Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 43157 JOB: 23-8901-R01 JOB NAME: LOT 4 PROVIDENCE CREEK Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 35 These truss designs comply with IRC 2015 as well as IRC 2018. 20 Truss Design(s)

Trusses:

P01, R01, R02, R02A, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, V01, V02,

Warning !--- Verify design parameters and read notes before use.

		9-0- 9-0-	0				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.26 BC 0.19 WB 0.04 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.01 5 0.01 5 0.00 4	l/defl L/d n/r 180 n/r 80 n/a n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3		E T E	Bracing- Fop Chord Bot Chord	Structural wo Rigid ceiling MiTek reco be installed Installation	bod sheathing direct directly applied or mmends that Stab d during truss erect guide.	ctly applied or 6-0-0 or 10-0-0 oc bracing. ilizers and required cr ion, in accordance wit	o purlins. oss bracing th Stabilizer

REACTIONS. (Ib/size) 2=184/6-7-10 (min. 0-1-8), 4=184/6-7-10 (min. 0-1-8), 6=258/6-7-10 (min. 0-1-8) Max Horz 2=26(LC 14) Max Uplift2=-48(LC 14), 4=-52(LC 15), 6=-4(LC 14) Max Grav 2=256(LC 21), 4=256(LC 22), 6=258(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA, NO
23-8901-R01	R01	GABLE	1	1	Job Reference (optional) # 43157
		Run: 8.4 ID:av2	30 s Feb 1 9u_vm2c\	2 2021 Print vLtXF0Wc	: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:31 2023 Page 2 5ybwyV6X0-1zn2iQ1awRsTOHqeRvMw1FwLV4bgi8Gk?zaMbyyBvqk

9) All plates are 2x4 MT20 unless otherwise indicated.

10) Gable requires continuous bottom chord bearing.

11) Gable studs spaced at 2-0-0 oc.

12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 57, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 55, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41, 40 except (jt=lb) 73=105.

LOAD CASE(S) Standard

Scale = 1:104.1

L	10-8-14	21-2-4	29-9	-12	39-9-12	1	50-3-2	61-0-0
	10-8-14	10-5-6	8-7	`-8 '	10-0-0	1	10-5-6	10-8-14
Plate Offsets	s (X,Y) [8:0-5	-0,0-3-7], [18:0-4-8,0-5-0]						
LOADING (p TCLL (roof) Snow (Pf)	sf) 20.0 20.0	SPACING- 2 Plate Grip DOL	-0-0 CSI . 1.15 TC 1.15 BC	0.84	DEFL. Vert(LL) Vert(CT)	in (loc) -0.31 21-23 -0 47 21-23	l/defl L/d >999 240 >999 180	PLATES GRIP MT20 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr Code IRC2021/TPI2	YES WB 2014 Matr	0.93 ix-MSH	Horz(CT)	0.05 18	n/a n/a	Weight: 466 lb FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS SLIDER	D 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 W7: 2x6 SP Left 2x4 SP	*Except* DSS No.3 -° 1-11-0, Right 2x4 S	SP No.3 -° 1-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek reco be installed	rood sheathing directly applied or directly applied or dpt 6-21, ommends that Stab d during truss erect	ctly applied or 2-10-2 oc purlins. 6-0-0 oc bracing. 7-19, 8-18, 10-18, 9-18 illizers and required cross bracing tion, in accordance with Stabilizer
REACTIONS	. (Ib/size) 2= Max Horz 2= Max Uplift2= Max Grav 2=	:1412/0-3-8 (min. 0-1-14), :-167(LC 15) :-222(LC 14), 14=-145(LC :1577(LC 39), 14=583(LC 1	14=461/0-3-8 (min. 0 15), 18=-232(LC 11) 55), 18=4124(LC 45)	-1-8), 18=3	112/0-3-8 (min. 0-	2-13)	r galao.	
FORCES. (I TOP CHORE	b) - Max. Com 2 -3=-975/1 5-34=-2613 8-36=0/150 11 28= 286	b./Max. Ten All forces 25 , 3-32=-2865/374, 4-32=-2 3/395, 6-34=-2510/412, 6-3 10, 9-36=0/1429, 9-10=-26 /262, 12, 28=, 289, 282, 282, 282, 283, 283, 284, 285, 285, 285, 285, 285, 285, 285, 285	0 (Ib) or less except w 774/390, 4-33=-2709/3 55=-1782/341, 7-35=-1 /1462, 10-37=-256/493 20= 432/215 12 20=	then shown 391, 5-33=- 533/343, 7- 3, 11-37=-28	2628/394, 8=-646/242, 80/374, 2.14- 402/2			
BOT CHORE	$\begin{array}{c} 11-36260\\ 2-23=-433\\ 20-41=-26\\ 18,44=256\end{array}$	2561, 22-23=-250/1951, 22 1001, 20-42=-26/1001, 19- 2220, 18,45= 205/158, 17	-39432/313, 13-39 2-40=-250/1951, 21-4(-42=-26/1001, 19-43=- 45- 905/158, 16, 17-	0562/270, 10)=-250/195 256/220, 40 005/158 1/	1, 21-41=-26/1001 3-44=-256/220,	3		
WEBS	4-23=-421/ 8-19=-138/ 9-18=-347/	229, 6-23=-131/727, 6-21= 1835, 8-18=-2747/243, 10- 97		/1520, 7-19 -158/1081,)=-1292/235, , 12-16=-599/251,			
NOTES- 1) Unbalance 2) Wind: ASG (envelope 43-6-6 to 2 members 3) TCLL: ASG Cat B; Par 4) Unbalance 5) This truss non-concu 6) WARNING and erectiv jointly prod profession restraint/b 7) Provide ac 8) All plates 3 9) Waraitrese Continuego on	ed roof live loar CE 7-16; Vult=) gable end zon 55-9-5, Exterion and forces & M CE 7-16; Pr=20 trially Exp.; Ce- ed snow loads has been desi urrent with othe G: This long sp on guidance, s duced by SBC/ hal for the desig racing. MITek dequate draina <u>are 5x5 MT200</u>	ds have been considered for 120mph (3-second gust) Vi- te and C-C Exterior(2E) -0- (2E) 55-9-5 to 61-10-8 zor WFRS for reactions shown 0.0 psf (roof LL: Lum DOL= =1.0; Cs=1.00; Ct=1.10 have been considered for 1 gned for greater of min roor r live loads. an truss requires extreme ee Guide to Good Practice A and TPI. The building ow In and inspection of the ter assumes no responsibility ge to prevent water pondin unless otherwise indicated great/corsa10.0; psf ibottdorf	or this design. asd=95mph; TCDL=5. -10-8 to 5-2-11, Interio he; cantilever left and r r; Lumber DOL=1.60 -1.15 Plate DOL=1.15 this design. f live load of 12.0 psf of care and experience f for Handling, Installin ner or the owner's aut mporary installation re- for truss manufacture g.	0psf; BCDL r(1) 5-2-11 ight expose olate grip D or 2.00 time or 2.00 time or proper al g & Bracing horized age straint/braci , handling, e	=5.0psf; h=35ft; C to 17-4-8, Exterior ed; end vertical lef OL=1.60 sf (Lum DOL=1.15 es flat roof load of 2 nd safe handling a g of Metal Plate Co nt shall contract w ng and the permai erection, or bracing	at. II; Exp B; E (2R) 17-4-8 tc t and right exp 5 Plate DOL=1 20.0 psf on ov nd erection. F innected Woo rith a qualified nent individua 3.	Enclosed; MWFRS 9 43-6-6, Interior(1) posed;C-C for 1.15); Is=1.0; Rough erhangs for general handling d Trusses ("BCSI") registered design I truss member ividual building compo-	SEAL 28147 12/5/2023
of individual	web members on	ly. Additional temporary braci	ng to ensure stability duri	ng construction	on is the responsibility	of the erector.	Additional permanent	bracing of the overall structure is the

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA, NC
23-8901-R01	R02	Piggyback Base	3	1	Job Reference (optional) # 43157
	·	Run: 8.4 ID:av	30 s Feb 12 29u_vm20	2 2021 Print wLtXF0W	: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:32 2023 Page 2 /c5ybwyV6X0-V9LRvm2ChI_K0RPq?dt9aSTJvTkURQqtEdJv7OyBvqj

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.
 Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.
 Provide metal plate or equivalent at bearing(s) 18 to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=222, 14=145, 18=232.

LOAD CASE(S) Standard

Scale = 1:106.0

L	10-8-14	21-2-4	29-9-12	35-0-0 39-9	-12 50	0-3-2	61-0-0
	10-8-14	10-5-6	8-7-8	5-2-4 4-9-	12 10	0-5-6	10-8-14
Plate Offsets	(X,Y) [8:0-5	-0,0-3-7], [18:0-5-4,0-2-8]		_			
LOADING (ps TCLL (roof) Snow (Pf)	sf) 20.0 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.85	DEFL. Vert(LL)	in (loc) 1/ -0.33 25-27 >	/defl L/d 999 240 957 180	PLATES GRIP MT20 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr YES Code IRC2021/TPI2014	WB 0.93 Matrix-MSH	Horz(CT)	0.06 18	n/a n/a	Weight: 480 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	 2x6 SP No.2 2x6 SP No.2 B3: 2x4 SP No.3 2x4 SP No.3 W8: 2x6 SP Left 2x4 SP I 	*Except* vo.2, B2: 2x6 SP No.1 *Except* DSS No.3 -° 1-11-0, Right 2x4 SP No.3 -	° 1-11-0	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling di 6-0-0 oc bracin 1 Row at midpt MiTek recom be installed d Installation qu	d sheathing directly rectly applied or 6- rg: 20-22 t 6-25, 7- mends that Stabiliz luring truss erectio uide.	y applied or 2-7-0 oc purlins. -0-0 oc bracing. Except: -23, 8-20, 10-18, 9-18 zers and required cross bracing n, in accordance with Stabilizer
REACTIONS.	(Ib/size) 2= Max Horz 2= Max Uplift2= Max Grav 2=	:1429/0-3-8 (min. 0-1-14), 14=448/ :-167(LC 15) :-212(LC 14), 14=-148(LC 15), 18= :1593(LC 39), 14=572(LC 55), 18=-	0-3-8 (min. 0-1-8), 18=3 144(LC 11) !541(LC 45)	298/0-3-8 (min. 0	-3-2)		
FORCES. (III: TOP CHORD	b) - Max. Comp 2-3=-984/0 5-38=-2707 8-40=0/154 11-42=-258	b./Max. Ten All forces 250 (lb) or , 3-36=-2959/350, 4-36=-2867/366, 7/372, 6-38=-2604/388, 6-39=-1877 (5, 9-40=0/1475, 9-10=-21/1508, 10 (4/26, 12-42=-360/1304, 12-43=-404	less except when shown 4-37=-2803/367, 5-37=- /316, 7-39=-1631/318, 7-)-41=-228/556, 11-41=-29 /377, 13-43=-554/330, 11-41=-29	2723/371, -8=-774/211, 52/438, 3-14=-402/0			
BOT CHORD	2-27=-412/ 24-45=-1/1 19-48=-24/ 18-51=-953	2646, 26-27=-227/2039, 26-44=-22 105, 24-46=-1/1105, 23-46=-1/110 423, 18-48=-24/423, 22-49=-326/9 3/153, 17-51=-953/153, 16-17=-953	7/2039, 25-44=-227/2039 5, 23-47=-24/423, 19-47= 21-49=-326/9, 21-50=-3 /153, 14-16=-304/457	9, 25-45=-1/1105, 24/423, 26/9, 20-50=-326/	'9,		
WEBS	4-27=-418/ 22-23=-117 10-16=-162	230, 6-27=-131/726, 6-25=-1190/3 7/1831, 8-22=-96/2043, 8-20=-2957 2/1061, 12-16=-602/250, 19-21=-32	23, 7-25=-224/1483, 7-23 /200, 18-20=-3174/181, 7 3/0, 9-18=-348/96	8=-1264/251, 10-18=-1056/270,			
NOTES- 1) Unbalance 2) Wind: ASC (envelope) 43-6-6 to 5 members a 3) TCLL: ASC Cat B; Part 4) Unbalance 5) This truss I non-concu 6) WARNING and erectic jointly prod professiona restraint/br 7/Wrowing ad Continued on vertically. Ap	d roof live load CE 7-16; Vult=' gable end zor i5-9-5, Exterior and forces & M CE 7-16; Pr=20 tially Exp.; Ce- d snow loads has been desi has been desi has been desi trent with othe CE This long sp on guidance, s luced by SBC/ al for the design page didance, s luced by SBC/ treit add the solution of the building d	ds have been considered for this de 120mph (3-second gust) Vasd=95n he and C-C Exterior(2E) -0-10-8 to (2E) 55-9-5 to 61-10-8 zone; cantil WFRS for reactions shown; Lumbo 0.0 psf (roof LL: Lum DOL=1.15 Pla =1.0; Cs=1.00; Ct=1.10 have been considered for this desig gned for greater of min roof live loa r live loads. van truss requires extreme care and ee Guide to Good Practice for Han- A and TPI. The building owner or th gn and inspection of the temporary assumes no responsibility for truss gentoprexvant waten prostiling re use. T sign parameters and proper incorporation ly. Additional temporary bracing to ensu lesigner. For general guidance regarding	sign. ph; TCDL=5.0psf; BCDL 5-2-11, Interior(1) 5-2-11 ever left and right expose r DOL=1.60 plate grip D te DOL=1.15); Pf=20.0 p gn. d of 12.0 psf or 2.00 time experience for proper an dling, Installing & Bracing e owner's authorized age nstallation restraint/braci manufacture, handling, e his design is based only upor of component is responsibilit re stability during construction fabrication, quality control, s	=5.0psf; h=35ft; C to 17-4-8, Exterio ed; end vertical le OL=1.60 sf (Lum DOL=1.1) es flat roof load of nd safe handling a g of Metal Plate Co ent shall contract v ng and the perma <u>erection, or bracin</u> n parameters shown, ty of building designo n is the responsibilit torage, delivery, erec	Cat. II; Exp B; Enc r(2R) 17-4-8 to 43 ft and right expos 5 Plate DOL=1.15 20.0 psf on overh and erection. For onnected Wood T vith a qualified reg nent individual tr g. and is for an individ er – not truss designe y of the erector. Addition and bracing, co	closed; MWFRS 3-6-6, Interior(1) sed;C-C for 5); Is=1.0; Rough hangs general handling russes ("BCSI"), gistered design uss member ual building compone er or truss engineer. E ditional permanent br nsult ANSI/TPI 1 <i>Na</i>	SEAL 28147 NONEEPINE 12/5/2023 Ent to be installed and loaded Bracing shown is for lateral support acing of the overall structure is the trional Design Standard for Metal
Plate Connec	ted Wood Truss	Construction and BCSI 1-03 Guide to G	ood Practice for Handling, I	nstalling & Bracing	of Metal Plate Conn	ected Wood Trusses	from Truss Plate Institute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA	, NC
23-8901-R01	R02A	Piggyback Base	6	1	Job Reference (optional) # 43157	
	·	Run: 8.43 ID:av.	30 s Feb 12 29u_vm2	2 2021 Prin cwLtXF0W	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:32 2023 Page 2 /c5ybwyV6X0-V9LRvm2ChI_K0RPq?dt9aSTJqTjqRQmtEdJv7OyBvq	ะ ม่

8) All plates are 5x5 MT20 unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

12) Provide metal plate or equivalent at bearing(s) 18 to support reaction shown.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=212, 14=148, 18=144.

LOAD CASE(S) Standard

Scale = 1:105.9

 	10-8-14	21-2-4	29-9-12	35-0-0 39-9	-12	50-3-2		61-0-0	
Plate Offsets ((X,Y) [8:0-5-	-0,0-3-7], [17:0-5-4,0-2-8]	0-7-0	5-2-4 4-9-	12	10-5-6		10-0-14	
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.85 BC 0.87 WB 0.93 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.33 24-26 -0.50 24-26 0.06 17	l/defl >999 >956 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 478 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x6 SP No.2 2x6 SP No.2 B3: 2x4 SP N 2x4 SP No.3 W8: 2x6 SP I Left 2x4 SP N (Ib/size) 2=	*Except* ko.2, B2: 2x6 SP No.1 *Except* DSS No.3 -° 1-11-0, Right 2x4 SP No.3 :1430/0-3-8 (min. 0-1-14), 14=397	-° 1-11-0 ′0-3-8 (min. 0-1-8), 17=3	BRACING- TOP CHORD BOT CHORD WEBS 3295/0-3-8 (min. 0	Structural wo Rigid ceiling 6-0-0 oc brac 1 Row at mid MiTek recor be installed Installation -3-2)	ood shea directly a sing: 19-2 lpt mmends during ti guide.	thing direct applied or 6 21 6-24, 7 that Stabili russ erectio	ly applied or 2-7-0 oc i-0-0 oc bracing. Exce 7-22, 8-19, 10-17, 9-17 izers and required cro on, in accordance with	purlins. ppt: 7 ss bracing Stabilizer
	Max Horz 2= Max Uplift2=	-211(LC 14), 14=-129(LC 15), 17=	-147(LC 11)						
FORCES. (lb)	Max Grav 2=	1594(LC 39), 14=520(LC 55), 17= ./Max. Ten All forces 250 (lb) or	4539(LC 45) less except when showr). 					
TOP CHORD	2-3=-985/0, 5-37=-2709 8-39=0/154	, 3-35=-2901/349, 4-35=-2609/365 //370, 6-37=-2606/387, 6-38=-187 // 0, 9-39=0/1470, 9-10=-24/1504, 1 //418, 42, 41=-260/201, 12, 42=-44	, 4-36=-2806/366, 5-36= 9/314, 7-38=-1629/316, 7 0-40=-237/547, 11-40=-2	-2725/369, 7-8=-773/208, 261/430, 2 14= 411/0					
BOT CHORD	2-26=-416/2 23-44=-5/1 18-47=-28/4	2648, 25-26=-231/2042, 25-43=-2 102, 23-45=-5/1102, 22-45=-5/110 418, 17-47=-28/418, 21-48=-326/9	31/2042, 24-43=-231/204 2, 22-46=-28/418, 18-46 , 20-48=-326/9, 20-49=-3	3-14411/0 2, 24-44=-5/1102, =-28/418, 326/9, 19-49=-326/	'9,				
WEBS	4-26=-418/2 21-22=-118 10-15=-163	230, 6-26=-132/726, 6-24=-1190/3 2/1830, 8-21=-97/2041, 8-19=-295 3/1064, 12-15=-604/251, 18-20=-3	%143, 14-15301/400 23, 7-24=-224/1483, 7-2 1/203, 17-19=-3171/184, 23/0, 9-17=-348/97	2=-1262/252, 10-17=-1057/270,					
NOTES- 1) Unbalanced 2) Wind: ASCE (envelope) (43-6-6 to 54 members ar 3) TCL: ASCI Cat B; Partii 4) Unbalanced 5) This truss h non-concur 6) WARNING: and erection jointly produ professiona <u>restraint/bra</u> 7) Warowide Lade Continuent of the	d roof live load E 7-16; Vult=1 gable end zor I-10-13, Exter nd forces & M E 7-16; Pr=20 ally Exp.; Ce= d snow loads I as been desig rent with othe This long sp n guidance, so uced by SBCA I for the desig acing. MiTek.	Is have been considered for this d (20mph (3-second gust) Vasd=950 the and C-C Exterior(2E) -0-10-8 to ior(2E) 54-10-13 to 61-0-0 zone; c WFRS for reactions shown; Lumb).0 psf (roof LL: Lum DOL=1.15 Pl =1.0; Cs=1.00; Ct=1.10 have been considered for this designed gned for greater of min roof live load an truss requires extreme care an the Guide to Good Practice for Har and TPI. The building owner or the in and inspection of the temporary assumes no responsibility for truss grateprevent watenpoonbifgre use.	esign. nph; TCDL=5.0psf; BCD 5-2-11, Interior(1) 5-2-11 antilever left and right ex- er DOL=1.60 plate grip E te DOL=1.15); Pf=20.0 p gn. d of 12.0 psf or 2.00 tim d experience for proper a dling, Installing & Bracin e owner's authorized ag installation restraint/brace <u>manufacture, handling,</u> Chis design is based only upc	L=5.0psf; h=35ft; C to 17-4-8, Exterio posed ; end vertic: DOL=1.60 osf (Lum DOL=1.1 es flat roof load of and safe handling a g of Metal Plate C ent shall contract v ing and the perma erection, or bracin on parameters shown, it v of building design	Cat. II; Exp B; E r(2R) 17-4-8 to al left and right 5 Plate DOL=1. 20.0 psf on ove and erection. Fo onnected Wood vith a qualified r nent individual g. and is for an indiv r – not truss desic	nclosed; 43-6-6, I exposed 15); Is=1 erhangs or genera Trusses registere truss me ridual buik	MWFRS nterior(1) ;C-C for .0; Rough .0; Rough	SEAL 28147 12/5/2023 ent to be installed and loa Bracing shown is for late	ded
of individual w responsibility of <i>Plate Connecte</i> D'Onofrio Driv	plieability of des yeb members onl of the building d ed Wood Truss (ye, Madison W	sign parameters and proper incorporation ly. Additional temporary bracing to ens esigner. For general guidance regarding <i>Construction</i> and BCSI 1-03 Guide to 6 1 53719.	ot component is responsibil ire stability during constructi fabrication, quality control, <i>Good Practice for Handling</i> ,	ity of building designed on is the responsibilit storage, delivery, erec Installing & Bracing	er – not truss desig y of the erector. A tion and bracing, of Metal Plate Con	gner or tru Additional consult Al nnected W	ss engineer. permanent bi NSI/TPI 1 Na lood Trusses	Bracing shown is for later racing of the overall struc ational Design Standard J from Truss Plate Institut	ture is the for Metal e, 583

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA,	NC
23-8901-R01	R03	PIGGYBACK BASE	1	1	Job Reference (optional) # 43157	
	·	Run: 8.43 ID:a	30 s Feb 12 v29u_vm2	2 2021 Prin CwLtXF0	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:33 2023 Page 2 Wc5ybwyV6X0-zMvp762qS36Bdb_0ZKOO6g0Uat32At01SH3TfryBvqi	

8) All plates are 5x5 MT20 unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

12) Provide metal plate or equivalent at bearing(s) 17 to support reaction shown.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=211, 14=129, 17=147.

LOAD CASE(S) Standard

⊢	12-0)-0	23-9-12			35-0-0	42-11-2		50-10-4	58-0-0	
Plate Offsets	12-0 (X.Y) [7:0-5	-0.0-3-71	11-9-12			11-2-4	7-11-2		7-11-2	7-1-12	
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL PCD	f) 20.0 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/I	2-0-0 1.15 1.15 YES 'Pl2014	CSI. TC BC WB Matrii	0.64 0.50 0.94 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.17 19-21 -0.22 19-21 0.02 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 435 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 B2: 2x6 SP I 2x4 SP No.3 W4: 2x4 SP Left 2x4 SP I	*Except* DSS *Except* No.2 No.3 -° 1-11-0				BRACING- TOP CHORD BOT CHORD WEBS	Structural w Rigid ceiling 1 Row at mi MiTek reco be installed Installation	ood shea directly dpt ommend d during guide.	athing directly a applied. 6-19, 7-19 s that Stabilizer truss erection,	applied, except end 9, 8-17, 9-17 rs and required cross in accordance with	l verticals. ss bracing Stabilizer
REACTIONS. (lb) -	All bearings Max Horz 2= Max Uplift A Max Grav A	s 0-3-8 except (jt=lengt :172(LC 18) All uplift 100 lb or less a All reactions 250 lb or le	h) 13=Mechan t joint(s) 13 ex ess at joint(s) 1	ical. cept 2=-126 3 except 2=	6(LC 14), 1 882(LC 39	9=-276(LC 14), 14), 19=3049(LC 45)	=-217(LC 15)), 14=1599(LC	39)			
FORCES. (Ib TOP CHORD	RCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. P CHORD 2-3=-707/0, 3-26=-1232/167, 4-26=-1107/183, 4-27=-923/136, 5-27=-813/148, 5-28=-805/149, 6-28=-697/166, 6-29=-24/436, 7-29=-22/714, 7-30=-611/247, 8-30=-611/247, 8-31=-574/227, 9-31=-756/225, 9-32=-800/185, 10-32=-881/169, 10.23=-056/166, 11.23=-075(162, 11.23=-075(162, 11.23=-800))										
BOT CHORD WEBS	2-21=-246/ 17-38=-17/ 4-21=-527/	1075, 21-35=-38/311, 2 813, 16-38=-17/813, 1 246, 6-21=-97/840, 6-1	20-35=-38/311 5-16=-17/813 9=-1309/325, 15= 250/116	, 20-36=-38/ 7-19=-1600/	/311, 19-36 /239, 7-17=	5=-38/311, =-98/1109, - 1207/286					
NOTES- 1) Unbalancee 2) Wind: ASC (envelope) 42-11-2 to 5 right expose 3) TCLL: ASC Cat B; Parti 4) Unbalancee 5) This truss f non-concur 6) Provide add 7) All plates 8) This truss f 9) * This truss between the 10) Refer to g 11) Provide m 2=126, 19 Warping !	d roof live load E 7-16; Vult=- gable end zor 52-0-10, Exter ed;C-C for me E 7-16; Pr=20 ially Exp.; Ce= d snow loads d sn	ds have been considered 120mph (3-second gus he and C-C Exterior(2E ior(2E) 52-0-10 to 57-1 embers and forces & M).0 psf (roof LL: Lum D =1.0; Cs=1.00; Ct=1.10 have been considered gned for greater of min r live loads. ge to prevent water por unless otherwise indica gned for a 10.0 psf bott signed for a 10.0 psf bott signed for a live load of d and any other memb ss to truss connections innection (by others) of t zrameters and read notes	ed for this desi i) Vasd=95mpl) -0-10-8 to 4-7 0-4 zone; can WFRS for reac OL=1.15 Plate for this design. roof live load of hding. ted. russ to bearing before use. This	gn. n; TCDL=5.(11-2, Interior) lifever left ar titions showr DOL=1.15) of 12.0 psf c load noncor e bottom cho = 10.0psf. g plate capa s design is bas	Opsf; BCDI r(1) 4-11-2 nd right exi n; Lumber I ; Pf=20.0 p or 2.00 time ncurrent wi ord in all al uble of with	L=5.0psf; h=35ft; C to 17-9-9, Exterior posed ; end vertica DOL=1.60 plate gri psf (Lum DOL=1.15 es flat roof load of 2 th any other live loa reas where a rectar standing 100 lb up	at. II; Exp B; E (2R) 17-9-9 to I left and right p DOL=1.60 5 Plate DOL=1 20.0 psf on ove ads. ngle 3-6-0 tall lift at joint(s) 1	Enclosed o 42-11-2 exposed .15); Is= erhangs by 1-0-0 3 except	l; MWFRS 2, Interior(1) d; porch 1.0; Rough 1.0; Rough 0 wide will fit t (jt=lb)	SEAL 28147 12/5/2023	
Continued on portically. Ap	verity design page 2 plicability of des	arameters and read notes sign parameters and proper	before use. This incorporation of	s design is bas component is	sed only upo responsibili	n parameters shown, a ty of building designer	and is for an indi r – not truss desi	vidual bui	uss engineer. Bra	to be installed and load	al support

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA, N
23-8901-R01	R04	Piggyback Base	3	1	Job Reference (optional) # 43157
		Run: 8.4 ID:av2	30 s Feb 12 9u_vm2cv	2 2021 Print vLtXF0Wc	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:34 2023 Page 2 55ybwyV6X0-RYSBKS3SDME2FIZD72vdftYiZHV2vK6Ahxo0BHyBvqh

NOTES-12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

⊢	12-0	H-O H	23-9-12			35-0-0	46-3-4	1	58-0-0		
Plate Offsets	(X,Y) [6:0-5-	-0,0-3-7], [17:0-3-0,0-5	-4]			11-2-4	11-5-4	T	11-0-12		
LOADING (psi TCLL (roof) Snow (Pf) TCDL BCLL BCDI	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/7	2-0-0 1.15 1.15 YES IPI2014	CSI . TC BC WB Matr	0.65 0.75 1.00 ix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 1/0 -0.28 17-19 >9 -0.37 17-19 >7 0.04 12	defl L/d 999 240 769 180 n/a n/a	PLATES MT20 Weight: 427 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 W4: 2x4 SP S Left 2x4 SP f	*Except* SS, W11: 2x6 SP No.2 No.3 -° 1-11-0	2	8 (min 0	1.9) 12-14	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling dir 1 Row at midpt MiTek recomr be installed du Installation gu	I sheathing directly rectly applied. 5-17, 6- nends that Stabiliz uring truss erection ide.	y applied, except end -17, 6-15, 7-15, 8-15, zers and required cro n, in accordance with	l verticals. 10-12 ss bracing Stabilizer	
REACTIONS.	Max Horz 1= Max Uplift1= Max Grav 1=	161(LC 18) -110(LC 14), 17=-272(743(LC 40), 17=3632((LC 14), 12=-1 (LC 44), 12=13	-8 (IIIII: 0- 88(LC 15) 32(LC 38)	1-0), 12-1	100/0-3-6 (mm. 0-1	-9)				
FORCES. (Ib TOP CHORD	RCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. P CHORD 1-2=-639/0, 2-24=-1036/167, 3-24=-936/184, 3-25=-738/121, 4-25=-644/134, 4-26=-635/135, 5-26=-543/151, 5-27=-19/790, 6-27=-17/1058, 6-28=-735/260, 7-28=-735/260, 7-29=-721/243, 8-29=-873/242, 8-30=-1555/279, 30-31=-1659/277,										
BOT CHORD	9-31=-1674/263, 9-32=-1697/260, 10-32=-1767/251, 11-33=-308/74, 11-12=-288/99 DT CHORD 1-19=-247/896, 17-36=-453/172, 16-36=-453/172, 16-37=-453/172, 15-37=-453/172, 15-38=-108/1349, 14-38=-108/1349, 14-39=-108/1349, 13-39=-108/1349, 13-40=-234/1579, 40, 41=-234/1570										
WEBS	3-19=-546/2 7-15=-338/	248, 5-19=-91/914, 5-1 105, 8-15=-1122/261, 5	7=-1329/321, 8-13=-4/510, 1	6-17=-2201 0-12=-1674	/292, 6-15 /266	=-160/1725,					
NOTES- 1) Unbalanced 2) Wind: ASC (envelope) 43-2-7 to 5 members 3) TCLL: ASC Cat B; Parti 4) Unbalanced 5) Provide add 6) This truss between the 8) Bearing at j of bearing 9) Provide me 17=272, 12 10) Beveled p 11) This truss Washedther	EBS 3-19=-546/248, 5-19=-91/914, 5-17=-1329/321, 6-17=-2201/292, 6-15=-160/1725, 7-15=-338/105, 8-15=-1122/261, 8-13=-4/510, 10-12=-1674/266 OTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0 to 5-9-10, Interior(1) 5-9-10 to 17-9-9, Exterior(2R) 17-9-9 to 43-2-7, Interior(1) 43-2-7 to 51-11-10, Exterior(2E) 51-11-10 to 57-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rougt CAR (A										
Continued on r vertically. Ap	page 2 before the plicability of des	sign parameters and proper ly. Additional temporary l	incorporation of pracing to ensure	component i stability duri	s responsibil ng constructi	lity of building designe	r - not truss designeof the erector. Add	r or truss engineer. E litional permanent bra	Bracing shown is for later acing of the overall struct	al support ture is the	

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA, N
23-8901-R01	R05	PIGGYBACK BASE	6	1	Job Reference (optional) # 43157
		Run: i ID	3.430 s Feb 1 av29u_vm2	2 2021 Prin cwLtXF0V	t: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:35 2023 Page 2 Vc5ybwyV6X0-vk0ZXo44_gMvtu8PgIQsC55tFhnOemOKwbYakjyBvqg

LOAD CASE(S) Standard

Scale = 1:98.9

Ļ		58 58	-0-0 -0-0				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.10 BC 0.03 WB 0.25 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 36 n/a n/a	PLATES GRIP MT20 244/190 Weight: 603 lb FT = 20%		
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP	2 2 3 3 No.3 -° 1-11-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing direc end verticals. Rigid ceiling directly applied or 1 Row at midpt 19-53 16-56 22-49	tly applied or 6-0-0 oc purlins, except 10-0-0 oc bracing. , 18-54, 17-55, 15-57, 14-58, 13-59, , 20-51, 21-50, 23-48, 24-47, 25-46,		
REACTIONS. All bearings 58-0-0. (lb) - Max Horz 1=174(LC 14) Max Uplift All uplift 100 lb or less at joint(s) 1, 53, 54, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 51, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37 except 69=-103(LC 14) Max Grav All reactions 250 lb or less at joint(s) 1, 55, 65, 66, 67, 68, 56, 50, 40, 39, 38, 37, 49, 36, 69 except 53=291(LC 43), 54=292(LC 43), 57=255(LC 44), 58=294(LC 44), 59=287(LC 44), 60=286(LC 44), 61=287(LC 44), 63=289(LC 44), 64=266(LC 44), 51=292(LC 43), 42=256(LC 44), 47=294(LC 44), 46=287(LC 44), 44=2362(LC 44), 42=237(LC 44), 42=237(
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 11-72=-95/250, 11-12=-114/285, 12-13=-128/319, 13-14=-143/354, 14-15=-159/390, 15-16=-166/408, 16-17=-160/396, 17-18=-159/395, 18-19=-159/395, 19-20=-159/395, 20-21=-159/395, 21-22=-160/396, 22-73=-161/408, 23-73=-166/406, 23-24=-159/390, 24-25=-143/354, 25-26=-128/319, 26-27=-114/285, 27-28=-99/250							
 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-0-0 to 5-9-10 to 20-2-6, Corner(3R) 20-2-6 to 40-6-0, Exterior(2N) 40-6-0 to 52-0-10, Corner(3E) 52-0-10 to 57-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Roorgh (20 adequate drainage to prevent water ponding. Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable Enduly spaced at 2-0-0 oc. This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. Or high grammeters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Continued by apred grammeters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support 							

Vertically. Appleadity of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARI	JA, NC
23-8901-R01	R06	GABLE	1	1	Job Reference (optional) # 43157	
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:37 2023 Page ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-s78KyU6LWHcd6CHnoATKHWAMIUe46rldNv1gocyBv						2 1e

11) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 53, 54, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 51, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37 except (jt=lb) 69=103.

LOAD CASE(S) Standard

LOAD DASE(S): Standardiesign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 4 PROVIDENCE CREEK 121 PROVIDENCE CREEK FUQUAY-VARINA, NC	
23-8901-R01	R10	Common Girder	1	1	Job Reference (optional) # 43157	
Run: 8.430 s Feb 12 2021 Print: 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Dec 5 20:56:40 2023 Page 2 ID:av29u_vm2cwLtXF0Wc5ybwyV6X0-GiqSbV8DpC_Bzg0MTI01v8ontiarJ9i33tFLPxyBvqb						

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-6=-60, 7-11=-20 Concentrated Loads (lb)

Vert: 12=-190(B) 13=-190(B) 14=-190(B)

Installation guide.

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 16=15(LC 18)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Corner(3R) 4-0-0 to 8-0-0, Corner(3E) 8-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.

- 8) Gable requires com...
 9) Truss to be fully sheathed from one race or complexity of the space of the s

11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
12) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will profession of the between the bottom chord and any other members.
13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift of table? 2/5/2023 Tand le NOINEE 12/5/2023

DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=108, 6=108.

LOAD CASE(S) Standard

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

²⁾ Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60