DEPARTMENT OF HEALTH AND HUMAN SERVICES DIVISION OF PUBLIC HEALTH, ENVIRONMENTAL HEALTH SECTION ON-SITE WATER PROTECTION BRANCH

	Page _1_ of
PROPERTY ID #:	
COUNTY:	

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

ADDRESS: 45 6A741 WAY (50 1215) PROPOSED FACILITY: 51 × 48 × 50 PROPOSED DESIGN FLOW (.0400): 360 GD PROPERTY SIZE: PROPOSED FACILITY: 51 × 48 × 50 PROPOSED DESIGN FLOW (.0400): 360 GD PROPERTY SIZE: PROPERTY RECO WATER SUPPLY: Public Single Family Well Shared Well Spring Other WATER SUPPLY SIZE: PROPERTY RECO WATER SUPPLY: Public Single Family Well Shared Well Spring Other WATER SUPPLY SIZE: PROPERTY SIZE:	ATED:	
WATER SUPPLY: Public Single Family Well Shared Well Spring Other WATER SUPPLY SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD: Auger Boring Pit Cut TYPE OF WASTEWATER: Domestic High SEVALUATION METHOD	:	
SOIL MORPHOLOGY SOIL MORPHOLOGY OTHER PROFILE FACTORS F L L L L L L L L L L L L	ORDED:	
SOIL MORPHOLOGY OTHER PROFILE FACTORS SOIL MORPHOLOGY OTHER PROFILE FACTORS	Strength IPW	VW
L .0502		
1 26-48 SC Filstplan 104R6/2	PROFILE S CLASS C	.0503 SLOPE CORRE CTION
1 2-5% 26-48 SC Fisiplism > 36" >48"	5	
	.3	
22-48 Se #/ssp/sxp 104R6/1 >48"	5	
2 2-5% Se #/ssp/sxp 104R6/1 >48" 2 7-5% = 30"	.3	
L 0-16 LS Fr/usp/nxe 104R6/2 ×18" 16-48 Se Fr/ssp/sxe = 28"	S	
3 2-5%	.3	
4		

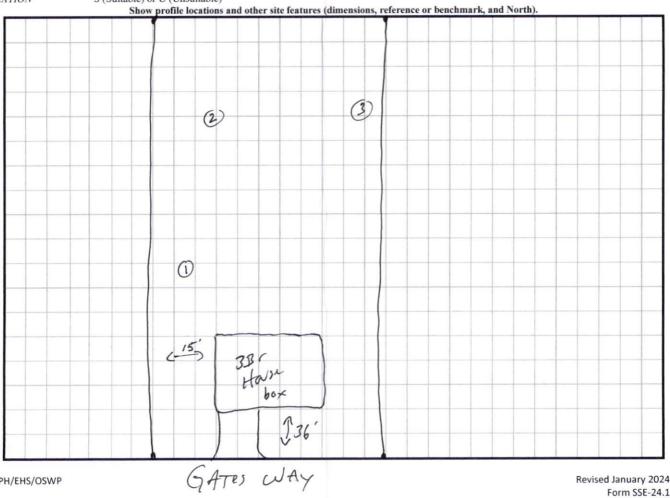
DESCRIPTION	INITIAL SYSTEM	REPAIR SYSTEM	
Available Space (.0508)	V		SITE CLASSIFICATION (.0509):
System Type(s)	252 (Ld VCTION	25% coduction	
Site LTAR	.3	.3	OTHER(S) PRESENT: $A \cdot \omega$
Maximum Trench Depth	16"	16"	
Comments:			

LEGEND

LANDSCAPE POSITION	SOIL GROUP	SOIL TEXTURE	CONVENTIONAL LTAR (gpd/ft²)	SAPROL LTAR (gpo		LPP LTAR (gpd/ft²)	MINERALOGY/ CONSISTENCE		STRUCTURE
CC (Concave slope)		S (Sand)		0.6 - 0	0.8		MOIST	WET	SG (Single grain)
CV (Convex Slope)	'	LS (Loamy sand)	0.8 - 1.2	0.5 -0.	0.4 -0.6	Lo (Loose)	NS (Non-sticky)	M (Massive)	
D (Drainage way)	п	SL (Sandy loam)	0.6 - 0.8	0.4 -0.	.6	0.3 - 0.4	VFR (Very friable)	SS (Slightly sticky)	GR (Granular)
FP (Flood plain)		L (Loam)	0.0 - 0.8	0.2 - 0).4		FR (Friable)	S (Sticky)	SBK (Subangular blocky)
FS (Foot slope)		SiL (Silt loam)		0.1 - 0).3		FI (Firm)	VS (Very sticky)	ABK (Angular blocky)
H (Head slope)	III	SCL (Sandy clay loam)		0.05 - 0.1	15**		VFI (Very firm)	NP (Non-plastic)	PR (Prismatic)
L (Linear Slope)		CL (Clay loam)	0.3 - 0.6			0.15 - 0.3	EFI (Extremely firm)	SP (Slightly plastic)	PL (Platy)
N (Nose slope)		SiCL (Silty clay loam)		None	None			P (Plastic)	
R (Ridge/summit)		Si (Silt)				None			VP (Very plastic)
S (Shoulder slope)		SC (Sandy clay)					SEXP (Slightly expansive)		
T (Terrace)	IV	SiC (Silty clay)	0.1 - 0.4		æ	0.05 - 0.2	EXP (Expansive)		
TS (Toe Slope)		C (Clay)							-
		O (Organic)	None						

^{*} Adjust LTAR due to depth, consistence, structure, soil wetness, landscape, position, wastewater flow and quality.

HORIZON DEPTH


In inches below natural soil surface

DEPTH OF FILL RESTRICTIVE HORIZON In inches from land surface Thickness and depth from land surface

SAPROLITE

S(suitable) or U(unsuitable); Evaluation of saprolite shall be by pits.

SOIL WETNESS CLASSIFICATION Inches from land surface to free water or inches from land surface to soil colors with chroma 2 or less - record Munsell color chip designation S (Suitable) or U (Unsuitable)

^{**}Sandy clay loam saprolite can only be used with advanced pretreatment in accordance with 15A NCAC 18E .1200.