

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Wilmington A VLT Wilmington A VLT

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I60353376 thru I60353391

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

August 24,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01	Common	4	1	Job Reference (optional)	160353376

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:44 ID:FyJUgvM6CcFPEq8vxiR2htykxr4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

mmm

August 24,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01A	Нір	1	1	Job Reference (optional)	160353377

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:46 ID:X5uQvFa00rDtcSJ_uVCuKTykxld-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-8-0 7-1-6 14-0-12 18-4-11 23-7-5 27-11-5 34-10-10 41-8-8 7-1-6 6-11-6 4-3-15 5-2-10 4-4-0 6-11-5 6-9-14 5x10= 5x6= 0-1-13 I-13 6 7 9-8-12 _ 5 8 12 61 9 4 9-10-4 1.5x4 🏿 9-6-15 1.5x4 🔥 9-6-15 3 10 12 _{7.} 8-0 0-11 Regis ģ] 18 26 17 27 16 28 29 15 30 14 31 13 5x8 II 3x8= 4x8= 8-6-0 16-0-0 26-0-0 41-8-8 33-6-0 H 8-6-0 7-6-0 10-0-0 7-6-0 8-2-8

Scale = 1:76.2

Plate Offsets (X, Y): [2:Edge,0-0-8], [6:0-5-0,0-1-7], [12:0-4-4,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.86 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.70 0.15	(loc) 15-16 15-16 12	l/defl >999 >720 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES	2x4 SP No.2 *Except 2x4 SP No.1 2x4 SP No.2 *Except No.3 Left: 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing, 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=166 (LC Max Uplift 2=-193 (LC Max Grav 2=1709 (L (lb) - Maximum Com Tension	t* 9-12:2x4 SP No.1 t* 3-18,10-13:2x4 SP - 1-6-0 athing directly applied -2 max.): 6-7. applied or 8-3-4 oc 6-15 (2= Mechanical C 12), 12=-176 (LC 1 C 1), 12=-176 (LC 1 pression/Maximum	2) 3) 4) 5) 6) 7) 8) 3) 9)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extt & MWFRS for grip DOL=1.6 Provide adec All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate 2 and 176 lb This truss is International R802.10.2 ar	7-10; Vult=130mph h; TCDL=6.0psf; B closed; MWFRS (er prior (2) zone;C-C f r reactions shown; 30 juate drainage to pi 3x6 MT20 unless (s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members, to pr(s) for truss to true anical connection capable of withsta uplift at joint 12. designed in accorda Residential Code s nd referenced stance	(3-sec CDL=6 hvelope or mem Lumbe event to therwi r a 10.0 ith any or a liv where fit betw vith BC ss conr (by oth hding 1 ance w ections lard AN	ond gust) .0psf; h=30ft; .) exterior zor bers and forc r DOL=1.60 p vater ponding se indicated.) psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf ections. ers) of truss t 93 lb uplift at th the 2015 R502.11.1 a ISI/TPI 1.	c Cat. ne pes plate g. ds. opsf om joint nd					
BOT CHORD	1-2=0/18, 2-3=-3071, 5-6=-2424/711, 6-7= 7-8=-2393/709, 8-10 10-12=-2936/716 2-18=-570/2668, 16- 15-16=-235/1915, 13	/735, 3-5=-2945/798 1892/615, =-2829/777, -18=-361/2254, 3-15=-357/2216.	, 10 LC) Graphical pu or the orienta bottom chorc DAD CASE(S)	rlin representation of tion of the purlin al Standard	loes no ong the	ot depict the s top and/or	size			Tri	ORTH CA	ROUT
WEBS	12-13=-545/2549 6-16=-193/879, 6-15 7-15=-191/832, 3-18 5-18=-189/593, 5-16 8-15=-544/300, 8-13 10-13=-314/242	=-219/198, =-368/262, =-572/305, =-167/497,								Contraction of the second seco		SEA 0363	L 22

Unbalanced roof live loads have been considered for 1) this design.

> 1111 Gilin August 24,2023

G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01B	Hip Supported Gable	1	1	Job Reference (optional)	160353378

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:47 ID:YA?7BVPg?knEmvW3tnQq5pykxkZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.9

Plate Offsets (X, Y): [14:0-4-6.Edge], [22:0-4-6.Edge], [35:0-4-4.Edge]

	.,, .). [-3-1, [-		ele i ijzagej										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	S P Li * R C	pacing Pate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matr	ix-MS	0.05 0.06 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 35	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 359 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exc 51-18,52-17,53-1 50-19,49-20,48-2 No.2 Right 2x4 SP No. Structural wood s 6-0-0 oc purlins, (2-0-0 oc purlins (in Rigid ceiling direc bracing. (size) 2=41-8 37=41- 40=41- 43=41- 43=41- 56=41- 60=41- 63=41- 66=41- Max Horiz 2=144	2ept* 6,54-1 1,47-2 3 1-1 iheathiexcept 6-0-0 r the second the second second second second second second second second second second second second second second second second second	5,55-14,56-13,58 22,46-23,44-24:2x 6-0 ing directly applie t max.): 14-22. plied or 10-0-0 oc s=41-8-8, 36=41-8 8=41-8-8, 39=41- 1=41-8-8, 46=41- 8=41-8-8, 46=41- 8=41-8-8, 55=41- 8=41-8-8, 55=41- 1=41-8-8, 55=41- 1=41-8-8, 65=41- 1=41-8-8, 65=41- 1=41-8-8, 70=41- 2), 67=144 (LC 12	-12, 4 SP d or -8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8,	Max Up Max Gra (lb) - N Tensic	ift 2=-12 (Ll 37=-16 (l 39=-32 (l 41=-32 (l 41=-32 (l 46=-19 (l 53=-32 (l 51=-19 (l 53=-23 (l 59=-32 (l 61=-32 (l 63=-31 (l 65=-11 (l 67=-12 (l 36=162 (l 38=111 (l 40=107 (l 42=107 (l 44=107 (l 44=107 (l 55=113 (l 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=113 (l) 55=117 (l) 64=112 (l) 66=176 (l) 70=91 (L) Iaximum Corn	C 13), 3 C 13), 3 LC 13), LC 13), LC 13), LC 13), LC 13), LC 13), LC 29), 5 LC 9), 5 LC 12), LC 12), LC 12), LC 12), LC 12), LC 24), LC 22), LC 23), LC 23),	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3), 13), 13), 13), 13), 13), 13), 13), 13), 13), 12), 11), 11), 24), 24), 24), 23), 24), 21), 1), 1), 1), 1), 1), 1), 1), 21),	TOP CF	iORD	1-2=0 4-5=- 8-9=-{ 11-12 13-14 17-18 19-20 21-22 23-24 27-28 31-32	/18, 2-3=-175/64, 103/72, 5-6=-81/8 51/116, 9-10=-49/ =-71/171, 12-13= =-81/216, 16-17= =-82/216, 18-19= =-83/218, 22-23= =-83/204, 24-25= =-60/139, 26-27= =-38/76, 28-30=-3 =-51/16, 32-33=-1 MCH CA SEA 0363	3-4=-126/61, 3, 6-8=-63/100, (132, 10-11=-60/149, -83/204, -83/218, -82/216, -82

August 24,2023

TRENCO A MITEK Attiliate

818 Soundside Road Edenton, NC 27932

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	100050070
Wilmington A VLT	A01B	Hip Supported Gable	1	1	Job Reference (optional)	160353378

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:47 ID:YA?7BVPg?knEmvW3tnQq5pykxkZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

BOT CHORD 2-66=-92/116, 65-66=-31/116, 64-65=-31/116,

	63-64=-31/116, 62-63=-31/116,
	61-62=-31/116, 60-61=-31/116,
	59-60=-31/116, 58-59=-31/116,
	56-58=-31/116, 55-56=-31/116,
	54-55=-31/116, 53-54=-31/116,
	52-53=-31/116, 51-52=-31/116,
	50-51=-31/116, 49-50=-31/116,
	48-49=-31/116, 47-48=-31/116,
	46-47=-31/116, 44-46=-31/116,
	43-44=-31/116, 42-43=-31/116,
	41-42=-31/116, 40-41=-31/116,
	39-40=-31/116, 38-39=-31/116.
	37-38=-31/116, 36-37=-31/116,
	35-36=-31/116
WEBS	18-51=-80/37, 17-52=-80/36, 16-53=-81/42
	15-54=-81/35, 14-55=-86/0, 13-56=-84/40.
	12-58=-80/58, 11-59=-79/55, 10-60=-80/55
	9-61=-80/55, 8-62=-80/55, 6-63=-80/55,
	5-64=-83/57, 4-65=-66/44, 3-66=-122/90,
	19-50=-80/36, 20-49=-81/42, 21-48=-81/35
	22-47=-77/0, 23-46=-84/38, 24-44=-80/58,
	25-43=-79/55, 26-42=-80/55, 27-41=-80/55
	28-40=-80/55, 30-39=-80/55, 31-38=-82/57
	32-37=-71/45, 33-36=-111/91

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) N/A
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01M	Common	5	1	Job Reference (optional)	160353379

6

19-0-0

4-11-5

84 Components (Dunn, NC), Dunn, NC - 28334,

-0-8-0 0-8-0

7-1-6

7-1-6

14-0-11

6-11-5

12 61

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:48 ID:SmlvfoYeaD2jSeTi2CBUW2ykxoF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 27-11-5 34-10-10 41-8-8 21-0-0 23-0-0 2-0-0 2-0-0 4-11-5 6-11-5 6-9-14 7 血 8 9

Page: 1

11-1-15	11-0-6		1.5x4 _N 4 3									1.5x4 10 11	4 1
	9						3-8-8 3-8-8 3-8-8 		29	/ 			
	0		21	33	20 34	19	18	17	16	35 15	36	14	0
		4x8=			4x6=	1.5x4=	1.5x4 I	1.5x4 ॥		4x6	S=		5x8 II
							1.5x4 ॥	1.5x4 🛚					
									1.5x4=				
				40.0.0		10.0			~ ~		~ ~ ~ ~		11.0.0

	8-6-0	16-0-0	19-0-0	23-0-0	26-0-0	33-6-0	41-8-8	
	8-6-0	7-6-0	3-0-0	4-0-0	3-0-0	7-6-0	8-2-8	
Scale = 1:75.6								

Plate Offsets (X, Y): [2:Edge,0-0-8], [7:0-3-0,Edge], [13:0-4-4,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.96 0.83 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.61 0.14	(loc) 19-21 19-21 13	l/defl >999 >827 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.1 *Except 2x4 SP No.1 2x4 SP No.2 *Except 14-11,21-3,6-8,24-16 Left: 2x4 SP No.3 Right 2x4 SP No.3 Structural wood shea Rigid ceiling directly bracing, Except: 8-2-4 oc bracing: 13- 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=190 (LC Max Grav 2=1709 (L (lb) - Maximum Com Tension 1-2=0/18, 2-3=-3061 5-6=-2331/741, 6-7= 8-9=-2319/741, 6-7=	t* 1-4:2x4 SP No.2 t* 3,25-17:2x4 SP No.3 1-6-0 athing directly applied applied or 10-0-0 oc 21 14. 22-23 3= Mechanical 212) C 12), 13=-194 (LC 1 C 1), 13=1668 (LC 1) pression/Maximum /750, 3-5=-2910/812, -159/69, 7-8=-163/69 =-2812/790,	2) 3) 4) 5) 6) 7) 3) 8) 9) 9, LC	Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Exte & MWFRS fo grip DOL=1.6 All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Refer to gird@ Provide mech bearing plate 2 and 194 lb This truss is of International R802.10.2 ar ATTIC SPAC UNINHABITA	7-10; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e prior (2) zone;C-C f r reactions shown; 0 3x6 MT20 unless s been designed for d nonconcurrent w as been designed for chord in all areas y 2-00-00 wide will y other members, pr(s) for truss to tru- nanical connection capable of withsta uplift at joint 13. designed in accord Residential Code s ad referenced stan E SHOWN IS DES NBLE. Standard	h (3-sec 3CDL=6 anvelope for mem - Lumbe otherwi or a 10.0 vith any for a liv s where I fit betw with BC iss conr (by oth anding 2 lance w sections dard AN SIGNED	cond gust) .0psf; h=30ft; e) exterior zor bers and forc r DOL=1.60 p se indicated. D psf bottom other live loa e load of 20.0 DL = 10.0psf bections. ers) of truss t 11 lb uplift at ith the 2015 R502,11.1 a ISI/TPI 1. AS	; Cat. ne ces oblate ds. Opsf om ; joint				ANNUTH CA	nun
BOT CHORD	2-21=-582/2647, 19- 18-19=-235/1785, 17 16-17=-235/1785, 14 13-14=-557/2543	21=-379/2171, 7-18=-235/1785, 4-16=-375/2152,								6	AN AN	ORIFESS	Mare -
WEBS	8-23210/860, 16-2 9-16690/330, 9-14 11-14296/239, 19- 6-22218/884, 5-19 5-21182/604, 3-21 6-81674/623, 22-2 23-2524/4, 18-24=	3=-219/834, =-158/512, 22=-226/856, =-724/333, =-353/258, 4=-24/4, 24-25=-24/4 -9/38, 17-25=-14/33	ŀ,							THE PARTY ST		SEA 0363	L 22
NOTES 1) Unbalance this design	ed roof live loads have h.	been considered for									11	CA. G	ILBERT

August 24,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01S	Roof Special	7	1	Job Reference (optional)	160353380

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:48 ID:HXMIOENwcpJ6pyTOwVr3BBykxi0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.9

Plate Offsets (X, Y): [2:0-0-4,Edge], [11:Edge,0-0-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.78 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.90 0.35	(loc) 15-16 16-17 11	l/defl >999 >560 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 234 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-181 (L Max Uplift 2=-211 (L Max Grav 2=1720 (L (lb) - Maximum Com Tension 1-2=0/18, 2-3=-5293 4-6=-5295/1290, 6-7 7-8=-2374/769, 8-10 10-11=-3084/753, 1 2-17=-1065/4756, 16 15-16=-164/1651, 13 11-13=-566/2666 6-17=-650/3110, 6-1 7-6=-205/798, 7-15 8-15=-680/355, 8-13 10-13=-349/251, 3-1	t* 1-5,9-12:2x4 SP D t* 2-17:2x4 SP DSS t* 13-10,3-17,4-17:2: athing directly applie applied or 6-7-9 oc 6-16 (1=0-3-8 C 12), 11=-211 (LC - 12), 11=-211 (LC - 12), 11=-211 (LC - 13) C 12), 11=-211 (LC - 14), 11=-720 (LC -1 pression/Maximum (1266, 3-4=-5269/11 =-2187/701, =-292/815, 15=-372/2200, 6=-1369/455, =-274/991, =-172/586, 7=-20/198,	2) SSS x4 d. 5) 13) 75, 8) LO	Wind: ASCE Vasd=103mp II; Exp B; End and C-C Extt & MWFRS fc grip DOL=1.6 All plates are This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI/I designer sho Provide med 2 and 211 lb This truss is International R802.10.2 ar DAD CASE(S)	7-10; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) zone;C-C f or reactions shown; 0 MT20 plates unles s been designed for d nonconcurrent w ias been designed in chord in all areas by 2-00-00 wide will y other members, int(s) 2 considers p PI 1 angle to grain uld verify capacity hanical connection or capable of withsta uplift at joint 11. designed in accord Residential Code s and referenced stand Standard	n (3-sec 3CDL=6 nvelope or merr Lumbe ss other or a 10.0 vith any for a liv where l fit betw with BC or beari (by oth noting 2 ance w sections dard AN	ond gust) .0psf; h=30ft .0 exterior zo bers and for r DOL=1.60 wise indicate) psf bottom other live loa e load of 20.1 a rectangle reen the bott DL = 10.0ps o grain value a. Building ng surface. ers) of truss i 11 lb uplift al th the 2015 R502.11.1 a ISI/TPI 1.	t; Cat. ne ces plate ed. ads. Opsf to t joint and			A. A	OTH CA	ROUN	
										-		0000		

NOTES

 Unbalanced roof live loads have been considered for this design. SEAL 036322 August 24,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty Ply		Wilmington A VLT	
Wilmington A VLT	A01SA	Roof Special	1	1	Job Reference (optional)	160353381

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:49 ID:IV9ReAeDaHtaliGKNHivGcykxf5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER									
TOP CHORD	2x4 SP No.1 *Except* 1-5:2x4 SP DSS,								
	11-13:2x4 SP No.2								
BOT CHORD	2x4 SP No.1 *Except* 2-20:2x4 SP DSS,								
	19-15:2X4 SP NO.2								
WEBS	2x4 SP No.2 *Except*								
	12-14,3-20,4-20,7-9,23-17,24-18:2x4 SP								
	No.3								
WEDGE	Left: 2x4 SP No.3								
	Right: 2x4 SP No.3								
BRACING									
TOP CHORD	Structural wood sheathing directly applied or								
	2-2-0 oc purlins.								
BOT CHORD	Rigid ceiling directly applied or 6-6-12 oc								
	bracing.								
WEBS	1 Row at midpt 6-19								
REACTIONS	(size) 2=0-3-8, 13=0-3-8								
	Max Horiz 2=186 (LC 16)								
	Max Uplift 2=-211 (LC 12), 13=-197 (LC 13)								
	Max Grav 2=1720 (LC 1), 13=1680 (LC 1)								
FORCES	(lb) - Maximum Compression/Maximum								
	Tension								
TOP CHORD	1-2=0/18, 2-3=-5289/1277, 3-4=-5279/1196,								
	4-6=-5319/1323, 6-7=-2179/683,								
	7-8=-141/66, 8-9=-152/56, 9-10=-2351/750,								
	10-12=-2940/819, 12-13=-3090/756								
BOT CHORD	2-20=-1088/4752, 19-20=-464/2590,								
	18-19=-219/1755, 17-18=-219/1755,								
	16-17=-219/1755, 14-16=-381/2192,								
	13-14=-582/2674								
WEBS	6-20=-694/3145, 6-19=-1314/410,								
	19-21=-158/766, 7-21=-154/773,								
	9-22=-232/857, 16-22=-243/855,								
	10-16=-715/336, 10-14=-178/615,								
	12-14=-358/259, 3-20=-14/188,								
	4-20=-341/224, 1-9=-1131/642,								
	$\angle 1 - \angle 4 = -10/61, \angle 3 - \angle 4 = -10/61, \angle 2 - \angle 3 = -10/61, $								
	1/2 = -12/30, $10 = 24 = -4/20$								

NOTES

 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated.
 All plates are 1 5x4 MT20 unless otherwise indicated.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
 5) This truss has been designed for a 10.0 psf bottom
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 211 lb uplift at joint 2 and 197 lb uplift at joint 13.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 ATTIC SPACE SHOWN IS DESIGNED AS
- 10) AT TIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	A01SB	Нір	1	1	Job Reference (optional)	160353382

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:49 ID:iNRQVC0nlbsz3PH14matVLykxRi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:77.6
---------	--------

NOTES

this design.

1)

Plate Offsets (X, Y)	: [2:0-0-4,Edge],	[6:0-3-8,0-1-8], [7:0	-5-0,0-1-7], [12:Edge,0-	0-8], [17:0-5-0,0-2	2-12]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.38	16-17	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.90	17-18	>560	180	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.36	12	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 244 lb	FT = 20%	
LUMBER			2) Wind: ASC	E 7-10; Vult=130r	mph (3-sec	cond gust)							

TOP CHORD BOT CHORD	2x4 SP No.2 *Except* 1-5,10-13:2x4 SP DSS 2x4 SP No.1 *Except* 2-18:2x4 SP DSS,
WEBS	17-15:2x4 SP No.2 2x4 SP No.2 *Except* 3-18,4-18,11-14:2x4 SP No.3
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3
BRACING	5
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except
	2-0-0 oc purlins (3-7-7 max.): 7-8.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.
WEBS	1 Row at midpt 7-16, 6-17
REACTIONS	(size) 2=0-3-8, 12=0-3-8
	Max Horiz 2=158 (LC 16)
	Max Uplift 2=-193 (LC 12), 12=-193 (LC 13)
	Max Grav 2=1720 (LC 1), 12=1720 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/18, 2-3=-5287/1234, 3-4=-5279/1150,
	4-6=-5323/1276, 6-7=-2175/659,
	7-8=-1856/624, 8-9=-2340/719,
	9-11=-2938/803, 11-12=-3088/740,
	12-13=0/18
BOT CHORD	2-18=-1036/4750, 17-18=-433/2599,
	16-17=-216/1870, 14-16=-348/2188,
	12-14=-556/2671
WEBS	7-16=-233/190, 8-16=-194/797,
	9-16=-572/300, 9-14=-187/602,
	6-17=-1262/386, 3-18=0/223, 4-18=-348/223,
	6-18=-663/3146, /-1/=-140/683,
	11-14=-367/263

Unbalanced roof live loads have been considered for

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Bearing at joint(s) 2 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 8)
- bearing plate capable of withstanding 193 lb uplift at joint 2 and 193 lb uplift at joint 12. 9) This truss is designed in accordance with the 2015
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

3)

4)

5)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT			
Wilmington A VLT	A01SC	Hip Supported Gable	1	1	Job Reference (optional)	160353383		

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:50 ID:Vzqri8ClpO_f7pua_VoYgoykxNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.4

Continued on page 3

WARNING

Plate Offsets (X, Y): [2:0	-0-10,0-1-5], [2:0-3-0,0-10-1], [1	0:0-3-0,0-3-0], [13:0	-4-6,Edge], [2	21:0-4-6,Edge], [2	24:0-3-0,0-3-0]	, [52:0-3	3-0,0-0-1	2]				
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-	0.05 0.06 0.09 MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 34-70 34-70 32	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 341 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 49-17,50- 47-19,46- Left: 2x4 Structura	lo.2 lo.3 lo.3 *Excep -16,51-15,5 -20,45-21,4 SP No.3 I wood shea	t* 3-14,54-13,55-12,48 4-22,42-23:2x4 SP N athing directly applie	-18, lo.2 d or	Max Uplift	2=-49 (LC 13), 35=-16 (LC 13) 37=-36 (LC 13) 39=-28 (LC 13) 41=-33 (LC 13) 44=-18 (LC 13) 47=-23 (LC 8), 49=-20 (LC 9), 51=-26 (LC 8), 53=-20 (LC 2), 56=-34 (LC 12)	34=-75 (LC 13 36=-35 (LC 1 38=-33 (LC 1 40=-32 (LC 1 42=-36 (LC 1 46=-19 (LC 9), 50=-19 (LC 9), 52=-27 (LC 13) 55=-24 (LC 12 57=-33 (LC 1)), 3), 3), 3), 3), 3),),), 2),	TOP C	HORD	1-2=0 4-5=- ⁻ 7-8=-{ 11-12 13-14 15-16 17-18 19-20 21-22 23-25 26-27	/18, 2-3=-166/72 103/83, 5-6=-82// 51/126, 8-9=-50/ =-83/227, 14-15 =-82/226, 16-17 =-82/226, 18-19= =-82/226, 20-21= =-91/238, 22-23 =-71/182, 25-26 =-39/90, 27-28=	, 3-4=-130/73, 34, 6-7=-62/110, 143, 9-11=-71/182, =-91/238, =-82/226, =-82/226, =-82/226, =-83/227, =-83/227, =-83/2215, =-49/118, 33/59, 28-29=-28/25,	
BOT CHORD	6-0-0 oc 2-0-0 oc Rigid ceil bracing. (size)	purlins, exc purlins (6-0 ing directly 2=42-0-0, 35=42-0-0 41=42-0-0 45=42-0-0 48=42-0-0	ept -0 max.): 13-21. applied or 10-0-0 oc 32=0-3-8, 34=42-0-0, 36=42-0-0, 37=42-), 39=42-0-0, 40=42-), 42=42-0-0, 44=42-), 42=42-0-0, 50-42-), 49=42-0-0, 50-42-)), 0-0, 0-0, 0-0, 0-0,	Max Grav	58-28 (LC 12) 58-28 (LC 12) 62-36 (LC 12) 64-84 (LC 12) 2=133 (LC 21), 34=176 (LC 24) 36=108 (LC 24) 38=109 (LC 24)	59=-12 (LC 1) 61=-32 (LC 1) 63=-17 (LC 1) 65=-49 (LC 1) 32=130 (LC 1) , 35=82 (LC 1) , 37=122 (LC , 39=90 (LC 2) 41=106 (LC 2)	2), 2), 2), 2), 3) 9, 1, 1), 4), 4),			29-30 32-33	=-41/17, 30-31=- =0/18	60/16, 31-32=-106/42	<u>}</u> ,
	Max Horiz	51=42-0-0 51=42-0-0 57=42-0-0 60=42-0-0 63=42-0-0 2=-136 (L1	, 52-42-00, 53-422), 55=42-0-0, 56=42-), 55=42-00, 59=42-), 61=42-0-0, 62=42-), 64=42-0-0, 65=42- C 13), 65=-136 (LC 1	60, 0-0, 0-0, 0-0, 0-0 13) FORCES	(lb) - Ma: Tension	42=108 (LC 1), 45=107 (LC 22) 47=108 (LC 23) 49=106 (LC 1), 51=103 (LC 24) 53=106 (LC 24) 55=112 (LC 23) 57=106 (LC 23) 57=106 (LC 23) 61=105 (LC 1), 63=87 (LC 1), 65=133 (LC 21) kimum Compress	44=111 (LC 2: , 46=108 (LC 2: , 48=107 (LC 2: , 52=10 (LC 3) , 54=118 (LC 2: , 56=107 (LC 3) , 56=107 (LC 3) , 56=107 (LC 3) , 60=108 (LC 2) 4=168 (LC 23) ion/Maximum	4), 23), 24), 3), , 22), 1), 1), 1), 3),		Carrier and a second se		SEA 0363	L 22 EEERER	•
											the second	A. C		

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

August 24,2023

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT		
Wilmington A VLT	A01SC	Hip Supported Gable	1	1	Job Reference (optional)	160353383	

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:50 ID:Vzqri8CipO_f7pua_VoYgoykxNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

BOT CHORD	2-64=-35/128, 63-64=-42/133,
	62-63=-39/131, 61-62=-40/132,
	60-61=-40/132, 59-60=-40/131,
	58-59=-40/130 57-58=-40/132
	56-57=-41/132 55-56=-41/132
	54-55=-41/132 53-54=-40/133
	52-53=-38/132 51-52=-36/127
	50-51-36/127 49-50-36/127
	48 - 40 = -36/127, $43 - 36/127$, $43 - 36/127$
	46-47-36/127, 47-46-36/127,
	40-47 = -30/127, $43-40 = -30/127$, 44/45 = -36/126/42 = 42/44 = -36/126
	44 - 45 = -30/120, 42 - 44 = -30/120,
	41-42=-30/120, 40-41=-30/120,
	39-40=-36/126, 38-39=-36/126,
	37-38=-36/126, 36-37=-36/126,
	35-36=-36/126, 34-35=-36/126,
	32-34=-36/126
WEBS	27-38=-81/56, 17-49=-80/37, 16-50=-80/36,
	15-51=-81/42, 14-53=-81/35, 13-54=-90/0,
	12-55=-85/40, 11-56=-80/58, 10-57=-80/55,
	9-58=-79/54, 8-59=-81/56, 7-60=-80/55,
	6-61=-80/55, 5-62=-82/56, 4-63=-72/51,
	3-64=-105/70 18-48=-80/36 19-47=-81/42
	20-46=-81/35 21-45=-80/0 22-44=-84/38
	23-42
WEBS	44-45=-36/126, 42-44=-36/126, 41-42=-36/126, 40-41=-36/126, 39-40=-36/126, 38-39=-36/126, 37-38=-36/126, 38-37=-36/126, 32-34=-36/126, 34-35=-36/126, 32-34=-36/126 27-38=-81/56, 17-49=-80/37, 16-50=-80/36, 15-51=-81/42, 14-53=-81/35, 13-54=-90/0, 12-55=-85/40, 11-56=-80/58, 10-57=-80/55, 9-58=-79/54, 8-59=-81/56, 7-60=-80/55, 6-61=-80/55, 5-62=-82/56, 4-63=-72/51, 3-64=-105/70, 18-48=-80/36, 19-47=-81/42, 20-46=-81/35, 21-45=-80/0, 22-44=-84/38, 23-42==81/59, 24-41=-79/55, 25-40=-80/55.

NOTES

1) Unbalanced roof live loads have been considered for this design.

30-35=-66/44, 31-34=-122/90

26-39=-68/47, 28-37=-92/63, 29-36=-80/55,

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 2, 12 lb uplift at joint 59, 27 lb uplift at joint 52, 33 lb uplift at joint 38, 20 lb uplift at joint 49, 19 lb uplift at joint 50, 26 lb uplift at joint 51, 20 lb uplift at joint 53, 24 lb uplift at joint 55, 34 lb uplift at joint 56, 33 lb uplift at joint 57, 28 lb uplift at joint 58, 31 lb uplift at joint 60, 32 lb uplift at joint 61, 36 lb uplift at joint 62, 17 lb uplift at joint 63, 84 lb uplift at joint 64, 19 lb uplift at joint 48, 23 lb uplift at joint 47, 19 lb uplift at joint 46, 18 lb uplift at joint 44, 36 lb uplift at joint 42, 33 lb uplift at joint 41, 32 lb uplift at joint 40, 28 lb uplift at joint 39, 36 lb uplift at joint 37, 35 lb uplift at joint 36, 16 lb uplift at joint 35, 75 lb uplift at joint 34 and 49 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		Wilmington A VLT		
Wilmington A VLT	B01E	Common Supported Gable	1	1	Job Reference (optional)	160353384	

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:50 ID:iRd8szMzCu41eZE1cfW3Z2ykxM5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.5

Plate Offsets (X, Y): [2:0-3-0,0-0-4], [9:0-3-0,Edge], [16:0-3-0,0-0-4], [26:0-3-0,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf 20.0 10.0 0.0 10.0))))) *)	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2) 2015/TPI2014		CSI TC BC WB Matrix-MS	0.06 0.05 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(lo	oc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20	%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 No.3 2-2-12 Structural wood 6-0-0 oc purlins. Rigid ceiling dire bracing. (size) 2=20-1	3 2 shea ctly :	-2-12, Right 2x4 SF athing directly applic applied or 10-0-0 or 16=20-0-0 18=20-1	ed or c	TOP CHORD	1-: 4-: 7-: 10 13 16 2-: 27 24 22 20 18	2=0/22, 2-3=-95/2 5=-108/75, 5-6=-9 8=-85/88, 8-9=-91)-11=-85/76, 11-12 3-14=-90/42, 14-15 5-17=0/22 29=-117/183, 28-2 7-28=-117/183, 23 2-23=-117/183, 21)-21=-117/183, 16 3-19=-117/183, 16	1, 3-4= 17/60, 6 /82, 9- 2=-61/2 5=-122/ 29=-112 -27=-1 -24=-1 -22=-1 -20=-1 -18=-1	-146/87, -7=-87/54, 10=-91/82, 8, 12-13=-70 71, 15-16=-8 7/183, 17/183, 17/183, 17/183, 17/183, 17/183,	/24, 7/13,	9) 10) LO	Prov bear 2, 63 at jo 68 lk joint 19 lk This Inter R80 AD C	ide med ing plat b lb uplif nt 27, 3 o uplift a 20, 34 o uplift a truss is nationa 2.10.2 a ASE(S)	chanic e capa it at joi 4 lb uj t joint b uplif t joint desig I Resid ind ref	al connection (by able of withstandi nt 25, 39 lb uplift plift at joint 28, 96 22, 38 lb uplift at t at joint 19, 92 lb 2. ned in accordanc dential Code sect erenced standard ndard	others) of 19 lb u at joint 26 10 uplift a joint 21, 4 uplift at jo e with the ions R502 1 ANSI/TF	f truss to plift at joint 5, 44 lb uplift it joint 29, 14 lb uplift at joint 18 and 2015 2.11.1 and 11.
REACTIONS	(Si2e) 2=20- 19=20 22=20 28=20 34=20 Max Horiz 2=176 Max Uplift 2=-19 19=-3 21=-3 25=-6 27=-4 29=-91	6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. size) 2=20-0-0, 16=20-0-0, 18=20-0-0, 19=20-0-0, 20=20-0-0, 21=20-0-0 22=20-0-0, 23=20-0-0, 24=20-0-0 25=20-0-0, 26=20-0-0, 27=20-0-0 28=20-0-0, 29=20-0-0, 30=20-0-0 34=20-0-0 Max Horiz 2=176 (LC 11), 30=176 (LC 11) Max Uplift 2=-19 (LC 8), 18=-92 (LC 13), 19=-34 (LC 13), 20=-44 (LC 13), 21=-38 (LC 12), 26=-39 (LC 12), 25=-63 (LC 12), 26=-39 (LC 12), 27=-44 (LC 12), 28=-34 (LC 12), 29=-96 (LC 12), 30=-19 (LC 8)				20-21=-117/183, 19-20=-117/183, 18-19=-117/183, 16-18=-117/183 LOAD C WEBS 8-24=-110/22, 10-23=-97/1, 7-25=-107/79, 6-26=-86/55, 5-27=-88/59, 4-28=-81/54, 3-29=-132/100, 11-22=-107/83, 12-21=-85/55, 13-20=-88/59, 14-19=-81/54, 15-18=-132/97 NOTES 1) Unbalanced roof live loads have been considered for this design. NOTES 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone									Mining CA	P	
FORCES	29=-96 (LC 12), 30=-19 (LC 8) and C-C Max Grav 2=164 (LC 21), 16=151 (LC 22), 18=163 (LC 20), 19=101 (LC 20), 20=115 (LC 20), 21=115 (LC 20), 24=194 (LC 19), 25=111 (LC 23), 26=116 (LC 19), 27=115 (LC 19), 30=164 (LC 21), 34=151 (LC 22) and C-C (lb) - Maximum Compression/Maximum Tension See Stan or consul 30=164 (LC 21), 34=151 (LC 22) or consul 41 plates (lb) - Maximum Compression/Maximum Tension See Stan or consul 30=164 (LC 21), 34=151 (LC 22)						reactions shown; of a wind loads in sexposed to wind Industry Gable En lified building desi 1.5x4 MT20 unless s continuous botto paced at 1-4-0 oc. been designed fo d nonconcurrent wi se been designed fo chord in all areas c2-00-00 wide will other members, w	Lumbe n the pl I (norm d Detai gner as s other m chor r a 10.0 ith any for a liv where fit betw with BC	r DOL=1.60 p ane of the tru al to the face Is as applical per ANSI/TF vise indicated d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle reen the bottt DL = 10.0psf	blate iss), ble, Pl 1. d. ds. Dpsf om			A MILLING ST	K. M.	SEA 0363		

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

August 24,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	B01G	Common Girder	1	3	Job Reference (optional)	160353385

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:51 ID:uBysZcksbcJ?hxNlku2ZetykxKK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-2-13], [5:Edge,0-2-13], [7:0-6-0,0-4-8]

Scale = 1:55.5

Loa TCL TCD BCL BCD	ding L (roof) L L	(psf) 20.0 10.0 0.0 10.0	*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2) 2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.51 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.05	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 368 lb	GRIP 244/190 FT = 20%	
LUM TOP BOT WEE WEI BOT BOT REA FOR BOT WEE	IBER CHORD CHORD 3S OGE CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD CHORD	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 *Exc Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood s 5-7-14 oc purlins. Rigid ceiling direc bracing. (size) 1=0-3- Max Horiz 1=-165 Max Uplift 1=-110 Max Grav 1=8944 (lb) - Maximum C Tension 1-2=-12281/1595 3-4=-8786/1211, 1-9=-1296/10132 6-7=-1337/10899 2-9=-430/3868, 2 3-7=-1215/9347, 4-6=-562/4988	ept 2 hea ttly a (LC 1 (L) (L(0 omp , 2-3 , 5-6 , 5-6 -7=- 4-7=	* 7-3:2x4 SP No.2 thing directly applied applied or 10-0-0 oc =0-3-8 C 10) C 12), 5=-1112 (LC C 1), 5=9140 (LC 1) oression/Maximum B=-8789/1212, =-1321/1704 9=-1296/10132, b=-1337/10899 3612/577, =-4576/690,	1 or	 3) 4) 5) 6) 7) 8) 9) 10) 	Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exte & MWFRS fo grip DOL=1.6 This truss hai chord live loa * This truss hai chord live loa * This truss hai chord and an Two H2.5A S recommende UPLIFT at jt(j and does not This truss is of International R802.10.2 ar Use Simpson Truss) or equ 1-6-0 from the back face of I	roof live loads have 7-10; Vult=130mpt bh; TCDL=6.0psf; B closed; MWFRS (e erior (2) zone;C-C f r reactions shown; 50 s been designed fo d nonconcurrent w as been designed in n chord in all areas y 2-00-00 wide will y other members. Simpson Strong-Tie d to connect truss s) 1 and 5. This con consider lateral fo designed in accord Residential Code s d referenced stand n Strong-Tie HUS26 ivalent spaced at 2 e left end to 17-11- bottom chord.	e been of GCDL=6 GCD	considered for ond gust) .0psf; h=30ft) exterior zo bers and for r DOL=1.60) psf bottom other live loz e load of 20. a rectangle reen the bott tors ng walls due h is for uplift th the 2015 R502.11.1 a SI/TPI 1. od Girder, 4-: max. startin nect truss(e	r ; Cat. ne ces plate dds. Dpsf om to only und I 0d g at s) to			Ň	читн са	NUMBER OF STREET	
NOT 1) : 2) 2	ES 3-ply truss (0.148"x3" Top chord oc. Bottom ch staggered Web conn Except me All loads a except if n CASE(S) : provided t unless oth	s to be connected to ") nails as follows: Is connected as follows: ords connected as follows: A to 0-6-0 oc. nected as follows: 22 ember 4-6 2x4 - 1 ro are considered equa toted as front (F) or section. Ply to ply co to distribute only loa nerwise indicated.	geth ows: ollo 4 - w a bac onne ds n	ner with 10d 2x4 - 1 row at 0-9-0 ws: 2x6 - 3 rows 1 row at 0-9-0 oc, t 0-4-0 oc. upplied to all plies, k (B) face in the LO/ actions have been loted as (F) or (B),) AD	10) LO/ 1)	Fill all nail ho AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3= Concentrate Vert: 6=-1 18=-1648 (B), 22=-	les where hanger is Standard of Live (balanced): I isse=1.15 ads (lb/ft) =-60, 3-5=-60, 10-1 ed Loads (lb) 1648 (B), 16=-1648 (B), 19=-1648 (B) 1648 (B), 23=-1648	s in cor _umber 3=-20 5 (B), 17 , 20=-11 5 (B), 24	tact with lum Increase=1. '=-1648 (B), 548 (B), 21=- I=-1648 (B)	ber. 15, 1648		Mannan .		SEAI 03632	ER RATIN	Mannah

August 24,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	BV1	Valley	1	1	Job Reference (optional)	160353386

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:51 ID:AuhPzHXOmDDqcd5ubUEe31ykxtR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

E	30	2	D	L		
ī	ι	J	м	в	F	R

BOT CHORD

this design.

grip DOL=1.60

Gable studs spaced at 4-0-0 oc.

WEBS

1)

2)

3)

5)

NOTES

Scale = 1:44.9 Loading

TCLL (roof)

TCDI

BCLL

2x4 SP N	0.2
2x4 SP N	0.2
2x4 SP N	0.3
Structural 10-0-0 oc	wood sheathing directly applied or purlins.
Rigid ceili bracing.	ng directly applied or 6-0-0 oc
(size)	1=17-2-8, 5=17-2-8, 6=17-2-8,
	7=17-2-8, 9=17-2-8
Max Horiz	1=-138 (LC 8)
Max Uplift	1=-7 (LC 8), 6=-158 (LC 13),
	9=-160 (LC 12)
Max Grav	1=102 (LC 23), 5=102 (LC 24),
	6=447 (LC 20), 7=478 (LC 19),
	9=448 (LC 19)
(lb) - Max Tension	imum Compression/Maximum
1-2=-126/	235, 2-3=-11/180, 3-4=0/171,
	2x4 SP N 2x4 SP N 2x4 SP N Structural 10-0-0 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-126/

4-5=-119/195

5-6=-162/109

1-9=-162/132, 7-9=-162/109, 6-7=-162/109,

3-7=-330/13, 2-9=-308/195, 4-6=-307/194

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Wind: ASCE 7-10; Vult=130mph (3-second gust)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 7)

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 7 lb uplift at joint 1, 160 lb uplift at joint 9 and 158 lb uplift at joint 6.

This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

8)

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT			
Wilmington A VLT	BV2	Valley	1	1	Job Reference (optional)	160353387		

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:52 ID:XbysSAOsbXiXAnAauz0qaVykxtd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.11 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=14-2-8, 7=14-2-8, Max Horiz 1=-113 (L Max Uplift 1=-12 (LC 8=-142 (L Max Grav 1=96 (LC (LC 20), 7 19)	athing directly applied applied or 6-0-0 oc 5=14-2-8, 6=14-2-8, 8=14-2-8 C 8) C 13), 6=-140 (LC 13) C 12) 20), 5=83 (LC 1), 6= '=274 (LC 1), 8=368	 6) This truss his chord live lo 7) * This truss on the botto 3-06-00 tall chord and a sill chord and a sill provide mean bearing platt 1, 142 lb up 9) This truss is Internationa R802.10.2 a LOAD CASE(S) 3666 (LC 	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs lift at joint 8 and 14 designed in accor I Residential Code and referenced state Standard	for a 10.0 with any d for a liv as where ill fit betv n (by oth tanding 1 40 lb uplit dance w e sections ndard AN	D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at ju t at joint 6. is R502.11.1 a ISI/TPI 1.	ds.)psf om o point nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-129/121, 2-3=- 4-5=-99/88	94/107, 3-4=-88/97,										
BOT CHORD	1-8=-57/111, 7-8=-5 5-6=-57/79	7/71, 6-7=-57/71,										
WEBS NOTES 1) Unbalance	3-7=-195/0, 2-8=-28	5/183, 4-6=-284/183 been considered for									TH CA	Rojin

- this design. 2)
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	BV3	Valley	1	1	Job Reference (optional)	160353388

5-7-4

5-7-4

84 Components (Dunn, NC), Dunn, NC - 28334,

3-9-1

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:52 ID:70Hkq8M_IcKyJJR0DqT7ysykxtg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 =

10-9-5

5-2-1

Page: 1

11-2-8

0-5-3

3

 g
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Scale = 1:33.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 40 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracino. 	athing directly applie applied or 6-0-0 oc	7) 8) ed or 9)	* This truss I on the bottor 3-06-00 tall I chord and an Provide mec bearing plate 1, 66 lb uplif This truss is International	nas been desigr n chord in all ar by 2-00-00 wide ny other membe thanical connect e capable of with a ta joint 3 and 1 designed in acc Residential Co	ned for a liv reas where will fit betw ers. tion (by oth hstanding 6 49 lb uplift cordance w de sections	e load of 20. a rectangle veen the bott ers) of truss t 6 lb uplift at j at joint 4. th the 2015 R502.11.1 a	Opsf om to joint and					
REACTIONS	(size) 1=11-2-8, Max Horiz 1=89 (LC Max Uplift 1=-66 (LC 4=-149 (LC Max Grav 1=46 (LC (LC 1)	3=11-2-8, 4=11-2-8 11) 24), 3=-66 (LC 23), C 12) 23), 3=53 (LC 12), 4	LC 1=927	R802.10.2 a DAD CASE(S)	nd referenced s Standard	tandard AN	ISI/TPI 1.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-155/476, 2-3=-	155/476											
BOT CHORD	1-4=-411/202, 3-4=-	411/202											
WEBS	2-4=-721/258												
NOTES													
 Unbalance this designation 	ed roof live loads have n.	been considered for	r										1175
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)	0-4									WHY CA	Dalla

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss
- only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 August 24,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	BV4	Valley	1	1	Job Reference (optional)	160353389

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:52 ID:EF1D_nITENqWri8E_?OBo0ykxtk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-8

Scale = 1:28

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.20 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-2-8 oc purlins. Rigid ceiling directly bracing. (size) 1=8-2-8,3 Max Horiz 1=64 (LC Max Uplift 1=-14 (LC Max Grav 1=68 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 3=8-2-8, 4=8-2-8 9) 24), 3=-14 (LC 23), 12) 23), 3=68 (LC 24), 4	7; 8; ed or 9; , L 4=586	 * This truss h on the botton 3-06-00 tall b chord and an Provide med bearing plate 1, 14 lb uplift This truss is (International R802.10.2 ar OAD CASE(S) 	as been designen n chord in all area y 2-00-00 wide w y other members nanical connection capable of withs at joint 3 and 81 designed in accord Residential Code nd referenced sta Standard	d for a liv as where ill fit betw n (by oth tanding 1 lb uplift a rdance w sections ndard AN	e load of 20.0 a rectangle veen the botto ers) of truss to 4 lb uplift at jo t joint 4. ith the 2015 R502.11.1 at ISI/TPI 1.	psf m bint						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanco this design	(lb) - Maximum Com Tension 1-2=-75/261, 2-3=-7: 1-4=-227/120, 3-4=- 2-4=-424/149 ed roof live loads have	pression/Maximum 5/261 227/120 been considered fo	r											

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 A. GILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	BV5	Valley	1	1	Job Reference (optional)	160353390

2-7-4

2-7-4

84 Components (Dunn, NC), Dunn, NC - 28334,

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:52 ID:qgM4MIGbySSy_EPfJsrUAOykxtn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-5

2-2-1

5-2-8

5-2-8

Scolo 1.24

Scale = 1.24													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-8, 3 Max Horiz 1=-39 (LC Max Uplift 1=-6 (LC (LC 12) Max Grav 1=65 (LC (LC 1) 	athing directly applie applied or 6-0-0 oc 3=5-2-8, 4=5-2-8 2 8) 12), 3=-13 (LC 13), 23), 3=65 (LC 24), 4	7) 8) 9) 4=35 4=313	* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 13 lb uplift at This truss is International R802.10.2 ar DAD CASE(S)	as been design n chord in all ar by 2-00-00 wide hanical connec e capable of witt joint 3 and 35 designed in acc Residential Co nd referenced s Standard	ned for a liv reas where e will fit betw ers. tion (by oth hstanding 6 Ib uplift at jo cordance wi de sections standard AN	e load of 20.0 a rectangle reen the botto ers) of truss t Ib uplift at joi bint 4. th the 2015 R502.11.1 a SI/TPI 1.	Dpsf om int 1, nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10° Vasd=10° I; Exp B; and C-C I	(lb) - Maximum Corr Tension 1-2=-62/107, 2-3=-6 1-4=-96/56, 3-4=-96 2-4=-196/61 ed roof live loads have m. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone;C-C fo	pression/Maximum 2/107 /56 been considered fo (3-second gust) CDL=6.0psf; h=30ft; velope) exterior zor pr members and forc	r Cat. ne xes									MTH CA	ROUT

- & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

With Hilling SEAL 036322 GI mmm August 24,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington A VLT	
Wilmington A VLT	M1	Monopitch	10	1	Job Reference (optional)	160353391

Run: 8.72 S Aug 11 2023 Print: 8.720 S Aug 11 2023 MiTek Industries, Inc. Wed Aug 23 15:00:53 ID:?W_p5iBqMchoFJyWyck3x7ykxtt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5:00:53 Page: 1

Scale = 1:28.5

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB Matrix MB	0.27 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 4-7 4-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/1PI2014	Matrix-MR							Weight: 15 lb	FT = 20%	
BCDL LUMBER TOP CHORD 2x4 BOT CHORD 2x4 OTHERS 2x4 BRACING TOP CHORD Stri 4-(- BOT CHORD Rig bra REACTIONS (size Max Max FORCES (lb FOR CHORD 1-2 BOT CHORD 1-2 BOT CHORD 1-2 BOT CHORD 1-2 BOT CHORD 1-2 BOT CHORD 2-4 NOTES 1) Wind: ASCE 7- Vasd=103mph. II; Exp B; Enclo and C-C Exteri & MWFRS for I grip DOL=1.60 2) This truss has chord live load 3) * This truss has on the bottom of 3-06-00 tall by chord and any 4) Bearing at joint using ANSI/TP designer shoul 5) Provide mecha bearing plate a 6) One H2.5A Sim recommended UBU IET at if(-)	10.0 4 SP No.2 4 SP No.2 4 SP No.3 vuctural wood she -0 oc purlins. gid ceiling directly acing. a) 2=0-3-0, 4 Horiz 2=61 (C Uplift 2=-48 (LC Grav 2=198 (LC) - Maximum Corr nsion 2=0/13, 2-3=-107/ 4=-45/87 10; Vult=130mph ; TCDL=6.0psf; B bosed; MWFRS (er or (2) zone;C-C for reactions shown; been designed for nonconcurrent wir s been designed for nonconcurrent wir s been designed for hord in all areas 2-00-00 wide will other members. (s) 4 considers paid 1 angle to grain d verify capacity of nical connection of t joint(s) 4. hpson Strong-Tie to connect truss t	Code athing directly applied applied or 10-0-0 oc 4=0-1-8 8) C 1), 4=-35 (LC 12) C 1), 4=151 (LC 1) apression/Maximum 19, 3-4=-87/74 (3-second gust) CDL=6.0psf; h=30ft; (avelope) exterior zone or members and force Lumber DOL=1.60 pl r a 10.0 psf bottom ith any other live load or a live load of 20.0p where a rectangle fit between the bottor arallel to grain value formula. Building of bearing surface. (by others) of truss to connectors to bearing walls due the particula for unit of the section is for unit of the section is for unit	IRC2015/TPI2014 7) This truss is International R802.10.2 ar LOAD CASE(S) d or Cat. e as ate ls. osf m	Matrix-MR designed in accord Residential Code s ad referenced stand Standard	dance wisections dard AN	L R502.11.1 ai ISI/TPI 1.	nd		Manual Contraction of the second s		Veight: 15 Ib WHICH CA OFESS SEA 0363 SEA	ROUTER 22 EREPTION	Manunun
and does not c	onsider lateral for	ces.									August	24,2023	

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

