

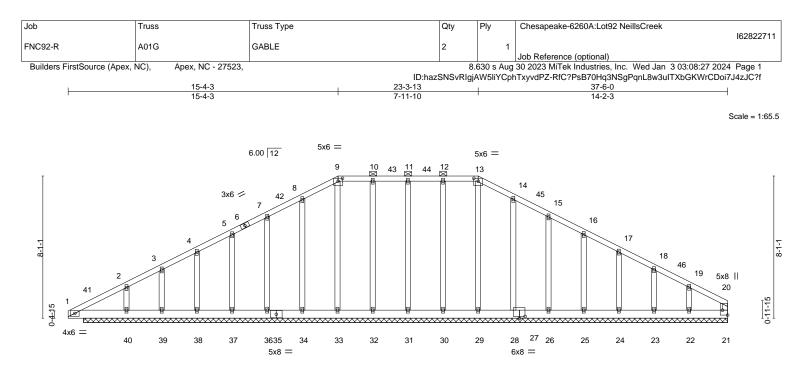
Trenco 818 Soundside Rd Edenton, NC 27932

Re: FNC92-R Chesapeake-6260A:Lot92 NeillsCreek

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I62822711 thru I62822745

My license renewal date for the state of North Carolina is December 31, 2024.


North Carolina COA: C-0844

January 3,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

0 ^l -10-8 late Offsets (X,Y)	[9:0-3-0,0-2-0], [13:0-3-0,0-2-0], [20:Edg	ge,0-3-8], [28:0-3-12,0-1-4	36-7-8 •]	
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) n/a - n/a 999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) n/a - n/a 999	
CLL 0.0 *	Rep Stress Incr YES	WB 0.18	Horz(CT) -0.00 21 n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 273 lb FT = 20%

TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheatning directly applied or 10-0-0 oc purlins,
BOT CHORD	2x6 SP No.2		except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 9-13.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
OTHERS	2x4 SP No.3		

REACTIONS. All bearings 36-7-8.

(lb) - Max Horz 40=113(LC 12)

Max Uplift All uplift 100 b or less at joint(s) 30, 31, 32, 34, 36, 37, 38, 39, 40, 28, 26, 25, 24, 23, 22, 21 Max Grav All reactions 250 lb or less at joint(s) 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 28, 26, 25, 24, 23, 22, 21 except 40=424(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-4-3, Exterior(2) 15-4-3 to 18-4-3, Interior(1) 18-4-3 to 23-3-13, Exterior(2) 23-3-13 to 26-3-13, Interior(1) 26-3-13 to 37-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

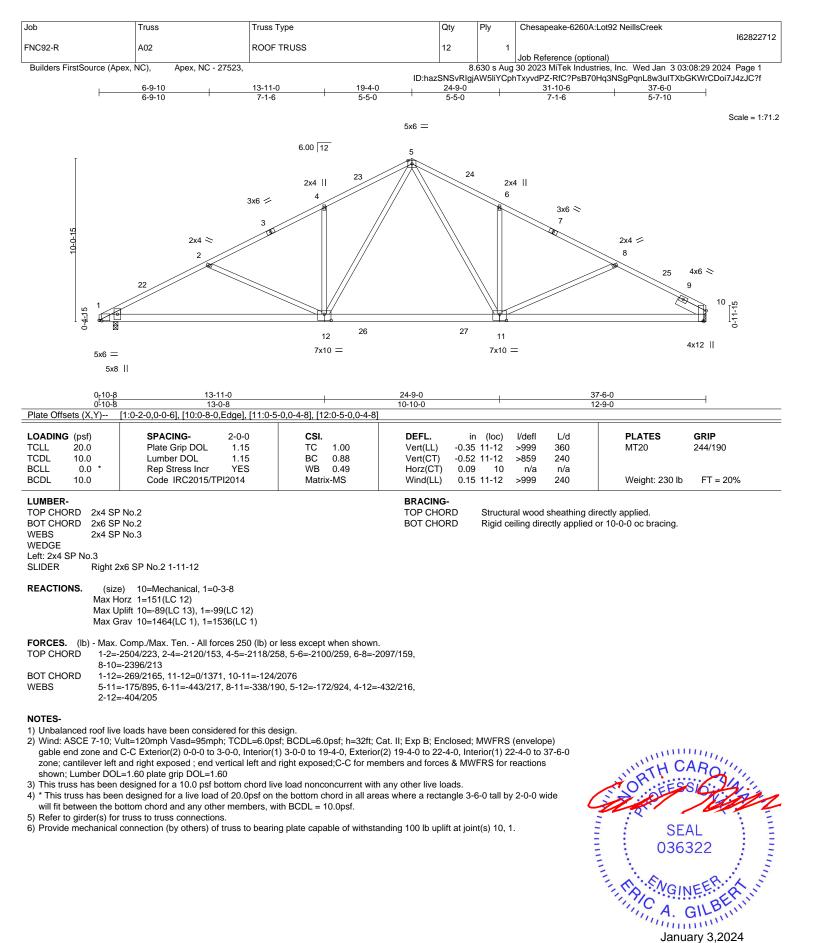
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Provide adequate drainage to prevent water ponding.
 All plates are 2x4 MT20 unless otherwise indicated.

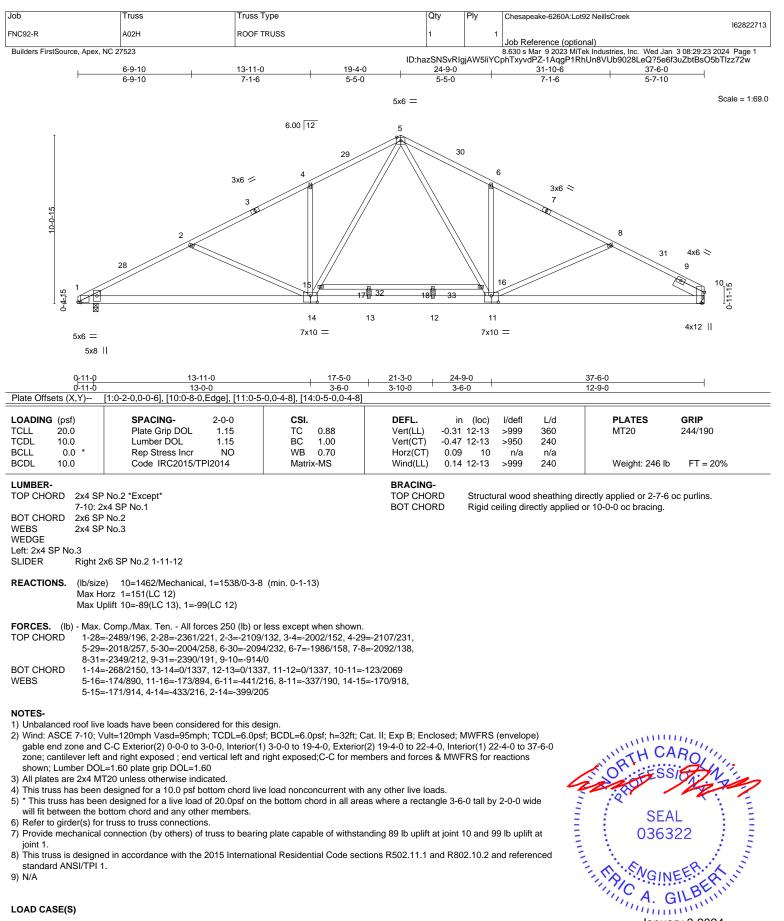
6) Gable stude spaced at 2.0.0 co

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 31, 32, 34, 36, 37, 38, 39, 40, 28, 26, 25, 24, 23, 22, 21.

10) Non Standard bearing condition. Review required.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S)

nued on page

ᄊ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 3,2024

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek
FNC92-R	A02H	ROOF TRUSS	1	1	162822713
111002 11	/////		•		Job Reference (optional)

Vert: 1-5=-60, 5-10=-60, 19-23=-20

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

				Job Reference (optional)		
Builders FirstSource, Apex, NC 27	7523			8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:29:23 2024 Page		
	ID:hazSNSvRIgjAW5liYCphTxyvdPZ-1AqgP1RhUn8VUb9028LeQ?5e6f3uZbtBsO5bTlzz72w					
			•			
LOAD CASE(S)						
 Dead + Roof Live (balance) 	Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15					

Uniform Loads (plf) Vert: 1-5=-50, 5-10=-50, 19-23=-20, 32-33=-30 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-20, 5-10=-20, 19-23=-40, 32-33=-40 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-28=25, 5-28=14, 5-30=25, 10-30=14, 19-23=-12 Horz: 1-28=-37, 5-28=-26, 5-30=37, 10-30=26 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert 1-29=14 5-29=25 5-31=14 10-31=25 19-23=-12 Horz: 1-29=-26, 5-29=-37, 5-31=26, 10-31=37 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-33, 5-10=-33, 19-23=-20 Horz: 1-5=13, 5-10=-13 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-33, 5-10=-33, 19-23=-20 Horz: 1-5=13, 5-10=-13 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-2, 5-10=9, 19-23=-12 Horz: 1-5=-10, 5-10=21 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=9, 5-10=-2, 19-23=-12 Horz: 1-5=-21, 5-10=10 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-20, 5-10=-9, 19-23=-20 Horz: 1-5=-0, 5-10=11 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-9, 5-10=-20, 19-23=-20 Horz: 1-5=-11, 5-10=0 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=22, 5-10=7, 19-23=-12 Horz: 1-5=-34, 5-10=19 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=7, 5-10=22, 19-23=-12 Horz: 1-5=-19, 5-10=34 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=11, 5-10=3, 19-23=-12 Horz: 1-5=-23, 5-10=15 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=3, 5-10=11, 19-23=-12 Horz: 1-5=-15, 5-10=23 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=4, 5-10=-11, 19-23=-20 Horz: 1-5=-24, 5-10=9 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-11, 5-10=4, 19-23=-20 Horz: 1-5=-9, 5-10=24 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-5=-20, 5-10=-20, 19-23=-20, 32-33=-40 19) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-5=-50, 5-10=-42, 19-23=-20, 32-33=-30

Horz: 1-5=-0, 5-10=8

inued on page

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek
FNC92-R	A02H	ROOF TRUSS	1	1	l62822713
	-				Job Reference (optional)

Builders FirstSource, Apex, NC 27523

8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:29:23 2024 Page 3 ID:hazSNSvRIgjAW5liYCphTxyvdPZ-1AqgP1RhUn8VUb9028LeQ?5e6f3uZbtBsO5bTlzz72w

LOAD CASE(S)

Uniform Loads (plf)

Vert: 1-5=-42, 5-10=-50, 19-23=-20, 32-33=-30

Horz: 1-5=-8, 5-10=0

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-5=-32, 5-10=-43, 19-23=-20, 32-33=-30 Horz: 1-5=-18, 5-10=7

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

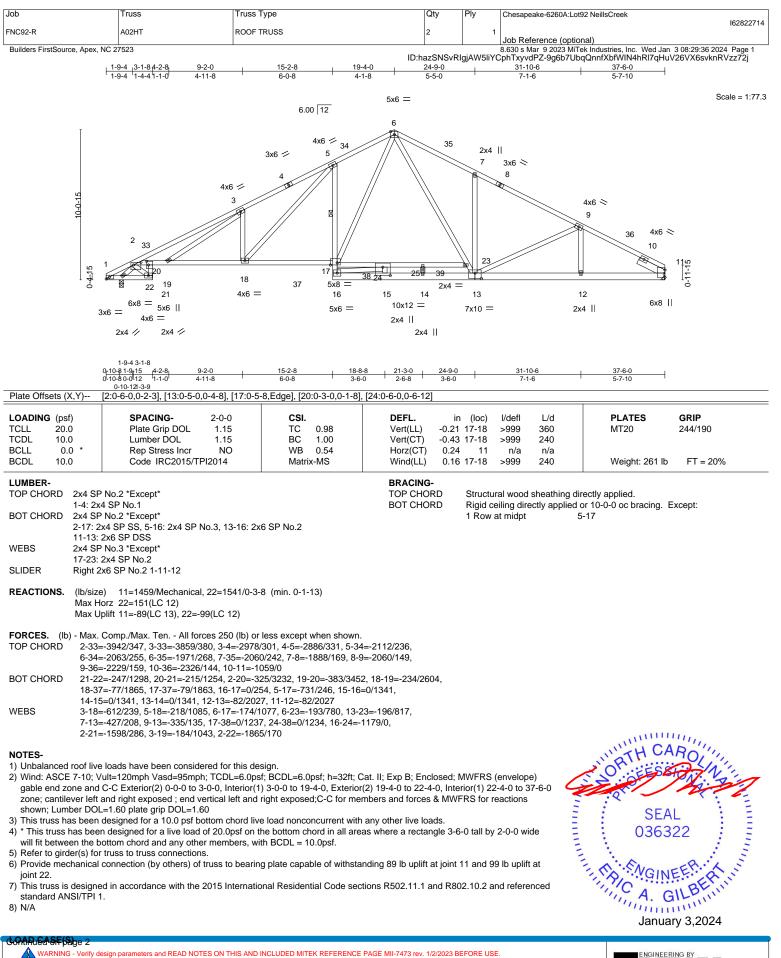
Uniform Loads (plf)

Vert: 1-5=-43, 5-10=-32, 19-23=-20, 32-33=-30 Horz: 1-5=-7, 5-10=18

- 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-5=-60, 5-10=-20, 19-23=-20
- 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

- Vert: 1-5=-20, 5-10=-60, 19-23=-20
- 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-5=-50, 5-10=-20, 19-23=-20, 32-33=-30


26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-20, 5-10=-50, 19-23=-20, 32-33=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Design valid for use only with MITek® connectors. This design is based only uppor parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSi/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek	
FNC92-R	A02HT	ROOF TRUSS	2	1		l62822714
Builders FirstSource, Apex, NC 2	27523				Job Reference (optional) 8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:29:36 20	24 Page 2
		ID:r	azSNSvRI	gjAW5liYC	cphTxyvdPZ-9g6b7UbqQnnfXbfWIN4hRI7qHuV26VX6svknf	۲Vzz72j
LOAD CASE(S)						
/	nced): Lumber Increase=1.15	, Plate Increase=1.15				
Uniform Loads (plf) Vert: 1-6=-60. 6	5-11=-60, 21-26=-20, 17-20=-	20. 16-29=-20				
		ttic Storage: Lumber Increase=1.15, Plate Increa	ase=1.15			
Uniform Loads (plf)	3 11 - 50 21 26 - 20 20 27 -	20, 17-37=-50, 16-29=-20, 38-39=-30				
		Increase=1.25, Plate Increase=1.25				
Uniform Loads (plf)	44 00 04 00 40 47 00	40,40,00,40,00,00,40				
	5-11=-20, 21-26=-40, 17-20=- Pos. Internal) Case 1: Lumber	40, 16-29=-40, 38-39=-40 Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	,					
	6-33=14, 6-35=25, 11-35=14, , 6-33=-26, 6-35=37, 11-35=2	22-26=18, 21-22=-12, 17-20=-12, 16-29=-12				
		Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	6-34-25 6-36-14 11-36-25	22-26=18, 21-22=-12, 17-20=-12, 16-29=-12				
	, 6-34=-37, 6-36=26, 11-36=3					
, , , , , , , , , , , , , , , , , , , ,	leg. Internal) Case 1: Lumber	r Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-6=-33, 6	6-11=-33, 22-26=-15, 21-22=-	20, 17-20=-20, 16-29=-20				
Horz: 1-6=13, 6						
7) Dead + 0.6 C-C Wind (F Uniform Loads (plf)	veg. Internal) Case 2: Lumbei	r Increase=1.60, Plate Increase=1.60				
Vert: 1-6=-33, 6	6-11=-33, 22-26=-15, 21-22=-	20, 17-20=-20, 16-29=-20				
Horz: 1-6=13, 6 8) Dead + 0.6 MWFRS Wi		er Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)						
Vert: 1-6=-2, 6- Horz: 1-6=-10,	11=9, 22-26=4, 21-22=-12, 1 ⁻ 6-11=21	7-20=-12, 16-29=-12				
		per Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	1=-2, 21-26=-12, 17-20=-12,	16 20- 12				
Horz: 1-6=-21,		10-23-12				
,	/ind (Neg. Internal) Left: Lum	ber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-6=-20,	6-11=-9, 22-26=-4, 21-22=-2	0, 17-20=-20, 16-29=-20				
Horz: 1-6=-0,						
Uniform Loads (plf)	lind (Neg. Internal) Right: Lur	nber Increase=1.60, Plate Increase=1.60				
Vert: 1-6=-9, 6	6-11=-20, 21-26=-20, 17-20=-	20, 16-29=-20				
Horz: 1-6=-11 12) Dead + 0.6 MWFRS V		el: Lumber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	· · · ·					
Vert: 1-6=22, Horz: 1-6=-34	6-11=7, 21-26=-12, 17-20=-1 , 6-11=19	2, 16-29=-12				
13) Dead + 0.6 MWFRS W		el: Lumber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-6=7_6	-11=22, 21-26=-12, 17-20=-1	2 16-29=-12				
Horz: 1-6=-19	, 6-11=34					
14) Dead + 0.6 MWFRS W Uniform Loads (plf)	/ind (Pos. Internal) 3rd Paralle	el: Lumber Increase=1.60, Plate Increase=1.60				
Vert: 1-6=11,	6-11=3, 21-26=-12, 17-20=-1	2, 16-29=-12				
Horz: 1-6=-23	/	el: Lumber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	х <i>У</i>					
Vert: 1-6=3, 6 Horz: 1-6=-15	-11=11, 21-26=-12, 17-20=-12	2, 16-29=-12				
	·	el: Lumber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf)	-11=-11, 21-26=-20, 17-20=-2	20 16 20- 20				
Horz: 1-6=-24		20, 10-29=-20				
,	/ind (Neg. Internal) 2nd Paral	lel: Lumber Increase=1.60, Plate Increase=1.60				
Uniform Loads (plf) Vert: 1-6=-11,	6-11=4, 21-26=-20, 17-20=-2	20, 16-29=-20				
Horz: 1-6=-9,		a 1.25 Dista Instance 1.25				
Uniform Loads (plf)	Allic Storage: Lumber Increas	se=1.25, Plate Increase=1.25				
Vert: 1-6=-20,		=-20, 17-37=-60, 16-29=-20, 38-39=-40	. 1.5 - 2			
19) Dead + 0.75 Roof Live Increase=1.60	(bal.) + 0.75 Uninhab. Attic S	Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left	: Lumber	Increase=	1.60, Plate	
Uniform Loads (plf)						
Vert: 1-6=-50, Horz: 1-6=-0,		20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-3	0			
		Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right	nt): Lumbe	r Increase	e=1.60, Plate	

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Description of the second seco

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek	
FNC92-R	A02HT	ROOF TRUSS	2	1		162822714
I NOSE IX	102111		-		Job Reference (optional)	

Builders FirstSource, Apex, NC 27523

8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:29:36 2024 Page 3 ID:hazSNSvRIgjAW5liYCphTxyvdPZ-9g6b7UbqQnnfXbfWIN4hRl7qHuV26VX6svknRVzz72j

LOAD CASE(S)

Uniform Loads (plf)

Vert: 1-6=-42, 6-11=-50, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

Horz: 1-6=-8, 6-11=0

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-6=-32, 6-11=-43, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

Horz: 1-6=-18, 6-11=7

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-6=-43, 6-11=-32, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

Horz: 1-6=-7, 6-11=18 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

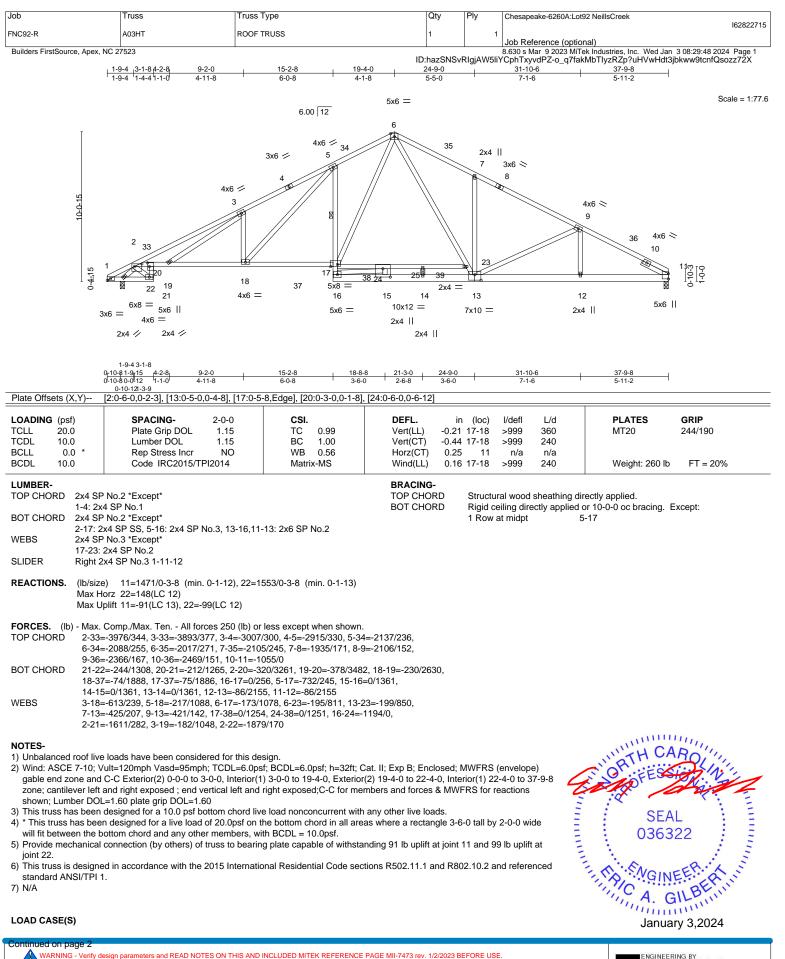
Vert: 1-6=-60, 6-11=-20, 21-26=-20, 17-20=-20, 16-29=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-60, 21-26=-20, 17-20=-20, 16-29=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-50, 6-11=-20, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30


26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-50, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses saft truss systems, see **ANSI/TPI Quality** Criteria **and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty		Ply	Chesapeake-6260A:Lot92 NeillsCreek	
FNC92-R	A03HT	ROOF TRUSS	1		1		162822715
Builders FirstSource, Ap	ex. NC 27523					Job Reference (optional) 8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Ja	an 3 08:29:48 2024 Page 2
			ID:haz	SNSvF	RIgjAW5liN	<pre>(CphTxyvdPZ-o_q7fakMbTlyzRZp?uHVwHdt</pre>	
LOAD CASE(S)							
1) Dead + Roof Live	, ,	hcrease=1.15, Plate Increase=1.15					
Uniform Loads (p	,	20, 17-2020, 16-2920					
		5 Uninhab. Attic Storage: Lumber Increase:	=1.15, Plate Increase=	1.15			
Uniform Loads (p							
		=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38 age: Lumber Increase=1.25, Plate Increase					
Uniform Loads (p			-1.20				
		=-40, 17-20=-40, 16-29=-40, 38-39=-40	- 4.00				
4) Dead + 0.6 C-C V Uniform Loads (p	(/	se 1: Lumber Increase=1.60, Plate Increas	e=1.60				
Vert: 1-3	3=25, 6-33=14, 6-35=2	25, 11-35=14, 22-26=18, 21-22=-12, 17-20=	-12, 16-29=-12				
	33=-37, 6-33=-26, 6-35 Mind (Pos. Internal) Ca	i=37, 11-35=26 ise 2: Lumber Increase=1.60, Plate Increas	e-1 60				
Uniform Loads (p	. ,		6-1.00				
		14, 11-36=25, 22-26=18, 21-22=-12, 17-20=	-12, 16-29=-12				
	34=-26, 6-34=-37, 6-36 Vind (Neg. Internal) Ca	=26, 11-36=37 ase 1: Lumber Increase=1.60, Plate Increas	e=1.60				
Uniform Loads (p	olf)						
	i=-33, 6-11=-33, 22-26 6=13. 6-11=-13	=-15, 21-22=-20, 17-20=-20, 16-29=-20					
	,	ase 2: Lumber Increase=1.60, Plate Increas	e=1.60				
Uniform Loads (p		15 01 00 00 17 00 00 10 00 00					
	=-33, 6-11=-33, 22-26 6=13, 6-11=-13	=-15, 21-22=-20, 17-20=-20, 16-29=-20					
	,	I) Left: Lumber Increase=1.60, Plate Increa	se=1.60				
Uniform Loads (p		21-22=-12, 17-20=-12, 16-29=-12					
	6=-10, 6-11=21	21-22=12, 17-20=12, 10-29=12					
,	,	I) Right: Lumber Increase=1.60, Plate Incre	ase=1.60				
Uniform Loads (p Vert [.] 1-6	,	2, 17-20=-12, 16-29=-12					
	6=-21, 6-11=10	_,0, .0 _0					
,	· •	al) Left: Lumber Increase=1.60, Plate Incre	ase=1.60				
Uniform Loads (Vert: 1-	u ,	=-4, 21-22=-20, 17-20=-20, 16-29=-20					
Horz: 1	-6=-0, 6-11=11						
11) Dead + 0.6 MW Uniform Loads (· •	al) Right: Lumber Increase=1.60, Plate Incr	rease=1.60				
	u ,	=-20, 17-20=-20, 16-29=-20					
	-6=-11, 6-11=0	al) 1st Parallel: Lumber Increase=1.60, Pla	to Incrosco-1.60				
Uniform Loads (al) 1st Falallel. Lumber increase=1.00, Fla					
		12, 17-20=-12, 16-29=-12					
	-6=-34, 6-11=19 FRS Wind (Pos. Intern	al) 2nd Parallel: Lumber Increase=1.60, Pla	ate Increase=1.60				
Uniform Loads (
	·6=7, 6-11=22, 21-26=· -6=-19, 6-11=34	12, 17-20=-12, 16-29=-12					
		al) 3rd Parallel: Lumber Increase=1.60, Pla	te Increase=1.60				
Uniform Loads (40.47.00.40.40.00.40					
	·6=11, 6-11=3, 21-26= -6=-23, 6-11=15	12, 17-20=-12, 16-29=-12					
15) Dead + 0.6 MW	FRS Wind (Pos. Intern	al) 4th Parallel: Lumber Increase=1.60, Pla	te Increase=1.60				
Uniform Loads (12, 17-20=-12, 16-29=-12					
	-6=-15, 6-11=23	12, 17-20=-12, 10-29=-12					
,	· •	al) 1st Parallel: Lumber Increase=1.60, Pla	te Increase=1.60				
Uniform Loads (Vert: 1-		-20, 17-20=-20, 16-29=-20					
Horz: 1	-6=-24, 6-11=9						
17) Dead + 0.6 MW Uniform Loads (al) 2nd Parallel: Lumber Increase=1.60, Pla	ate Increase=1.60				
	u /	-20, 17-20=-20, 16-29=-20					
	-6=-9, 6-11=24						
18) Dead + Uninhat Uniform Loads (•	umber Increase=1.25, Plate Increase=1.25					
Vert: 1-	6=-20, 6-11=-20, 21-2	6=-20, 20-37=-20, 17-37=-60, 16-29=-20, 3					
19) Dead + 0.75 Ro Increase=1.60	of Live (bal.) + 0.75 Ur	hinhab. Attic Storage + 0.75(0.6 MWFRS W	ind (Neg. Int) Left): Lur	nber l	ncrease=	=1.60, Plate	
Uniform Loads ((plf)						
		6=-8, 21-22=-20, 20-37=-20, 17-37=-50, 16	-29=-20, 38-39=-30				
Horz: 1	-6=-0, 6-11=8	inhoh Attis Starage + 0.75/0.0 MM/EDC M	ind (Nam Int) Distili	una la -			

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Marking - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek
FNC92-R	A03HT	ROOF TRUSS	1	1	162822715
110021	, loon in		l'		Job Reference (optional)
Builders FirstSource, Apex, NC	27523				8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:29:48 2024 Page 3
		ID	hazSNSvl	RigjAW5liY	CphTxyvdPZ-o_q7fakMbTlyzRZp?uHVwHdt3jbkww9tcnfQsozz72X

LOAD CASE(S)

Uniform Loads (plf)

Vert: 1-6=-42, 6-11=-50, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

Horz: 1-6=-8, 6-11=0

Horz: 1-6=-18. 6-11=7

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-6=-32, 6-11=-43, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-6=-43, 6-11=-32, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

Horz: 1-6=-7, 6-11=18 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

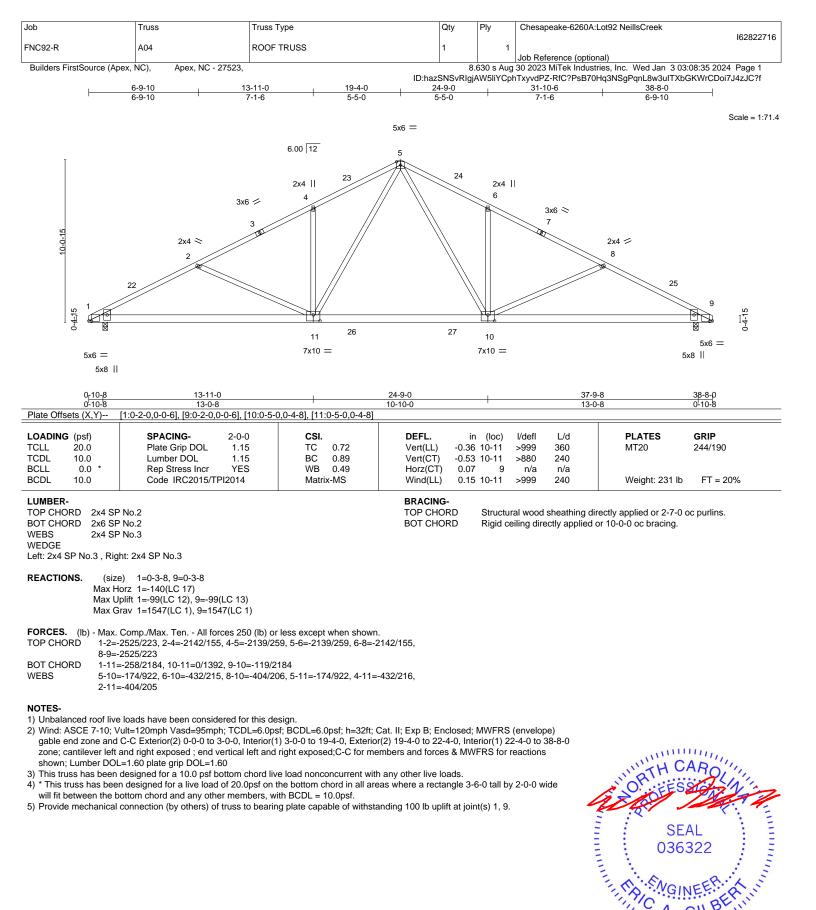
Vert: 1-6=-60, 6-11=-20, 21-26=-20, 17-20=-20, 16-29=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-60, 21-26=-20, 17-20=-20, 16-29=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-6=-50, 6-11=-20, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30


26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-20, 6-11=-50, 21-26=-20, 20-37=-20, 17-37=-50, 16-29=-20, 38-39=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILP

	Truss	Truss Type		QI			ake-6260A:Lot92	NeilisCreek	16282271
NC92-R	A04HT	ROOF TRUSS		2			erence (optiona		0.00.00.00.00.1 D
Builders FirstSource, Ape		15.0.0	19-4-0		RIgjAW5liYCph	8.630 s Ma TxyvdPZ-S 31-10-6	ar 9 2023 Milek HZgAhuum9pF	Industries, Inc. Wed Ja FQHU7iPVJQo7w2Zh 38-8-0	n 3 08:30:00 2024 Page 1 nZkMHeNeZ2H6zz72L
	1-9-4 3-1-84-2-8 9-2-0 1-9-4 1-4-41-1-0 4-11-8	<u>15-2-8</u> 6-0-8	4-1-8	24-9-0 5-5-0		7-1-6		6-9-10	1
				5x6 =					Scale = 1:78
		6.	00 12	6					
Ī			4x6 = 34	3	³⁵ 2x4				
		3x6 ≠	5	// // >>		x6 ≈			
	4	4 4x6 = 4				3			
10-0-15		3					4x6 <	*	
10			⊠ //				9		
	² 33			,				36	
15	1		16		22				18 2
0-4-15		17 37	5x8 =		4 = 40		8		145 1-0-0-0-
а	$6x8 = \frac{20}{5x6}$	4x6 =	15 5x6 =	14 13 10x12 =	12 7x10 =		11 2x4	5x6 5x8	=
0	$4x6 =$ $2x4 \cancel{2} 2x4 \cancel{2}$			2x4 2x4				370 []	
				2,44 []					
	1-9-4 3-1-8 0 <u>-10-β 1-9_π15 4-2-8_Ι 9-2-0</u>	15-2-8	18-8-8	1 21-3-0 1 24-	-9-0 1	31-10-6		37-9-8 38-8-(D
	0-10-80-0 ¹ 12 1-1-0 ¹ 4-11-8 0-10-121-3-9	6-0-8	3-6-0	2-6-8 3-1	6-0	7-1-6		37-9-8 38-8-0 5-11-2 0-10-8	8
Plate Offsets (X,Y)	[2:0-6-0,0-2-3], [10:0-2-4,0-0	0-6], [12:0-5-0,0-4-8]	, [16:0-5-8,Edge],	[19:0-3-0,0-1-8],	[23:0-6-0,0-6-1]	2]			
OADING (psf) CLL 20.0			SI. C 0.99	DEFL. Vert(LL)	in (loc) -0.21 16-17	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
CDL 10.0 SCLL 0.0 *			C 1.00 VB 0.56	Vert(CT) Horz(CT)	-0.43 16-17 0.24 10	>999 n/a	240 n/a		
3CDL 10.0	Code IRC2015/TPI2		latrix-MS	Wind(LL)	0.16 16-17	>999	240	Weight: 262 lb	FT = 20%
2-16:	SP No.2 *Except* 2x4 SP SS, 5-15: 2x4 SP No.	.3, 12-15: 2x6 SP No	.2		1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE	•	.3, 12-15: 2x6 SP No	.2		1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS 3P No.3 *Except* 2: 2x4 SP No.2				1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except*	1-13), 10=1542/0-3-6			1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Max	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All forces	1-13), 10=1542/0-3-6 (LC 13) s 250 (lb) or less exc	8 (min. 0-1-13) ept when shown.		1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE V	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(1-13), 10=1542/0-3- (LC 13) s 250 (lb) or less exc 9, 3-4=-3005/297, 4-5	8 (min. 0-1-13) ept when shown. ==-2913/328, 5-34		1 Row	at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Max FORCES. (2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370	1-13), 10=1542/0-3- (LC 13) s 250 (lb) or less exc), 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5	8 (min. 0-1-13) ept when shown. =-2913/328, 5-34 8=-1928/167, 8-9	=-2100/148,		at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - May OP CHORD 2-3: 6-3 9-3: 30T CHORD 20: 17-1	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14	-1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 (64, 2-19=-305/3259, s, 15-16=0/255, 5-16=	8 (min. 0-1-13) ==-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/348(=-731/245, 14-15=	=-2100/148,), 17-18=-220/262		at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max TOP CHORD 20- 17-1 13- VEBS 3-1	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11. 7=-613/238, 5-17=-215/1088,	(LC 13) s 250 (lb) or less exc 3.3-4=-3005/297, 4-5 1, 7-35=-2095/244, 7- 5 164, 2-19=-305/3259, 1, 15-16=0/255, 5-16 -12=-71/2140, 10-11 6-16=-172/1079, 6-2	8 (min. 0-1-13) ==-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 =2=-196/801, 12-2	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838,		at midpt	5-1	16	
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (lb/si Max Max FORCES. (lb) - Max OP CHORD 2-3: 6-33 9-33 80T CHORD 20: 17-1 13- VEBS 3-11 7-12	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11	(LC 13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc y, 3-4=-3005/297, 4-5 y, 7-35=-2095/244, 7- 5 64, 2-19=-305/3259, y, 15-16=0/255, 5-16 -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38=	8 (min. 0-1-13) ==-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 =2=-196/801, 12-2	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838,		at midpt	5-1		ARO
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max CORCES. (Ib) - Max COP CHORD 2-3: 00 CHORD 2-3: 0-3 0-3 0-3 0-4 17-1 13- VEBS 3-1 7-1; 2-20 IOTES-	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11: 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 (64, 2-19=-305/3259, , 15-16=0/255, 5-16 -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38 s, 2-21=-1878/170	8 (min. 0-1-13) ==-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 =2=-196/801, 12-2	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838,		at midpt	5-	IG	AROLIN
2-16: 10-12 VEBS 2:4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Mai OP CHORD 2-3: 6-3: 9-3: 80T CHORD 20-3 17-7 13- VEBS 3-1 7-1: 2-20 IOTES-) Unbalanced roof lif) Wind: ASCE 7-10;	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11: 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; T	(LC 13) s 250 (lb) or less exc 3, 3-4=-3005/297, 4-5 1, 7-35=-2095/244, 7- 5 15-16=0/255, 5-16 -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38- 5, 2-21=-1878/170 ed for this design. TCDL=6.0psf; BCDL=	8 (min. 0-1-13) =-2913/328, 5-34 =-1928/167, 8-9 18-19=-363/348(=-731/245, 14-15= =-71/2140 :2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C	=-2100/148, 0, 17-18=-220/262 =0/1360, 2=-198/838, I194/0, at. II; Exp B; Encl	8, osed; MWFRS	(envelope		IG INTH CAREES	AROLINI
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max TORCES. (Ib) - Max TOP CHORD 2-3: 00 C	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; d C-C Exterior(2) 0-0-0 to 3-0- ft and right exposed ; end vert	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5), 7-35=-2095/244, 7- 5 164, 2-19=-305/3259, i, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-18=-172/1079, 6-2 6-38=0/1253, 23-38= 3, 2-21=-1878/170 d for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 tr	8 (min. 0-1-13) = pt when shown. = -2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 :22=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C p 19-4-0, Exterior(=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4-	/8, osed; MWFRS -0, Interior(1) 22	(envelope 2-4-0 to 38)-8-0	UNRTH C	AROUNIS
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max FORCES. (Ib) - Max OP CHORD 2-3: 6-33 00T CHORD 20- 17- 13- VEBS 3-11 7-1: 2-22 IOTES-) Unbalanced roof lif 2) Wind: ASCE 7-10; gable end zone an zone; cantilever lei shown; Lumber DC 9) This truss has bee	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; 7 d C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed ; end vert D_=1.60 plate grip DOL=1.60 en designed for a 10.0 psf bottom	(LC 13) s 250 (lb) or less exc o, 3-4=-3005/297, 4-5 y, 7-35=-2095/244, 7- 5 64, 2-19=-305/3259, y, 15-16=0/255, 5-16 -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= s, 2-21=-1878/170 ed for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 tr ical left and right exp om chord live load no	8 (min. 0-1-13) == 2913/328, 5-34 == -1928/167, 8-9 18-19=-363/348(== -731/245, 14-15= == -71/2140 == -71/2140 == -0/1251, 15-23=-1 == 6.0psf; h=32ft; C o 19-4-0, Exteriorrivosed; C-C for mer porconcurrent with	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl. (2) 19-4-0 to 22-4- nbers and forces any other live loa	8, osed; MWFRS 0, Interior(1) 2; & MWFRS for r ds.	(envelope 2-4-0 to 35 reactions)-8-0	UNRTH C	• -
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Max TOP CHORD 2-3: 6-3: 9-33 8-33 8-33 8-37 9-33 8-37 9-33 8-37 9-33 9-33 9-33 9-33 9-33 9-32 9	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; ind C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed ; end vert DL=1.60 plate grip DDL=1.60 en designed for a 10.0 psf botto en designed for a live load of bottom chord and any other r	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 i64, 2-19=-305/3259, i, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= i, 2-21=-1878/170 id for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 tr ical left and right exp om chord live load no 20.0psf on the botton nembers, with BCDL	8 (min. 0-1-13) = pt when shown. = -2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 :2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C to 19-4-0, Exteriori to sed; C-C for mer ponconcurrent with m chord in all area = 10.0psf.	=-2100/148, 0, 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4- nbers and forces any other live loa as where a rectan	8, osed; MWFRS -0, Interior(1) 22 & MWFRS for r ds. gle 3-6-0 tall by	(envelope 2-4-0 to 38 reactions / 2-0-0 wid)-8-0	UNRTH C	• -
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Max TOP CHORD 2-3: 6-3: 9-33 8-33 8-33 8-37 9-33 8-37 9-33 8-37 9-33 9-33 9-33 9-33 9-33 9-32 9	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; T d C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed ; end vert DL=1.60 plate grip DDL=1.60 in designed for a live load of	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 i64, 2-19=-305/3259, i, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= i, 2-21=-1878/170 id for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 tr ical left and right exp om chord live load no 20.0psf on the botton nembers, with BCDL	8 (min. 0-1-13) = pt when shown. = -2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3480 =-731/245, 14-15= =-71/2140 :2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C to 19-4-0, Exteriori to sed; C-C for mer ponconcurrent with m chord in all area = 10.0psf.	=-2100/148, 0, 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4- nbers and forces any other live loa as where a rectan	8, osed; MWFRS -0, Interior(1) 22 & MWFRS for r ds. gle 3-6-0 tall by	(envelope 2-4-0 to 38 reactions / 2-0-0 wid)-8-0	UNRTH C	• -
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max FORCES. (Ib) - Max OP CHORD 2-3: 6-33 80T CHORD 20- 17-: 13- VEBS 3-1: 7-1: 2-22 IOTES-) Unbalanced roof lif 2) Wind: ASCE 7-10; gable end zone an zone; cantilever lei shown; Lumber DC 1) This truss has bee will fit between the i) Provide mechanica joint 10. i) This truss is design	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; T d C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed; end vert DL=1.60 plate grip DOL=1.60 on designed for a 10.0 psf bott sen designed for a live load of b bottom chord and any other r al connection (by others) of tru ned in accordance with the 20	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 (64, 2-19=-305/3259, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= s, 2-21=-1878/170 ad for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 to ical left and right exp om chord live load no 20.0psf on the botton nembers, with BCDL iss to bearing plate c	8 (min. 0-1-13) ept when shown. =-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3486 =-731/245, 14-15= =-71/2140 (2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C o 19-4-0, Exteriorri oosed;C-C for mer onconcurrent with m chord in all area = 10.0psf. = 10.0psf.	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4- nbers and forces any other live load as where a rectan- nding 99 lb uplift a	8, osed; MWFRS 0, Interior(1) 2; & MWFRS for r ds. gle 3-6-0 tall by tt joint 21 and 9	(envelope 2-4-0 to 38 reactions / 2-0-0 wid	e at	SE/ 0363	322
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max FORCES. (Ib) - Max OP CHORD 2-3; 6-3; 80T CHORD 2-3; 6-3; 80T CHORD 2-3; 6-3; 80T CHORD 2-3; 9-3; 80T CHORD 2-3; 9-3; 80T CHORD 2-3; 9-3; 80T CHORD 2-3; 9-3; 80T CHORD 2-3; 17-	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; T d C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed; end vert DL=1.60 plate grip DOL=1.60 on designed for a 10.0 psf bott sen designed for a live load of b bottom chord and any other r al connection (by others) of tru ned in accordance with the 20	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 (64, 2-19=-305/3259, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= s, 2-21=-1878/170 ad for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 to ical left and right exp om chord live load no 20.0psf on the botton nembers, with BCDL iss to bearing plate c	8 (min. 0-1-13) ept when shown. =-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3486 =-731/245, 14-15= =-71/2140 (2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C o 19-4-0, Exteriorri oosed;C-C for mer onconcurrent with m chord in all area = 10.0psf. = 10.0psf.	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4- nbers and forces any other live load as where a rectan- nding 99 lb uplift a	8, osed; MWFRS 0, Interior(1) 2; & MWFRS for r ds. gle 3-6-0 tall by tt joint 21 and 9	(envelope 2-4-0 to 38 reactions / 2-0-0 wid	e at	SEA 0363	S22
2-16: 10-12 VEBS 2x4 S 16-22 VEDGE Right: 2x4 SP No.3 REACTIONS. (Ib/si Max Max FORCES. (Ib) - Max TOP CHORD 2-3 6-3 9-3 80T CHORD 20- 17-7 13- VEBS 3-1 7-1: 2-21 NOTES-) Unbalanced roof li 2) Wind: ASCE 7-10; gable end zone an zone; cantilever let shown; Lumber DC 1) This truss has bee will fit between the i) Provide mechanicc joint 10. i) This truss is design standard ANSI/TPI	2x4 SP SS, 5-15: 2x4 SP No. 2: 2x6 SP DSS SP No.3 *Except* 2: 2x4 SP No.2 ize) 21=1552/0-3-8 (min. 0- Horz 21=-140(LC 13) Uplift 21=-99(LC 12), 10=-99(x. Comp./Max. Ten All force: 3=-3973/336, 3-33=-3891/370 4=-2087/254, 6-35=-2008/270 6=-2339/165, 10-36=-2471/14 21=-236/1307, 19-20=-204/12 37=-65/1886, 16-37=-66/1884 14=0/1360, 12-13=0/1360, 11 7=-613/238, 5-17=-215/1088, 2=-417/205, 9-12=-413/142, 1 0=-1610/272, 3-18=-176/1048 ve loads have been considere Vult=120mph Vasd=95mph; T d C-C Exterior(2) 0-0-0 to 3-0 ft and right exposed; end vert DL=1.60 plate grip DOL=1.60 on designed for a 10.0 psf bott cen designed for a live load of b bottom chord and any other r al connection (by others) of tru ned in accordance with the 20	1-13), 10=1542/0-3-4 (LC 13) s 250 (lb) or less exc , 3-4=-3005/297, 4-5 , 7-35=-2095/244, 7- 5 (64, 2-19=-305/3259, 15-16=0/255, 5-16= -12=-71/2140, 10-11 6-16=-172/1079, 6-2 6-38=0/1253, 23-38= s, 2-21=-1878/170 ad for this design. TCDL=6.0psf; BCDL= -0, Interior(1) 3-0-0 to ical left and right exp om chord live load no 20.0psf on the botton nembers, with BCDL iss to bearing plate c	8 (min. 0-1-13) ept when shown. =-2913/328, 5-34 8=-1928/167, 8-9 18-19=-363/3486 =-731/245, 14-15= =-71/2140 (2=-196/801, 12-2 =0/1251, 15-23=-1 =6.0psf; h=32ft; C o 19-4-0, Exteriorri oosed;C-C for mer onconcurrent with m chord in all area = 10.0psf. = 10.0psf.	=-2100/148,), 17-18=-220/262 =0/1360, 2=-198/838, 194/0, at. II; Exp B; Encl (2) 19-4-0 to 22-4- nbers and forces any other live load as where a rectan- nding 99 lb uplift a	8, osed; MWFRS 0, Interior(1) 2; & MWFRS for r ds. gle 3-6-0 tall by tt joint 21 and 9	(envelope 2-4-0 to 38 reactions / 2-0-0 wid	e at	SEA 0363	322

billioning design. Stacking indicated is to prevent oblasing of individual russ web and/or of members of the second members of the s

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 Neills	Creek
FNC92-R	A04HT	ROOF TRUSS	2	, 1		162822717
Builders FirstSource, Apex, NC			L		Job Reference (optional)	tries, Inc. Wed Jan 3 08:30:00 2024 Page 2
Builders Firstoburce, Apex, NC	, 21 52 5		ID:hazSNSvRIgjAW	5liYCphT		J7iPVJQo7w2ZhZkMHeNeZ2H6zz72L
Uniform Loads (plf) Vert: 1-6=-60, 2) Dead + 0.75 Roof Live Uniform Loads (plf) Vert: 1-6=-50, 3) Dead + Uninhabitable Uniform Loads (plf) Vert: 1-6=-20,	6-10=-50, 20-25=-20, 19-37= Attic Without Storage: Lumber 6-10=-20, 20-25=-40, 16-19=	20, 15-28=-20 ttic Storage: Lumber Increase=1.15, F 20, 16-37=-50, 15-28=-20, 38-39=-30 Increase=1.25, Plate Increase=1.25				
Uniform Loads (plf) Vert: 1-33=25	· · · ·	, 21-25=18, 20-21=-12, 16-19=-12, 15	-28=-12			
5) Dead + 0.6 C-C Wind Uniform Loads (plf) Vert: 1-34=14 Horz: 1-34=-2	(Pos. Internal) Case 2: Lumbe , 6-34=25, 6-36=14, 10-36=25 6, 6-34=-37, 6-36=26, 10-36=2	r Increase=1.60, Plate Increase=1.60 , 21-25=18, 20-21=-12, 16-19=-12, 15 37	-28=-12			
Uniform Loads (plf) Vert: 1-6=-33, Horz: 1-6=13,	6-10=-33, 21-25=-15, 20-21=- 6-10=-13					
Uniform Loads (plf) Vert: 1-6=-33, Horz: 1-6=13,	6-10=-33, 21-25=-15, 20-21≕ 6-10=-13					
Uniform Loads (plf) Vert: 1-6=-2, 6 Horz: 1-6=-10	6-10=9, 21-25=4, 20-21=-12, 1 , 6-10=21	·				
Uniform Loads (plf)	-10=-2, 20-25=-12, 16-19=-12,	ber Increase=1.60, Plate Increase=1.6	60			
10) Dead + 0.6 MWFRS Uniform Loads (plf)	Wind (Neg. Internal) Left: Lum 0, 6-10=-9, 21-25=-4, 20-21=-2	ber Increase=1.60, Plate Increase=1.6 20, 16-19=-20, 15-28=-20	60			
11) Dead + 0.6 MWFRS Uniform Loads (plf)	Wind (Neg. Internal) Right: Lui 6-10=-20, 20-25=-20, 16-19=	nber Increase=1.60, Plate Increase=1 -20, 15-28=-20	.60			
12) Dead + 0.6 MWFRS Uniform Loads (plf)	Wind (Pos. Internal) 1st Parall , 6-10=7, 20-25=-12, 16-19=-1	el: Lumber Increase=1.60, Plate Incre 2, 15-28=-12	ase=1.60			
13) Dead + 0.6 MWFRS Uniform Loads (plf) Vert: 1-6=7,	Wind (Pos. Internal) 2nd Paral 6-10=22, 20-25=-12, 16-19=-1	lel: Lumber Increase=1.60, Plate Incre 2, 15-28=-12	ease=1.60			
Uniform Loads (plf)		el: Lumber Increase=1.60, Plate Incre 2, 15-28=-12	ase=1.60			
Uniform Loads (plf)		el: Lumber Increase=1.60, Plate Incre 2, 15-28=-12	ase=1.60			
Uniform Loads (plf)	-,	el: Lumber Increase=1.60, Plate Incre 20. 15-28=-20	ase=1.60			
Horz: 1-6=-2 17) Dead + 0.6 MWFRS Uniform Loads (plf) Vert: 1-6=-1	4, 6-10=9 Wind (Neg. Internal) 2nd Para 1, 6-10=4, 20-25=-20, 16-19=-	lel: Lumber Increase=1.60, Plate Incre	ease=1.60			
Uniform Loads (plf) Vert: 1-6=-20	e Attic Storage: Lumber Increa	=-20, 16-37=-60, 15-28=-20, 38-39=-4		noro	1.60 Blate	
Increase=1.60 Uniform Loads (plf) Vert: 1-6=-50), 6-10=-42, 21-25=-8, 20-21=-	Storage + 0.75(0.6 MWFRS Wind (Ne -20, 19-37=-20, 16-37=-50, 15-28=-20	. , ,	ncrease	= 1.00, Maie	
Horz: 1-6=-0 20) Dead + 0.75 Roof Liv		Storage + 0.75(0.6 MWFRS Wind (Ne	g. Int) Right): Lumbe	· Increas	e=1.60, Plate	

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

ntinued on page 3 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. Buckling from the Science Information and the prevent of the prevention. Buckling for the Science Information and the prevention and the prevention. Buckling of the prevention and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek
ENGOD D	A. 9. 41 JT	ROOF TRUES			162822717
FNC92-R	A04HT	ROOF TRUSS	2	1	Job Reference (optional)

Builders FirstSource, Apex, NC 27523

8.630 s Mar 9 2023 MiTek Industries, Inc. Wed Jan 3 08:30:00 2024 Page 3 ID:hazSNSvRIgjAW5IiYCphTxyvdPZ-SHZgAhuum9pFQHU7iPVJQo7w2ZhZkMHeNeZ2H6zz72L

LOAD CASE(S)

Uniform Loads (plf)

Vert: 1-6=-42, 6-10=-50, 20-25=-20, 19-37=-20, 16-37=-50, 15-28=-20, 38-39=-30

Horz: 1-6=-8, 6-10=0

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-6=-32, 6-10=-43, 20-25=-20, 19-37=-20, 16-37=-50, 15-28=-20, 38-39=-30

Horz: 1-6=-18, 6-10=7

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-6=-43, 6-10=-32, 20-25=-20, 19-37=-20, 16-37=-50, 15-28=-20, 38-39=-30

Horz: 1-6=-7, 6-10=18 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

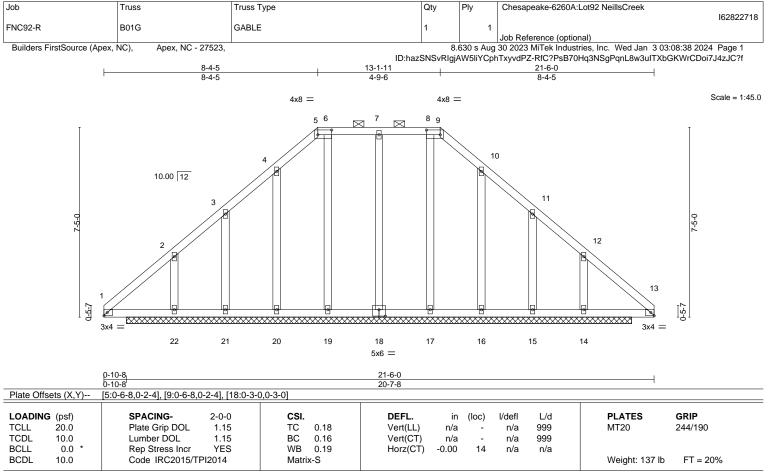
Vert: 1-6=-60, 6-10=-20, 20-25=-20, 16-19=-20, 15-28=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-20. 6-10=-60. 20-25=-20. 16-19=-20. 15-28=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-50, 6-10=-20, 20-25=-20, 19-37=-20, 16-37=-50, 15-28=-20, 38-39=-30


26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-20, 6-10=-50, 20-25=-20, 19-37=-20, 16-37=-50, 15-28=-20, 38-39=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins, except 2-0-0 oc purlins (10-0-0 max.): 5-9.

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 19-9-0. (lb) - Max Horz 22=-153(LC

Max Horz 22=-153(LC 8)
 Max Uplift All uplift 100 lb or less at joint(s) 18, 20, 22, 16, 14 except 21=-138(LC 12), 15=-136(LC 13)
 Max Grav All reactions 250 lb or less at joint(s) 18, 19, 20, 21, 17, 16, 15 except 22=306(LC 23), 14=306(LC 24)

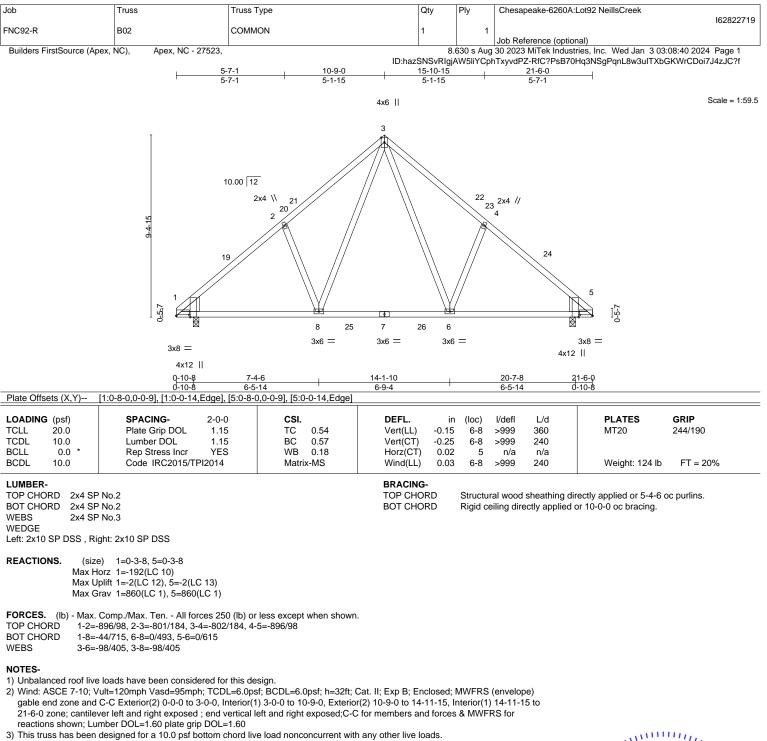
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0 to 2-9-0, Exterior(2) 2-9-0 to 8-4-5, Corner(3) 8-4-5 to 11-4-5, Exterior(2) 11-4-5 to 13-1-11, Corner(3) 13-1-11 to 16-1-11, Exterior(2) 16-1-11 to 21-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

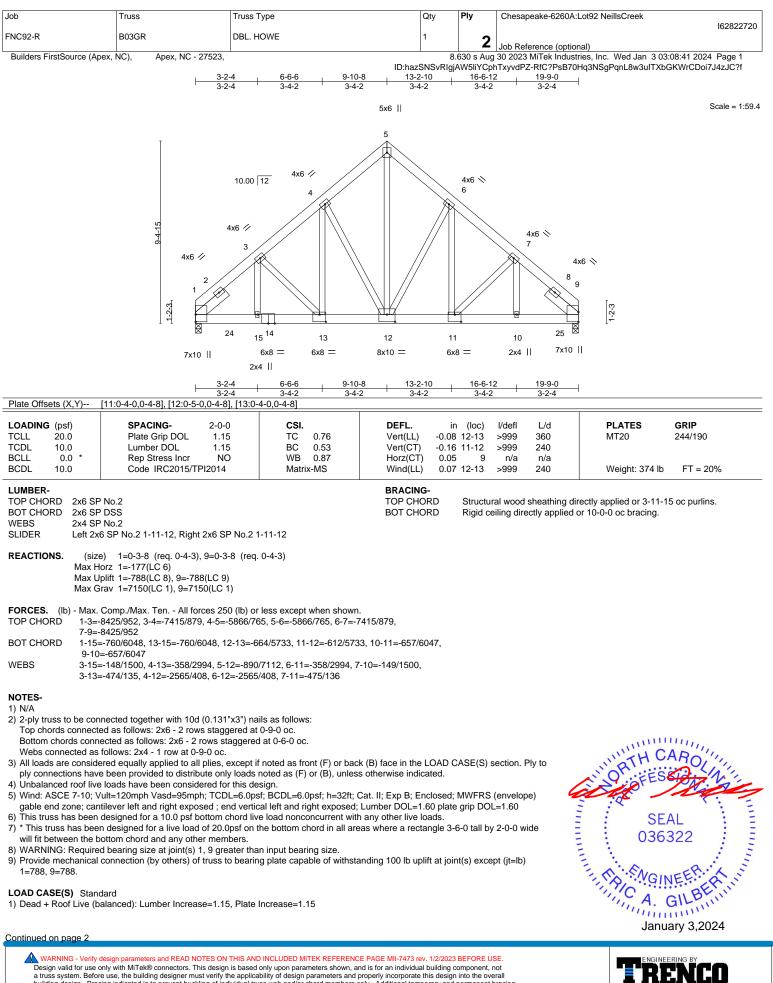
8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 20, 22, 16, 14 except (jt=lb) 21=138, 15=136.

10) Non Standard bearing condition. Review required.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



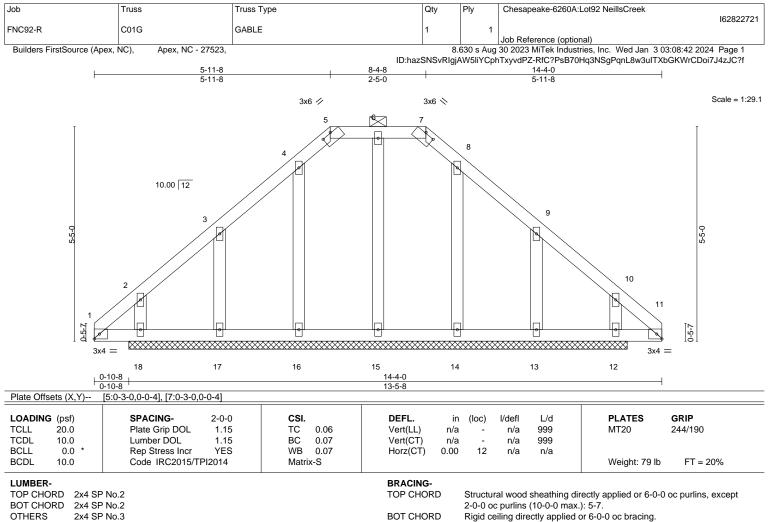
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouldapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Chesapeake-6260A:Lot92 NeillsCreek
					I62822720
FNC92-R	B03GR	DBL. HOWE	1	2	
					Job Reference (optional)
Builders FirstSource (Apex,	NC), Apex, NC - 27523,		8.	630 s Aug	30 2023 MiTek Industries, Inc. Wed Jan 3 03:08:41 2024 Page 2
		ID:haz	SNSvRlgj	W5liYCpl	TxyvdPZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 16-24=-20, 24-25=-751(F=-731), 20-25=-20, 1-3=-20, 3-5=-60, 5-7=-60, 7-9=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

OTHERS 2x4 SP No.3

REACTIONS. All bearings 12-7-0.

Max Horz 18=110(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 18, 12 except 17=-125(LC 12), 13=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 15, 16, 17, 18, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 3-2-0, Exterior(2) 3-2-0 to 5-11-8, Corner(3) 5-11-8 to 11-2-0, Exterior(2) 11-2-0 to 14-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

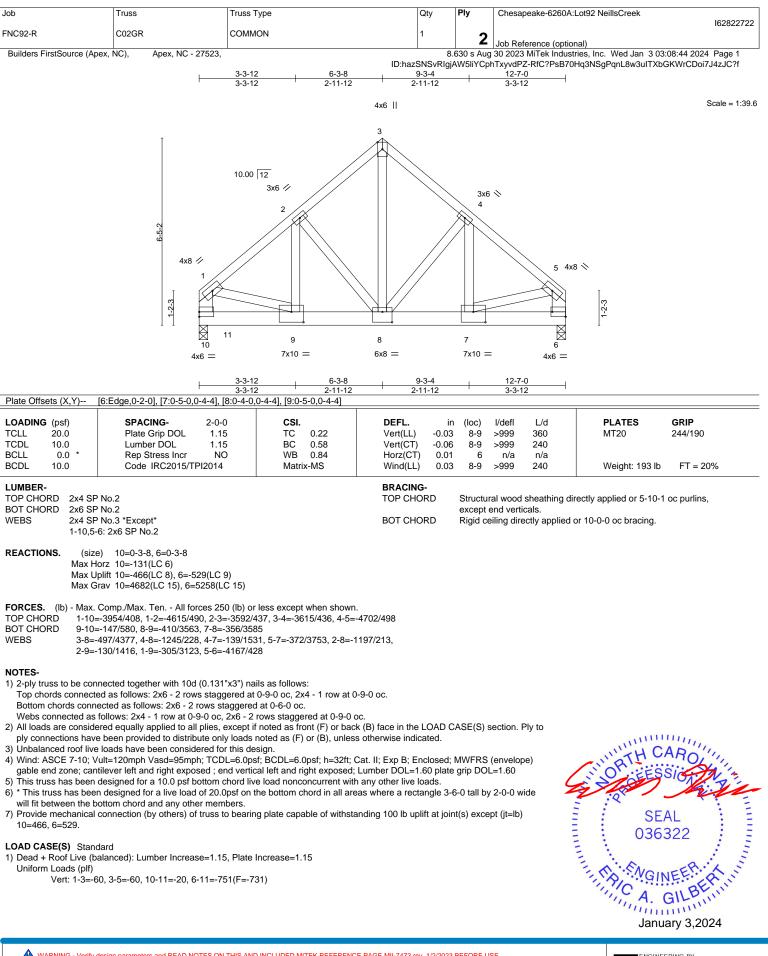
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding. 5) All plates are 2x4 MT20 unless otherwise indicated.

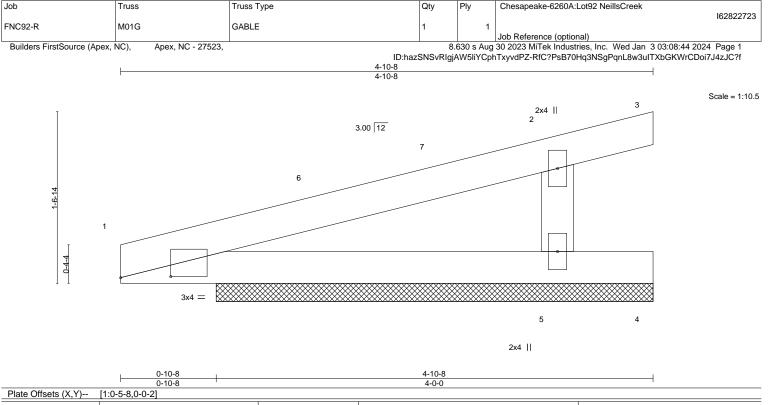
6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12 except (jt=lb) 17=125, 13=123.

10) Non Standard bearing condition. Review required.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

OADING (psf) CLL 20.0		2-0-0 CSI. 1.15 TC 0.	0.21 DEFL.	in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
CDL 10.0 CLL 0.0 *	Lumber DOL	1.15 BC 0.	0.13 Vert(CT)	n/a - -0.00 3	n/a	999 n/a	WIT20	244/100
3CDL 10.0	Code IRC2015/TPI20	014 Matrix-P	P				Weight: 16 lb	FT = 20%
UMBER-			BRACING-					
TOP CHORD 2x4 SP	No.2		TOP CHORE	D Struct	ural wood	sheathing dire	ectly applied or 4-10-	8 oc purlins.
BOT CHORD 2x4 SP	No 2	BOT CHORE	D Riaid	ceilina dire	ctly applied o	10-0-0 oc bracing.		

OTHERS 2x4 SP No.3

REACTIONS. (size) 1=4-0-0, 3=4-0-0, 4=4-0-0, 5=4-0-0 Max Horz 1=43(LC 8) Max Uplift 1=-8(LC 8), 3=-85(LC 1), 4=-58(LC 3), 5=-55(LC 8)

Max Grav 1=127(LC 1), 3=34(LC 8), 5=377(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-282/285

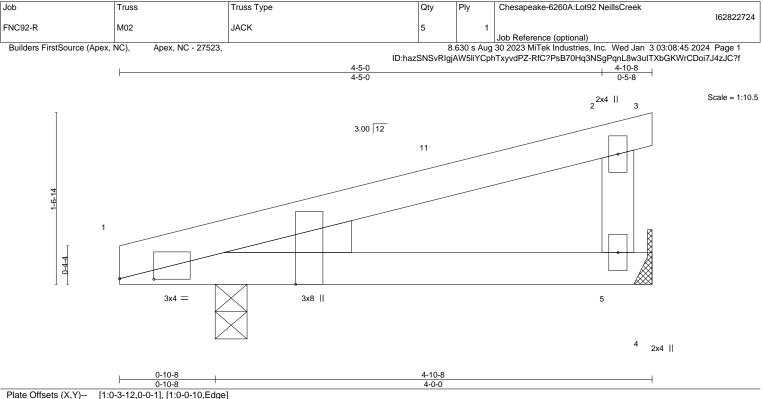
NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 3-0-0, Exterior(2) 3-0-0 to 4-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4, 5.

7) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/de	fl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.01 5-10 >99	9 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) -0.02 5-10 >99	9 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT) 0.00 1 n/	'a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.01 5-10 >99	9 240	Weight: 18 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 5=Mechanical

Max Horz 1=41(LC 8) Max Uplift 1=-20(LC 8), 5=-25(LC 8) Max Grav 1=225(LC 1), 5=165(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

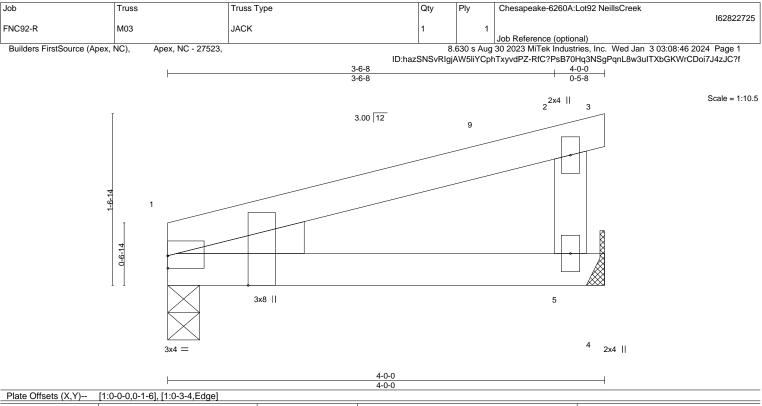
1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.



Structural wood sheathing directly applied or 4-10-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

OADING (psf) CLL 20.0 CDL 10.0 CLL 0.0 CLL 10.0 CLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.16 0.18 0.02 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.00 0.01	(loc) 5-8 5-8 1 5-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
UMBER- OP CHORD 2x4 SF	2 No.2				BRACING- TOP CHOF		Structu	Iral wood	sheathing d	irectly applied or 4-10-	8 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 5=Mechanical

Max Horz 1=33(LC 8) Max Uplift 1=-11(LC 8), 5=-26(LC 8) Max Grav 1=146(LC 1), 5=174(LC 1)

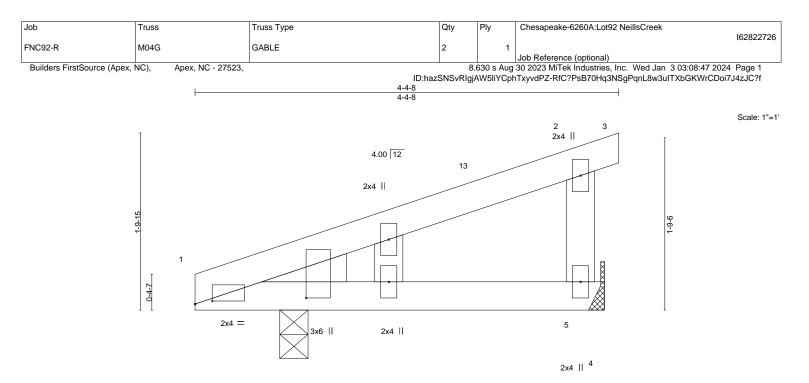
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-10-8 to 3-10-8, Interior(1) 3-10-8 to 4-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	H	0-10-8	+		4-2-1					\dashv	
Plate Offsets (>	Y) [1:0-2-2,0-0-6], [1:0-0-	12,1-1-12]			1						
LOADING (psf	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.00	5-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	5-12	>999	240		
BCLL 0.0	* Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCDL 10.0	Code IRC2015	/TPI2014	Matrix	K-MP	Wind(LL)	0.00	5-12	>999	240	Weight: 17 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 5=Mechanical, 1=0-3-8 Max Horz 1=54(LC 9) Max Uplift 5=-25(LC 12), 1=-17(LC 8) Max Grav 5=145(LC 1), 1=202(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-4-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 1.

Structural wood sheathing directly applied or 4-4-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	2-2,0-0-6], [1:0-0-12,1-1-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.09 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 5-10 >999 360 Vert(CT) -0.01 5-10 >999 240 Horz(CT) 0.00 1 n/a n/a Wind(LL) 0.00 5-10 >999 240	0 MT20 244/190 0 ′a

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 5=Mechanical, 1=0-3-8

Max Horz 1=54(LC 9) Max Uplift 5=-25(LC 12), 1=-17(LC 8) Max Grav 5=145(LC 1), 1=202(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

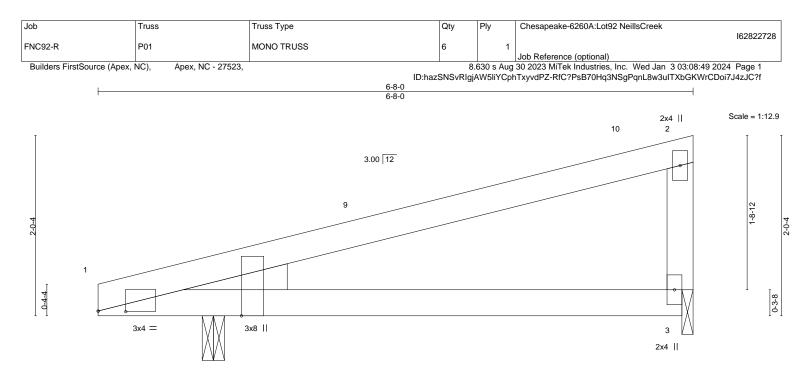
This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 1.

Structural wood sheathing directly applied or 4-4-8 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	<u>1-2-0</u> 1-2-0			
Plate Offsets (X,Y)	[1:0-3-11,0-0-1], [1:0-0-10,Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.39	Vert(LL) -0.04 3-8 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.31	Vert(CT) -0.08 3-8 >991 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 1 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.04 3-8 >999 240	Weight: 24 lb $FT = 20\%$

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Loft: 2x4 SP No.3

Left: 2x4 SP No.3 REACTIONS. (size) 1=0-3-0, 3=0-1-8

Max Horz 1=59(LC 11) Max Uplift 1=-34(LC 8), 3=-29(LC 8) Max Grav 1=318(LC 1), 3=204(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

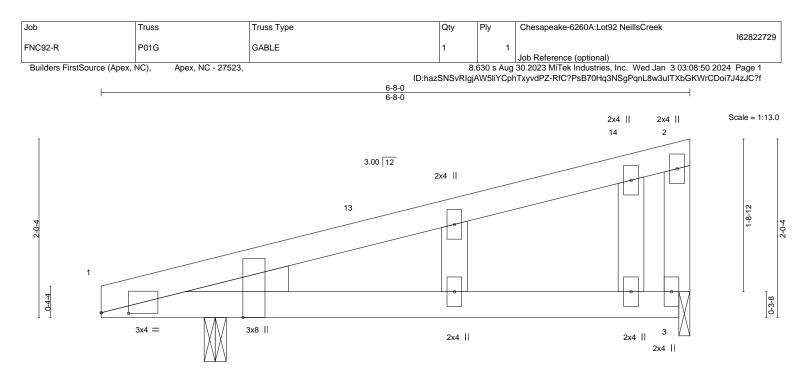
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	<u>1-2-0</u> 1-2-0				
Plate Offsets (X,Y)	[1:0-3-11,0-0-1], [1:0-0-10,Edge]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.39	Vert(LL) -0.04 3-12 >999	360 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.31	Vert(CT) -0.08 3-12 >991	240	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 1 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.04 3-12 >999	240 Weight: 2	7 lb FT = 20%
LUMBER-	1		BRACING-	1	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 1=0-3-0. 3=0-1-8 Max Horz 1=59(LC 11) Max Uplift 1=-34(LC 8), 3=-29(LC 8) Max Grav 1=318(LC 1), 3=204(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

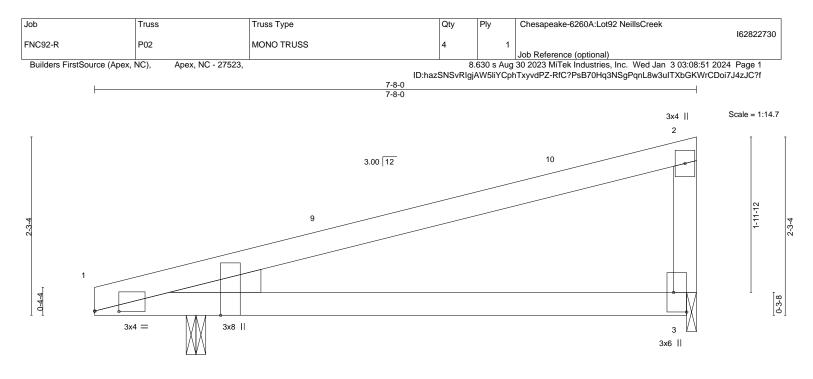
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

		<u>1-2-0</u> 1-2-0										
Plate Offsets	s (X,Y)	[1:0-3-11,0-0-1], [1:0-0-1	0,Edge], [3:Ed	lge,0-2-0]							1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.04	3-8	>999	360	MT20	244/190
TCDL 1	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.10	3-8	>907	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCDL 1	10.0	Code IRC2015/TF	PI2014	Matri	ĸ-MS	Wind(LL)	0.04	3-8	>999	240	Weight: 27 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORE						TOP CHOR			iral wood end verti	0	rectly applied or 6-0-0	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (size) 1=0-3-0, 3=0-1-8

Max Horz 1=68(LC 11) Max Uplift 1=-38(LC 8), 3=-34(LC 8) Max Grav 1=356(LC 1), 3=246(LC 1)

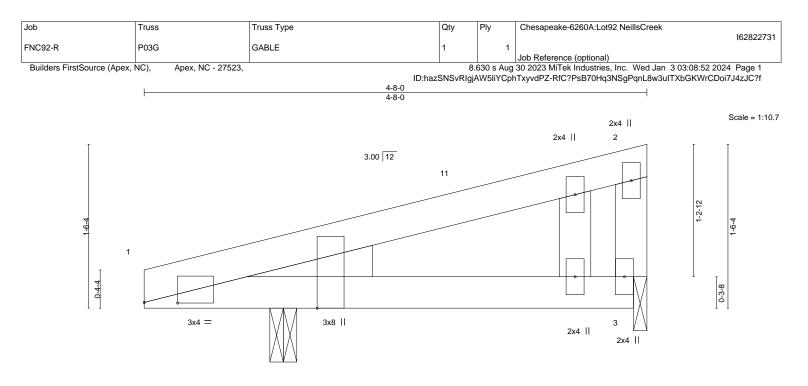
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Plate Offsets (X,Y)	<u>1-2-0</u> [1:0-3-11,0-0-1], [1:0-0-10,Edge]							
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL)	-0.00 3-10	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT)	-0.01 3-10	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00 1	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL)	0.01 3-10	>999	240	Weight: 18 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 1=0-3-0. 3=0-1-8 Max Horz 1=41(LC 11) Max Uplift 1=-26(LC 8), 3=-18(LC 12) Max Grav 1=244(LC 1), 3=118(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1.2.0

NOTES-

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

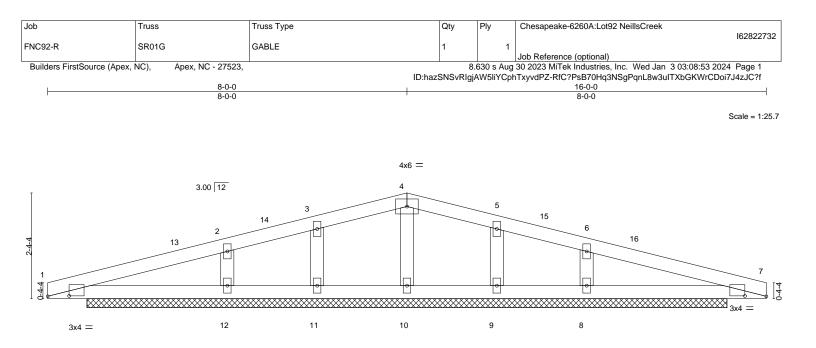
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

0-10-8			<u>16-0-0</u> 15-1-8						
	[1:0-5-11,0-0-2], [7:0-5-11,0-0-2]		13-1-0						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in ((loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT)	0.00	7	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 57 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 14-3-0.

Max Horz 1=-30(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 12, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 9 except 12=327(LC 1), 8=327(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

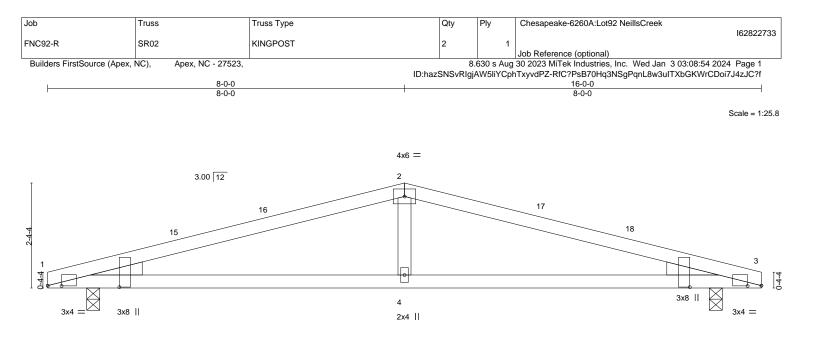
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-0-0, Exterior(2) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 16-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 12, 9, 8. 9) Non Standard bearing condition. Review required.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

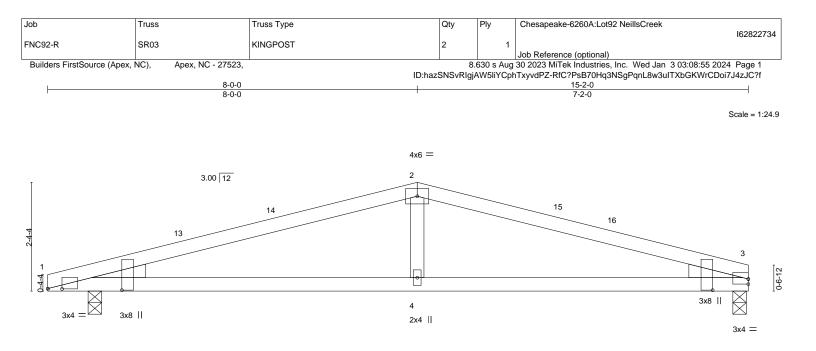
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

0-10-8 0-10-8 Plate Offsets (X,Y)	8-0-0 7-1-8 [1:0-3-11,0-0-1], [1:0-0-6,1-7-4], [3:0-3-7	1,0-0-1], [3:0-0-6,1-7-4]				-1-8 -1-8		<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.53 WB 0.11 Matrix-MS	DEFL. in Vert(LL) -0.08 Vert(CT) -0.14 Horz(CT) 0.02 Wind(LL) 0.06	(loc) 4-9 4-9 3 4-9	>999 3 >999 2 n/a i	_/d 60 40 n/a 40	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
Max H Max U	P No.2 P No.3		BRACING- TOP CHORD BOT CHORD				rectly applied or 4-7-3 or 10-0-0 oc bracing.	oc purlins.
TOP CHORD 1-2=-	Comp./Max. Ten All forces 250 (lb) or -1168/114, 2-3=-1168/114 -60/1093, 3-4=-60/1093 0/280	less except when shown.						
,	e loads have been considered for this de /ult=120mph Vasd=95mph; TCDL=6.0ps	5	. II; Exp B; Enclosed; I	WWFRS	(envelope)			

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-0-0, Exterior(2) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 16-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

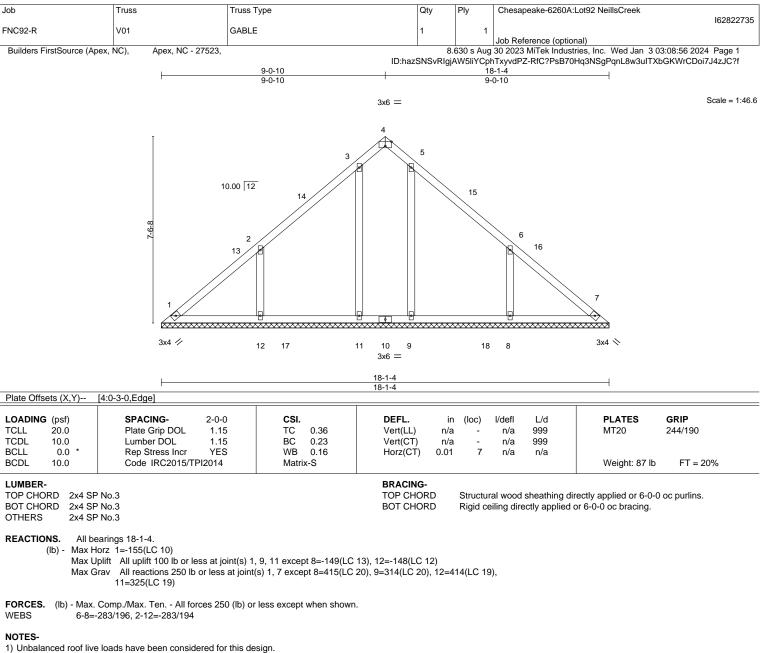

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

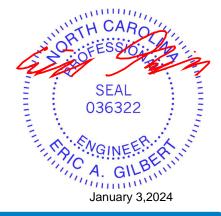
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

+ 0-10-8 0-10-8 Plate Offsets (X,Y)	<u>8-0-0</u> 7-1-8 [1:0-3-11,0-0-1], [1:0-0-6,1-7-4], [3:0-0-1	0,0-1-5], [3:0-2-14,0-9-4]			15-1-8 7-1-8	i	<u>15</u> 72-0 0-0-8
OADING (psf) TCLL 20.0 TCDL 10.0 3CLL 0.0 3CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.58 BC 0.57 WB 0.11 Matrix-MS	DEFL. Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0 Wind(LL) 0.0	5 4-12 2 3	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
VEDGE .eft: 2x4 SP No.3 , Rig REACTIONS. (siz Max H Max L	P No.2 P No.3		BRACING- TOP CHORD BOT CHORD			lirectly applied or 4-5-1 or 10-0-0 oc bracing.	1 oc purlins.
OP CHORD 1-2= 30T CHORD 1-4=	Comp./Max. Ten All forces 250 (lb) or -1186/124, 2-3=-1185/129 -81/1110, 3-4=-81/1110 0/284	less except when shown.					
	e loads have been considered for this de /ult=120mph Vasd=95mph: TCDL=6.0ps				(envelope)		

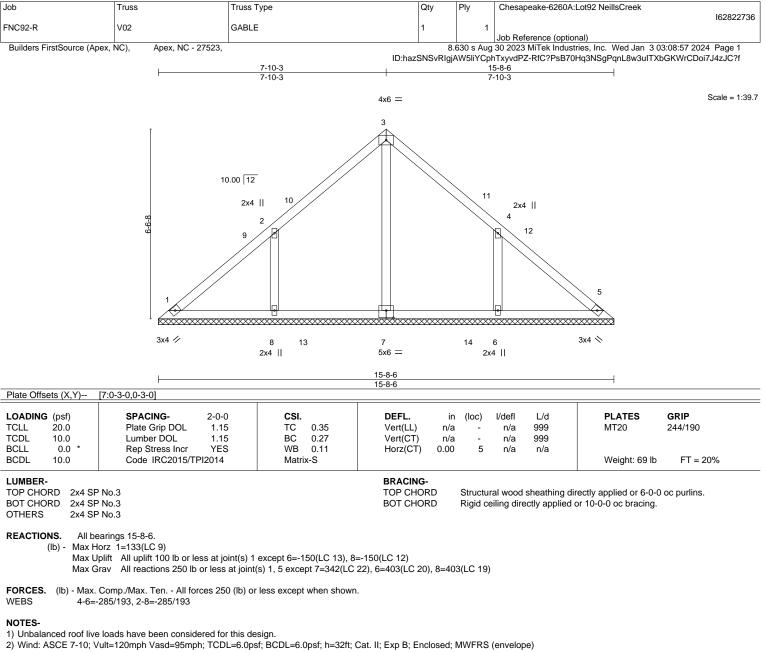
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-0-0, Exterior(2) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 15-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 9-0-10, Exterior(2) 9-0-10 to 12-0-10, Interior(1) 12-0-10 to 17-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 11 except (jt=lb) 8=149, 12=148.

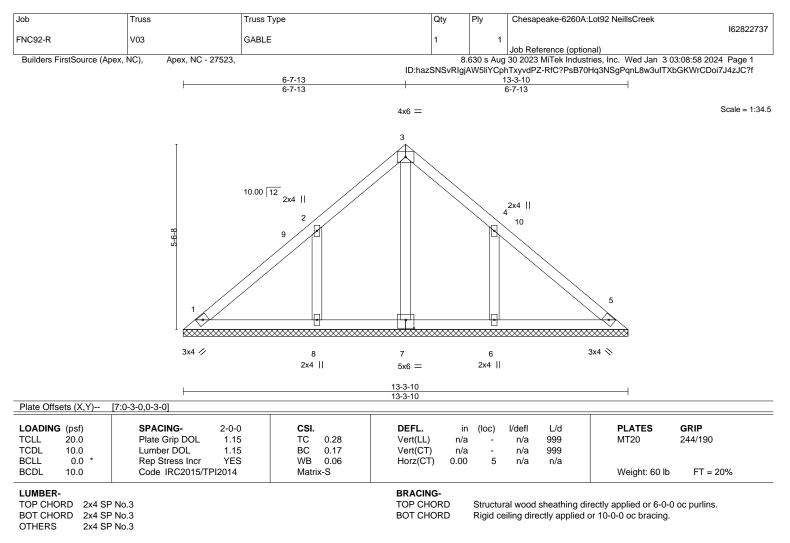
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 7-10-3, Exterior(2) 7-10-3 to 10-10-3, Interior(1) 10-10-3 to 15-3-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 6=150, 8=150.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. All bearings 13-3-10.

(lb) - Max Horz 1=112(LC 9)

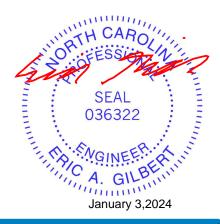
Max Uplift All uplift 100 lb or less at joint(s) except 6=-129(LC 13), 8=-129(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 6=333(LC 20), 8=333(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

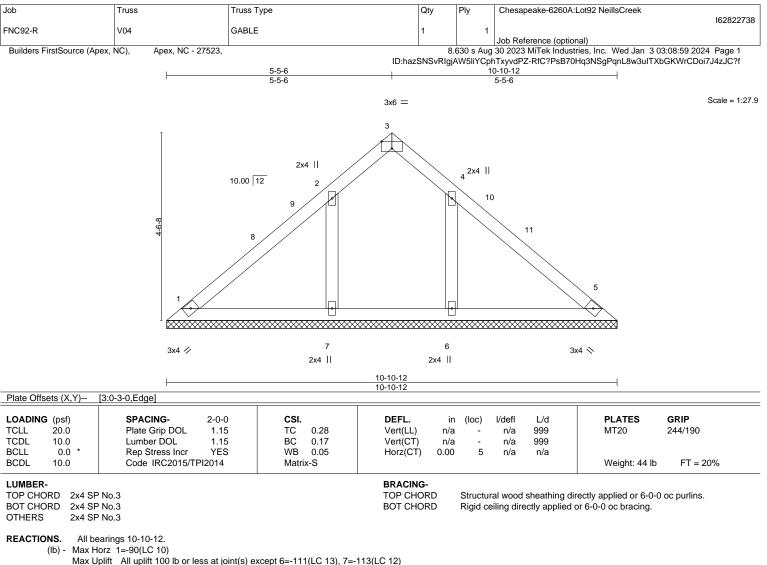
NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-7-13, Exterior(2) 6-7-13 to 9-7-13, Interior(1) 9-7-13 to 12-10-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 6 and 129 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max opint All quint too ib of less at joint(s) except 6=111(LC 10), 7=113(LC 12)Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=311(LC 20), 7=313(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

5)

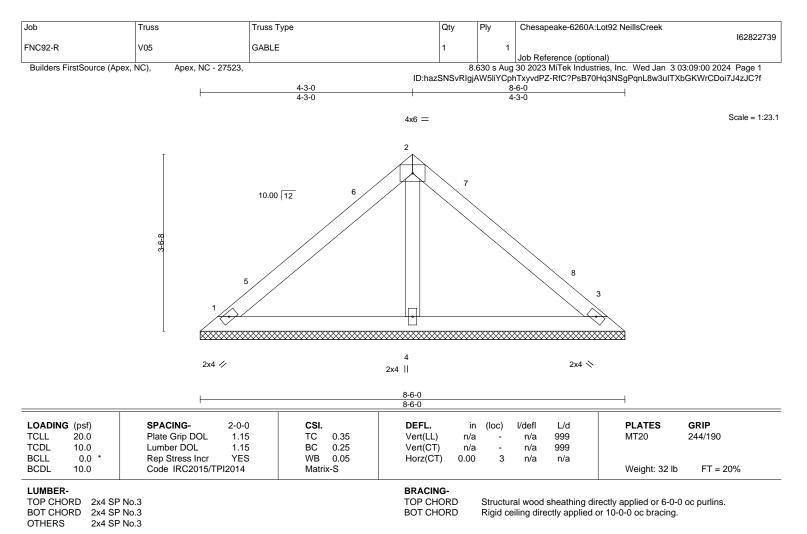

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 5-5-6, Exterior(2) 5-5-6 to 8-5-6, Interior(1) 8-5-6 to 10-5-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 6 and 113 lb uplift at joint 7.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 1=8-6-0, 3=8-6-0, 4=8-6-0 Max Horz, 1=60(1,C,0)

Max Horz 1=69(LC 9) Max Uplift 1=-17(LC 13), 3=-26(LC 13)

Max Grav 1=161(LC 1), 3=161(LC 1), 4=293(LC 1)

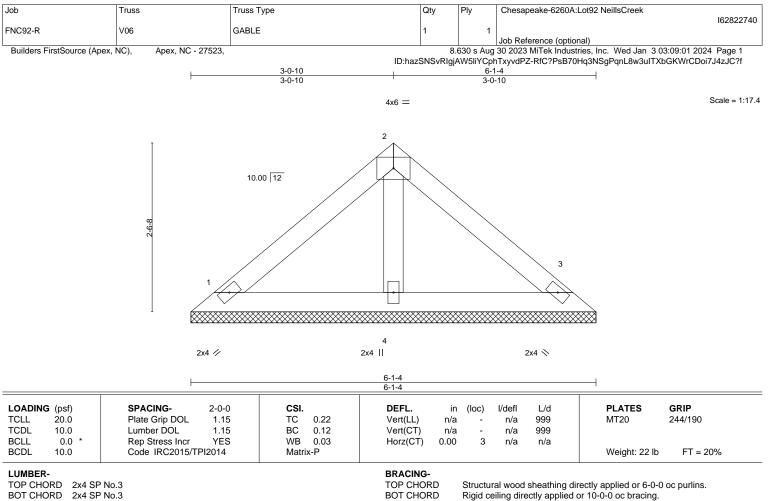
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 4-3-0, Exterior(2) 4-3-0 to 7-3-0, Interior(1) 7-3-0 to 8-1-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1 and 26 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. 1=6-1-4, 3=6-1-4, 4=6-1-4 (size) Max Horz 1=-47(LC 8) Max Uplift 1=-18(LC 13), 3=-24(LC 13)

Max Grav 1=120(LC 1), 3=120(LC 1), 4=183(LC 1)

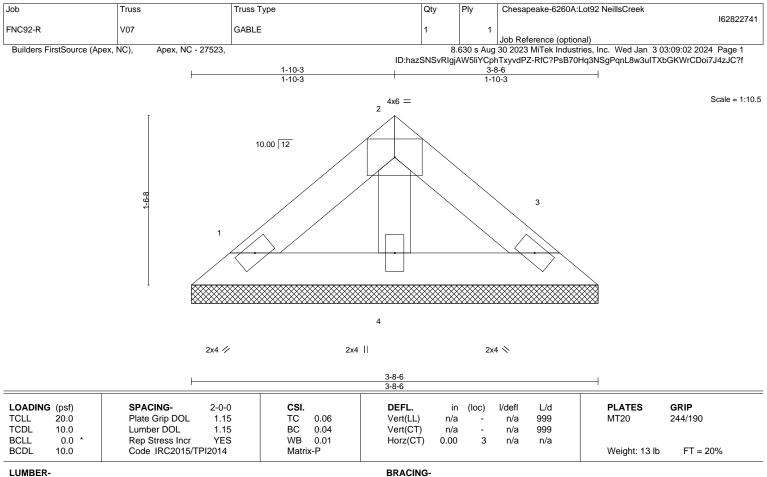
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 24 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD OTHERS

2x4 SP No.3 2x4 SP No.3

REACTIONS. 1=3-8-6, 3=3-8-6, 4=3-8-6 (size) Max Horz 1=-26(LC 8) Max Uplift 1=-10(LC 13), 3=-13(LC 13) Max Grav 1=66(LC 1), 3=66(LC 1), 4=100(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

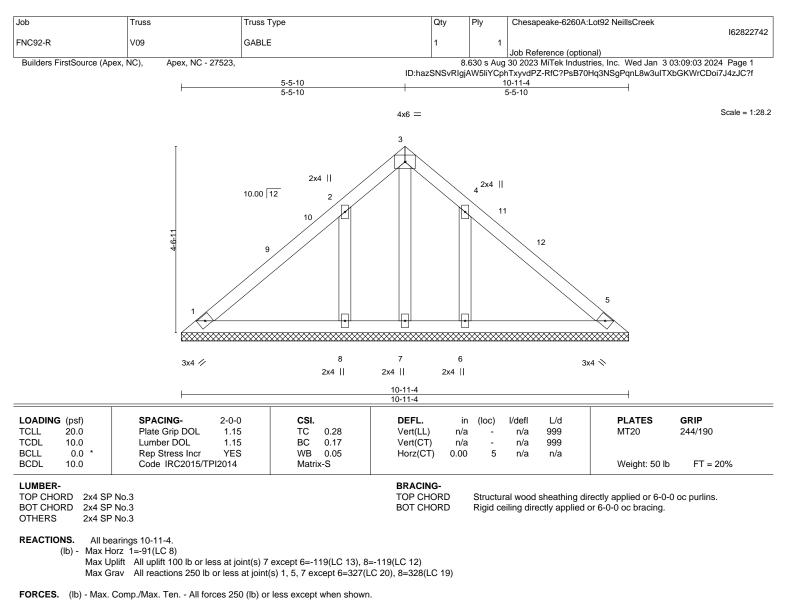
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 13 lb uplift at joint 3.

Structural wood sheathing directly applied or 3-8-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES-

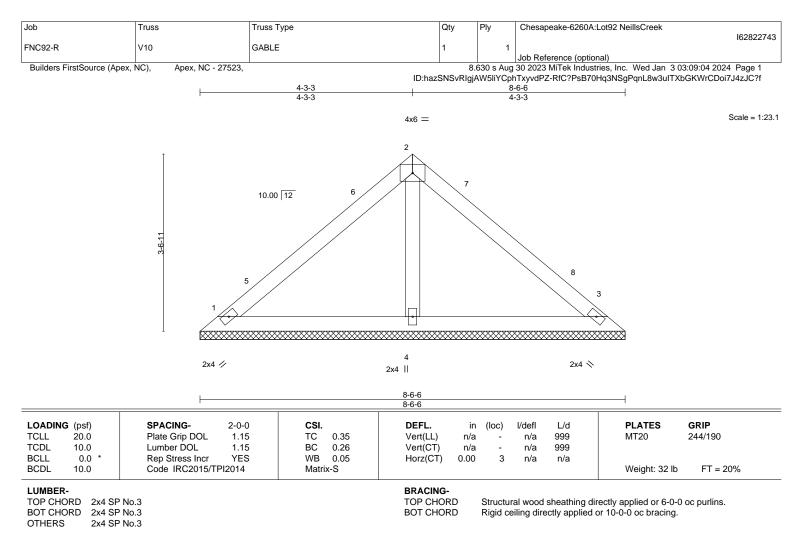
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 5-5-10, Exterior(2) 5-5-10 to 8-5-10, Interior(1) 8-5-10 to 10-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 6=119, 8=119.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

REACTIONS. (size) 1=8-6-6, 3=8-6-6, 4=8-6-6 Max Horz 1=-69(LC 8) Max Uplift 1=-17(LC 13), 3=-26(LC 13) Max Grav 1=162(LC 1), 3=162(LC 1), 4=294(LC 1)

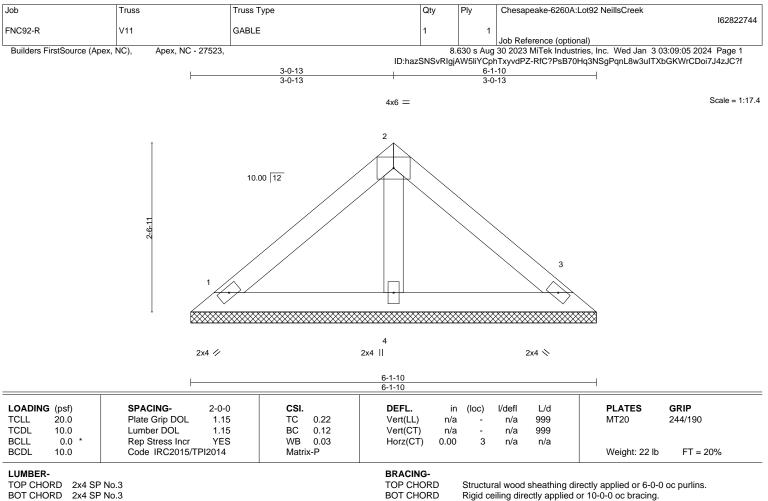
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 4-3-3, Exterior(2) 4-3-3 to 7-3-3, Interior(1) 7-3-3 to 8-1-9 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD2x4 SP No.3OTHERS2x4 SP No.3

REACTIONS. (size) 1=6-1-10, 3=6-1-10, 4=6-1-10 Max Horz 1=-48(LC 10) Max Uplift 1=-18(LC 13), 3=-24(LC 13) Max Grav 1=121(LC 1), 3=121(LC 1), 4=184(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

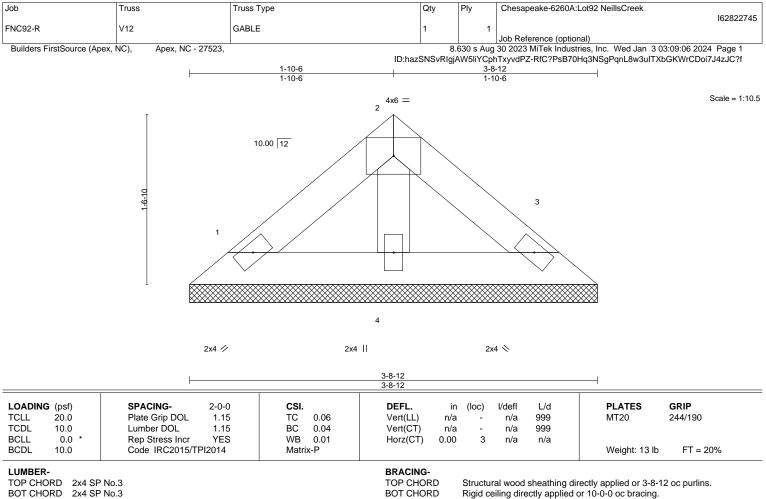
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD 2x4 SP No.3

OTHERS 2x4 SP No.3 REACTIONS. (size)

1=3-8-12, 3=3-8-12, 4=3-8-12 Max Horz 1=-26(LC 8)

Max Uplift 1=-10(LC 13), 3=-13(LC 13) Max Grav 1=66(LC 1), 3=66(LC 1), 4=101(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

