

Trenco 818 Soundside Rd Edenton, NC 27932

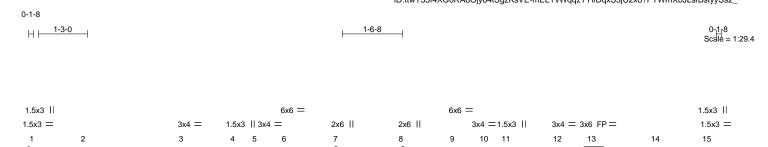
Re: J1024-5567 Lot 129 Duncans Creek

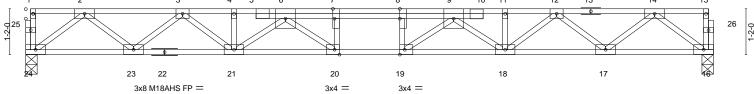
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I68891766 thru I68891780

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


October 16,2024


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 129 Duncans Creek
J1024-5567	F01	FLOOR	4	1	168891766
					Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	Comtech, Inc., Fayetteville, NC 28309				8.630 s Jul 12 2024 MiTek Industries, Inc. Wed Oct 16 11:21:19 2024 Page 1

8.630 s Jul 12 2024 MiTek Industries, Inc. Wed Oct 16 11:21:19 2024 Page ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-mELYvWqqzTYIfDqxS3jU2xo?PTWmXbJLsfBstyySs2_

			17-6-8			
			17-6-8			1
Plate Offsets (X,Y)	[1:0-2-4,0-1-8], [1:0-2-4,0-1-7], [7:0-3-0,	Edge], [8:0-3-0,0-0-0], [19:0)-1-8,Edge], [20:0-1-8,I	Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.76 WB 0.50 Matrix-S	Vert(LL) -0.24	n (loc) l/defl L/d 19-20 >866 480 919-20 >631 360 7 16 n/a n/a	PLATES MT20 M18AHS Weight: 98 lb	GRIP 244/190 186/179 FT = 20%F. 11%E
BODL 5.0		Matrix-S			Weight. 90 lb	FT = 2076F, TT76E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	, ,,	oc purlins, except

REACTIONS. (lb/size) 24=945/0-3-8, 16=945/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-1996/0, 3-4=-3297/0, 4-5=-3297/0, 5-6=-3300/0, 6-7=-4146/0, 7-8=-4146/0, 8-9=-4146/0, 9-10=-3300/0, 10-11=-3297/0, 11-12=-3297/0, 12-13=-1996/0, 13-14=-1996/0

 BOT CHORD
 23-24=0/1185, 22-23=0/2773, 21-22=0/2773, 20-21=0/3840, 19-20=0/4146, 18-19=0/3840, 17-18=0/2773, 16-17=0/1185

 WEBS
 2-24=-1484/0, 2-23=0/1055, 3-21=0/670, 14-16=-1484/0, 14-17=0/1055, 12-17=-1011/0, 12-18=0/670, 9-18=-676/0, 9-19=-42/672, 6-21=-676/0, 6-20=-42/672, 7-20=-356/20, 8-19=-356/20

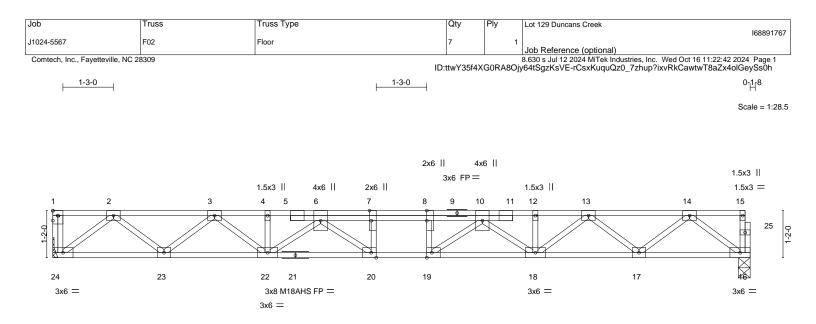
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.


5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			17-3-0			
Plate Offsets (X,Y)-	 [1:Edge,0-1-8], [1:0-1-8,0-1-8], [1:0-1-8, 	0-1-7], [7:0-3-0,Edge], [8:0	0-3-0,0-0-0], [19:0-1-8,E	dge], [20:0-1-8,Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.58 WB 0.39 Matrix-S	Vert(LL) -0.18	n (loc) l/defl L/d 8 19-20 >999 480 5 19-20 >826 360 5 16 n/a n/a	PLATES MT20 M18AHS Weight: 97 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4	SP No.1(flat) SP No.1(flat) SP No.3(flat)	I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire end verticals. Rigid ceiling directly applied o	<i>y</i> 11	oc purlins, except

17-3-0

REACTIONS. (lb/size) 24=748/Mechanical, 16=743/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1564/0, 3-4=-2573/0, 4-5=-2573/0, 5-6=-2575/0, 6-7=-3211/0, 7-8=-3211/0, 8-9=-3211/0, 9-10=-3211/0, 10-11=-2575/0, 11-12=-2573/0, 12-13=-2573/0, 13-14=-1563/0 BOT CHORD 23-24=0/931, 22-23=0/2169, 21-22=0/2987, 20-21=0/2987, 19-20=0/3211, 18-19=0/2987, 17-18=0/2169, 16-17=

 BOT CHORD
 23-24=0/931, 22-23=0/2169, 21-22=0/2987, 20-21=0/2987, 19-20=0/3211, 18-19=0/2987, 17-18=0/2169, 16-17=0/931

 WEBS
 2-24=-1169/0, 2-23=0/823, 3-23=-788/0, 3-22=0/516, 6-22=-517/0, 6-20=-44/492, 7-20=-259/22, 14-16=-1166/0, 14-17=0/823, 13-17=-789/0, 13-18=0/515, 10-18=-517/0, 10-19=-44/492, 8-19=-259/22

NOTES-

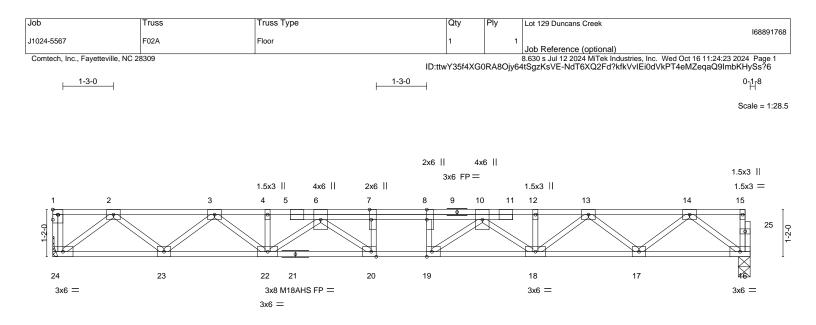
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x4 MT20 unless otherwise indicated.


4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.


6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

2-9-0			11-9-0	2-9-0
Plate Offsets (X,Y)	[1:Edge,0-1-8], [1:0-1-8,0-1-8], [1:0-1-8,	,0-1-8], [7:0-3-0,Edge], [8:0	-3-0,0-0-0], [19:0-1-8,Edge], [20:0-1-8,Edge]	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.58 WB 0.39 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.18 19-20 >999 480 Vert(CT) -0.25 19-20 >826 360 Horz(CT) 0.05 16 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 97 lb FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD Structural wood sheathing dir end verticals.	ectly applied or 6-0-0 oc purlins, except

BOT CHORD

14-6-0

BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

2-9-0

REACTIONS. (lb/size) 24=748/Mechanical, 16=743/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-1564/0, 3-4=-2573/0, 4-5=-2573/0, 5-6=-2575/0, 6-7=-3211/0, 7-8=-3211/0, 8-9=-3211/0, 9-10=-3211/0, 10-11=-2575/0, 11-12=-2573/0, 12-13=-2573/0, 13-14=-1563/0

 BOT CHORD
 23-24=0/931, 22-23=0/2169, 21-22=0/2987, 20-21=0/2987, 19-20=0/3211, 18-19=0/2987, 17-18=0/2169, 16-17=0/931

 WEBS
 14-16=-1166/0, 2-24=-1169/0, 14-17=0/823, 2-23=0/823, 13-17=-789/0, 3-23=-788/0, 13-18=0/2165, 3-22=0/516, 10-18=-517/0, 6-22=-517/0, 10-19=-44/492, 6-20=-44/492, 7-20=-259/22, 8-19=-259/22

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

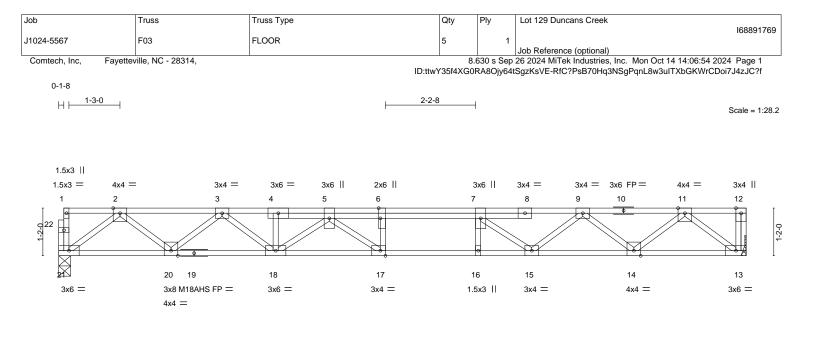
3) All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


8) CAUTION, Do not erect truss backwards.

17-3-0

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

			16-10-0 16-10-0			
Plate Offsets (X,Y)	[6:0-3-0,Edge], [17:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.45 BC 0.76 WB 0.47 Matrix-S	Vert(LL) -0.22	2 17 >896 1 17-18 >649	L/d PLATES 480 MT20 360 M18AHS n/a Weight: 93	GRIP 244/190 186/179 b FT = 20%F, 11%E
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	except end vertical	eathing directly applied or 6-0 s. y applied or 10-0-0 oc bracin	. ,

REACTIONS. (size) 21=0-3-8, 13=Mechanical Max Grav 21=906(LC 1), 13=912(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1896/0, 3-4=-3119/0, 4-5=-3124/0, 5-6=-3730/0, 6-7=-3730/0, 7-9=-3141/0, 9-11=-1892/0
- BOT CHORD 20-21=0/1134, 18-20=0/2628, 17-18=0/3629, 16-17=0/3730, 15-16=0/3730, 14-15=0/2605, 13-14=0/1142
- WEBS 2-21=-1420/0, 2-20=0/992, 3-20=-953/0, 3-18=0/626, 5-18=-636/0, 5-17=-236/559, 6-17=-291/109, 11-13=-1433/0, 11-14=0/976, 9-14=-928/0, 9-15=0/721, 7-15=-825/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

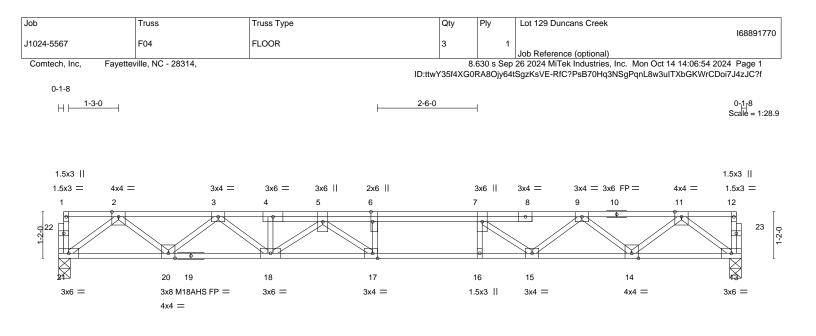
2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

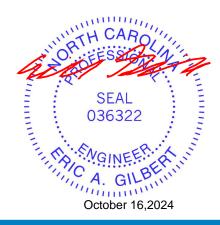
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
CLL 40.0	Plate Grip DOL 1.00	TC 0.51	Vert(LL) -0.2	4 17 >842	480	MT20	244/190
CDL 10.0	Lumber DOL 1.00	BC 0.79	Vert(CT) -0.3	3 17-18 >610	360	M18AHS	186/179
CLL 0.0	Rep Stress Incr YES	WB 0.48	Horz(CT) 0.0	13 n/a	n/a		
CDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 94 lb	FT = 20%F, 11%
UMBER-			BRACING-				
	? No.1(flat) ? No.1(flat)		TOP CHORD	Structural woo except end ver	0	rectly applied or 6-0-0	oc purlins,
	PNo.3(flat)		BOT CHORD			or 10-0-0 oc bracing.	
EACTIONS. (size	e) 21=0-3-8, 13=0-3-8						

17-1-9

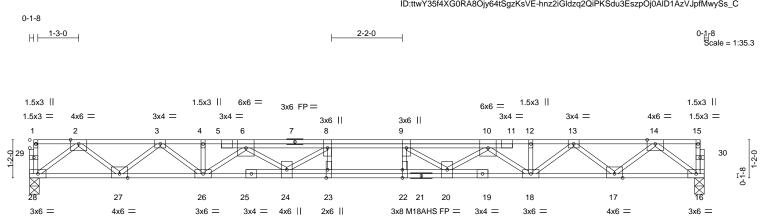
	9-11=-1931/0
BOT CHORD	20-21=0/1155, 18-20=0/2688, 17-18=0/3733, 16-17=0/3855, 15-16=0/3855, 14-15=0/2661,
	13-14=0/1164
WEBS	2-21=-1446/0, 2-20=0/1017, 3-20=-979/0, 3-18=0/652, 5-18=-666/0, 5-17=-225/606,
	6-17=-318/102, 11-13=-1458/0, 11-14=0/999, 9-14=-950/0, 9-15=0/765, 7-15=-881/0


NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Truss Type	Qty	Ply	Lot 129 Duncans Creek
			168891
FLOOR	13	1	
			Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309			8.630 s Jul 12 2024 MiTek Industries, Inc. Wed Oct 16 11:25:21 2024 Page 1
			FLOOR 13 1

2x6 ||

4x6 ||

L			20-8-0					
			20-8-0					I
Plate Offsets (X,Y)	[1:0-2-4,0-1-8], [1:0-2-4,0-1-8], [22:0-3-	0,0-0-0], [23:0-3-0,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.48 WB 0.51 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.25 22-23 -0.35 22-23 0.06 16	l/defl >972 >707 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 126 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 S	P 2400F 2.0E(flat) P 2400F 2.0E(flat) P No.3(flat)		BRACING- TOP CHOR BOT CHOR	D Structu end ve	rticals.	0	irectly applied or 6-0-0 or 10-0-0 or 10-0-0 or bracing.	oc purlins, except
REACTIONS. (Ib/siz	(),		BOLCHOR	D Rigid C	ening air	ectly applied	or 10-0-0 oc bracing.	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD
 2-3-1945(0)
 3-4-483/0, 3-4-3290/0, 4-5-3294/0, 6-7-4483/0, 7-8--4483/0, 8-9-4922/0, 9-10--4483/0, 10-11=-3294/0, 11-12=-3294/0, 12-13=-3290/0, 12-13=-3290/0, 13-14=-1945/0

 BOT CHORD
 27-28=0/1130, 26-27=0/2719, 25-26=0/4065, 24-25=0/4064, 23-24=0/4922, 22-23=0/4922, 21-22=0/4922, 20-21=0/4922, 19-20=0/4064, 18-19=0/4065, 17-18=0/2719, 16-17=0/1130

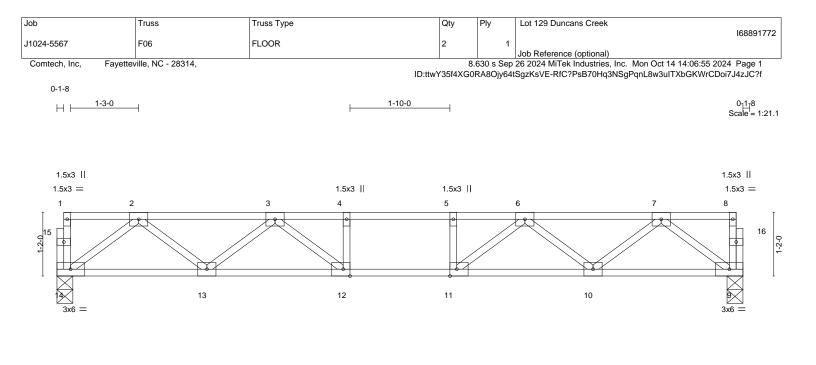
 WEBS
 2-28=-1415/0, 2-27=0/1061, 3-27=-1008/0, 3-26=0/728, 14-16=-1415/0, 14-17=0/1061,
 - 13-17=-1008/0, 13-18=0/728, 10-18=-968/0, 10-20=0/595, 9-20=-741/0, 6-26=-968/0, 6-24=0/595, 8-24=-741/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.


4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>12-7-0</u> 12-7-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.32 BC 0.42 WB 0.30 Matrix-S	Vert(LL) -0.08	n (loc) l/defl L/d 8 12-13 >999 480 1 12-13 >999 360 2 9 n/a n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	, II) oc purlins,
REACTIONS. (size	e) 14=0-3-8, 9=0-3-8					

Max Grav 14=672(LC 1), 9=672(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1311/0, 3-4=-1971/0, 4-5=-1971/0, 5-6=-1971/0, 6-7=-1311/0

BOT CHORD 13-14=0/829, 12-13=0/1757, 11-12=0/1971, 10-11=0/1757, 9-10=0/829

2-14=-1038/0, 2-13=0/627, 3-13=-581/0, 3-12=0/472, 7-9=-1038/0, 7-10=0/627,

WEBS 2-14=-1038/0, 2-13=0/627, 3-13 6-10=-581/0, 6-11=0/472

NOTES-

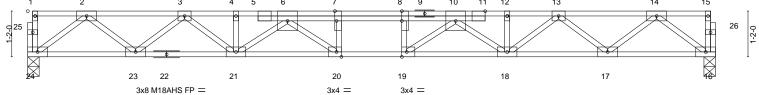
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Lot 129 Duncans Creek
J1024-5567	F07	FLOOR	4	1	168891773
			-		Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	Comtech, Inc., Fayetteville, NC 28309				8.630 s Jul 12 2024 MiTek Industries, Inc. Wed Oct 16 11:26:51 2024 Page 1

			17-6-8			
Γ			17-6-8			1
Plate Offsets (X,Y)	[1:0-2-4,0-1-8], [7:0-3-0,Edge], [8:0-3-0,	0-0-0], [12:0-6-12,0-1-8], [1	19:0-1-8,Edge], [20:0-1-	·8,Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.76 WB 0.50 Matrix-S	Vert(LL) -0.24	n (loc) I/defl L/d 4 19-20 >866 480 3 19-20 >631 360 7 16 n/a n/a	PLATES MT20 M18AHS Weight: 98 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied		oc purlins, except

REACTIONS. (lb/size) 24=945/0-3-8, 16=945/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-1996/0, 3-4=-3297/0, 4-5=-3297/0, 5-6=-3300/0, 6-7=-4146/0, 7-8=-4146/0, 8-9=-4146/0, 9-10=-4146/0, 10-11=-3300/0, 11-12=-3297/0, 12-13=-3297/0, 13-14=-1996/0

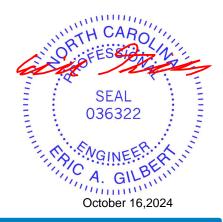
 BOT CHORD
 23-24=0/1185, 22-23=0/2773, 21-22=0/2773, 20-21=0/3840, 19-20=0/4146, 18-19=0/3840, 17-18=0/2773, 16-17=0/1185

 WEBS
 2-24=-1484/0, 2-23=0/1055, 3-23=-1011/0, 3-21=0/670, 14-16=-1484/0, 14-17=0/1055, 13-17=-1011/0, 13-18=0/670, 10-18=-676/0, 10-19=-42/672, 6-21=-676/0, 6-20=-42/672, 7-20=-356/20, 8-19=-356/20

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

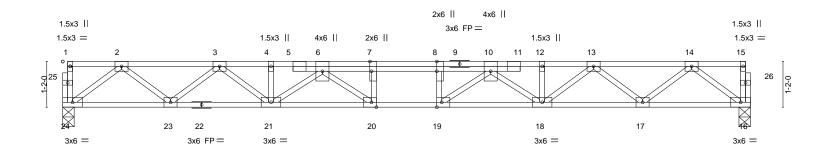

3) All plates are 3x6 MT20 unless otherwise indicated.

Plates checked for a plus or minus 1 degree rotation about its center.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANS/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply Lot 129 Duncans Creek	
				l68891774
J1024-5567	F08	FLOOR	4 1 Ich Deference (entional)	
			Job Reference (optional)	
Comtech, Inc., Fayetteville	le, NC 28309		8.630 s Jul 12 2024 MiTek Industries, Inc.	
			ID:ttwY35f4XG0RA8Ojy64tSqzKsVE-xylHifiEqbSR7Jja7vzD0	Q7X3XJRqBKvplW3E2XySrxq

<u>2-9-</u> 2-9-	-0		14-9-8 12-0-8			7-6-8 2-9-0
Plate Offsets (X,Y)	[1:0-2-4,0-1-8], [1:0-2-4,0-1-8], [7:0	0-3-0,Edge], [8:0-3-0,0-0-0], [19	9:0-1-8,Edge], [20:0-1-8,	Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-1-7-3Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.20 BC 0.61 WB 0.40 Matrix-S	Vert(LL) -0.19	n (loc) l/defl L/d 9 19-20 >999 480 6 19-20 >789 360 5 16 n/a n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	end verticals.	ng directly applied or 6-0-0 lied or 10-0-0 oc bracing.	oc purlins, except

REACTIONS. (lb/size) 24=755/0-3-8, 16=755/0-3-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1595/0, 3-4=-2636/0, 4-5=-2636/0, 5-6=-2638/0, 6-7=-3315/0, 7-8=-3315/0, 8-9=-3315/0, 9-10=-3315/0, 10-11=-2638/0, 11-12=-2636/0, 12-13=-2636/0, 13-14=-1595/0 23-24=0/948, 22-23=0/2217, 21-22=0/2217, 20-21=0/3070, 19-20=0/3315, 18-19=0/3070, 17-18=0/2217, 16-17=0/948 BOT CHORD

WEBS 14-16=-1187/0, 2-24=-1187/0, 14-17=0/843, 2-23=0/843, 13-17=-809/0, 3-23=-809/0, 13-18=0/536, 3-21=0/536, 10-18=-541/0, 6-21=-541/0, 10-19=-34/538, 6-20=-34/538, 7-20=-284/16, 8-19=-284/16

NOTES-

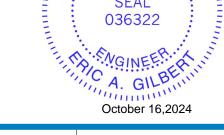
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

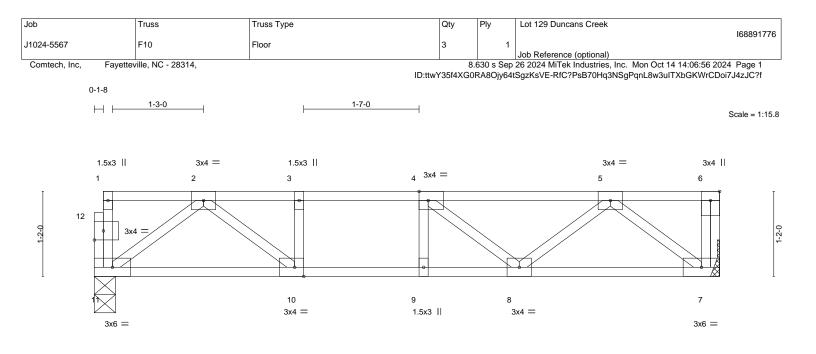
4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Job	Truss	Truss Type	Qty	Ply	Lot 129 Duncans Cre	ek	
				·			168891775
1024-5567	F9-GR	Floor Girder	1	1	Job Reference (option	nal)	
Comtech, Inc, Fay	vetteville, NC - 28314,	1			p 26 2024 MiTek Indust 4tSgzKsVE-RfC?PsB70	ries, Inc. Mon Oct 14	
0-1-8			ID.IIW13314AG0	RAOOJY0	40928575-8070	HysinggrynLowsun7	DGRWICD01/J42JC?I
H <u>1-3-0</u>	2-1-8		0-10-8 1	4-0	1-4-0 1-4-	0 1-4-0	0-1 ₁ 8
				1			Scale = 1:29
2::4	_	2014	a.c. —		3x6 FP=		
3x4 1 2	- 3	3x4 = 3x4 = 3x6 4 5 6	3x6 = 7 8	9	3x6 FP — 10 11	12 1;	3 14
				•			• •
27							28
	¢	<u>Ψ_</u> _					
26	25	24 23 22	<u>k</u>	XXXX49		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
3x6 =	3x4 =	3x4 = 3x6 FP	= 3x6 =				3x4
L		10-8	9-0 ₁ 0		17-6-8		
Plate Offsets (X,Y)		10-8 Edge]	0- ¹ -8		8-6-8		
	[4:0-1-8,Edge], [25:0-1-8,E	Edge]		(100)			
LOADING (psf)				n (loc) 7 24	8-6-8 l/defl L/d >999 480	PLATES MT20	GRIP 244/190
LOADING (psf) TCLL 40.0 TCDL 10.0	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09	24 24	l/defl L/d >999 480 >999 360		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28	DEFL. ir Vert(LL) -0.07	24 24	l/defl L/d >999 480		
TCDL 10.0 BCLL 0.0	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09	24 24	l/defl L/d >999 480 >999 360	MT20	244/190
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01	24 24 15 Structu	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dii	MT20 Weight: 84 lb	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING-	24 24 15 Structu except	l/defl L/d >999 480 >999 360 n/a n/a	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 Sf BOT CHORD 2x4 Sf WEBS 2x4 Sf	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat)	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD	24 24 15 Structu except	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals.	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) No.3(flat) earings 8-8-0 except (jt=ler uplift	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler plift All uplift 100 lb or les Grav All reactions 250 lb c	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 Sf BOT CHORD 2x4 Sf WEBS 2x4 Sf WEBS 2x4 Sf REACTIONS. All b (lb) - Max L Max C	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) Parings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1)	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 Sf BOT CHORD 2x4 Sf WEBS 2x4 Sf REACTIONS. All b (lb) - Max L Max C	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Srav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All force	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2:3= BOT CHORD 2:5-2	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler 'plift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2:3= BOT CHORD 2:5-2	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler 'plift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 3CLL 0.0 3CDL 5.0 LUMBER- TOP CHORD 2x4 SF WEBS 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= 3OT CHORD 25-2 WEBS 7-21 NOTES-	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) P No.3(flat) earings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Strav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forcr -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23 =-974/0, 2-26=-701/0, 2-25	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 3CLL 0.0 3CDL 5.0 LUMBER- TOP CHORD 2x4 SF 3OT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= 3OT CHORD 2-3= 3OT CHORD 25-2 WEBS 7-21 NOTES- 1) Unbalanced floor liv	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler 'plift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S Ingth) 26=0-3-8. ss at joint(s) 20 por less at joint(s) 15, 16, 17, 18, 19, 20 e exes 250 (lb) or less except when shown. e-889/0 3-24=0/1006, 21-23=0/686 i=0/589, 3-25=-274/0, 6-21=-696/0, 6-23 ered for this design.	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD	24 24 15 Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%
LOADING (psf) TCLL 40.0 TCDL 10.0 3CLL 0.0 3CDL 5.0 LUMBER- TOP CHORD TOP CHORD 2x4 SF 3OT CHORD 2x4 SF WEBS 2x4 SF (Ib) - Max L Max C (Ib) - Max L Max C FORCES. (Ib) - Max. TOP CHORD 2-3= 3OT CHORD 25-2 WEBS 7-21 NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1 (flat) P No.1 (flat) P No.3 (flat) earings 8-8-0 except (jt=ler Jplift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23= =-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21	Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied o	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 Sf BOT CHORD 2x4 Sf WEBS 2x4 Sf REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 25-2 WEBS 7-21 NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Provide mechanical	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.1(flat) P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Srav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23 =-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271	Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-3=	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.1(flat) P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=len Uplift All uplift 100 lb or les Srav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23= =-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space uttached to walls at their ou	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271	Structu except Rigid c	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. eiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-3= BOT CHORD 25-2 WEBS 7-21 NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Provide mechanical 5) Recommend 2x6 st Strongbacks to be a 6) CAUTION, Do not e 7) Hanger(s) or other of	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1 (flat) P No.1 (flat) P No.1 (flat) P No.3 (flat) earings 8-8-0 except (jt=ler Jplift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23= =-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space uttached to walls at their our verect truss backwards. connection device(s) shall b	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L (lb) - Max L (lb) - Max L (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-5= WEBS 7-21	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Srav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forcr -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23 e-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space uttacked to walls at their ou virect truss backwards. selection of such connectio	Edge 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X trated load(s) 853 lb dor s.	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (ib) - Max L Max C FORCES. (ib) - Max. TOP CHORD 2-3= BOT CHORD 2-3=	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.1(flat) P No.3(flat) earings 8-8-0 except (jt=len plift All uplift 100 lb or les Garva All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23= g=-974/0, 2-26=-701/0, 2-25 re loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of to rongbacks, on edge, space uttached to walls at their ou rect truss backwards. connection device(s) shall to selection of such connectio S) section, loads applied to	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X trated load(s) 853 lb dor s.	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2:3= BOT CHORD 2:3=	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1 (flat) P No.1 (flat) P No.3 (flat) earings 8-8-0 except (jt=len 'plift All uplift 100 lb or les Garv All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23 e-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space witached to walls at their ou virect truss backwards. connection device(s) shall b selection of such connectio (S) section, loads applied to dard	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S http://www.action.org/line Matrix-S http://www.action.org/line Matrix-S http://www.action.org/line No http://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X trated load(s) 853 lb dor s.	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0	244/190 FT = 20%F, 11%E
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-3=	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1(flat) P No.3(flat) Parings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Srav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23= =-974/0, 2-26=-701/0, 2-25 e loads have been conside MT20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space ttracked to walls at their ou rect truss backwards. sonnection device(s) shall t selection of such connectio (S) section, loads applied to dard balanced): Lumber Increase	Edge 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X trated load(s) 853 lb dor s.	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0 or 10-0-0 oc bracing.	244/190 FT = 20%F, 11%E D oc purlins,
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. All b (lb) - Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-3=	[4:0-1-8,Edge], [25:0-1-8,E SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI P No.1 (flat) P No.1 (flat) P No.3 (flat) earings 8-8-0 except (jt=ler Uplift All uplift 100 lb or les Grav All reactions 250 lb c 21=1388(LC 1) Comp./Max. Ten All forc -1006/0, 3-4=-1006/0, 4-6= 6=0/562, 24-25=0/1006, 23 =-974/0, 2-26=-701/0, 2-25 e loads have been conside MI20 unless otherwise ind a plus or minus 1 degree ro connection (by others) of t rongbacks, on edge, space uttached to walls at their ou rect truss backwards. connection of such connection (S) section, loads applied to dard balanced): Lumber Increase =-10, 1-14=-100	Edge] 2-0-0 CSI. 1.00 TC 0.48 1.00 BC 0.52 NO WB 0.28 I2014 Matrix-S http://www.action.org/line Matrix-S http://www.action.org/line Matrix-S http://www.action.org/line No http://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01 BRACING- TOP CHORD BOT CHORD BOT CHORD except 26=488(LC 3), 21 3=0/271 nding 100 lb uplift at join uss with 3-10d (0.131" X trated load(s) 853 lb dor s.	24 24 15 Structu except Rigid c =1388(L nt(s) 20. 3") nails	I/defl L/d >999 480 >999 360 n/a n/a ural wood sheathing dir end verticals. ceiling directly applied of .C 1),	MT20 Weight: 84 lb rectly applied or 6-0-0 or 10-0-0 oc bracing.	244/190 FT = 20%F, 11%E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

RENCO

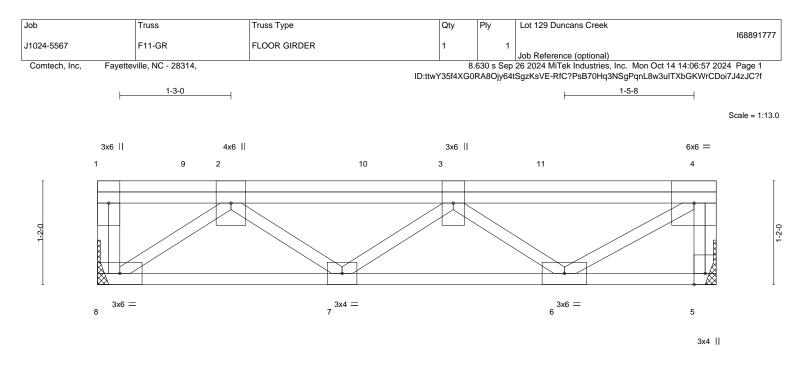
<u> </u>			8-7-0						
Plate Offsets (X,Y)-	[4:0-1-8,Edge], [10:0-1-8,Edge], [12:0-1	-8,0-1-8]	8-7-0						
LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.29 BC 0.41	DEFL. Vert(LL) Vert(CT)	in -0.05 -0.06	(loc) 8-9 8-9	l/defl >999 >999	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.23 Matrix-S	Horz(CT)	0.01	7	n/a	n/a	Weight: 45 lb	FT = 20%F, 11%E
BOT CHORD 2x4	SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING TOP CHOI BOT CHOI	RD	except	t end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
,	size) 11=0-3-8, 7=Mechanical < Grav 11=452(LC 1), 7=458(LC 1)								
TOP CHORD 2- BOT CHORD 10	ax. Comp./Max. Ten All forces 250 (lb) o 3=-882/0, 3-4=-882/0, 4-5=-754/0 -11=0/518, 9-10=0/882, 8-9=0/882, 7-8=0 11=-646/0, 2-10=0/486, 5-7=-695/0, 5-8=0	/554							

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			<u>6-11-8</u> 1-8-8					
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.36	DEFL. in Vert(LL) -0.02	(loc) 6-7	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.39	Vert(CT) -0.02	6-7	>999 >999	460 360	IVIT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.57 Matrix-P	Horz(CT) 0.01	5	n/a	n/a	Weight: 47 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (size) 5=Mechanical, 8=Mechanical Max Grav 5=846(LC 1), 8=967(LC 1)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 4-5=-838/0, 2-3=-1511/0, 3-4=-1025/0
- BOT CHORD 7-8=0/1177, 6-7=0/1809
- WEBS 2-8=-1445/0, 2-7=0/423, 3-7=-380/0, 3-6=-997/0, 4-6=0/1205

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Refer to girder(s) for truss to truss connections.

- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 359 lb down at 1-1-4, and 358 lb down at 3-1-4, and 358 lb down at 3-1-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 5-8=-10, 1-4=-100

Concentrated Loads (lb)

Vert: 9=-359(F) 10=-358(F) 11=-358(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

D Truss			Truss Typ	be			Q	ty	Ply	Lot 129 D	uncans Cre	ek				1000	04770
1024-5567	FKW1		Floor Supported Gable			1		1	1				1688	91778			
									Job Reference (optional)								
Comtech, Inc, Fayetteville, NC - 28314,							ID:ttwY3			26 2024 Mi SgzKsVE-R							
0-1-8																0-1-8	}
																Scale: 3	3/16"=
				3x6 FP ==					2	x6 FP =							
		7 8	9 10	11 1213	14 15	16	17 18	19	20 2	21 22 23	3 24 25	26	27 28	29	30	31 3	32
1 2 3 4	5 6	7 0							- 0	g_w_ g	- 0 - 0		8 8	- A	R	98	
									_						<u> </u>		66
								.						~~~~~	~~~~	8 16	66
			56 55	54 53 52	51 50	49		46 45		43 42	41 40	39	38 37	36	35		66 33

			37-11-0			l
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-1-7-3Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.05 BC 0.01 WB 0.03 Matrix-R	Vert(LL) n	in (loc) l/defl L/d /a - n/a 999 /a - n/a 999 /0 33 n/a n/a	PLATES MT20 Weight: 155 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S	^{>} No.1(flat) ^{>} No.1(flat) ^{>} No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	,	oc purlins,

37-11-0

TOP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)

REACTIONS. All bearings 37-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 64, 33, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 52, 51, 50, 49, 48, 47, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qt	у	Ply	Lot 129 Duncans Creek		100004770
J1024-5567	FKW3	Floor Supported Gable	1		1			l68891779
Comtech, Inc, Fayette	/ ville, NC - 28314,			8 6	30 s Sen	Job Reference (optional) 26 2024 MiTek Industries, Industrie	Mon Oct 14 14:06:	59 2024 Page 1
	20014,		ID:ttwY35	f4XG0F	A8Ojy641	SgzKsVE-RfC?PsB70Hq3NS	gPqnL8w3uITXbGK\	VrCDoi7J4zJC?f
0 ₁₁ 8								0 ₁ 18
								Scale = 1:20.7
1 2	3	4 5	6		7	8	9	10 11
		• •	<u>e</u>		-	•	0	24
					_			

22 21	20	19 18	17		16	15	14	13 12
3x4 =								3x4 =

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.02 WB 0.03 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)		BRACING- TOP CHORD	Structural wood	0	rectly applied or 6-0-0	

BOT CHORD

2x4 SP No.1(flat)
2x4 SP No.1(flat)
2x4 SP No.3(flat)
2x4 SP No.3(flat)

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss		Truss Type			Qty	/ Ply	Lot 129	Duncans Cree	k				
														16889	91780
J1024-5567		FKW4		Floor Suppo	rted Gable		1		1						
										erence (optiona					
Comtech, Inc,	Fayettev	ville, NC - 28314	,							MiTek Industrie					
							ID:ttwY35f	4XG0RA8Oj	y64tSgzKsVE	E-RfC?PsB70H	q3NSgPqnl	L8w3ulTXbGl	KWrCDc	i7J4zJC	?f
0-1-8														0-1-1	В
Η														н	
														Scale =	1.28 /
														ocale -	1.20.4
											3x6 FP =	=			
		0		-		-		0	10					45	
1	2	3	4	5	6	7	8	9	10	11	12 1	3	14	15	
•	•	0	0	•	0	0	0	•	0	0	<u> </u>	0	•	•	Ĩ
an 🗖	Π	Π	Π	Π		Π	Π		Π	Π					32 0-2-1
91 -2-6														•	-'
					H								H	_H <u>+</u>	-
								~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	M			1
	*****	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	****	*****	~~~~	
30	29	28 27	26	25	24	23	22	21	20	19	1	8	17	16	
3x4 =		3x6 FP	=											3x4 =	:

			17-1-8 17-1-8			
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. i Vert(LL) n/; Vert(CT) n/; Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 72 lb	<b>GRIP</b> 244/190 FT = 20%F. 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.		
WERS 2x4 SP No 3(flat)				Rigid ceiling directly applied or 10-0-0 oc bracing		

2x4 SP No.3(flat) NEBS OTHERS 2x4 SP No.3(flat)

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-1-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

## NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



