11.1	and					
BRACING	5			R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1.						
TOP CHO	RD Structu	ral wood she	eathing directly applied	or LOAD CASE(S)	Standard								
	5-0-0 o	c purlins.											
вот сно	RD Riaid c	eilina directly	v applied or 10-0-0 oc										
	bracing	д.											
REACTIO	NS (lb/size)	2=208/0-	3_8 (min 0-1-8)										
NEA0110		4=208/0-	3-8. (min. 0-1-8)										
	Max Hor	iz 2=-52 (L0	C 11)										
	Max Upl	ift 2=-1 (LC	13), 4=-1 (LC 14)										
	Max Gra	2 = 249 (1)	C_{2} 4=249 (I C 2)										
FORCES	(lb) - M	av Comp/M	lav Ten - All forces 250	า									
IONOLU	(lb) or l	ess except w	when shown	5									
NOTES	()												
1) Unbal	anced roof liv	/e loads hav	e been considered for t	his									
desiar													
2) Wind:	ASCE 7-16:	Vult=130mpl	h (3-second aust)										
Vasd=	103mph: TC	DL=6.0psf: E	3CDL=6.0psf: h=25ft: C	at.									
II: Exp	B: Enclosed	I: MWFRS (e	envelope) and C-C										
Exterio	or(2E) -0-11-0	6 to 2-0-10, I	Interior (1) 2-0-10 to										
2-6-0,	Exterior(2R)	2-6-0 to 5-6	-0, Interior (1) 5-6-0 to										
5-11-6	zone; cantile	ever left and	right exposed ; end										
vertica	I left and righ	nt exposed;C	C-C for members and										
forces	& MWFRS f	or reactions	shown; Lumber										
DOL=	1.60 plate gri	ip DOL=1.33											
3) TCLL:	ASCE 7-16;	Pr=20.0 psf	(roof LL: Lum DOL=1.1	5									
Plate I	DOL=1.15); F	Pg=20.0 psf;	Pf=13.9 psf (Lum										
DOL=	1.15 Plate D	UL=1.15); ls	=1.0; Rough Cat B; Full	У									
Exp.; (Je=0.9; Cs=	1.00; Ct=1.10	0										
4) This tr	uss has beer	n designed fo	or greater of min roof liv	/e									
load o	12.0 pst or	2.00 times fla	at root load of 13.9 pst	on									
overha	ings non-cor	current with	ouner live loads.	. 4									
5) î I NIS	truss has be	en designed	TOF a live load of 20.0ps	ST									
	0 tall by 2 00	u m all areas	s where a rectangle										
3-00-0	u iali by 2-00	-00 wide Wil	in in permeen the pollon	1									

Job	Truss	Truss Type	Qty	Ply	
22040108	PB01	Piggyback	2	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1 ID:V3NqOQay79PAwyumSM?nhyyI9J8-NyO6PeC5nSwtvOj3Dkp9y0?hUyli4Jgivugu0byI3Rw

-4-13 5-8-7 10-9-7 5-1-0 5-1-0 4x5= 5

10-2-0

Scale = 1:37.9

Plate Offsets (X, Y): [2:0-3-1,0-1-8], [8:0-3-1,0-1-8]

Loading	(psf)	Spacing Plate Grip DOI	1-11-4 1 15	CSI TC	0.05	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 244/190
Snow (Pf/Pg)	13 9/20 0	Lumber DOI	1.10	BC	0.00	Vert(CT)	n/a	-	n/a	999	WI120	244/100
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		(-)						
BCDL	10.0			1							Weight: 53 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		9) * This truss I on the botton 3-06-00 tall chord and au	has been desig m chord in all a by 2-00-00 wide ny other membe	ned for a liv reas where e will fit betv ers.	e load of 20. a rectangle veen the bott	.0psf tom					
BRACING TOP CHORD BOT CHORD	Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	eathing directly applied c	or UPLIFT at jtu is for uplift o	ed to connect tr (s) 2, 8, 13, 14, nly and does no	russ to bear 11, and 10 ot consider	ing walls due This connect lateral forces	e to ction s.					

bracing. REACTIONS All bearings 10-2-0.

- (lb) Max Horiz 2=83 (LC 12), 15=83 (LC 12) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 8, 10, 11, 13, 14, 15, 19 Max Grav All reactions 250 (lb) or less at joint LOAD CASE(S) Standard (s) 2, 8, 10, 11, 12, 13, 14, 15, 19
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 5-8-11, Exterior(2R) 5-8-11 to 8-8-11, Interior (1) 8-8-11 to 11-2-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.

- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	
22040108	PB02	Piggyback	9	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:55 Page: 1

ID:V3NqOQay79PAwyumSM?nhyyI9J8-NyO6PeC5nSwtvOj3Dkp9y0?fLykh4Iyivugu0byI3Rw

10-2-0

Scale = 1:40.4

Plate Offsets (X, Y): [2:0-3-1,0-1-8], [6:0-3-1,0-1-8]

Loading TCLL (ro Snow (Pf TCDL BCLL BCLL BCDL	of) /Pg)	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC20	2-0-0 1.15 1.15 YES 018/TPI2014	CSI TC BC WB Matrix-MSH	0.19 0.09 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHO BOT CHO OTHERS BRACING TOP CHO	B DRD DRD DRD DRD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins.	eathing directly applied o	4) 5) or 6)	TCLL: ASCE Plate DOL= DOL=1.15 F Exp.; Ce=0.9 This truss ha load of 12.0 overhangs m Gable requir	7-16; Pr=20.0 p 1.15); Pg=20.0 ps Plate DOL=1.15); 9; Cs=1.00; Ct=1 as been designed psf or 2.00 times ion-concurrent wi res continuous bc	sf (roof Ll sf; Pf=13.9 Is=1.0; Re .10 d for great flat roof I th other li ottom choi	.: Lum DOL= 9 psf (Lum bugh Cat B; I er of min roo bad of 13.9 p ve loads. rd bearing.	:1.15 Fully f live osf on					
REACTIO	DNS 4 Ib) - N N	MiTek recommends required cross brack truss erection, in ad Installation guide. All bearings 10-2-0. Max Horiz 2=86 (LC Max Uplift All uplift 1 2, 6, 8, 10 Max Grav All reactio (s) 2, 6, 9	s that Stabilizers and cing be installed during coordance with Stabilizer 12), 11=86 (LC 12) 00 (Ib) or less at joint(s)), 11, 15 ns 250 (Ib) or less at joi , 11, 15 except 8=318 (I	7) 8) 9) 10]	Gable studs * This truss is on the bottoo 3-06-00 tall ichord and a One H2.5A is recommend UPLIFT at jt uplift only ar) This truss is International R802.10.2 a) See Standai	spaced at 4-0-0 has been designe m chord in all are by 2-00-00 wide v ny other member Simpson Strong- ed to connect trus (s) 2, 6, 10, and 8 d does not consi designed in acco Residential Cod nd referenced star d Industry Piagy	oc. ed for a lives as where will fit betw s. Tie conners ss to bear 8. This con ider latera ordance w e sections andard AN back Trus	e load of 20. a rectangle veen the bott ctors ing walls due nection is fo l forces. ith the 2018 s R502.11.1 a ISI/TPI 1. s Connection	Opsf tom e to or and					
FORCES WEBS NOTES 1) Unba desig 2) Wind Vasd II; Ex Exter 5-8-1 to 11 vertic force	lanced n. = 103n p B; E ior(2E 1, Exte 2-9 zc al left s & M	26), 10=3 (lb) - Max. Comp./M (lb) or less except w 3-10=-285/296, 5-8= d roof live loads have E 7-16; Vult=130mpt nph; TCDL=6.0psf; B inclosed; MWFRS (e :) 0-2-14 to 3-2-14, Ir erior(2R) 5-8-11 to 8- one; cantilever left ar and right exposed; C WFRS for reactions s	19 (LC 25) (ax. Ten All forces 250 (then shown. =-285/295 (a been considered for the (CDL=6.0psf; h=25ft; Ca nvelope) and C-C (therior (1) 3-2-14 to -8-11, Interior (1) 8-8-11 dright exposed ; end -C for members and shown; Lumber	LO is at.	Detail for Cc consult qual AD CASE(S)	nnection to base ified building des Standard	igner.	applicable, o	r					

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply		
22040108	VL01	Valley	1	1	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.53 S Mar 2	8 2022 Print:	8.530 S Ma	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:56	Page: 1

ID:V3NqOQay79PAwyumSM?nhyyl9J8-s9yUd DjYm2jXXHGnRLOVEXpoL3mpjHr7YQRY2yl3Rv

⁴⁾

2)

3)

5) Gable requires continuous bottom chord bearing.

Job	Truss		Truss Type		Qty	Ply					
22040108	VL02		Valley		1	1	Job Refere	nce (opti	onal)		
Carter Componer	nts, Sanford, NC, user		-	Run: 8.53 S Mar 2	8 2022 Print:	8.530 S Ma	r 28 2022 MiTe	k Industrie	es, Inc. F	Fri Nov 18 17:05:5	6 Page: 1
					ID:2FXC0	SUDALOX I YO	12?400E9yi9	J7-89y0d_	_טן ז חצן	ANNGIRLOVEAD	
			9-11	-11			19-7-4			19-11-6	
		1	9-11	-11	1		9-7-9			11 0-4-2	
					4x5=						
	、、、、				4						
				,	A						
						\searrow					
				19			20				
				3 71	ST3		TT 5				
	8-0-5		/								
	ω -			ST2			STA	$\langle \rangle$			
		10 ¹²							B	<.	
		⊢ 1 ,€	ST1		I]			82	ST5	7	
	<u> </u>	0-0 -4 ~ 🛞					×		×××	XXX	
		3:	13 «5 <i>•</i>	12	11	3x5=	9		0	3x5⊗	
Scale = 1:53.8		L			19-11-6					-	
		1	-							1	:
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI TC	0 23 Vert	=L -(11)	in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.17 Vert	(TL)	n/a -	n/a	999	11120	211,100
BCLL	10.0 0.0*	Rep Stress Incr Code	IRC2018/TPI2014	WB Matrix-MSH	0.36 Hor	iz(IL) ().00 7	n/a	n/a		
BCDL	10.0		-							Weight: 95 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommend required cross brac truss erection, in a Installation guide.	eathing directly applie y applied or 6-0-0 oc s that Stabilizers and cing be installed durir ccordance with Stabil	ed or ng izer on the botton 3-06-00 tall I chord and an period and an bearing plate (s) 1, 12, 13 8) This truss is International R802.10.2 a LOAD CASE(S)	m chord in all areas v by 2-00-00 wide will f ny other members, w chanical connection (t e capable of withstan , 9, 8. designed in accordar Residential Code se nd referenced standar Standard	where a rec it between ith BCDL = by others) of ding 100 lb nce with th ctions R50 ard ANSI/TI	tangle the bottom 10.0psf. of truss to uplift at jo e 2018 2.11.1 and PI 1.	int				
REACTIONS	All bearings 19-11-6.	C 10)									
(ui) 1	Max Uplift All uplift 1	100 (lb) or less at join	t(s)								
r	1, 7, 8, 9, Max Grav All reaction	n∠, 13, 18 ons 250 (lb) or less at	joint								
	(s) 1 exce (LC 25), 1	ept 8=332 (LC 25), 9= 11=503 (LC 27), 12=4	=454 163								
FORCES	(LC 24), ² (lb) - Max, Comp./N	13=309 (LC 24) lax. Ten All forces 2	250								
WEBS	(lb) or less except w	/hen shown.	178								
NOTES		200/1/4, 0-9202/									
 Unbalance design. 	d roof live loads have	e been considered fo	r this								
2) Wind: ASC Vasd=103n II; Exp B; E Exterior(2E Exterior(2F 19-11-11 zc vertical left	E 7-16; Vult=130mpl nph; TCDL=6.0psf; E nclosed; MWFRS (e c) 0-0-5 to 3-0-5, Inte t) 10-0-0 to 13-0-0, In one; cantilever left ar and right exposed;C	h (3-second gust) 3CDL=6.0psf; h=25ft; nvelope) and C-C rior (1) 3-0-5 to 10-0- nterior (1) 13-0-0 to nd right exposed ; end C-C for members and	Cat. 0, 1								
forces & M DOL=1.60	WFRS for reactions plate grip DOL=1.33	shown; Lumber									
 TCLL: ASC Plate DOL= DOL=1.15 	E 7-16; Pr=20.0 psf =1.15); Pg=20.0 psf; Plate DOL=1.15); Is	(roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; F	l.15 ully								
Exp.; Ce=0 4) All plates a	0.9; Cs=1.00; Ct=1.10 re 2x4 MT20 unless) otherwise indicated.									
 Gable requ 	mes continuous botto	om chora bearing.									

Job	Truss		Truss Type		Qty	Ply					
22040108	VL03		Valley		1	1	lob Referer	ice (onti	ional)		
Carter Componer	nts, Sanford, NC, user			Run: 8.53 S Mar 2	8 2022 Print	t: 8.530 S Mai	28 2022 MiTel	(Industri	es, Inc.	. Fri Nov 18 17:05:5	56 Page: 1
					ID:zFx	CcmbatSX1Y	6Tz?4W0E9yl)J7-s9yU	d_DjYr	m2jXXHGnRLOVE	KofL3mphlr7YQRY2yl3Rv
			1		I		45.7.4			15-11-6	
			· · · · · ·	7-11-11 7-11-11			<u> </u>				
										0-4-2	
					4x5=						
	_ ```	<u> </u>			3 ∕∿						
					\mathbb{A}	\mathbf{X}					
				2x4 II		\mathbb{N}	2x4 II				
				15			16				
	0-	4-5		2	ST2		4				
	-9 8-0	ى ك	/	P			<u>I</u>				
				ST1			ST3	$\langle \rangle$			
			10 ¹²					/	\backslash		
			1					02		5	
		0-0 -4 \							****	Ň	
			0.5	9 17	8	7	18 6			0.5	
			3x5 🖌	2x4 II	2x4 II	3x5=	2x4 II			3x5 🔊	
Scale = 1:47.1			<u> </u>		15-11-6	5					
Loading	(psf)	Spacing	2-0-0	csi	DE		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28 Ver	rt(LL)	n/a -	n/a	999	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.16 Ver 0.37 Hoi	riz(TL) 0	.00 5	n/a n/a	999 n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 70 lb	FT = 20%
CUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD (Ib) - 1 (Ib) - 1 FORCES TOP CHORD WEBS NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E) 15-11-11 z; vertical left forces & M	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 cc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brack truss erection, in at Installation guide. All bearings 15-11-6. Max Horiz 1=-122 (L Max Uplift All uplift 1 1, 5, 6, 9, Max Grav All reactic (s) 1, 5, 1 8=670 (L0 (lb) - Max. Comp./M (lb) or less except w 1-2=-71/356, 3-15=0 4-5=-20/298 3-8=-484/0, 2-9=-28 d roof live loads have E 7-16; Vult=130mpf mph; TCDL=6.0psf; E Enclosed; MWFRS (e 2) 0-0-5 to 3-0-5, Inte 8) 8-0-0 to 11-0-0, Int cone; cantilever left ar and right exposed; C	athing directly applie y applied or 6-0-0 oc s that Stabilizers and cing be installed durir ccordance with Stabil C 9) 00 (lb) or less at join 14 ons 250 (lb) or less at 4 except 6=467 (LC C 24), 9=459 (LC 24) lax. Ten All forces 2 then shown. 0/303, 3-16=0/285, 0/1303, 3-16=0/285, 0/1408, 4-6=-287/179 a been considered fo n (3-second gust) SCDL=6.0psf; h=25ft; nvelope) and C-C rior (1) 3-0-5 to 8-0-0 erior (1) 3-0-5 to 8-0-0 erior (1) 11-0-0 to ad right exposed ; end C for members and shown; Lumber	t(s) t this cat. cat. contentional chord and ar chord an chord a	n chord in all areas v by 2-00-00 wide will f ny other members, w chanical connection (t e capable of withstan designed in accordan Residential Code se nd referenced standa Standard	there a re- it between th BCDL = yy others) ding 100 II nce with th ctions R5(rd ANSI/T	a of 20.0ps charge the bottom = 10.0psf. of truss to b uplift at joi ne 2018 02.11.1 and PI 1.	nt				
 3) TCLL: ASC Plate DOL: DOL=1.15 Exp.; Ce=0 4) Gable required 	Date grip DOL=1.33 CE 7-16; Pr=20.0 psf =1.15); Pg=20.0 psf; Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous botto	(roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; F) om chord bearing.	1.15 iully								

Job	Tr	uss	Truss Type		Qty	Ply					
22040108	V	L04	Valley		1	1	Job Refere	nce (ont	ional)		
Carter Componen	nts, Sanford, NC, u	ser		Run: 8.53 S Mar 28	L 8 2022 Prir	nt: 8.530 S Ma	r 28 2022 MiTe	k Industri	es, Inc.	Fri Nov 18 17:05:5	56 Page: 1
					ID:sG	9yvyCgvaGF	9pQshNNbfyyl4	43x-s9yU	d_DjYm	2jXXHGnRLOVEX	q7L4wplSr7YQRY2yl3Rv
									12	-2-6	
				6-1-3	ļ		11-10-4		12	,]	
			1	6-1-3	1		5-9-1		1	1	
									0-	- +- Ζ	
					4x	5=					
		、 、			3						
						Ì					
				/							
				2x4 II				2x4 u			
		4 00		13 1	ST2		14				
		4-									
			1012					11			
			101	st1			S	13			
			1			B1			\searrow	5	
		0-0 -4	\leftarrow				*****		XX	à	
				8	7	<u> </u>		6	<u></u>	<u>~</u>	
			3x5 🖌	2x4 II	2x	4 u		2x4 II	3x5	*	
0 1 1 10 0			k		12-2	-6				Ļ	
Scale = 1:40.8			1							7	
Loading	(ps	f) Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pa)	20. 13 9/20	0 Plate Grip DOL	1.15	TC	0.19 Ve 0.09 Ve	rt(LL) rt(TL)	n/a - n/a -	n/a n/a	999 999	MT20	244/190
TCDL	10.3/20.	.0 Rep Stress Incr	YES	WB	0.03 Ve 0.07 Ho	oriz(TL) (0.00 5	n/a	n/a		
BCLL	0. 10	.0* Code	IRC2018/TPI2014	Matrix-MSH						Weight: 51 lb	FT = 20%
										troigini or io	
	2v1 SP No 2		 Provide me bearing plat 	chanical connection (b	by others) ding 100	of truss to	int				
BOT CHORD	2x4 SP No.2 2x4 SP No.2		(s) 1, 8, 6.		ang 100	ib upint at jo	int				
OTHERS	2x4 SP No.3		This truss is International	designed in accordau Residential Code se	nce with t ctions R5	he 2018 02.11.1 and					
BRACING TOP CHORD	Structural wood	d sheathing directly app	R802.10.2 a	and referenced standa	ard ANSI/	TPI 1.					
	6-0-0 oc purlins	S.	LOAD CASE(S) Standard							
BOT CHORD	bracing.	ectly applied of 10-0-0									
	MiTek recomm	ends that Stabilizers ar	nd ring								
	truss erection,	in accordance with Sta	bilizer								
	Installation gui	de.									
REACTIONS A	All bearings 12-2	2-6.									
(ID) - N N	Max Uplift All up	olift 100 (lb) or less at jo	int(s)								
Ν	1,6, Max Grav All re	8 actions 250 (lb) or less	at joint								
	(s) 1,	5, 7 except 6=315 (LC	25),								
FORCES	o=32 (lb) - Max. Com	o (∟o ∠+) ip./Max. Ten All forces	\$ 250								
WEBS	(lb) or less exce	ept when shown. 1-6=-254/214									
NOTES	2-0200/219,2	+-∪ ∠J 4 /∠14									
1) Unbalanced	d roof live loads	have been considered	for this								
2) Wind: ASCI	E 7-16; Vult=130	Omph (3-second gust)									
Vasd=103m II: Exp B: E	nph; TCDL=6.0p nclosed: MWFR	osf; BCDL=6.0psf; h=25 S (envelope) and C-C	ft; Cat.								
Exterior(2E) 0-0-5 to 3-0-5,	Interior (1) 3-0-5 to 6-1	-8,								
zone; cantil	lever left and rig	ht exposed ; end vertica	al left								
and right ex	kposed;C-C for r	members and forces &	late								
grip DOL=1	.33		late								
 TCLL: ASC Plate DOI = 	E 7-16; Pr=20.0	psf (roof LL: Lum DOL psf: Pf=13.9 psf (Lum	=1.15								
DOL=1.15	Plate DOL=1.15); ls=1.0; Rough Cat B;	Fully								
Exp.; Ce=0. 4) Gable requi	.9; Cs=1.00; Ct= ires continuous	=1.10 bottom chord bearing.									
5) * This truss	has been desig	ned for a live load of 20).0psf								
3-06-00 tall	by 2-00-00 wide	e will fit between the bo	ttom								
chord and a	any other memb	ers.									

Job	Truss	Truss Type	Qty	Ply		
22040108	VL05	Valley	1	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.53 S Mar 2	8 2022 Print:	8.530 S Ma	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:56	Page: 1

Page: 1 ID:zFxCcmbatSX1Y6Tz?4W0E9yI9J7-s9yUd_DjYm2jXXHGnRLOVEXpeL22plrr7YQRY2yI3Rv

3

2x4 💊

2x4 II

8-2-6

Scale = 1:33.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/P	g) 13.9/20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 31 lb	FT = 20%
			5) * This truss	has been design	ned for a liv	re load of 20	Opsf					
TOP CHOR	D 2x4 SP No 2		on the botto	m chord in all ar	eas where	a rectangle	opoi					
BOT CHOR	D 2x4 SP No.2		3-06-00 tall	by 2-00-00 wide	will fit betw	veen the bot	tom					
OTHERS	2x4 SP No.3		chord and a	ny other membe	ers.							
BRACING			Provide med	hanical connect	tion (by oth	ers) of truss	to					
TOP CHOR	D Structural wood she	eathing directly applied o	bearing plat	e capable of with	hstanding 1	9 lb uplift at	joint					
	8-2-6 oc purlins.	outling anoonly applied t	1, 17 lb uplit	t at joint 3 and 1	8 lb uplift a	at joint 4.						
BOT CHOR	D Rigid ceiling directly	y applied or 6-0-0 oc	 I his truss is 	designed in acc	cordance w	1th the 2018	I					
	bracing.		R802 10 2 a	nd referenced s	tandard AN	5 R502.11.1 8	and					
	MiTek recommend	s that Stabilizers and		Stondard	anuaru Ar	0//////						
	required cross bra	cing be installed during	LUAD CASE(S)	Stanuaru								
	truss erection, in a	ccordance with Stabilize	r									
	Installation guide.											
REACTION	S (lb/size) 1=24/8-2	-6. (min. 0-1-8).										
	3=27/8-2	-6, (min. 0-1-8),										
	4=504/8-	2-6, (min. 0-1-8)										
	Max Horiz 1=-61 (LC	C 9)										
	Max Uplift 1=-19 (L0	C 31), 3=-17 (LC 30),										
	4=-18 (L0	C 13)										
	Max Grav 1=62 (LC (LC 2)	30), 3=65 (LC 31), 4=5	96									
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250										
WEBS	$2_{-1} = -131/250$	men snown.										
NOTES	2-4404/200											
1) Unbalar	nced roof live loads hav	e been considered for th	is									
design.												
2) Wind: A	SCE 7-16; Vult=130mp	h (3-second gust)										
Vasd=1	03mph; TCDL=6.0psf; E	3CDL=6.0psf; h=25ft; Ca	at.									
II; Exp B	3; Enclosed; MWFRS (e	envelope) and C-C										
Exterior	(2E) 0-0-5 to 3-0-5, Inte	erior (1) 3-0-5 to 4-1-8,										
Exterior	(2R) 4-1-8 to 7-1-8, Inte	erior (1) 7-1-8 to 8-2-11										
zone; ca	anulever leit and right e	kposed; end ventical leit										
MWFR	S for reactions shown: L	μ mber DOI =1.60 plate										
grip DO	L=1.33											
3) TCLL: A	SCE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.1	5									
Plate D	OL=1.15); Pg=20.0 psf;	Pf=13.9 psf (Lum										
DOL=1.	15 Plate DOL=1.15); Is	=1.0; Rough Cat B; Fully	/									
Exp.; C	e=0.9; Cs=1.00; Ct=1.1	0										
4) Gable r	equires continuous botto	om chord bearing.										

Job	Truss	Truss Type	Qty	Ply	
22040108	VL06	Valley	1	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:56 Page: 1 ID:zFxCcmbatSX1Y6Tz?4W0E9yl9J7-s9yUd_DjYm2jXXHGnRLOVEXsRL5Ppm8r7YQRY2yl3Rv

4-2-6

3-10-4

1-9-1

2-1-3

Scale = 1:31.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/1PI2014	Matrix-MP							Woight: 15 lb	ET - 20%
	10.0					-					weight. 15 lb	11 - 20 /0
LUMBER			7) This truss is	designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2		Internationa	Residential Coc	le sections	R502.11.1	and					
BOT CHORD	2x4 SP No.2		R802.10.2 a	nd referenced st	andard AN	ISI/TPI 1.						
OTHERS	2x4 SP No.3		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she	eathing directly applied o	or									
	4-2-6 oc punins. Rigid ceiling directly	v applied or 6-0-0 oc										
BOT ONORD	bracing.											
	MiTek recommend	s that Stabilizers and										
	required cross brac	cing be installed during										
	truss erection, in a	ccordance with Stabilize	er									
	Installation guide.											
REACTIONS	(lb/size) 1=40/4-2 3=42/4-2 4=202/4-2 Max Horiz 1=-30 (LC Max Uplift 3=-1 (LC Max Grav 1=56 (LC	-6, (min. 0-1-8), -6, (min. 0-1-8), 2-6, (min. 0-1-8) C 11) 14) : 30), 3=58 (LC 31), 4=2	39									
	(LC 2)											
FORCES	(lb) - Max. Comp./N (lb) or less except w	lax. Ten All forces 250 vhen shown.										
NOTES												
 Unbalanc design. 	ed roof live loads have	e been considered for th	iis									
 Wind: ASt Vasd=103 II; Exp B; Exterior(2 vertical le forces & N DOL=1.60 TCLL: AS Plate DOI 	CE 7-16; Vult=130mpl smph; TCDL=6.0psf; E Enclosed; MWFRS (e E) zone; cantilever lei ft and right exposed;C MWFRS for reactions 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; _=1.15); Pg=20.0 psf;	h (3-second gust) 3CDL=6.0psf; h=25ft; Ca envelope) and C-C ft and right exposed ; en C-C for members and shown; Lumber (roof LL: Lum DOL=1.19 Pf=13.9 psf (Lum	at. d									
DOL=1.15 Exp.: Ce=	5 Plate DOL=1.15);	=1.0; Rough Cat B; Fully 0	/									
4) Gable req	uires continuous botto	om chord bearing.										
5) * This true	s has been designed	for a live load of 20 Ops	f									

- 4) 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 3. 6)

Job	Truss	Truss Type	Qty	Ply		
22040108	VL07	Valley	1	1	Job Reference (optional)	
Carter Components, Sanford, N	C, user	Run: 8.53 S Mar 2	3 2022 Print:	8.530 S Ma	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:56	Page: 1

ID:sG9vvvCqvaGF9pQshNNbfvvl43x-s9vUd DiYm2iXXHGnRLOVEXrPL4Wpk5r7YQRY2vl3Rv

⁵⁾ 6) Gable requires continuous bottom chord bearing.

2)

3)

4)

Job	Truss		Truss Type		Qty	Ply					
22040108	VL08		Valley		1	1	Job Refere	nce (opti	ional)		
Carter Componer	nts, Sanford, NC, user			Run: 8.53 S Mar	28 2022 Print	: 8.530 S Mai	28 2022 MiTe	k Industri	es, Inc.	Fri Nov 18 17:05:5 3Aa8bsSK9sd1R4	57 Page: 1
				7-11-11 7-11-11			<u>15-7-4</u> 7-7-9			15-11-6 	
Scale = 1:47.1 Loading TCLL (roof) Snow (Pf/Pg) TCDI	(psf) 20.0 13.9/20.0	0-0-4 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	10 ¹² 1 3x5¢ 2-0-0 1.15 1.15 YES	2x4 II 15 2 ST1 B1 B1 CSI TC BC WB	4x5= 3 ST2 ST2 8 2x4µ 15-11-6 0.28 Ver 0.16 Ver 0.37 Hor	7 3x5=	2x4 II 16 4 5T3 18 6 2x4 II in (loc) n/a - n/a - 00 5	B2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	L/d 999 999	5 3x5 PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MSH	0.37 Hor	iz(TL) 0	.00 5	n/a	n/a		
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 cc purlins. Rigid ceiling directly bracing. MiTek recommend: required cross brac truss erection, in au Installation guide.	eathing directly applied y applied or 6-0-0 oc s that Stabilizers and cing be installed durin ccordance with Stabili	d or g g zer	m chord in all areas by 2-00-00 wide will ny other members, o chanical connection e capable of withsta designed in accord I Residential Code s ind referenced stand Standard	where a rec fit between with BCDL = (by others) nding 100 lb ance with th sections R50 Jard ANSI/T	tangle the bottom 0.0psf. of truss to 0 uplift at joi e 2018 12.11.1 and PI 1.	nt				
REACTIONS / (lb) - 1 (lb) - 1	All bearings 15-11-6. Max Horiz 1=-122 (L Max Uplift All uplift 1 1, 5, 6, 9, Max Grav All reaction (s) 1, 5, 1 8=670 (Lu (lb) - Max. Comp./M (lb) or less except w 1-2=-71/356, 3-15=4 4-5=-20/298 3-8=-484/0, 2-9=-28 d roof live loads have E 7-16; Vult=130mpl model for the loads have B 7-16; Vult=130mpl model for the loads have WFRS for reactions is plate grip DOL=1.33 E 7-16; Pr=20.0 psf; Plate DOL=1.15; Is 9; Cs=1.00; Ct=1.11 irres continuous botto	LC 11) 100 (lb) or less at joint 14 ons 250 (lb) or less at iont 4 except 6=467 (LC 2 C 24), 9=459 (LC 24) 1ax. Ten All forces 2: when shown. 0/303, 3-16=0/285, 34/180, 4-6=-287/179 e been considered for h (3-second gust) 3CDL=6.0psf; h=25ft; envelope) and C-C rior (1) 3-0-5 to 8-0-0, terior (1) 3-0-5 to 8-0.0, terior (1) 11-0-0 to ad right exposed; end C-C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fu 0 om chord bearing.	(s) joint (5), 50 this Cat. .15 .15								

Job	Truss		Truss Type		Qty	Ply					
22040108	VL09		Valley		1	1	Job Refere	nce (opti	onal)		
Carter Componer	nts, Sanford, NC, user			Run: 8.53 S Mar 2	28 2022 Print	: 8.530 S Ma	r 28 2022 MiTe	k Industri	es, Inc.	Fri Nov 18 17:05:	57 Page: 1
					ID:LSjK	7HDIguO5n	z?3F5uqCAyl4	3w-KLWto	KELJ3	Aa8hsSK9sd1R4_	vlQ8YCm?MC9?5Uyl3Ru
			1		I.				11-	11-6	
			/	<u> </u>			<u>11-7-4</u> 5-7-9		-	· /	
			,		I				0-	4-2	
					4x5	5=					
					3						
				/		\backslash					
				2x4 II TI		\sim	JI	2x4 II			
	0- 0-	1-8-5		13	512		14				
	ப்	7	10 2					4			
			10 12				ç				
			1						\searrow	5	
		<u> </u>	— ' 🕅 📈				******		×××	à	
				8	7	~~~~~		6	//////	22	
			3x5 ∻	2x4 II	2x4	· II		2x4 II	3x5	*	
Scale = 1.40.3			<u>k</u>		11-11	-6					
		i	1								
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.19 Ver	F L t(LL)	in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.09 Ver	t(TL)	n/a -	n/a	999		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH	0.07 Hor	12(TL) (J.UU 5	n/a	n/a		
BCDL	10.0									Weight: 49 lb	FT = 20%
			6) Provide med	chanical connection (by others)	of truss to	int				
BOT CHORD	2x4 SP No.2 2x4 SP No.2		(s) 1, 5, 8, 6				arit				
OTHERS	2x4 SP No.3		7) This truss is Internationa	designed in accorda I Residential Code se	ance with th ections R50	e 2018)2.11.1 and	l				
TOP CHORD	Structural wood she	eathing directly applie	d or R802.10.2 a	nd referenced stand	ard ANSI/T	PI 1.					
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	;	otanuara							
	bracing. MiTek recommend	s that Stabilizers and									
	required cross brac	cing be installed durin	ig izor								
	Installation guide.										
REACTIONS	All bearings 11-11-6.	40									
- (di)	Max Horiz 1=90 (LC Max Uplift All uplift 1	100 (lb) or less at joint	t(s)								
	1, 5, 6, 8 Max Grav All reactio	ons 250 (lb) or less at	joint								
	(s) 1, 5, 7 8=318 (L	' except 6=313 (LC 25 C 24)	5),								
FORCES	(lb) - Max. Comp./N	lax. Ten All forces 2	50								
WEBS	2-8=-263/227, 4-6=	-256/221									
NOTES 1) Unbalance	d roof live loads have	e been considered for	r this								
design.	F 7-16: \/ult=130mpl	h (3-second quet)									
Vasd=103r	nph; TCDL=6.0psf; E	3CDL=6.0psf; h=25ft;	Cat.								
Exterior(2E	E) 0-0-5 to 3-0-5, Inte	rior (1) 3-0-5 to 6-0-0	,								
Exterior(2F zone; canti	र) 6-0-0 to 9-0-0, Inte ilever left and right e	erior (1) 9-0-0 to 11-11 xposed ; end vertical l	-11 left								
and right e MWFRS fo	xposed;C-C for mem or reactions shown; L	ibers and forces & umber DOL=1.60 plat	te								
grip DOL=	1.33 CF 7-16 [,] Pr=20.0 pcf	$(roof \cdot um DO = 1$	15								
Plate DOL:	=1.15); Pg=20.0 psf;	Pf=13.9 psf (Lum									
Exp.; Ce=0).9; Cs=1.00; Ct=1.10)	– i.u, kough Cat B; Fi 0	uny								
4) Gable requ5) * This truss	ures continuous botto s has been designed	om chord bearing. for a live load of 20.0	psf								
on the bott 3-06-00 tal	om chord in all areas Il by 2-00-00 wide wil	where a rectangle I fit between the botto	om								
chord and	any other members.										

Job	Truss	Truss Type	Qty	Ply			
22040108	VL10	Valley	1	1	Job Reference (optional)		
Carter Components, Sanford, N	mponents, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57						

ID:LSjK7HDIguO5nz?3F5uqCAyI43w-KLWtqKELJ3Aa8hsSK9sd1R4zgIPYYCF?MC9?5UyI3Ru

3

2x4 💊

2x4 II

7-11-6

Scale = 1:33.1

											_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roo	f) 20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/I	Pg) 13.9/20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 30 lb	FT = 20%
LUMBER			5) * This truss	has been design	ed for a liv	e load of 20	.0psf					
TOP CHO	RD 2x4 SP No.2		3_06_00 tall	11 chord in all are	will fit bot	a reclarigie	tom					
BOT CHO	RD 2X4 SP No.2		chord and a	ny other member	will lit bety s		lom					
	2X4 3F N0.3		 6) Provide med 	hanical connecti	on (by oth	ers) of truss	to					
BRACING	DD Structurel wood ab	athing directly applied	bearing plate	e capable of with	standing '	16 lb uplift at	joint					
TOP CHO	RD Structural wood sne 7-11-6 oc purlins	eatning directly applied o	or 1, 14 lb uplif	t at joint 3 and 16	6 lb uplift a	at joint 4.						
вот сно	RD Rigid ceiling directly	/ applied or 6-0-0 oc	This truss is	designed in acco	ordance w	ith the 2018						
Ber one	bracing.		International	Residential Cod	le section:	s R502.11.1 a	and					
	MiTek recommend	s that Stabilizers and		na referencea st	andard Ar	NSI/TPT1.						
	required cross brac	cing be installed during	LOAD CASE(S)	Standard								
	truss erection, in a	ccordance with Stabilize	er									
	Installation guide.											
REACTIO	NS (lb/size) 1=27/7-1	1-6. (min. 0-1-8).										
	3=30/7-1	1-6, (min. 0-1-8),										
	4=482/7-	11-6, (min. 0-1-8)										
	Max Horiz 1=-59 (LC	C 9)										
	Max Uplift 1=-16 (LC	C 31), 3=-14 (LC 30),										
	4=-16 (LC	213) 20) 2-66 (LC 24) 4-5	60									
	(LC 2)	30), 3=66 (LC 31), 4=5	09									
FORCES	(lb) - Max. Comp./N (lb) or less except w	lax. Ten All forces 250 /hen shown.	1									
WEBS	2-4=-412/241											
NOTES												
1) Unbala design	anced roof live loads have	e been considered for th	nis									
2) Wind:	ASCE 7-16; Vult=130mpl	h (3-second gust)										
Vasd=	103mph; TCDL=6.0psf; E	3CDL=6.0psf; h=25ft; Ca	at.									
II; Exp	B; Enclosed; MWFRS (e	nvelope) and C-C										
Exterio	or(2E) 0-0-5 to 3-0-5, Inte	rior (1) 3-0-5 to 4-0-0,										
ZODE:	antilever left and right ex	(nosed : end vertical left	ł									
and ric	ht exposed:C-C for mem	bers and forces &										
MWFF	S for reactions shown; L	umber DOL=1.60 plate										
grip D	OL=1.33											
3) TCLL:	ASCE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.1	5									
Plate [DOL=1.15); Pg=20.0 psf;	Pt=13.9 pst (Lum										
DUL=	1. 15 Plate DUL=1.15); IS	= 1.0; Rough Cat B; Fully	y									
 Gable 	requires continuous botto	om chord bearing.										
., casio												

Job	Truss	Truss Type	Qty	Ply	
22040108	VL11	Valley	1	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57 Page: 1 ID:LSjK7HDIguO5nz?3F5uqCAyI43w-KLWtqKELJ3Aa8hsSK9sd1R40LIRjYDW?MC9?5UyI3Ru

3-11-6

Scale = 1:30.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf 20.0 13.9/20.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 ET = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		7) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in acc Residential Coo nd referenced s Standard	cordance w de sections tandard AN	ith the 2018 8 R502.11.1 a ISI/TPI 1.	and				rogin. The	
BRACING TOP CHORD BOT CHORD	Structural wood 3-11-6 oc purlins Rigid ceiling dire bracing. MiTek recomme required cross I truss erection, i Installation guid	sheathing directly applied ctly applied or 6-0-0 oc ends that Stabilizers and pracing be installed durin n accordance with Stabili le.	d or g izer									
REACTIONS	(lb/size) 1=39/ 3=41/ 4=187 Max Horiz 1=-28 Max Uplift 3=-1 (Max Grav 1=54) (LC 2)	3-11-6, (min. 0-1-8), 3-11-6, (min. 0-1-8), //3-11-6, (min. 0-1-8) (LC 11) LC 14) (LC 30), 3=56 (LC 31), 4=	=221									
FORCES	(lb) - Max. Comp (lb) or less exce	o./Max. Ten All forces 2 ot when shown.	50									
NOTES 1) Unbalanc design. 2) Wind: AS3 II; Exp B; Exterior(2 vertical le forces & M DOL=1.6(3) TCLL: AS Plate DOI DOL=1.15 Exp.; Ce=	ed roof live loads h CE 7-16; Vult=130 Bmph; TCDL=6.0ps Enclosed; MWFRS (E) zone; cantileve ft and right expose WWFRS for reactio 0 plate grip DOL=1 CE 7-16; Pr=20.0 L=1.15); Pg=20.0 p 5 Plate DOL=1.15) 0.9; CS=1.00; Ct=	have been considered for mph (3-second gust) if; BCDL=6.0psf; h=25ft; S (envelope) and C-C r left and right exposed ; d;C-C for members and ns shown; Lumber .33 psf (roof LL: Lum DOL=1 psf; Pf=13.9 psf (Lum ; ls=1.0; Rough Cat B; Fu 1.10	this Cat. end .15 Jlly									

- 4) Gable requires continuous bottom chord bearing.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 3. 6)

	Job	Truss	Truss Type	Qty	Ply		
	22040108	VL12	Valley	1	1	Job Reference (optional)	
Carter Components, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57							Page: 1

ID:LSjK7HDIguO5nz?3F5uqCAyl43w-KLWtqKELJ3Aa8hsSK9sd1R4ollRjYCj?MC9?5Uyl3Ru

Scale = 1:37.1

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	13.9/20.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	- 6	n/a n/a	999 n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		()		-				
BCDL	10.0										Weight: 52 lb	FT = 20%
	2v4 CD No 2		7) * This truss I	nas been design	ned for a liv	e load of 20.	.0psf					
BOT CHORD	2x4 SP No.2 2x4 SP No.2		3-06-00 tall l	by 2-00-00 wide	will fit betw	veen the bot	tom					
WEBS	2x4 SP No.3		chord and a	ny other membe	ers.							
OTHERS	2x4 SP No.3		8) Provide med	hanical connect	tion (by oth	ers) of truss	to					
BRACING			bearing plate	e capable of with	nstanding	I UU ID UPIIIT a	it joint					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	eathing directly applied o ccept end verticals.	r 9) This truss is International	designed in acc	ordance w	ith the 2018 8 R502 11 1 #	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
REACTIONS	All bearings 8-7-3.		LOAD CASE(S)	Standard								
(lb) -	Max Horiz 1=192 (LC	C 10)										
	Max Uplift All uplift 1	00 (lb) or less at joint(s)										
	Max Grav All reaction	ons 250 (lb) or less at joir	nt									
	(s) 1, 6, 7	, 8, 9 T All C 050										
FORCES	(Ib) - Max. Comp./M	ax. Ien All forces 250										
TOP CHORD	1-2=-540/351, 2-12=	=-440/272,										
	3-12=-432/294, 3-13 4-13=-312/241	3=-326/219,										
NOTES												
1) Wind: ASC	CE 7-16; Vult=130mph	n (3-second gust)										
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft; Ca	t.									
(3E) 0-0-5	to 3-0-5. Exterior(2N	3-0-5 to 8-5-12 zone:	:1									
cantilever	left and right exposed	; end vertical left and										
right expos	sed;C-C for members	and forces & MWFRS										
DOI = 1.33	ns snown; Lumber DC	JL=1.60 plate grip										
2) Truss des	igned for wind loads i	in the plane of the truss										
only. For s	studs exposed to wind	d (normal to the face),										
see Stand	ard Industry Gable Er	Id Details as applicable,										
 TCLL: ASC 	CE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.15										
Plate DOL	=1.15); Pg=20.0 psf;	Pf=13.9 psf (Lum										
DOL=1.15	Plate DOL=1.15); ls=	=1.0; Rough Cat B; Fully										
4) All plates a	u.ə, us=1.00, ut=1.10 are 2x4 MT20 unless	otherwise indicated										
5) Gable requ	uires continuous botto	om chord bearing.										
6) Gable stud	ds spaced at 2-0-0 oc											

Job	Truss	Truss Type	Qty	Ply		
22040108	VL13	Valley	2	1	Job Reference (optional)	
Carter Components, Sanford, N	r 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57	Page: 1				

ID:LSjK7HDIguO5nz?3F5uqCAyI43w-KLWtqKELJ3Aa8hsSK9sd1R4sUIPhYCP?MC9?5UyI3Ru

Scale = 1:40.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.66	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/1PI2014	Matrix-MP							Waight 10 lb	FT - 200/
BCDL	10.0			-							Weight: 40 lb	FT = 20%
LUMBER			5) Provide med	hanical connection	n (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing plate	e capable of withsi	tanding a	ioint 5	oint					
BOT CHORD	2X4 SP No.2		6) This trues is	designed in accor	dance w	joint 5.						
NEB2	2X4 SP No.3		International	Residential Code	sections	s R502 11 1 a	ind					
DRACING	2X4 OF N0.5		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
BRACING	Ctrustural wood abo	athing directly applied a	LOAD CASE(S)	Standard								
TOP CHORD		eatning directly applied of	r _0//2 0//0_(0)	otanidara								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc										
Der enerte	bracing.											
	MiTek recommende	s that Stabilizers and										
	required cross brac	cing be installed during										
	truss erection, in a	ccordance with Stabilizer										
	Installation guide.											
REACTIONS	(lb/size) 1=102/7- 4=98/7-1 5=331/7- Max Horiz 1=183 (L0 Max Uplift 1=-8 (LC (LC 13) Max Grav 1=170 (L1 5=502 (L0	11-11, (min. 0-1-8), I-11, (min. 0-1-8), I1-11, (min. 0-1-8) C 10) 9), 4=-39 (LC 10), 5=-84 C 25), 4=179 (LC 24), C 24)										
FORCES	(lb) - Max. Comp./M	lax. Ten All forces 250										
	(lb) or less except w											
	1-8=-424/240, 8-9=-	-402/263, 2-9=-402/268										
NOTES	2-3290/311											
1) Wind AS(CE 7-16: Vult=130mp	a (3-second qust)										
Vasd=103	mph: TCDL=6.0psf: E	CDL=6.0psf: h=25ft: Cat	t									
II; Exp B;	Enclosed; MWFRS (e	nvelope) and C-C	-									
Exterior(2	E) 0-0-5 to 3-0-5, Inte	rior (1) 3-0-5 to 7-10-4										
zone; can	tilever left and right ex	posed ; end vertical left										
and right e	exposed;C-C for mem	bers and forces &										
MWFRS f	or reactions shown; L	umper DOL=1.60 plate										
	-1.00 CE 7-16: Pr=20.0 nef	$(roof \cdot um DO = 1.15$										
Plate DOI	=1.15): Pa=20.0 psf	Pf=13.9 psf (Lum										

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
3) Gable requires continuous bottom chord bearing.
4) * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Job	Truss	Truss Type	Qty	Ply		
22040108	VL14	Valley	2	1	Job Reference (optional)	
Carter Components, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57						

ID:peGiKdEwRCWyP7aFpoP3INyI43v-KLWtqKELJ3Aa8hsSK9sd1R4xUIQPYCa?MC9?5UyI3Ru

5-11-11

Scale = 1:34.3

				. <u> </u>								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pa) 13.9/20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	, 10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		(
BCDI	10.0										Weight: 29 lb	FT = 20%
						-					troigiti 20 is	
			5) Provide mer	chanical connec	ction (by oth	ers) of truss	to					
	2v4 SP No 2		bearing plat	e canable of wit	thstanding 2	9 lb unlift at	ioint					
BOT CHORE) 2x4 SF N0.2		4, 5 lb uplift	at joint 1 and 6	0 lb uplift at	ioint 5.	John					
WEBS	2x4 SF N0.2		6) This truss is	designed in ac	cordance w	ith the 2018						
	2X4 OF NO.3		Internationa	Residential Co	nde sections	R502 11 1	and					
	2X4 OF N0.5		R802.10.2 a	nd referenced	standard AN	ISI/TPI 1.	unu					
BRACING				Standard	oluniaa a / li							
TOP CHORE	Structural wood sh	eathing directly applied	or LOAD CASE(S)	Otanuaru								
	5-11-11 oc purlins,	except end verticals.										
BOT CHORE	Rigid ceiling directl	y applied or 10-0-0 oc										
	bracing.											
	MiTek recommend	Is that Stabilizers and										
	required cross bra	cing be installed during										
	truss erection, in a	accordance with Stabilize	er									
	Installation guide.											
REACTIONS	(lb/size) 1=76/5-1	1_{-11} (min 0_{-1} -8)										
REACTIONS	/=70/5-1 /=72/5-1	1-11, (min. $0-1-0$), 1-11 (min. $0-1-8$)										
	5=246/5	$.11_{11}$ (min 0-1-8)										
	Max Horiz 1=135 (I	C 10)										
	Max Unlift 1=-5 (I C	9) 4=-29 (I C 10) 5=-6	0									
	(I C 13)	5), 4-25 (EO 10), 5-0	0									
	Max Grav 1=119 (I	C 25) 4=99 (I C 24)										
	5=303 (L	.C 24)										
FORCES	(lb) - Max Comp /	lav Ten - All forces 25(1									
TOROLO	(lb) or less excent v	when shown)									
TOP CHORE) 1-8=-356/192 2-8=	-341/212										
WERS	2-5=-216/280	011/212										
NOTES	20 210/200											
1) Wind AS	CE 7-16: \/ult=130mn	h (3-second quet)										
Vasd=10	3mnh: TCDI =6 0nsf: 1	RCDI = 6 0 nsf h = 25 ft C	at									
II: Exp B	Enclosed: MWERS (envelope) and C-C	ut.									
Exterior(2E) 0-0-5 to 2-11-14	nterior (1) 2-11-14 to										
5-10-4 zc	one: cantilever left and	right exposed : end										
vertical le	eft and right exposed (C-C for members and										
forces &	MWFRS for reactions	shown; Lumber										
DOL=1.6	0 plate grip DOL=1.33	3										
2) TCLL: AS	SCE 7-16; Pr=20.0 psf	(roof LL: Lum DOL=1.1	5									
Plate DO	L=1.15); Pg=20.0 psf;	Pf=13.9 psf (Lum										
DOL=1.1	5 Plate DOL=1.15); Is	=1.0; Rough Cat B; Full	у									
Exp.; Ce	=0.9; Cs=1.00; Ct=1.1	0	•									
3) Gable re	quires continuous bott	om chord bearing.										
4) * This tru	ss has been designed	for a live load of 20.0ps	sf									
, 												

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	
22040108	VL15	Valley	2	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57 Page: 1 ID:peGiKdEwRCWyP7aFpoP3INyl43v-KLWtqKELJ3Aa8hsSK9sd1R4_nlR2YDu?MC9?5Uyl3Ru

Scale = 1:31.8

Loading TCUL (roof) (psf) (psf) Spacing (psf) Spacing (psf) 2-0-0 (psf) CSI (psf) DEFL (psf) in (pcc) (//deft) PLATES (psf) GRIP Snow (Pf/Pg) 13.9/20.0 (Lumber DOL 1.15 (Code TC 0.13 (Psf) Vert(LL) n/a - n/a 999 (Psf) MT20 244/190 BCL 0.0 Code IRC2018/TP12014 BC 0.03 (Watrix-MP Vert(TL) n/a - n/a n/a BCDL 10.0 Code IRC2018/TP12014 Watrix-MP Vert(TL) n/a - n/a n/a N/a Vert(TL) n/a N/a <th colspan="11"></th>															
TCLL (oof) 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(L) n/a - n/a 999 MT20 244/190 Snow (Pi/Pg) 13.9/20.0 Lumber DOL 1.15 TC 0.01 Vert(L) n/a - n/a 999 MT20 244/190 BCL 0.0° BC 0.0° BC 0.0° BC 0.0° WB 0.06 Wert(L) n/a - n/a 999 MT20 244/190 BCL 0.0° BC 0.0° BC 0.0° BC No Provide mechanical connection (by others) of truss to Weight: 19 lb FT = 20% LUMBER 10.0 10.0 S Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5. S FOR CONC 4.2 lb uplift at joint 1.41 (bint 1.41 (bint 1.41 (bint 1.41 (bint 1.41 (bint 1.41 (bint 4.21 (bint 1.41 (bint 4.21 (bint	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
Snow (P/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.03 Vert(TL) n/a - n/a 999 BCL 0.0* 0.0* RC2018/TPI2014 WB 0.06 Weight: 19 lb FT = 20% LUMBER 10.0 FT = 20% Solution (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4.2 lb uplift at joint 4.2 lb uplift at joint 1 and 36 lb uplift at joint 5. 6) This truss is designed in accordance with the 2018 BRACING Structural wood sheathing directly applied or 10-0-0 ob tracting directly applied or 10-0-0 ob tracting. Standard ANS//TP1 1. LOAD CASE(S) CHORD Structural wood sheathing directly applied or 10-0-0 ob tracting. Standard Standard MTek recommends that Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. Standard REACTIONS (b/size) 1=51/3-11-11, (min. 0-1-8), 5=61(1/3-11-11, (min. 0-	TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL 10.0 Rep Stress Incr YES WB 0.06 Horiz(TL) n/a - n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-MP Horiz(TL) n/a - n/a n/a UMBER 10.0 Ext SP No.2 S Foreide mechanical connection (by others) of truss to bearing plate capable of vithstanding 19 ib uplift at joint 5. S Foreide mechanical concordance with the 2018 international Residential Code sections RS02.11.1 and Re	Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999				
BCLL 0.0° Code IRC2018/TPI2014 Matrix-MP Weight: 19 lb FT = 20% LUMBER 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4, 21 b uplift at joint 36 lb uplift at joint 5. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4, 21 b uplift at joint 5. BTACING 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4, 21 b uplift at joint 5. 6) BTACING 5) Structural wood sheathing directly applied or 3-11-11 oc purins, except end verticals. 6) BOT CHORD Rid celling directly applied or 10-0-0 oc bracing. Mitter recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide.	TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	n/a	-	n/a	n/a				
BCDL 10.0 Weight: 19 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5. OT CHORD 2x4 SP No.3 6) This truss is designed in accordance with the 2018 International Residential Code sections R502 L11.1 and R802.10.2 and referenced standard ANSI/TP1 1. LOAD CASE(S) Standard STOP CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Immerational Residential Code sections R502 L11.1 and R802.10.2 and referenced standard ANSI/TP1 1. LOAD CASE(S) Standard MTEk recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. Immerational Residential Code sections R502 L1.1 and R802.10.2 and referenced standard ANSI/TP1 1. REACTIONS (Ib/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), Max Horiz Immerational Residential Code sections R502 Max Horiz 1=86 (LC 10), Max Qpit 1=26 (LC 2), 4==51 (LC 24), 5=197 (LC 24) Immerational Residential Code section being FORCES (b) - Max. Comp./Max. Ten All forces 250 Immerational Residential being	BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MP										
LUMBER TOP CHORD BOT CHORD SX4 SP No.2 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4, 2 lb uplift at joint 5. WEBS OTHERS 2x4 SP No.3 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACINOS OTHER Structural wood sheathing directly applied or 3-11-11 oc purlins, except end verticals. CADE CASE(S) Standard BOT CHORD STOC CHORD Structural wood sheathing directly applied or 3-11-11 oc purlins, except end verticals. CADE CASE(S) Standard BOT CHORD Dracing	BCDL	10.0										Weight: 19 lb	FT = 20%		
TOP CHORD BOT CHORD 2x4 SP No.2 2x4 SP No.2 bearing plate capable of withstanding 19 lb uplift at joint 4, 2 lb uplift at joint 5. WEBS 2x4 SP No.3 Chort 1 and 36 lb uplift at joint 5. BRACING TOP CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 6. BTOC CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 3:11-11 oc purlins, except end verticals. Chort 1 and 36 lb uplift at joint 1. BOT CHORD 1: uss erection, in accordance with Stabilizer 1: uss erection, in accordance with Stabilizer 1: uss erection, in accordance with Stabilizer 5: =161/3:11-11, (min. 0-1-8), 5: =161/3:11-11, (m	LUMBER			5) Provide med	chanical connecti	on (by oth	ers) of truss to	D							
BOT CHORD 2x4 SP No.2 4, 2 lb uplift a ljoint 1 and 36 lb uplift a ljoint 5. WEBS 2x4 SP No.3 5 BRACING ToP CHORD Structural wood sheathing directly applied or 3-11.11 oc purlins, except end verticals. 6) This truss is designed in accordance with the 2018 BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard MTEk recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer LOAD CASE(S) REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1	TOP CHORD	2x4 SP No.2		bearing plat	bearing plate capable of withstanding 19 lb uplift at joint										
 WEBS 2x4 SP No.3 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING 2x4 SP No.3 BRACING 3:11-11 cc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. MiTek recommends that Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (Ib/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 1=20 (LC 10), 5=-36 (LC 13), Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 26) FORCES (Ib) - Max. Comp./Max. Ten All forces 250 	BOT CHORD	2x4 SP No.2		4, 2 lb uplift	4, 2 lb uplift at joint 1 and 36 lb uplift at joint 5.										
OTHERS 2x4 SP No.3 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACING TOP CHORD Structural wood sheathing directly applied or 3-11-11 oc purlins, except end verticals. LOAD CASE(S) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard MITER recommends that Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. Miter Attract and Attract	WEBS	2x4 SP No.3		6) This truss is	designed in acco	ordance w	ith the 2018								
BRACING TOP CHORD Structural wood sheathing directly applied or 3-11-11 oc purlins, except end verticals. LOAD CASE(S) Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. ImiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. LOAD CASE(S) Standard REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), Max Horiz Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=-31/2-110, 100, 5=-36 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 Image: Horiz	OTHERS	2x4 SP No.3		Internationa	Residential Cod	le sections	s R502.11.1 a	nd							
TOP CHORD Structural wood sheathing directly applied or 3-11-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8) Max Horiz 1=86 (LC 10) Max Uplift Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250	BRACING			R802.10.2 a	ind referenced sta	andard AN	NSI/TPI 1.								
 3-11-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8), (LC 10), 5=-36 (LC 10) Max Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 2), 4=-65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces 250 	TOP CHORD	Structural wood s	heathing directly applied	or LOAD CASE(S)	Standard										
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8) Max Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (b) - Max. Comp./Max. Ten All forces 250		3-11-11 oc purlins	, except end verticals.												
Dracing.MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) $1=51/3-11-11$, (min. 0-1-8), $4=47/3-11-11$, (min. 0-1-8), $5=161/3-11-11$, (min. 0-1-8)Max Horiz $1=86$ (LC 10) Max Uplift $1=-2$ (LC 9), $4=-19$ (LC 10), $5=-36$ (LC 13) Max Grav $1=78$ (LC 25), $4=65$ (LC 24), $5=197$ (LC 24)FORCES(lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces prove	BOT CHORD	Rigid ceiling direc	tly applied or 10-0-0 oc												
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) $1=51/3-11-11$, (min. 0-1-8), $4=47/3-11-11$, (min. 0-1-8), $5=161/3-11-11$, (min. 0-1-8)Max Horiz $1=86$ (LC 10)Max Uplift $1=-2$ (LC 9), $4=-19$ (LC 10), $5=-36$ (LC 13)Max Grav $1=78$ (LC 25), $4=65$ (LC 24), $5=197$ (LC 24)FORCES(lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max compt when photon		bracing.		_											
required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) $1=51/3-11-11$, (min. 0-1-8), $4=47/3-11-11$, (min. 0-1-8), $5=161/3-11-11$, (min. 0-1-8) Max Horiz $1=86$ (LC 10) Max Uplift $1=-2$ (LC 9), $4=-19$ (LC 10), $5=-36$ (LC 13) Max Grav $1=78$ (LC 25), $4=65$ (LC 24), $5=197$ (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces 250		MiTek recommer	ds that Stabilizers and												
Installation guide. REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8) Max Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces 250		required cross bi	acing be installed during												
REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8) Max Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces 250		Installation quide	accordance with Stabiliz	er											
REACTIONS (lb/size) $1=51/3-11-11$, (min. 0-1-8), 4=47/3-11-11, (min. 0-1-8), 5=161/3-11-11, (min. 0-1-8) Max Horiz $1=86$ (LC 10) Max Uplift $1=-2$ (LC 9), $4=-19$ (LC 10), $5=-36(LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197(LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250(lb) - Max. Comp./max. Ten All forces 250$		motaliation guide	•												
FORCES ((b) - Max. Comp./Max. Ten All forces 250 (b) - Max Comp./Max. Ten All forces 250	REACTIONS (lb/size) 1=51/3-11-11, (min. 0-1-8),														
Solution Solution Max Horiz 1=86 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Comp./Max. Ten All forces 250		4=47/3-	11-11, (min. 0-1-8),												
Max Holiz 1-50 (LC 10) Max Uplift 1=-2 (LC 9), 4=-19 (LC 10), 5=-36 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max. Ten All fo		Max Hariz 1-86 (I	C_{10}												
INDEX Optime 1-2 (LC 0), 4-15 (LC 10), 5-50 (LC 13) Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) - Max comp.twbp.phoum		Max Inlift 1=-2 (I	C 10) C 9) 4=-19 (I C 10) 5=-'	36											
Max Grav 1=78 (LC 25), 4=65 (LC 24), 5=197 (LC 24) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (b) - I acc everythythen obeying		(LC 13)	0 0), 410 (20 10), 0	50											
(LC 24) FORCES (Ib) - Max. Comp./Max. Ten All forces 250 (b) or loss expect when above		Max Grav 1=78 (L	C 25), 4=65 (LC 24), 5=	197											
FORCES (lb) - Max. Comp./Max. Ten All forces 250		(LC 24)													
(id) of less except when shown.	FORCES	(lb) - Max. Comp. (lb) or less except	Max. Ten All forces 25 when shown.	0											
NOTES	NOTES														
1) Wind: ASCE 7-16; Vult=130mph (3-second gust)	1) Wind: ASC	E 7-16; Vult=130m	ph (3-second gust)												
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.	Vasd=103	mph; TCDL=6.0psf	BCDL=6.0psf; h=25ft; C	Cat.											
II; Exp B; Enclosed; MWFRS (envelope) and C-C															
Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-10-4	Exterior(2E	=) 0-0-5 to 3-0-5, In	terior (1) 3-0-5 to 3-10-4												
zone; cantilever lert and right exposed; end vertical left	zone; cant	liever left and right	exposed ; end vertical le												
and right exposed;	and right exposed; G-U for members and forces &														
arin DOL = 1.33															
0.1 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15	2) TCLL: ASC	CE 7-16; Pr=20.0 p	15												

- 2 1CLL: ASCE 7-16; PT=20.0 psf (root LL: Lum DOL=1.15) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 Gable requires continuous bottom chord bearing.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	
22040108	VL16	Valley	2	1	Job Reference (optional)

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Fri Nov 18 17:05:57 Page: 1 ID:peGiKdEwRCWyP7aFpoP3INyI43v-KLWtqKELJ3Aa8hsSK9sd1R40LIRjYDp?MC9?5UyI3Ru

1-11-11

2x4 II

2x4 🛛

1-11-11

2x4 💋

Scale = 1:21.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		. ,						
BCDL	10.0										Weight: 8 lb	FT = 20%
		•										-
	2v4 SP No 2											
BOT CHORD	2x4 SF N0.2 2x4 SP No.2											
WEBS	2x4 SP No.3											
REACING	24 01 100.0											
	Structural wood ob	anthing directly applies	lor									
TOP CHORD	P CHORD Structural wood sneatning directly applied or											
BOT CHORD	Rigid ceiling directl	v applied or 10-0-0 oc										
Bol onone	bracing.											
	MiTek recommend	s that Stabilizers and										
	required cross bra	cing be installed during	1									
	truss erection, in a	ccordance with Stabiliz	zer									
	Installation guide.											
DEACTIONO	(1) (4 44 (main 0 4 0)										
REACTIONS	(ID/SIZE) 1=62/1-1	1-11, (MIN. $0-1-8$), 1 11 (min. $0.1.8$)										
	Max Horiz 1=38 (LC	1-11, (IIIIII. 0-1-6) 10)										
	Max Unlift 3=-9 (I C	10)										
	Max Grav 1=73 (LC	2) 3=78 (I C 24)										
FORCES	(lb) - Max Comp /M	/2), 0 10 (20 21) /av. Ten - All forces 25	50									
IONOLO	(lb) or less except v	when shown										
NOTES	()											
1) Wind: ASC	CE 7-16: Vult=130mp	h (3-second aust)										
Vasd=103	mph; TCDL=6.0psf; E	3CDL=6.0psf; h=25ft; (Cat.									
II; Exp B;	Enclosed; MWFRS (e	envelope) and C-C										
Exterior(2	E) zone; cantilever le	ft and right exposed ; e	end									
vertical lef	ft and right exposed;C	C-C for members and										
forces & N	IWFRS for reactions	shown; Lumber										
DOL=1.60) plate grip DOL=1.33											
2) TCLL: AS	CE /-16; Pr=20.0 psf	(root LL: Lum DOL=1.	15									
Plate DOL	=1.15); Pg=20.0 pst;	PT=13.9 pst (Lum	11.7									
DUL=1.15	0 Plate DUL=1.15); IS	= i.u; Rough Cat B; Fu	пу									
Exp.; Ce=	0.9, 05=1.00, 0t=1.1	U										

- 3) Gable requires continuous bottom chord bearing.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 3.
 5) The second secon
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 6) R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard