
LOT 4 PROVIDENCE CREEK I Job Truss Truss Type Qty 121 PROVIDENCE CREEK FUQUAY-VARINA, NC 163712692 23-8901-R01 R02 Piggyback Base 3 1 Job Reference (optional) Atlantic Building Components & Services, Inc., Moncks Corner, SC - 29461, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 19 09:45:45 2024 Page 1

ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

35-0-0 43-6-13 39-9-12 52-1-11 61-0-0 61₋10-8 -0₁10-8 0-10-8 8-10-5 8-6-13 8-6-13 9-0-0 4-9-12 3-9-1 8-6-13 8-10-5 0-10-8

Scale = 1:106.1

Plate Offsets (X, Y)	1ate Offsets (X, Y) [8:0-5-0,0-3-7], [18:0-4-8,0-5-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.84 BC 0.83 WB 0.93 Matrix-MSH	DEFL. in (loc) l/defl L/d Vert(LL) -0.31 21-23 >999 240 Vert(CT) -0.47 21-23 >999 180 Horz(CT) 0.05 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 466 lb FT = 20%			
BCDL 10.0	Code 11(02021/11 12014	IVIALITA-IVIOITI		Weight. 400 ib 1 1 = 20 /0			

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x6 SP No.2 TOP CHORD BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

8-18: 2x6 SP DSS

10-8-14

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 18=0-3-8

Max Horz 2=-167(LC 15)

Max Uplift 2=-222(LC 14), 14=-145(LC 15), 18=-232(LC 11) Max Grav 2=1577(LC 39), 14=583(LC 55), 18=4124(LC 45)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2865/390, 4-6=-2709/412, 6-7=-1782/343, 7-8=-646/242, 8-9=0/1500,

9-10=-26/1462, 10-12=-388/493, 12-14=-582/315

BOT CHORD 2-23=-433/2561, 21-23=-250/1951, 19-21=-26/1001, 18-19=-256/220, 16-18=-905/158,

10-5-6

14-16=-249/483

4-23=-421/229, 6-23=-131/727, 6-21=-1190/324, 7-21=-217/1520, 7-19=-1292/235,

8-19=-138/1835, 8-18=-2747/243, 10-18=-1061/267, 10-16=-158/1081, 12-16=-599/251,

9-18=-347/97

NOTES-

WFBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-2-11, Interior(1) 5-2-11 to 17-4-8, Exterior(2R) 17-4-8 to 43-6-6, Interior(1) 43-6-6 to 55-9-5, Exterior(2E) 55-9-5 to 61-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Continued on page 2

10-8-14

6-21, 7-19, 8-18, 10-18, 9-18

ORTH

Structural wood sheathing directly applied or 2-10-2 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY	-VARII
					163712692	
23-8901-R01	R02	Piggyback Base	3	1		
					Job Reference (optional)	

Atlantic Building Components & Services, Inc.,

Moncks Corner, SC - 29461,

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 19 09:45:45 2024 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 12) Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 222 lb uplift at joint 2, 145 lb uplift at joint 14 and 232 lb uplift at joint 18.

LOT 4 PROVIDENCE CREEK I Job Truss Truss Type Qty 121 PROVIDENCE CREEK FUQUAY-VARINA, NC 163712693 23-8901-R01 R₀₂A Piggyback Base 6 1

9-0-0

4-9-12

3-9-1

Atlantic Building Components & Services, Inc., Moncks Corner, SC - 29461,

8-6-13

8-6-13

8-10-5

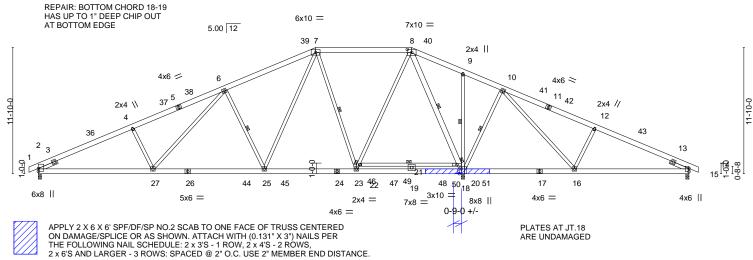
Job Reference (optional)

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 19 09:45:48 2024 Page 1 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 39-9-12 43-6-13 52-1-11 61-0-0 61₋10-8 8-6-13

Structural wood sheathing directly applied or 2-7-0 oc purlins.

6-25, 7-23, 8-20, 10-18, 9-18

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:


6-0-0 oc bracing: 20-22

1 Row at midpt

Scale = 1:108.0

0-10-8

8-10-5

10-8-14 21-2-4 29-9-12 35-0-0 39-9-12 61-0-0 10-8-14 10-5-6 8-7-8 5-2-4 10-5-6 10-8-14 [8:0-5-0,0-3-7], [18:0-5-4,0-2-8] Plate Offsets (X,Y)--

LOADING (ps	f)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0				(/			_	
Snow (Pf)	20.0	Plate Grip DOL 1.15	10 0.00	Vert(LL)	-0.33 25-27	>999	240	MT20	244/190
		Lumber DOL 1.15	BC 0.87	Vert(CT)	-0.50 25-27	>957	180		
TCDL	10.0	Rep Stress Incr YES	WB 0.93	Horz(CT)	0.06 18	n/a	n/a		
BCLL	0.0 *			11012(01)	0.00 10	11/4	11/4	Waisht, 400 lb	FT 200/
BCDL	10.0	Code IRC2021/TPI2014	Matrix-MSH					Weight: 480 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

-0₁10-8 0-10-8

TOP CHORD 2x6 SP No.2 **BOT CHORD**

2x6 SP No.2 *Except*

20-22: 2x4 SP No.2, 18-24: 2x6 SP No.1

2x4 SP No.3 *Except* WEBS 8-18: 2x6 SP DSS

SLIDER Left 2x4 SP No.3 1-11-0, Right 2x4 SP No.3 1-11-0

REACTIONS. (size) 2=0-3-8, 14=0-3-8, 18=0-3-8

Max Horz 2=-167(LC 15)

Max Uplift 2=-212(LC 14), 14=-148(LC 15), 18=-144(LC 11) Max Grav 2=1593(LC 39), 14=572(LC 55), 18=4541(LC 45)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2959/366, 4-6=-2803/388, 6-7=-1877/318, 7-8=-774/211, 8-9=0/1545, 9-10=-21/1508, 10-12=-360/556, 12-14=-554/377

2-27=-412/2646, 25-27=-227/2039, 23-25=-1/1105, 19-23=-24/423, 18-19=-24/423,

BOT CHORD

21-22=-326/9, 20-21=-326/9, 16-18=-953/153, 14-16=-304/457

WEBS 4-27=-418/230, 6-27=-131/726, 6-25=-1190/323, 7-25=-224/1483, 7-23=-1264/251, 22-23=-117/1831, 8-22=-96/2043, 8-20=-2957/200, 18-20=-3174/181, 10-18=-1056/270,

10-16=-162/1061, 12-16=-602/250, 19-21=-323/0, 9-18=-348/96

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 5-2-11, Interior(1) 5-2-11 to 17-4-8, Exterior(2R) 17-4-8 to 43-6-6, Interior(1) 43-6-6 to 55-9-5, Exterior(2E) 55-9-5 to 61-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15) Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 5x5 MT20 unless otherwise indicated.

(2) This druss bage en designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 20,2024

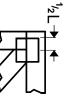
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

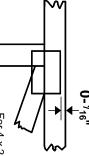
	Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY	-VARIN
						l63712693	
	23-8901-R01	R02A	Piggyback Base	6	1		
ı						Job Reference (optional)	

Atlantic Building Components & Services, Inc.,

Moncks Corner, SC - 29461,


8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Feb 19 09:45:48 2024 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


 12) Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 212 lb uplift at joint 2, 148 lb uplift at joint 14 and 144 lb uplift at joint 18.

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

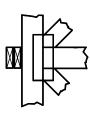
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

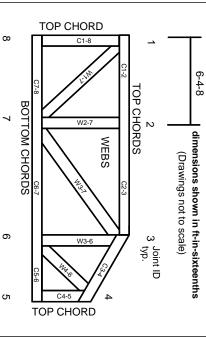

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.