

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0124-0338

Lot 168 Duncans Creek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I63141635 thru I63141668

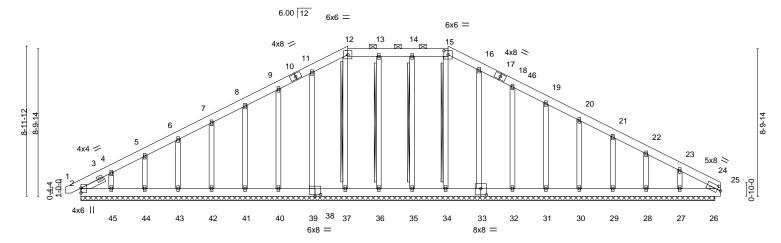
My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

January 19,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job Truss Truss Type Qty Lot 168 Duncans Creek 163141635 J0124-0338 A01GE HIP SUPPORTED GABLE 2 Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:17 2024 Page 1

Comtech, Inc, Fayetteville, NC - 28314,

ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

21-11-8 -0-11-0 0-11-0 15-11-8 6-0-0 15-11-8

Scale = 1:68.9

37-11-0 [15:0-3-0 0-2-14] [24:0-2-7 0-2-8] [33:0-4-0 0-4-8] [38:0-4-0 0-1-4] Plate Offsets (X V)--

Tidle Offsets (X, I)	[10.0 0 0,0 2 14], [24.0 2 7,0 2 0], [00	1 0,0 1 0], [00.0 1 0,0 1 1]	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL. in (loc) I/defl L/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04 Vert(LL) -0.00 1 n/r 120 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04 Vert(CT) -0.00 1 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.12 Horz(CT) 0.00 26 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S Weight: 326 lb	FT = 20%

LUMBER-BRACING-

2x6 SP No.1 TOP CHORD TOP CHORD **BOT CHORD** 2x6 SP No.1 WEBS 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS WEBS** SLIDER Left 2x4 SP No.2 1-6-5

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 12-15, 24-26. Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SPF No.2 - 12-37, 13-36, 14-35, 15-34

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 37-11-0.

Max Horz 2=-113(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 39, 40, 41, 42, 43, 44, 45, 36,

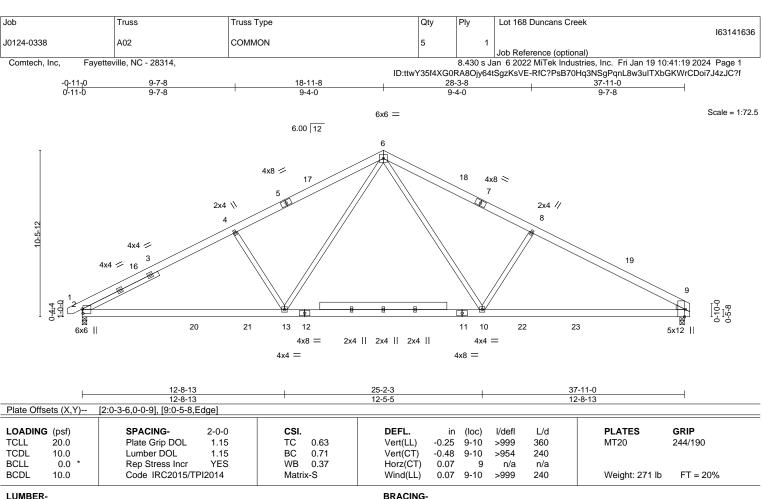
35, 33, 32, 31, 30, 29, 28, 27

Max Grav All reactions 250 lb or less at joint(s) 26, 2, 37, 39, 40, 41, 42, 43, 44,

45, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 9-11=-104/307, 11-12=-122/355, 12-13=-112/349, 13-14=-111/347, 14-15=-112/349, TOP CHORD

15-16=-122/360, 16-18=-107/318, 18-19=-86/259


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-9-2 to 3-9-12, Exterior(2) 3-9-12 to 15-11-8, Corner(3) 15-11-8 to 20-4-5, Exterior(2) 20-4-5 to 21-11-8, Corner(3) 21-11-8 to 26-4-5, Exterior(2) 26-4-5 to 38-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 39, 40, 41, 42, 43, 44, 45, 36, 35, 33, 32, 31, 30, 29, 28, 27.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

January 19,2024

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** WEBS 2x4 SP No.2 WEDGE

Right: 2x4 SP No.2

Left 2x4 SP No.2 5-3-13 SLIDER

REACTIONS. (size) 2=0-3-8, 9=0-3-8

Max Horz 2=-134(LC 8)

Max Uplift 2=-101(LC 12), 9=-91(LC 13) Max Grav 2=1570(LC 1), 9=1524(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

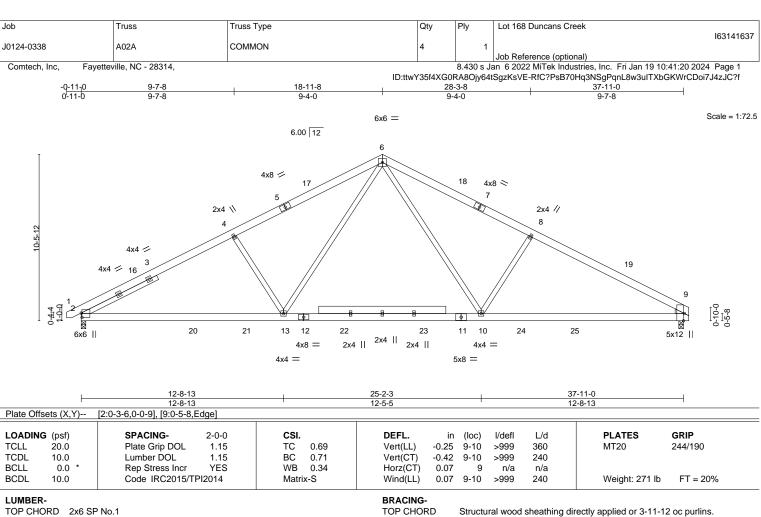
TOP CHORD 2-4=-2513/558, 4-6=-2229/582, 6-8=-2284/604, 8-9=-2570/576

2-13=-352/2118, 10-13=-112/1467, 9-10=-368/2184 **BOT CHORD**

WEBS 6-10=-152/924, 8-10=-539/336, 6-13=-137/846, 4-13=-498/320

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 38-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=101.

Structural wood sheathing directly applied or 4-2-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.1 2x6 SP No.1 **BOT CHORD** WEBS 2x4 SP No.2 WEDGE

Right: 2x4 SP No.2

Left 2x4 SP No.2 5-3-13 SLIDER

REACTIONS.

(size) 2=0-3-8, 9=0-3-8 Max Horz 2=-134(LC 8)

Max Grav 2=1671(LC 1), 9=1623(LC 1)

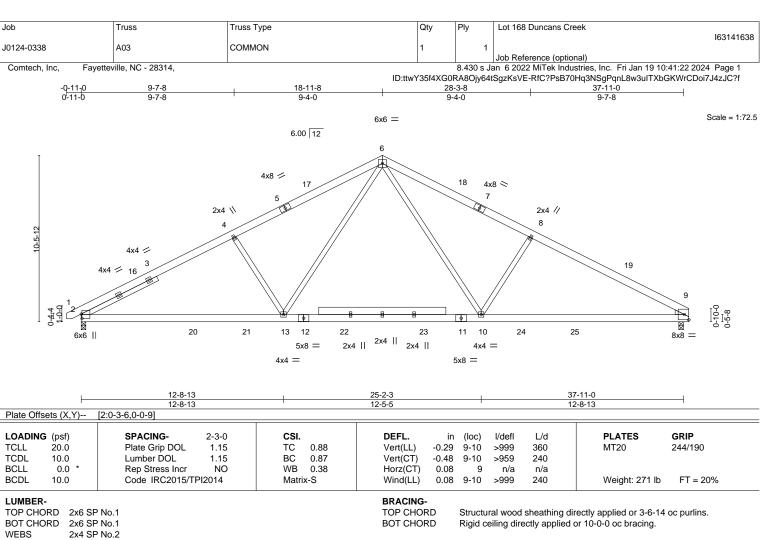
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2741/330, 4-6=-2458/352, 6-8=-2517/371, 8-9=-2801/344

BOT CHORD 2-13=-155/2315, 10-13=0/1612, 9-10=-166/2386

WEBS 6-10=-31/1045, 8-10=-525/349, 6-13=-19/963, 4-13=-479/339

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 38-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 18-11-8 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD 2x6 SP No.1 **BOT CHORD** WEBS WEDGE

Right: 2x4 SP No.2

Left 2x4 SP No.2 5-3-13 SLIDER

REACTIONS.

(size) 2=0-3-8, 9=0-3-8 Max Horz 2=-150(LC 8)

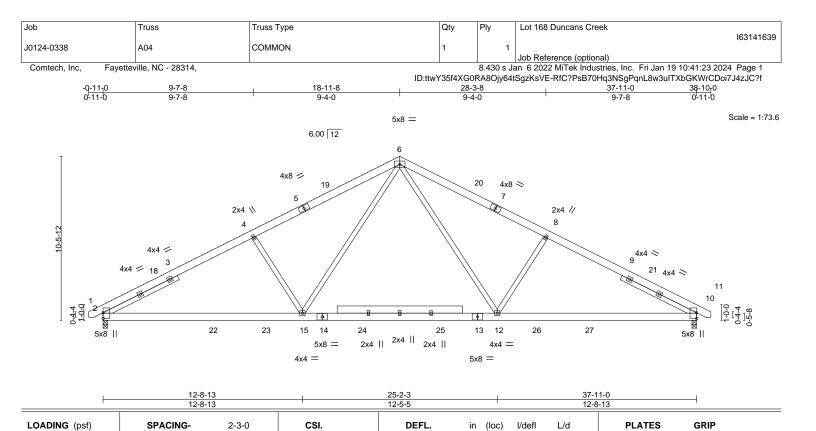
Max Uplift 2=-13(LC 12), 9=-3(LC 13) Max Grav 2=1867(LC 1), 9=1814(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-3055/400, 4-6=-2737/425, 6-8=-2802/447, 8-9=-3123/416 **BOT CHORD** 2-13=-200/2580, 10-13=0/1795, 9-10=-212/2659

WEBS 6-10=-50/1160, 8-10=-593/391, 6-13=-37/1069, 4-13=-541/379

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 38-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 18-11-8 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

-0.25 10-12

-0.41 12-15

0.06 12-15

10

0.08

360

240

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

>999

>999

>999

n/a

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

20.0

10.0

0.0

10.0

2x4 SP No.2 WEBS **SLIDER** Left 2x4 SP No.2 5-3-13, Right 2x4 SP No.2 5-3-13

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-148(LC 8)

Max Uplift 2=-13(LC 12), 10=-13(LC 13)

Max Grav 2=1857(LC 1), 10=1857(LC 1)

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

1.15

1.15

NO

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-3036/397, 4-6=-2718/422, 6-8=-2718/421, 8-10=-3036/395

BOT CHORD 2-15=-210/2563, 12-15=0/1779, 10-12=-201/2563

WFBS 6-12=-36/1073, 8-12=-538/378, 6-15=-36/1073, 4-15=-538/378

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 38-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TC

ВС

WB

Matrix-S

0.66

0.80

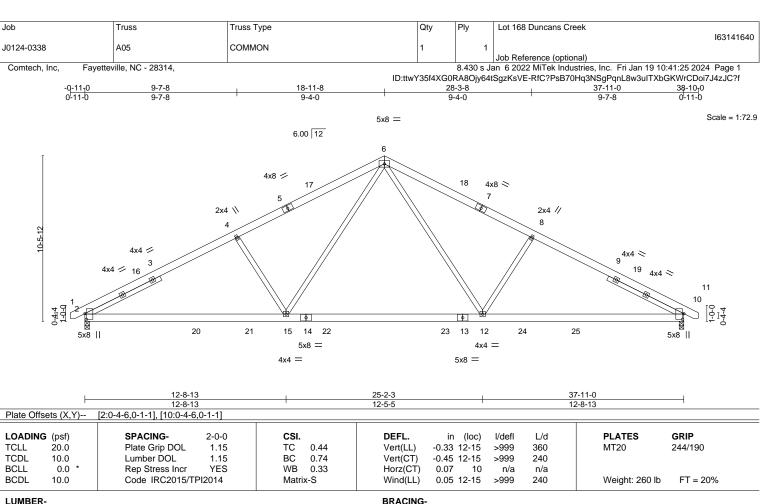
0.35

- 3) 200.0lb AC unit load placed on the bottom chord, 18-11-8 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

244/190

FT = 20%

MT20


Structural wood sheathing directly applied or 3-11-8 oc purlins.

Weight: 279 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 5-3-13, Right 2x4 SP No.2 5-3-13

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=131(LC 9)

Max Uplift 2=-101(LC 12), 10=-101(LC 13) Max Grav 2=1686(LC 2), 10=1686(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

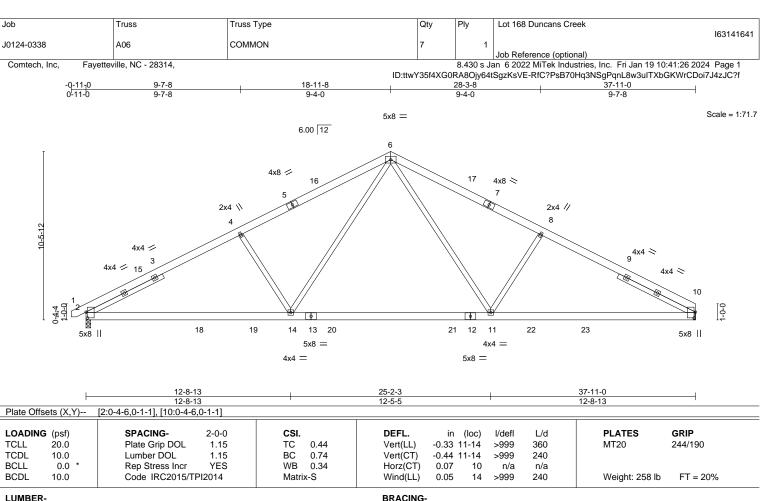
TOP CHORD 2-4=-2791/554, 4-6=-2557/578, 6-8=-2557/578, 8-10=-2790/554

BOT CHORD 2-15=-360/2424, 12-15=-121/1669, 10-12=-353/2375

WEBS 6-12=-135/1048, 8-12=-495/319, 6-15=-135/1048, 4-15=-495/319

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 38-8-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=101, 10=101.


Structural wood sheathing directly applied or 4-4-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 5-3-13, Right 2x4 SP No.2 5-3-13

REACTIONS. (size) 2=0-3-8, 10=Mechanical Max Horz 2=-134(LC 8)

Max Uplift 2=-101(LC 12), 10=-90(LC 13)

Max Grav 2=1686(LC 2), 10=1648(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2791/555, 4-6=-2558/579, 6-8=-2560/593, 8-10=-2793/570

BOT CHORD 2-14=-345/2426, 11-14=-110/1672, 10-11=-350/2377

WEBS 6-11=-139/1051, 8-11=-495/321, 6-14=-135/1047, 4-14=-495/319

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 37-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=101.

Structural wood sheathing directly applied or 4-4-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141642 J0124-0338 B01GE COMMON SUPPORTED GAB Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:28 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:35.4

10-3-8

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

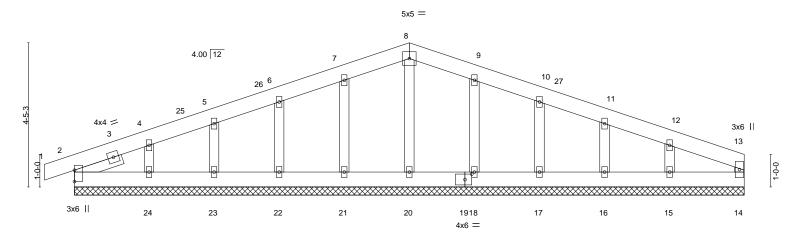


Plate Offsets (X,Y)--[2:Edge,0-0-0], [19:0-2-8,0-2-0] SPACING-**PLATES GRIP** LOADING (psf) CSI DEFL. in (loc) I/defI L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) -0.00 120 244/190 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.01 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a Code IRC2015/TPI2014 FT = 20% **BCDL** 10.0 Weight: 132 lb Matrix-S

TOP CHORD

BOT CHORD

20-7-0

LUMBER-**BRACING-**

10-3-8

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

0-11-0

2x4 SP No.2 **OTHERS** SLIDER Left 2x4 SP No.2 1-6-6

REACTIONS. All bearings 20-7-0.

Max Horz 2=87(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 21, 22, 23, 24, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 14, 2, 20, 21, 22, 23, 24, 18, 17, 16, 15

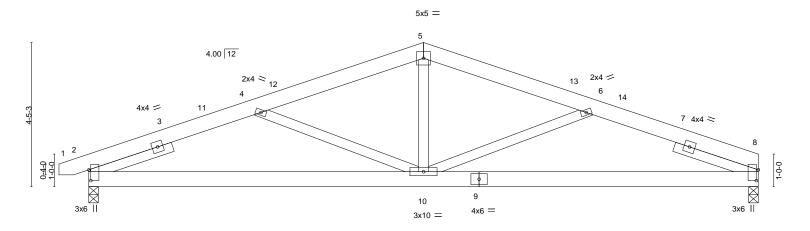
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 10-3-8, Corner(3) 10-3-8 to 14-8-5, Exterior(2) 14-8-5 to 20-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 21, 22, 23, 24, 18, 17, 16, 15.

January 19,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 168 Duncans	Creek	
						I63141	1643
J0124-0338	B02	COMMON	3	1			
					Job Reference (op	itional)	
Comtech, Inc, Fayer	tteville, NC - 28314,			8.430 s Ja	an 6 2022 MiTek In	dustries, Inc. Fri Jan 19 10:41:29 2024 Page	1
		ID:ttv	vY35f4XG0	RA80jy64t	SgzKsVE-RfC?PsB	370Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?	'f
լ-0-11-0 լ	5-3-8	10-3-8		15-3-8	3	20-7-0	ı
0.11.0	E 2 0	5.0.0		E 0 0		E 2 0	

Scale = 1:35.4

<u> </u>	10-3-8 10-3-8		-		20-7- 10-3-		
Plate Offsets (X,Y)	[2:0-3-15,0-0-12], [8:0-3-15,0-0-12]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.37 WB 0.15 Matrix-S	Vert(CT) -0 Horz(CT) 0	0.06 8-10 > 0.13 8-10 > 0.03 8	defl L/d 999 360 999 240 n/a n/a 999 240	_	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x6 SP No.1 TOP CHORD **BOT CHORD** 2x6 SP No.1 **WEBS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 2-8-5, Right 2x4 SP No.2 2-8-5

REACTIONS. (size) 8=0-3-8, 2=0-3-8

Max Horz 2=-52(LC 13) Max Uplift 8=-64(LC 9), 2=-89(LC 8)

Max Grav 8=823(LC 1), 2=866(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1541/429, 4-5=-1240/303, 5-6=-1240/312, 6-8=-1542/443 TOP CHORD

BOT CHORD 2-10=-328/1356, 8-10=-332/1358

WEBS 5-10=-11/477, 6-10=-292/203, 4-10=-290/199

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-5 to 3-8-8, Interior(1) 3-8-8 to 10-3-8, Exterior(2) 10-3-8 to 14-8-5, Interior(1) 14-8-5 to 20-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141644 J0124-0338 D01GE HIP SUPPORTED GABLE Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:31 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 13-6-0 12-7-0 0-11-0 4-3-8 4-0-0 4-3-8 0-11-0 Scale = 1:26.5 5x5 = 5x5 = 9.00 12 8 4x4 / 4x4 < 4-5-12 4-3-14 11 10 16 15 14 13 12 3x10 || 3x10 ||

		-				12-7-0						
Plate Off	fsets (X,Y)	[2:0-5-0,0-0-4], [5:0-2-8,0)-2-12], [7:0-2-	8,0-2-12], [10	0-7-12,0-0	-4]						
LOADIN TCLL TCDL BCLL	20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	WB	0.02 0.01 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 0.00	(loc) 10 10 10	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/Ti	PI2014	Matrix	-S						Weight: 100 lb	FT = 20%

LUMBER-**BRACING-**

2x6 SP No.1 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except

BOT CHORD 2x6 SP No.1 2-0-0 oc purlins (6-0-0 max.): 5-7.

OTHERS 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. SLIDER Left 2x6 SP No.1 1-8-9, Right 2x6 SP No.1 1-8-9

REACTIONS. All bearings 12-7-0.

Max Horz 2=116(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 14, 15 except 16=-143(LC 12), 12=-132(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 10, 13, 14, 15, 16, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-8 to 3-7-5, Exterior(2) 3-7-5 to 4-3-8, Corner(3) 4-3-8 to 12-7-0, Exterior(2) 12-7-0 to 13-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 14, 15 except (jt=lb) 16=143, 12=132.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141645 J0124-0338 D02 COMMON 2 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:32 2024 Page 1 ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 13-6-0 0-11-0 0-11-0 6-3-8 6-3-8 12-7-0 6-3-8 Scale = 1:33.0 5x5 = 3 9.00 12 6 3x4 3x4 = 2x4 || 12-7-0 6-3-8 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL TC Vert(LL) -0.01 360 244/190 **TCLL** 1.15 0.16 4-6 >999 MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.14 Vert(CT) -0.02 4-6 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 n/a n/a Code IRC2015/TPI2014

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.01

2-6

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Weight: 79 lb

FT = 20%

LUMBER-

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

10.0

REACTIONS.

2=0-3-8, 4=0-3-8 (size) Max Horz 2=127(LC 11) Max Uplift 2=-36(LC 12), 4=-36(LC 13) Max Grav 2=548(LC 1), 4=548(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-558/152, 3-4=-558/152

BOT CHORD 2-6=0/357, 4-6=0/357

WEBS 3-6=0/298

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-8 to 3-7-5, Interior(1) 3-7-5 to 6-3-8, Exterior(2) 6-3-8 to 10-8-5, Interior(1) 10-8-5 to 13-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

JobTrussTruss TypeQtyPlyLot 168 Duncans CreekJ0124-0338D03-GRCommon Girder12Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:33 2024 Page 1

ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 6-3-8 12-7-0 6-3-8 6-3-8

5x8 || Scale = 1:35.5

Structural wood sheathing directly applied or 5-9-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

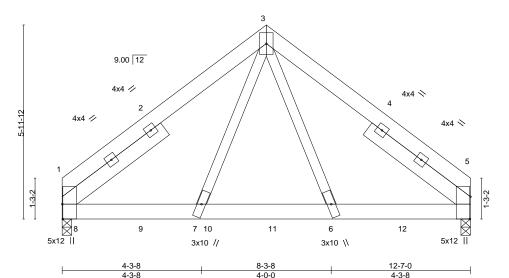


Plate Offsets (X,Y)-- [1:0-5-8,Edge], [5:0-8-4,Edge]

LOADING	G (psf)	SPACING- 2-	0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.15	TC	0.64	Vert(LL)	-0.05	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1	.15	BC	0.37	Vert(CT)	-0.09	6-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.47	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	14	Matrix	x-S	Wind(LL)	0.03	6-7	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1
BOT CHORD 2x6 SP 2400F 2.0E
WEBS 2x4 SP No.2

SLIDER Left 2x6 SP No.1 3-11-2, Right 2x6 SP No.1 3-11-2

REACTIONS. (size) 1=0-3-8, 5=0-3-8 Max Horz 1=131(LC 26)

Max Uplift 1=-364(LC 8), 5=-289(LC 9) Max Grav 1=5943(LC 2), 5=4708(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-5805/389, 3-5=-5745/386

BOT CHORD 1-7=-243/4362, 6-7=-165/2984, 5-6=-218/4304

WEBS 3-6=-209/3707, 3-7=-218/3868

NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=364, 5=289.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1632 lb down and 105 lb up at 0-6-4, 1628 lb down and 110 lb up at 2-6-4, 1628 lb down and 110 lb up at 4-6-4, 1628 lb down and 110 lb up at 6-6-4, and 1628 lb down and 110 lb up at 8-6-4, and 1628 lb down and 110 lb up at 10-6-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20

January 19,2024

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we hand/or chort Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 168 Duncans Creek 163141646 J0124-0338 D03-GR Common Girder 2 | Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:34 2024 Page 2

Comtech, Inc, Fayetteville, NC - 28314,

ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 6=-1496(B) 8=-1501(B) 9=-1496(B) 10=-1496(B) 11=-1496(B) 12=-1496(B)

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141647 J0124-0338 M01GE **GABLE** Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:34 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 6-0-0 0-11-0 6-0-0 Scale = 1:13.0 3x4 || 4 2x4 || 3.00 12 8 2 6 5 3x4 =2x4 || 3x4 II LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL TC Vert(LL) -0.00 120 244/190 **TCLL** 1.15 0.14 n/r MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) 0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-P Weight: 23 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.1 2x4 SP No.1

BOT CHORD WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

REACTIONS. (size) 5=6-0-0, 2=6-0-0, 6=6-0-0 Max Horz 2=82(LC 8)

Max Uplift 5=-7(LC 8), 2=-78(LC 8), 6=-100(LC 12)

Max Grav 5=14(LC 1), 2=194(LC 1), 6=315(LC 1)

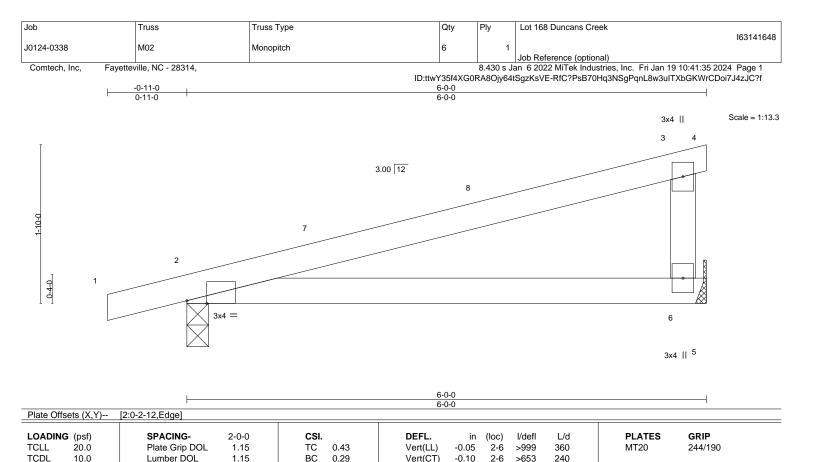
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-233/368

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 5-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.00

0.11

2-6

n/a

>586

except end verticals.

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

0.0

10.0

WEBS 2x4 SP No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-0

Max Horz 2=59(LC 8)

Max Uplift 6=-90(LC 8), 2=-121(LC 8) Max Grav 6=229(LC 1), 2=292(LC 1)

Rep Stress Incr

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 6-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

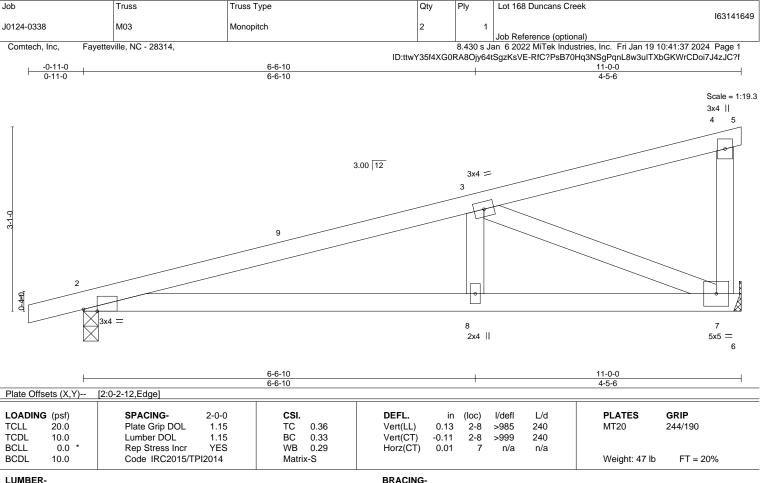
Matrix-P

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=121.


FT = 20%

Weight: 21 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-0

Max Horz 2=100(LC 8)

Max Uplift 7=-174(LC 8), 2=-191(LC 8) Max Grav 7=432(LC 1), 2=490(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

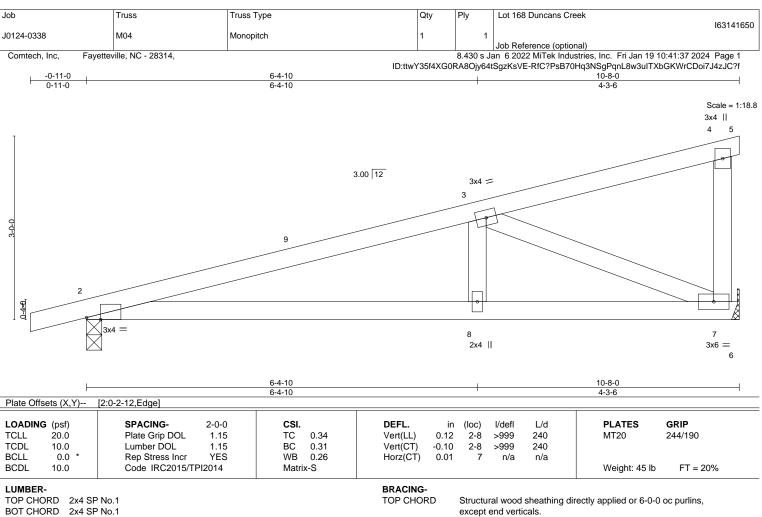
TOP CHORD 2-3=-859/789

BOT CHORD 2-8=-857/788, 7-8=-857/788 WFBS 3-8=-321/256, 3-7=-837/902

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 11-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=174, 2=191.

Structural wood sheathing directly applied or 5-11-12 oc purlins,


Rigid ceiling directly applied or 6-3-3 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

Rigid ceiling directly applied or 6-5-0 oc bracing.

WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-0

Max Horz 2=97(LC 8)

Max Uplift 7=-169(LC 8), 2=-187(LC 8) Max Grav 7=419(LC 1), 2=476(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-824/759

BOT CHORD 2-8=-825/756, 7-8=-825/756 WFBS 3-8=-312/248, 3-7=-805/870

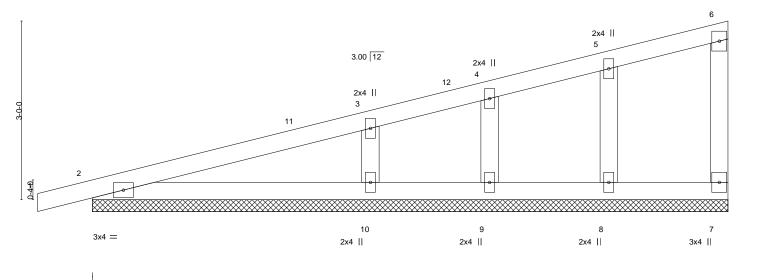
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 10-8-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=169, 2=187.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job Truss Truss Type Qty Lot 168 Duncans Creek 163141651 J0124-0338 M05GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:38 2024 Page 1

ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 10-8-0

10-8-0

3x4 Spale = 1:19.3

LOADING	· /	SPACING-	2-0-0	CSI.	0.40	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	-0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	0.01	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 44 lb	FT = 20%

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 WEBS

0-11-0

OTHERS 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-8-0.

(lb) -Max Horz 2=137(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9 except 10=-119(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=376(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-10=-267/288

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 10-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 8, 9 except (jt=lb) 10=119.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141652 J0124-0338 M06GE **GABLE** Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:39 2024 Page 1 ID:CjlgHnigOg0xOXqWV20oQQztqFK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 12-0-0 0-11-0 12-0-0 Scale = 1:21.4 3x4 || 7 3.00 12 3 12 10 9 11 3x4 =

LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI.	0.12	DEFL. Vert(LL)	in -0.00	(loc) 1	l/defl n/r	L/d 120	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	1	n/r	120		
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TP	YES 12014	WB Matri	0.04 x-S	Horz(CT)	-0.00	8	n/a	n/a	Weight: 51 lb	FT = 20%

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

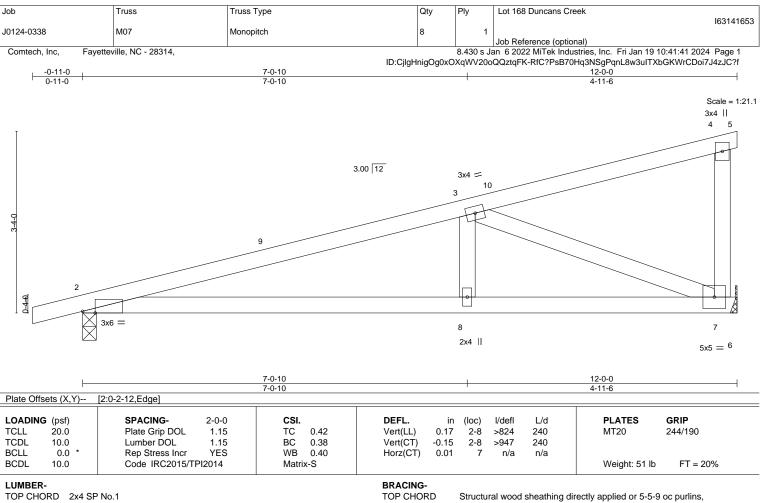
REACTIONS. All bearings 12-0-0.

Max Horz 2=153(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 9, 10, 11, 12

Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11 except 12=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 11-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 9, 10, 11, 12.

3x4 II

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 5-10-11 oc bracing.

LUMBER-

BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-0

Max Horz 2=108(LC 8)

Max Uplift 7=-191(LC 8), 2=-206(LC 8) Max Grav 7=472(LC 1), 2=529(LC 1)

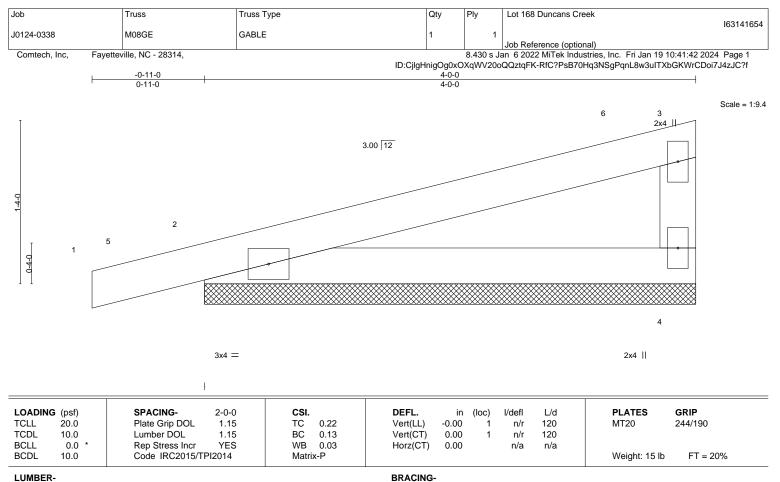
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-962/865

BOT CHORD 2-8=-935/886, 7-8=-935/886 WFBS 3-8=-347/279, 3-7=-934/978

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 12-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=191, 2=206.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1

BOT CHORD WEBS 2x4 SP No.2

REACTIONS.

2=4-0-0, 4=4-0-0 (size) Max Horz 2=59(LC 8)

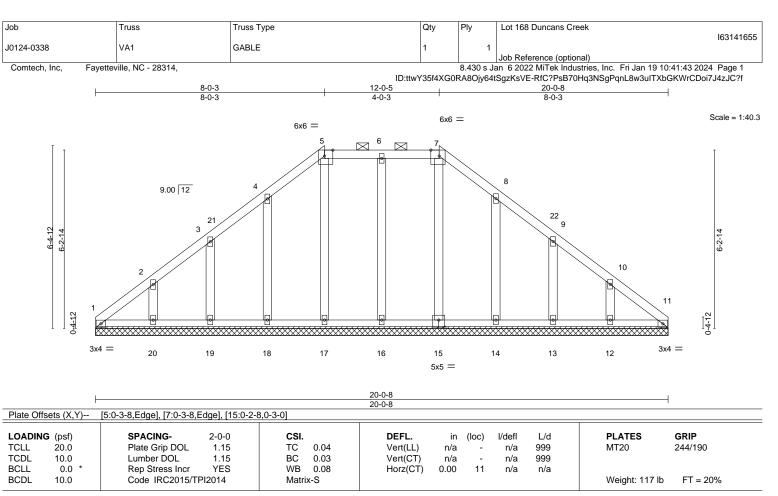
Max Uplift 2=-90(LC 8), 4=-47(LC 12) Max Grav 2=216(LC 1), 4=148(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 3-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 4-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

BRACING-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 5-7. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-0-8.

(lb) -Max Horz 1=144(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 17, 18, 19, 20, 16, 14, 13, 12

Max Grav All reactions 250 lb or less at joint(s) 1, 17, 18, 19, 20, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-2 to 4-4-15, Interior(1) 4-4-15 to 8-0-3, Exterior(2) 8-0-3 to 18-0-3, Interior(1) 18-0-3 to 20-0-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 17, 18, 19, 20, 16, 14, 13, 12.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141656 Valley J0124-0338 VA2 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:44 2024 Page 1 ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 9-2-7 9-2-7 Scale = 1:41.6 4x4 = 3 9.00 12 2x4 II 2x4 || 11 10 3x4 / 3x4 N 9 12 8 136 $3x4 =_{2x4}$ 2x4 II 2x4 || 18-4-14 18-4-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 Vert(LL) 999 244/190 **TCLL** TC 0.22 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.18 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.11 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 79 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. All bearings 18-3-14.

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-147(LC 12), 6=-147(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=411(LC 22), 9=531(LC 19), 6=531(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-399/261, 4-6=-399/262 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 9-2-7, Exterior(2) 9-2-7 to 13-7-4, Interior(1) 13-7-4 to 17-11-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=147. 6=147.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141657 Valley J0124-0338 VA3 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:45 2024 Page 1 ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 7-10-7 7-10-7 Scale = 1:37.3 4x4 = 3 9.00 12 2x4 || 2x4 || 2 12 9 3x4 💸 8 13 7 6 2x4 || 2x4 || 2x4 || 15-8-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 999 244/190 **TCLL** TC 0.15 Vert(LL) n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.15 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 66 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.1 2x4 SP No.1

BOT CHORD **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 15-7-14

Max Horz 1=134(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-123(LC 12), 6=-123(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=405(LC 19), 6=405(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-334/230, 4-6=-334/230 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 7-10-7, Exterior(2) 7-10-7 to 12-3-4, Interior(1) 12-3-4 to 15-3-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=123, 6=123.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141658 Valley J0124-0338 VA4 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:46 2024 Page 1 ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 13-0-14 6-6-7 6-6-7 Scale = 1:31.0 4x4 = 3 11 9.00 12 10 2x4 || 4^{2x4} || 3x4 // 8 7 6 3x4 <> 2x4 || 2x4 || 2x4 || 13-0-14 13-0-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP (loc) I/defl 20.0 Plate Grip DOL TC 999 244/190 **TCLL** 1.15 0.13 Vert(LL) n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 52 lb FT = 20% **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.1 2x4 SP No.1

BOT CHORD **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 12-11-14.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-108(LC 12), 6=-108(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=253(LC 1), 8=325(LC 19), 6=325(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-296/217, 4-6=-296/217 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 6-6-7, Exterior(2) 6-6-7 to 10-11-4, Interior(1) 10-11-4 to 12-7-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=108, 6=108,

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141659 Valley J0124-0338 VA5 Job Reference (optional) Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:47 2024 Page 1 ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 5-2-7 5-2-7 5-2-7 Scale = 1:25.3 4x4 = 8 9.00 12 3-10-13 3 3x4 💸 3x4 // 2x4 || 10-4-14 10-4-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 Vert(LL) 999 244/190 **TCLL** TC 0.24 n/a n/a MT20 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.17 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 3 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 38 lb FT = 20% **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

1=10-3-14, 3=10-3-14, 4=10-3-14 (size) Max Horz 1=-86(LC 8) Max Uplift 1=-23(LC 12), 3=-31(LC 13)

Max Grav 1=196(LC 1), 3=196(LC 1), 4=369(LC 1)

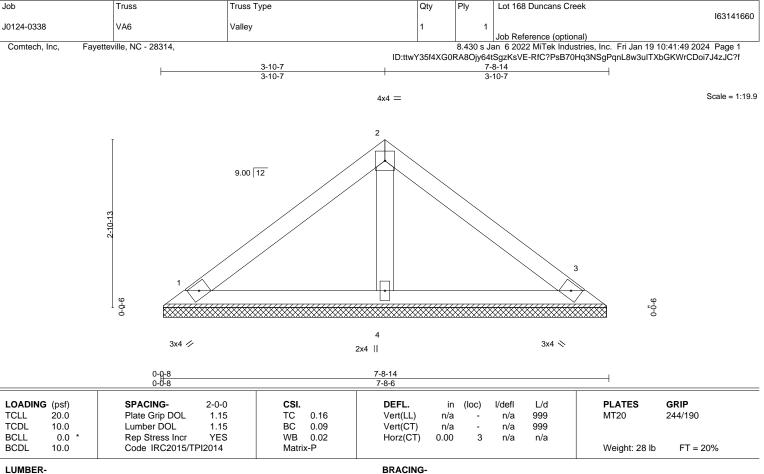
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-2-7, Exterior(2) 5-2-7 to 9-7-4, Interior(1) 9-7-4 to 9-11-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

> 1=7-7-14, 3=7-7-14, 4=7-7-14 (size) Max Horz 1=-62(LC 10)

Max Uplift 1=-24(LC 12), 3=-30(LC 13)

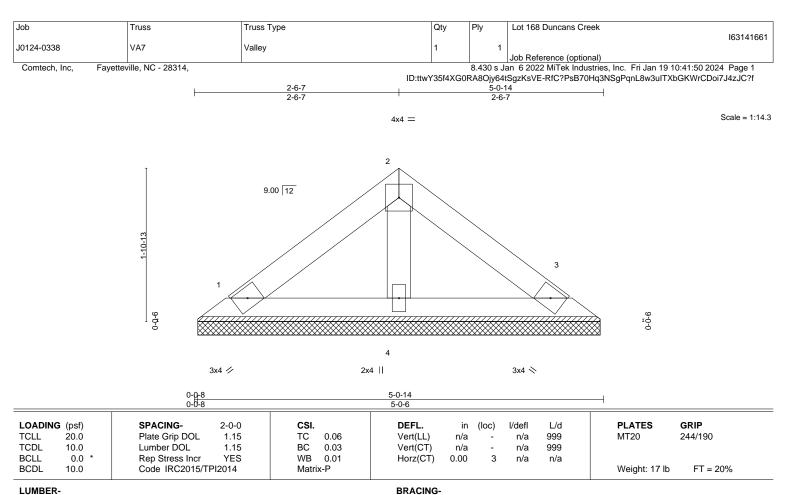
Max Grav 1=154(LC 1), 3=154(LC 1), 4=241(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1

BOT CHORD **OTHERS** 2x4 SP No.2

REACTIONS.

1=4-11-14, 3=4-11-14, 4=4-11-14 (size) Max Horz 1=-38(LC 8) Max Uplift 1=-15(LC 12), 3=-18(LC 13) Max Grav 1=94(LC 1), 3=94(LC 1), 4=147(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-0-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply Lot 168 Duncans Creek 163141662 J0124-0338 VA8 Valley Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:50 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 1-2-7 1-2-7 Scale = 1:7.3 3x4 = 9.00 12 3 9-0-0 9-0-0 3x4 // 3x4 ×

	0 ₇ 0 ₇ 8	2-4-14	1
	0-0-8	2-4-6	7
Offsets (X,Y)	[2:0-2-0,Edge]		

		7 9 1				1						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-P	, ,					Weight: 6 lb	FT = 20%

LUMBER-

Plate

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BRACING-

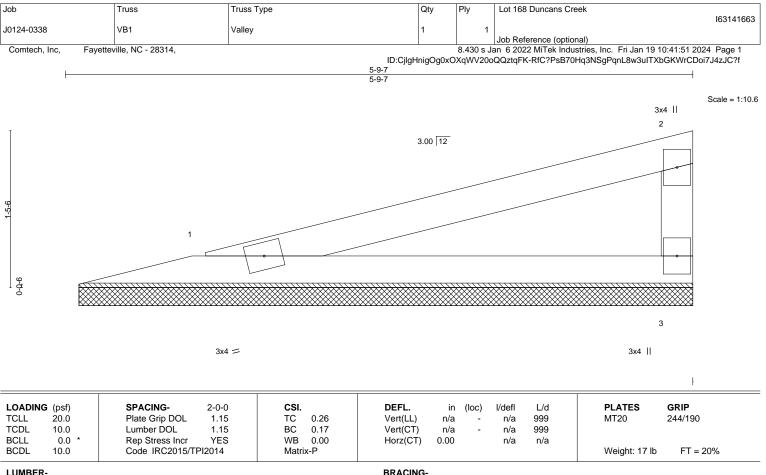
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-4-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=2-3-14, 3=2-3-14 (size)

Max Horz 1=-14(LC 8) Max Uplift 1=-3(LC 12), 3=-3(LC 13)

Max Grav 1=61(LC 1), 3=61(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS.

1=5-7-15, 3=5-7-15 (size) Max Horz 1=36(LC 8) Max Uplift 1=-14(LC 8), 3=-23(LC 8) Max Grav 1=174(LC 1), 3=174(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

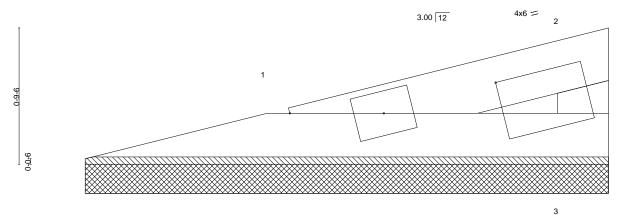
Structural wood sheathing directly applied or 5-9-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141664 J0124-0338 VB2 Valley Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,


8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:52 2024 Page 1 ID:CjlgHnigOg0xOXqWV20oQQztqFK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied or 3-1-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale = 1:6.6

3x4 =

Plate Offsets (X,Y)	Plate Offsets (X,Y) [2:1-2-3,0-1-6]													
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%						

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 TOP CHORD **BOT CHORD** 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 1=2-11-15, 3=2-11-15

Max Horz 1=15(LC 8) Max Uplift 1=-5(LC 8), 3=-9(LC 8)

Max Grav 1=67(LC 1), 3=67(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Lot 168 Duncans Creek 163141665 VD1 J0124-0338 Valley Job Reference (optional) 8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Jan 19 10:41:53 2024 Page 1 Comtech, Inc, Fayetteville, NC - 28314, ID:ttwY35f4XG0RA8Ojy64tSgzKsVE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 5-5-0 5-5-0 10-10-0 5-5-0 Scale = 1:26.1 4x4 = 3 9.00 12 2x4 || 4 2x4 || 7 3x4 // 2x4 || 2x4 || 2x4 || 10-10-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 Plate Grip DOL 1.15 Vert(LL) 999 244/190 **TCLL** TC 0.14 n/a n/a MT20 TCDL 10.0 Lumber DOL 1.15 ВС 0.09 Vert(CT) n/a 999 n/a **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Weight: 41 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. All bearings 10-9-0.

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-118(LC 12), 6=-118(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=343(LC 19), 6=343(LC 20)

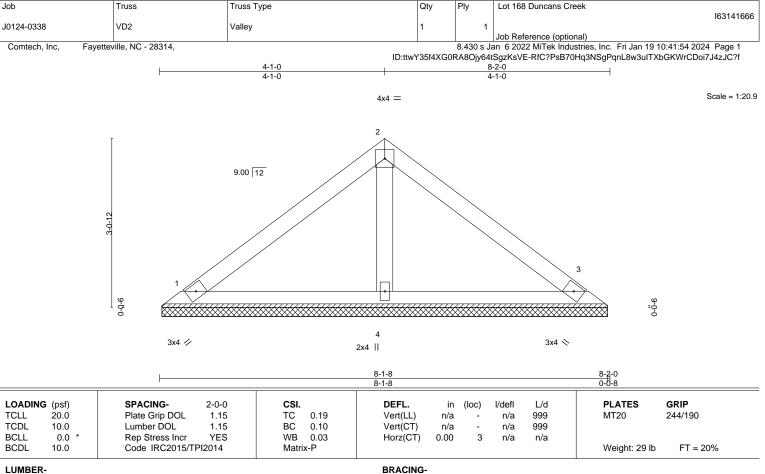
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-328/256, 4-6=-328/256 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-5-0, Exterior(2) 5-5-0 to 9-9-13, Interior(1) 9-9-13 to 10-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=118, 6=118.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS.

1=8-1-0, 3=8-1-0, 4=8-1-0 (size) Max Horz 1=-66(LC 10)

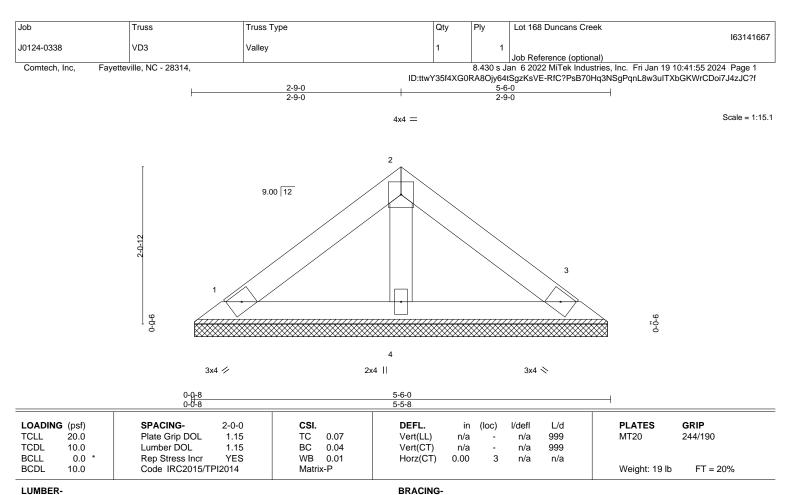
Max Uplift 1=-25(LC 12), 3=-32(LC 13) Max Grav 1=164(LC 1), 3=164(LC 1), 4=256(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

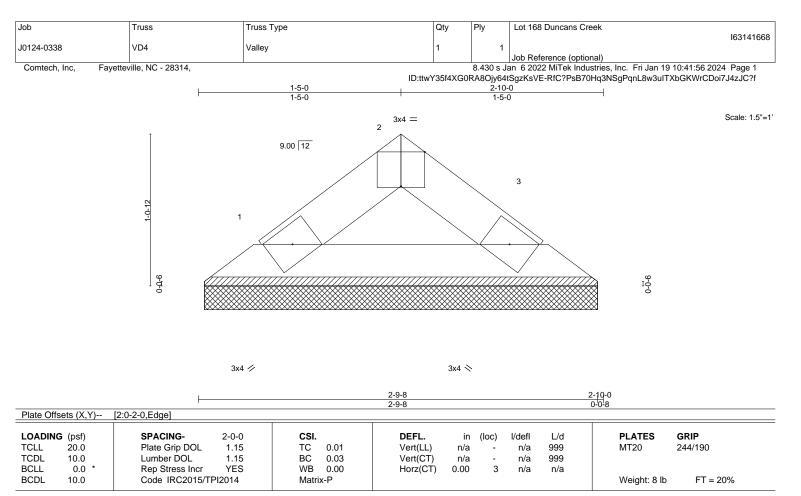
REACTIONS.

1=5-5-0, 3=5-5-0, 4=5-5-0 (size) Max Horz 1=42(LC 9) Max Uplift 1=-16(LC 12), 3=-20(LC 13)

Max Grav 1=104(LC 1), 3=104(LC 1), 4=162(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-10-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

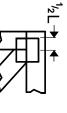
REACTIONS. 1=2-9-0, 3=2-9-0 (size)

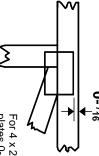
Max Horz 1=-18(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13)

Max Grav 1=78(LC 1), 3=78(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

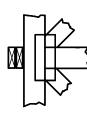
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

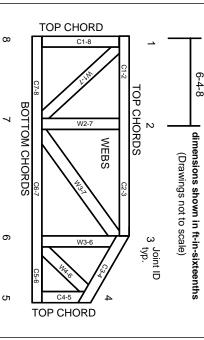

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.