

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3780767 CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR

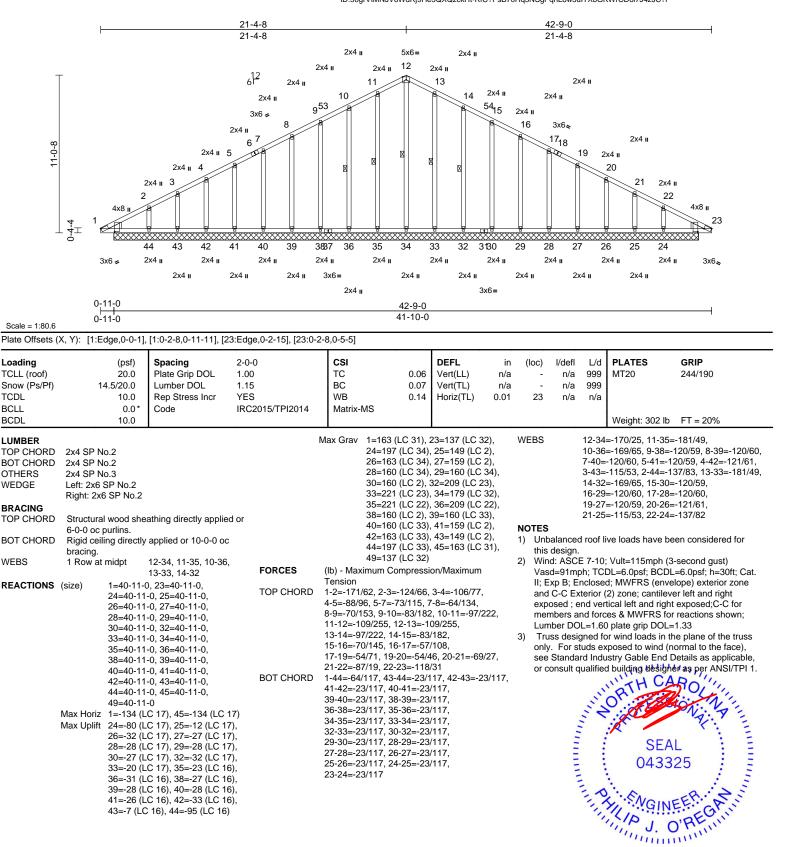
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Stock Building Supply.

Pages or sheets covered by this seal: T32208148 thru T32208174

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

November 29,2023


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use,

the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A1	Common Supported Gable	1	1	T32208148 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:42 ID:50gr/VIMNJV6WdRj9He3QXQzckHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

November 29,2023

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A1	Common Supported Gable	1	1	T32208148 Job Reference (optional)

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- 6) Unbalanced snow loads have been considered for this design.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 35, 31 lb uplift at joint 36, 27 lb uplift at joint 38, 28 lb uplift at joint 39, 28 lb uplift at joint 40, 26 lb uplift at joint 41, 33 lb uplift at joint 42, 7 lb uplift at joint 43, 95 lb uplift at joint 44, 20 lb uplift at joint 33, 32 lb uplift at joint 32, 27 lb uplift at joint 30, 28 lb uplift at joint 29, 28 lb uplift at joint 28, 27 lb uplift at joint 27, 32 lb uplift at joint 28, 27 lb uplift at joint 27, 32 lb uplift at joint 26, 12 lb uplift at joint 25 and 80 lb uplift at joint 24.
 12) N/A
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:42 ID:50grVIMNJV6WdRj9He3QXQzckHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A2	Common	4	1	T32208149 Job Reference (optional)

0-3-8 ∺

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Nov.28.09:48:47 Page: 1 ID:s5DjKfsjQPOYfuwEkSpGEHzckHD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 14-5-2 28-3-14 35-3-5 42-10-8 7-5-11 21-4-8 7-5-11 6-11-6 6-11-6 6-11-6 6-11-6 7-7-3 5x6 =6 3x4 🞜 29 3x4 12 61 28 5 3x6 ≠ 3x6。 4 8 2x4 2x4 / 3 9 4x6 🞜 4x6👟 2 10 The start 0-4-4 ⊤ 17 30 31 15 32 33 14 34 13 35 12 16 3x4= MT20HS 3x10 4x6 =MT20HS 3x10 = 3x4= 5x8 II 3x6 4x6= 5x8 II 3x6. 0-11-0 42-10-8 8-9-2 16-11-14 25-2-11 33-5-7 41-10-0 7-10-2 0-11-0 8-2-13 8-2-13 8-2-13 8-4-9 1-0-8 Scale = 1:76.9 Plate Offsets (X, Y): [1:0-3-8,Edge], [1:Edge,0-2-15], [11:0-3-8,Edge] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing TCLL (roof) 20.0 Plate Grip DOL 1.00 тс 0.89 Vert(LL) -0.30 12-14 >999 240 MT20 244/190 Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.79 Vert(CT) -0.56 12-14 >926 180 MT20HS 187/143 Rep Stress Incr WB Horz(CT) 10.0 YES 0.75 0.11 11 n/a n/a 0.0 IRC2015/TPI2014 Matrix-MS Code

LUMBER

Loading

TCDL

BCLL

BCDL

11-0-8

2x4 SP No.1 *Except* 8-11,4-1:2x4 SP SS TOP CHORD 2x4 SP SS *Except* 16-13:2x4 SP No.1 BOT CHORD WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 -- 2-5-0, Right 2x6 SP No.2 -- 2-5-0 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing REACTIONS (size) 1=0-3-8. 11=0-3-8 1=-133 (LC 17) Max Horiz Max Uplift 1=-29 (LC 16), 11=-28 (LC 17) Max Grav 1=1646 (LC 2), 11=1649 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-2726/360. 3-5=-2615/417 5-6=-2265/426, 6-7=-2218/415, 7-9=-2594/403, 9-11=-2720/366

10.0

BOT CHORD 1-17=-248/2343, 15-17=-156/2116, 14-15=-30/1613, 12-14=-157/2108, 11-12=-252/2338 WEBS 3-17=-221/158, 5-17=-67/387, 5-15=-612/232, 6-15=-130/898, 6-14=-116/878, 7-14=-619/225, 7-12=-48/372, 9-12=-219/155

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.33

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.
- 5) Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated. 6) 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP SS crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 28 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

Weight: 240 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A4	Roof Special	4	1	T32208150

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557. Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Tue Nov. 28.09:48:47 Page: 1 ID:6bj6EcNBjiADCZ2dFSTR1kzck8p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-0-12 1-0-12 10-8-10 9-0-8 16-7-8 21-4-8 28-2-4 35-3-5 41-7-0 5-8-4 5-10-14 4-9-0 6-9-12 6-3-11 1-8-2 7-1-1 5x6= 8 12 6 5x6 ≠ 3x4。 297 30 3x6 ≠ 9 3x6. 3x4 11-0-8 10-0-8 11-0-8 10 6 5x6. 5 11 6x8, 4 3x4 II 2 12 • -· 22 19 4x6= 1817 31 3216 15 14 25 6x8 4x6= 4x6 =2x4 I 4x6= 4x6 =7x10= 3x4= 3x6= 4x6= 8x10= 2x4= 4x6= 4x6 u 8x10= 3x6 II 3-2-8 17-4-8 1-0-12 16-7-8 4x6= 27-1-8 26-10-6 0-11-0 16-5-12 9-0-8 14-10-8 25-4-8 33-1-5 41-7-0 5-10-0 5-10-0 8-0-0 5-11-13 8-5-11 0-11-0 1-7-4 1-5-14 0-1-12 0-1-12 0 - 3 - 2Scale = 1:86.1 Plate Offsets (X, Y): [2:0-5-9,0-3-0], [3:0-0-8,0-3-4], [15:0-5-0,0-3-4], [21:0-3-10,0-4-0], [23:0-0-8,0-1-12] Loading (psf) Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 тс 0.79 Vert(LL) -0.24 21-22 >999 240 MT20 244/190 Snow (Ps/Pf) 14.5/20.0 Lumber DOL 1.15 BC 0.81 Vert(CT) -0.49 21-22 >982 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 YES 0.90 0.28 13 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 293 lb BCDL 10.0 FT = 20% LUMBER WEBS 5-22=0/447, 5-21=-903/189, 9-14=-47/369, 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 11-14=-190/159, 4-23=-15/766, TOP CHORD 2x4 SP No.1 *Except* 10-12.6-1:2x4 SP No.2 4-22=-1401/215, 2-25=-487/92, 25 and 41 lb uplift at joint 13. 2x4 SP No.2 *Except* 3-20:2x4 SP SS, BOT CHORD 3-25=-1757/220, 3-24=-1613/191, 11) This truss is designed in accordance with the 2015 21-19,19-15,17-16:2x6 SP No.2 International Residential Code sections R502.11.1 and WEBS 2x4 SP No.3 *Except* 12-13:2x4 SP No.2 8-15=-163/856. 9-15=-626/238. 18-20=-1567/296, 7-20=-1607/291, R802.10.2 and referenced standard ANSI/TPI 1. BRACING 8-18=-167/987. 18-21=-56/1943. LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 7-21=-113/1398. 11-13=-2267/285 2-2-0 oc purlins, except end verticals. BOT CHORD NOTES Rigid ceiling directly applied or 10-0-0 oc Unbalanced roof live loads have been considered for bracing, Except: 1) 9-3-4 oc bracing: 22-23 this design Wind: ASCE 7-10: Vult=115mph (3-second aust) 6-0-0 oc bracing: 19-21. 2) WEBS 1 Row at midpt 7-18, 11-13 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone REACTIONS (size) 13= Mechanical, 25=0-3-8 and C-C Exterior (2) zone; cantilever left and right Max Horiz 25=141 (LC 20) exposed ; end vertical left and right exposed;C-C for Max Uplift 13=-41 (LC 17), 25=-51 (LC 16) members and forces & MWFRS for reactions shown; Max Grav 13=1614 (LC 2), 25=1698 (LC 2) Lumber DOL=1.60 plate grip DOL=1.33 FORCES (lb) - Maximum Compression/Maximum TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) Tension DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof TOP CHORD 1-2=-72/4, 2-3=-275/29, 3-4=-5073/578, snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate Provident Press 4-5=-3391/432, 5-7=-2587/384, DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 7-8=-2221/465, 8-9=-2243/463, Unobstructed slippery surface NOR 9-11=-2535/393, 11-12=-453/95, 4) Roof design snow load has been reduced to account for 12-13=-338/91 slope. BOT CHORD 1-25=0/134, 24-25=-167/1364, 5) Unbalanced snow loads have been considered for this 23-24=-146/1334, 3-23=-479/4212, MANDER DA VIENNE desian. 22-23=-519/4390, 21-22=-306/3000, This truss has been designed for a 10.0 psf bottom 6) 20-21=-16/111, 19-21=-242/0, chord live load nonconcurrent with any other live loads SEAL 18-19=-59/199, 14-18=-157/2001, * This truss has been designed for a live load of 20.0psf 7) 13-14=-265/2267 043325 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Bearings are assumed to be: Joint 25 SP No.2 crushing capacity of 565 psi. 9) Refer to girder(s) for truss to truss connections. O "minin November 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

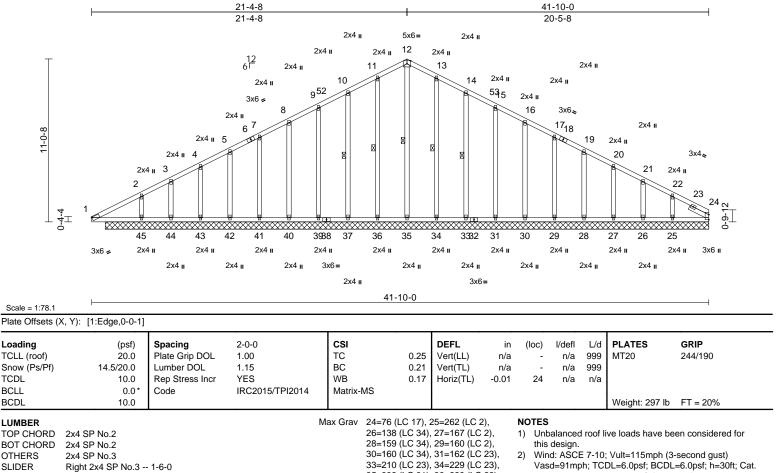
Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A5	Common	2	1	T32208151 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:49

Page: 1

	I	7-5-11		14-5-2		21-4-8		27-11-9		34-9	9-13		41-7-0)	
	·	7-5-11	·	6-11-6	·	6-11-6	5x6=	6-7-1		6-1	0-4		6-9-3	·	
Т						_	5								
				12 6	3x4 ≠ 22				^{3x4} 23 6						
				3x6 🞜	4	/			TAK		3x6👟				
11-0-8			2x41	3			\				7		6 ≈ 8		
		/	2						//		\ \	T			
	7x10 u				//	$\times //$			1	```				10x12=	+
⊤ -4- -4-⊥														102	
	5x8=		16 5x6=			1514 24 7x10= 4x6=	4x6=	25 1312 <6= 7x10=	-		1 3:	1 x4=			
	0-11-0	0.0.40		10	0.0 1	4x6= 17-4-8 5-11-13	25 4 9	4x6= 26-0-0 25-9-3	0				44 7 0		
Scale = 1:77.1	0-11-0	<u>8-8-12</u> 7-9-12)-2-13 0-4-11	<u>25-4-8</u> 8-0-0	0-4-11 0-2-13		<u>3-4-1</u> -4-1			<u>41-7-0</u> 8-2-15		
	K, Y): [1:0-1-8	,Edge], [1:0-0)-5,Edge], [9:E	Edge,0-3-8]	, [12:0-5-0,0-	3-4], [15:0-5-0,0-	-3-4], [16:0-								
oading CLL (roof)			cing e Grip DOL	2-0-0 1.00		CSI TC	0.89	DEFL Vert(LL)	in -0.21	(loc) 15-16	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
now (Ps/Pf) CDL	14.5/		ber DOL Stress Incr	1.15 YES		BC WB	0.86 0.77	Vert(CT) Horz(CT)	-0.46 0.11	15-16 10	>999 n/a	180 n/a			
CLL CDL		0.0* Cod 10.0	e	IRC201	5/TPI2014	Matrix-MS							Weight: 265	lb FT = 20%	5
DP CHORD DP CHORD DT CHORD EBS DTES Unbalancee this design. Wind: ASC Vasd=91m II; Exp B; E	Max Horiz 1= Max Uplift 1= Max Grav 1= (Ib) - Maximu Tension 1-2=-2751/36 4-5=-2192/43 6-8=-2572/41 1-11=-264/23 2-16=-265/16 4-15=-618/23 5-12=-134/81 6-11=-66/427 8-10=-2255/2 d roof live load E 7-10; Vult=1 ph; TCDL=6.0 inclosed; MWF	ns, except e directly applie pt 8-10 0-3-8, 10= Mi 141 (LC 20) -49 (LC 16), - 1695 (LC 2), m Compressi 11, 5-6=-2157 2, 8-9=-484/ 157, 10-11=-2 15, 4-16=-69/ 15, 6-12=-606 7, 8-11=-210/ 252 is have been 15mph (3-sec psf; BCDL=6. iRS (envelope	nd verticals. echanical 10=-41 (LC 17 10=1620 (LC ion/Maximum /421, /434, 121, 9-10=-36 56/2286 115, /861, /225, 168, considered fc cond gust) Opsf; h=30ft; e) exterior zoi	c 6) 7) 2) 9) 10 55/108 11 LC	design. This truss I chord live I * This truss on the bott 3-06-00 tal chord and 4 Bearings a capacity of Refer to gir) Provide me bearing pla 10 and 49 1 This truss i International	der(s) for truss to chanical connec te capable of wit b uplift at joint 1. s designed in aco al Residential Co and referenced s	ed for a 10. ont with any ned for a live reas where a will fit betw ers, with BC e: Joint 1 S to truss com tion (by oth hstanding a cordance wide sections	D psf bottom other live loa e load of 20.0 a rectangle ween the botto DL = 10.0psf P SS crushing nections. ers) of truss t 11 lb uplift at j ith the 2015 s R502.11.1 a	ds. Dpsf om f. g to oint			A A A A A A A A A A A A A A A A A A A		AL 325	
exposed ; e	xterior (2) zone end vertical left and forces & M	and right exp	posed;C-C for									11	LIP J.	O'REG	and a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A8	Common Supported Gable	1	1	T32208152 Job Reference (optional)

BRACING

WEBS

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Nov.28.09:48:49 ID:50grVIMNJV6WdRj9He3QXQzckHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Page: 1

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=14.5 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slipperv surface
- Roof design snow load has been reduced to account for

35=332 (LC 31), 36=229 (LC 22), 37=205 (LC 22), 39=161 (LC 2), TOP CHORD Structural wood sheathing directly applied or 40=159 (LC 33), 41=162 (LC 2), 6-0-0 oc purlins. 42=153 (LC 33), 43=191 (LC 2), BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 44=46 (LC 29), 45=368 (LC 2), bracing. 48=76 (LC 17) 12-35, 11-36, 10-37, 1 Row at midpt FORCES (lb) - Maximum Compression/Maximum 13-34, 14-33 Tension **REACTIONS** (size) 24=40-11-0 25=40-11-0 TOP CHORD 1-2=-85/233, 2-3=-14/185, 3-4=0/211, 26=40-11-0, 27=40-11-0 4-5=0/205, 5-7=0/206, 7-8=0/215, 8-9=0/233, 4) 28=40-11-0 29=40-11-0 9-10=0/251 10-11=0/278 11-12=-10/310 30=40-11-0, 31=40-11-0, 12-13=-10/310, 13-14=0/288, 14-15=0/278, 33=40-11-0, 34=40-11-0, 15-16=0/271, 16-17=0/264, 17-19=0/257, 35=40-11-0, 36=40-11-0, 19-20=-12/250, 20-21=-47/244, 37=40-11-0. 39=40-11-0. 5) 21-22=-77/230, 22-24=-122/250 40=40-11-0, 41=40-11-0, BOT CHORD slope. 1-45=-160/71, 44-45=-182/119, HIN PLANT 42=40-11-0, 43=40-11-0, 43-44=-182/119, 42-43=-182/119 44=40-11-0, 45=40-11-0, 41-42=-182/119, 40-41=-182/119, 48=40-11-0 39-40=-182/119, 37-39=-182/119, Max Horiz 45=149 (LC 16) 36-37=-182/119, 35-36=-182/119, Max Uplift 24=-81 (LC 33), 25=-76 (LC 17), 34-35=-182/119, 33-34=-182/119, 26=-13 (LC 17), 27=-31 (LC 17), 31-33=-182/119, 30-31=-182/119, 28=-27 (LC 17), 29=-28 (LC 17), 29-30=-182/119, 28-29=-182/119, 30=-28 (LC 17), 31=-27 (LC 17), 27-28=-182/119, 26-27=-182/119, 33=-32 (LC 17), 34=-20 (LC 17), 25-26=-182/119, 24-25=-182/119 36=-17 (LC 16), 37=-33 (LC 16), WEBS 12-35=-292/0, 11-36=-189/46, 39=-27 (LC 16), 40=-28 (LC 16), 10-37=-165/66, 9-39=-121/58, 8-40=-120/60, 41=-27 (LC 16), 42=-30 (LC 16), 7-41=-121/59, 5-42=-117/60, 4-43=-134/59, 43=-18 (LC 16), 44=-65 (LC 16), 3-44=-62/65, 2-45=-228/71, 13-34=-189/46, 48=-81 (LC 33) 14-33=-170/66, 15-31=-122/58, 16-30=-120/60, 17-29=-120/59, 19-28=-119/59, 20-27=-124/61 21-26=-108/54, 22-25=-182/84 Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A8	Common Supported Gable	1	1	T32208152 Job Reference (optional)

- 6) Unbalanced snow loads have been considered for this design.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 24, 17 lb uplift at joint 36, 33 lb uplift at joint 37, 27 lb uplift at joint 39, 28 lb uplift at joint 40, 27 lb uplift at joint 41, 30 lb uplift at joint 42, 18 lb uplift at joint 43, 65 lb uplift at joint 44, 20 lb uplift at joint 34, 32 lb uplift at joint 33, 27 lb uplift at joint 31, 28 lb uplift at joint 30, 28 lb uplift at joint 29, 27 lb uplift at joint 28, 31 lb uplift at joint 27, 13 lb uplift at joint 26, 76 lb uplift at joint 25 and 81 lb uplift at joint 24.
- 12) N/A
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Nov.28.09:48:49 ID:50grVIMNJV6WdRj9He3QXQzckHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A9	Roof Special	1	1	T32208153 Job Reference (optional)

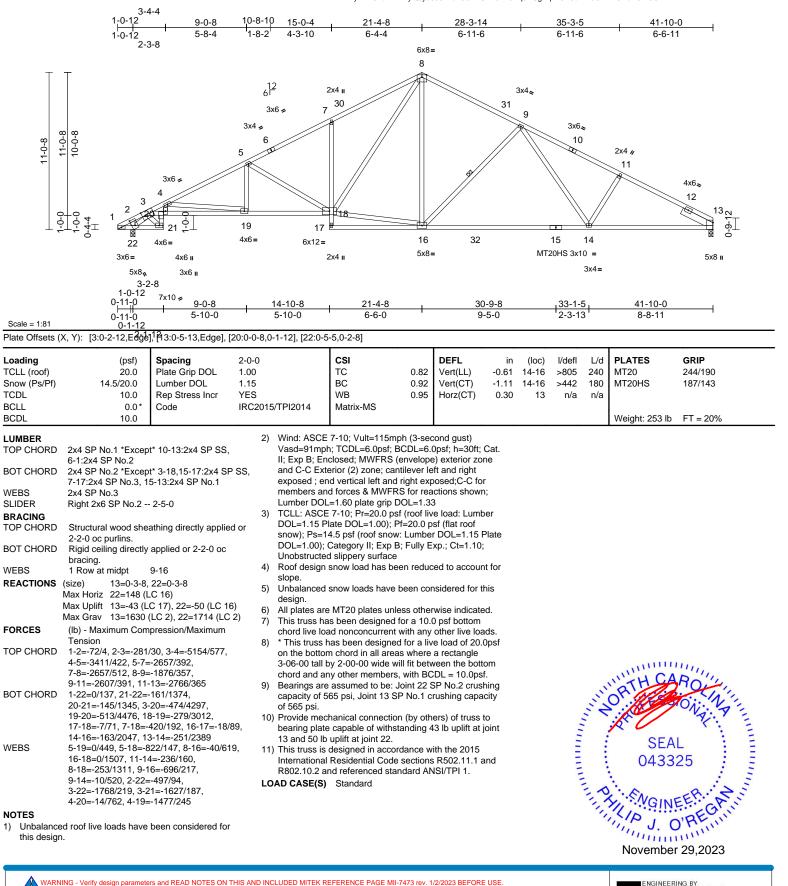
6-7=-2259/423, 7-8=-2259/423, 8-10=-2676/426, 10-12=-2783/368 BOT CHORD 2-18=-248/2406, 16-18=-151/2126, 15-16=-29/1634, 13-15=-151/2127, 12-13=-248/2409 WEBS 8-15=-632/228, 8-13=-72/462 10-13=-262/165, 7-15=-126/897, 7-16=-125/896, 6-16=-631/228, 6-18=-72/458, 4-18=-260/165

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.1 crushing
- capacity of 565 psi. 11) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 55 lb uplift at joint 2 and 43 lb uplift at joint 12.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

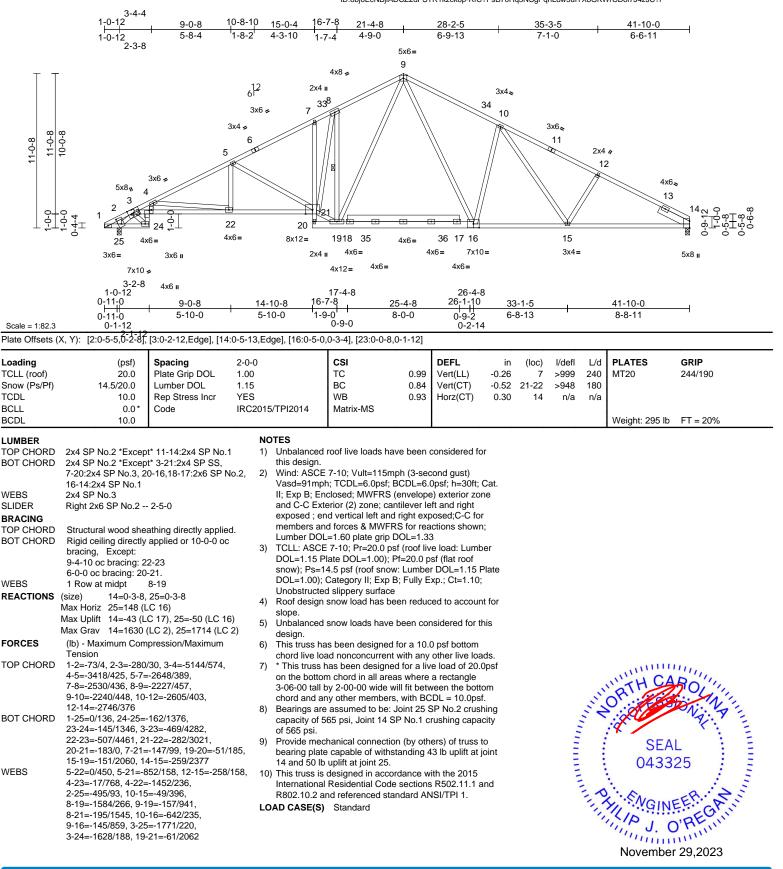
LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A10	Roof Special	1	1	T32208154 Job Reference (optional)

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Tue Nov. 28.09:48:52 ID:IyZxRGkuTXTKIyQ3ya698TzckG5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

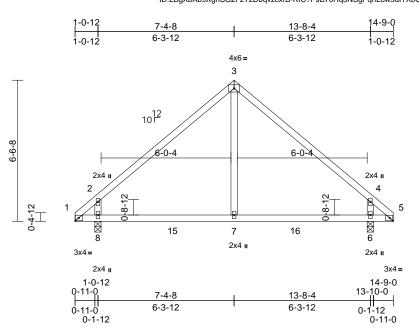

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	A11	Roof Special	3	1	T32208155 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:53 Page: 1 ID:6bj6EcNBjiADCZ2dFSTR1kzck8p-RfC?PsB70Hq3NSqPqnL&w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	B2	Common	2	1	T32208156 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:54 ID:LBgXbAb9XghSG2FzYzDbqvzcxrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-1-12,0-1-8], [5:0-1-12,0-1-8]

	()) L -)	1, La sa											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.40 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=-119 (L Max Uplift 6=-6 (LC Max Grav 6=605 (LC (lb) - Maximum Com Tension 1-2=-343/11, 2-3=-5: 4-5=-343/11	applied or 10-0-0 or 3=0-3-8 C 10) 15), 8=-6 (LC 14) C 26), 8=605 (LC 25 pression/Maximum 53/78, 3-4=-553/78, 60, 6-7=0/360,	ed or ; c { 	 chord live lo. * This truss l on the bottoo 3-06-00 tall l chord and au All bearings capacity of 5 Provide mee bearing platt and 6 lb upli This truss is International 	hanical connectio e capable of withsi ft at joint 6. designed in accor Residential Code nd referenced star	with any d for a liv as where rill fit betw , with BC e SP No. n (by oth tanding 6 rdance w s sections	other live load of 20. a rectangle veen the bott DL = 10.0ps 2 crushing ers) of truss : 6 lb uplift at jo ith the 2015 5 R502.11.1 a	Opsf om f. to vint 8					
 Unbalance this design Wind: ASC 	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust)									A.C.	OR THE	ROUNT

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 4) Roof design snow load has been reduced to account for slope.

Page: 1

818 Soundside Road Edenton, NC 27932

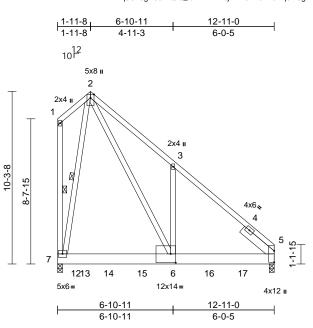
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	B4	Common Supported Gable	1	1	T32208157 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:55 ID:ej?uM83Zu88h_HuWzjQG2dzcxrt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	0-11-0	14-9-0	
	0-11-0	13-10-0	1
Scale = 1:48.9	0-11-0		
Plate Offsets (X, Y): [4:0-0-0.0-0]	. [7:0-2-1.0-1-0]. [8:0-2-1.0-1-0]		


Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 10.1/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.08 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 84 lb	FT = 20%
	12=12-11 14=12-11 16=12-11 Max Horiz 16=-119 (Max Uplift 10=-42 (L 12=-43 (L 15=-103 (L 12=175 (L	applied or 6-0-0 oc -0, 11=12-11-0, -0, 13=12-11-0, -0, 15=12-11-0, -0 LC 10) C 14), 11=-100 (LC 1 C 15), 14=-42 (LC 14 LC 14), 16=-46 (LC 1 LC 25), 11=197 (LC 2 C 30), 13=226 (LC 2 LC 29), 15=200 (LC 2	3) 4) 4), 5) (5), 5) (6), 6) (8), 7)	Vasd=91mpl II; Exp B; En and C-C Ext exposed ; en members an Lumber DOL Truss desigg only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00;; Unobstructed Roof design slope. Gable studs This truss ha chord live loa	7-10; Vult=115mp n; TCDL=6.0psf; E closed; MWFRS (erior (2) zone; can d vertical left and d forces & MWFR =1.60 plate grip D ned for wind loads ids exposed to wind l Industry Gable E ialified building de 7-10; Pr=20.0 ps late DOL=1.00); P 0.1 psf (roof snow Category II; Exp B d slippery surface snow load has be spaced at 2-0-0 o is been designed as been designed	CDL=6. envelope tilever le right exp S for rea OL=1.33 in the p nd (norm ind Deta signer a: f (roof liv f=20.0 p : Lumbe ; Fully E en reduc c. for a 10. with any	Dpsf; h=30ft; () exterior zor ft and right oosed;C-C for ctions shown a lane of the tru al to the face ils as applical s per ANSI/TF e load: Lumb sf (flat roof r DOL=1.15 P xp.; Ct=1.10; ed to account 0 psf bottom other live load	ne ;),)ole,) 1. er late t for ds.					
FORCES	(lb) - Maximum Com Tension		0)	on the bottor	n chord in all area by 2-00-00 wide w	s where	a rectangle	•			S	TH CA	BOIL
TOP CHORD	1-2=-62/102, 2-3=-6 4-5=-123/151, 5-6=- 7-8=-60/107, 8-9=-5	123/147, 6-7=-71/11	7, 9)		are assumed to be		2 crushing				VIII	on	NY NY
BOT CHORD	1-16=-75/66, 15-16= 13-14=-71/62, 12-13 10-11=-71/61, 9-10=	3=-71/61, 11-12=-71/6	·) Provide mec bearing plate	hanical connection capable of withst	anding 4	3 lb uplift at j	oint				SEA	L
WEBS	6-12=-134/73, 5-13= 3-15=-142/101, 2-16 7-11=-140/100, 8-10		,		16, 100 lb uplift at							0433	25
NOTES 1) Unbalance this design	ed roof live loads have		12) This truss is International	designed in accor Residential Code nd referenced star Standard	sections	R502.11.1 a	nd		3	P. I.I.	SEA 0433	

November 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	B5	Common Girder	1	2	T32208158 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:55 ID:zq3Ch3gw83WQxJ_fa2AwXHzcjtf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.7

Plate Offsets	(Х,	Y):	[6:0-3-8,0-6-4]
---------------	-----	-----	-----------------

Loading (psf)	Spacing 2	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0		.00	тс	0.54	Vert(LL)	-0.11	6-7	>999	240	MT20	244/190
Snow (Ps/Pf) 10.1/20.0		.15	BC	0.68	Vert(CT)	-0.22	6-7	>697	180		
TCDL 10.0		10	WB	0.85	Horz(CT)	0.00	5	n/a	n/a		
BCLL 0.0*		RC2015/TPI2014	Matrix-MS		. ,						
BCDL 10.0										Weight: 241 lb	FT = 20%
A-11-5 oc purlins, e Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 5=0-3-8, 7 Max Horiz 7=-268 (L	- 2-5-0 athing directly applied o xcept end verticals. applied or 10-0-0 oc 1-7, 2-7 7=0-3-8 C 8) C 11), 7=-242 (LC 11)	Vasd=91mp II; Exp B; E cantilever le right exposs 5) TCLL: ASC DOL=1.15 I snow); Ps= DOL=1.00); Unobstructt 6) Roof design slope. 7) This truss h chord live le 8) * This truss	E 7-10; Vult=115mpl h; TCDL=6.0psf; BC tolosed; MWFRS (e ft and right exposed d; Lumber DDL=1.6; 7-10; Pr=20.0 psf Plate DDL=1.00); Pf 10.1 psf (roof snow: Category II; Exp B; d slippery surface snow load has bee as been designed fo and nonconcurrent w has been designed m chord in all areas	CDL=6.(nvelope ; end v 60 plate (roof liv =20.0 p Lumber Fully E n reduc or a 10.(rith any for a liv	Dpsf; h=30ft; ()) exterior zor ertical left an grip DOL=1.: e load: Lumb sf (flat roof DOL=1.15 P xp.; Ct=1.10; ed to accoun 0 psf bottom other live load e load of 20.0	ne; d 33 er Plate t for ds.	Co	oncentra Vert: 6=	ted Loa -1386	2-5=-40, 7-8=-20 ads (lb) (B), 13=-1386 (B, 16=-1391 (B), 17), 14=-1386 (B),
FORCES (lb) - Maximum Com Tension	pression/Maximum	3-06-00 tall	by 2-00-00 wide will ny other members,	fit betv	veen the botto						
TOP CHORD 1-2=-175/129, 2-3=- 3-5=-4966/180, 1-7=	,		are assumed to be			-					
BOT CHORD 6-7=-80/666, 5-6=-8	8/3730	10) Provide me	chanical connection								
WEBS 2-7=-3306/235, 2-6=	-421/6899, 3-6=-262/26		e capable of withsta		32 lb uplift at					minin	UIII.
NOTES			242 lb uplift at joint 7						-	WH CA	Pall
 2-ply truss to be connected toge (0.131"x3") nails as follows: Top chords connected as follows oc. Bottom chords connected as foll staggered at 0-7-0 oc. Web connected as follows: 2x4 - Except member 3-6 2x4 - 1 row All loads are considered equally except if noted as front (F) or ba CASE(S) section. Ply to ply com provided to distribute only loads unless otherwise indicated. Unbalanced roof live loads have this design. 	 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1594 Ib down and 53 Ib up at 1-7-12, 1594 Ib down and 53 Ib up at 3-0-11, 1594 Ib down and 53 Ib up at 5-0-11, 1594 Ib down and 53 Ib up at 7-0-11, and 1600 Ib down and 53 Ib up at 9-0-11, and 1600 Ib down and 53 Ib up at 11-0-11 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.00 Uniform Loads (Ib/ft) 						. ann the	Print Print	SEA 0433	L 25 REGAMIN	

November 29,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	D1	Monopitch Structural Gable	1	1	T32208159 Job Reference (optional)

12-10-8

Builders FirstSource (Middlesex, NC), Middlesex, NC - 27557,

Scale = 1:33.1

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

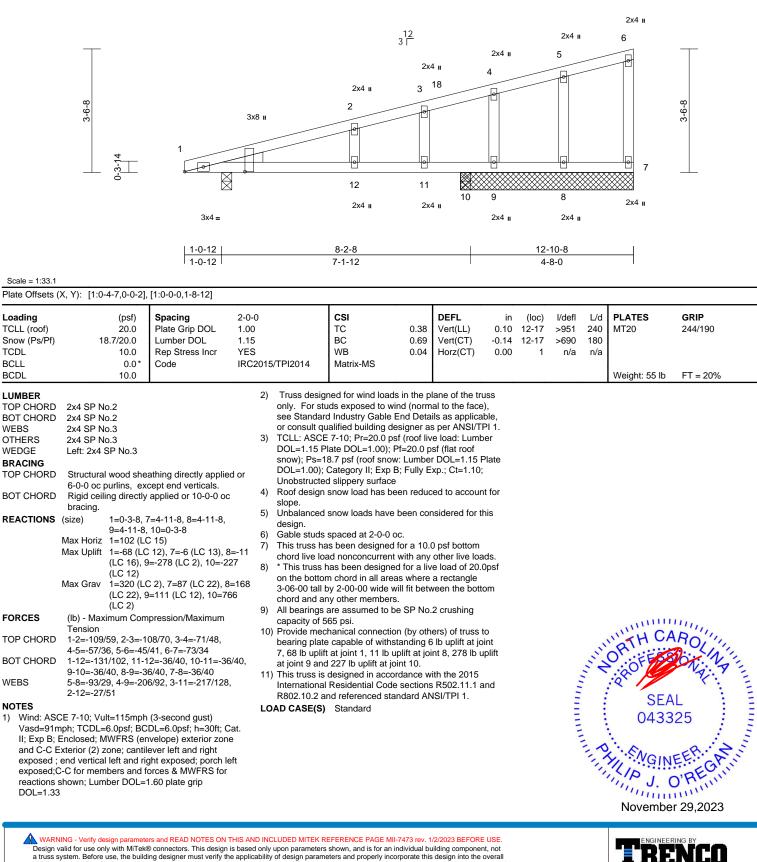
BOT CHORD

WEBS

NOTES

1)

LUMBER

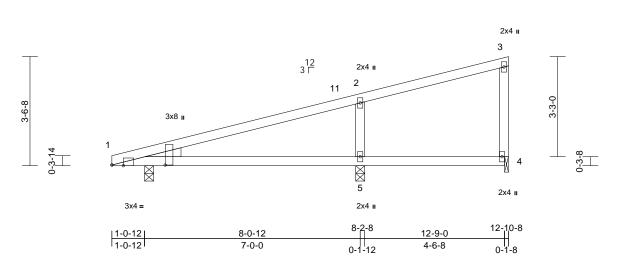

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Nov.28.09:48:56 ID:E7FL3vvfi3JtDBg3mJMH?Vzcy3?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	D2	Monopitch	4	1	T32208160 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:57 ID:N3H5vgvnc3DK7iMzUAKDjVzcy0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

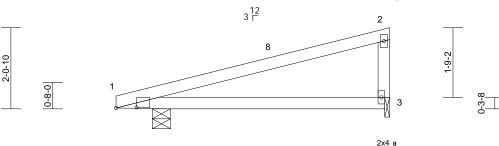
Scale = 1:37.4

Plate Offsets (X, Y): [1:0-4-7,Edge], [1:0-0-0,1-8-12]

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.42 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.13 0.00	(loc) 5-10 5-10 1	l/defl >819 >733 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exo Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o (1=0-1-8, 5=0-3-8 (2 15) (3 12), 4=-4 (LC 16), (5 12) (5 2), 4=-149 (LC 23), (5 23)	c 7) 8) 9)	design. This truss ha chord live lo * This truss l on the botto 3-06-00 tall I chord and au Bearings ar g 565 psi, Joir Bearing at jc using ANSI/ designer sho Provide mec bearing plate	snow loads have as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members a assumed to be: J 665 psi, Joint 5 SP ht 4 SP No.3 crush pint(s) 4 considers TPI 1 angle to grai puld verify capacity chanical connection at joint(s) 4. chanical connection capable of withst uplift at joint 1 ang	for a 10. with any d for a lin s where ill fit betw. loint 1 S No.2 cm ing capa parallel n formul y of bear n (by oth anding of	0 psf bottom other live loa ve load of 20. a rectangle ween the bott P No.2 crush ushing capac icity of 565 ps to grain value a. Building ing surface. iers) of truss users) of truss 133 lb uplift a	ads. Opsf om ing ity of si. e to to					
TOP CHORD BOT CHORD WEBS	,	,) This truss is International R802.10.2 a	designed in accor Residential Code nd referenced star	dance w sections	rith the 2015 s R502.11.1 a	and				mm	
Vasd=91n	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI	DL=6.0psf; h=30ft; (Cat.	OAD CASE(S)	Standard						and a	ORTH CA	ROLIN

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.

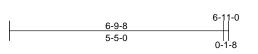
SEAL 043325 NGINEER CANIN November 29,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	D3	Monopitch	10	1	T32208161 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:57



3x4 =

1-4-8

1-4-8

Scale = 1:29.1

Plate Offsets (X, Y): [1:0-6-3,0-0-3]

	(, .). [
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.54 0.34 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.00	(loc) 3-7 3-7 1	l/defl >999 >851 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-5-8, 3 Max Horiz 1=54 (LC Max Uplift 1=-22 (LC Max Grav 1=326 (LC	cept end verticals. applied or 10-0-0 o 3=0-1-8 15) C 12), 3=-21 (LC 16)	8) c 9) 10	on the botto 3-06-00 tall chord and a All bearings capacity of f Bearing at jt using ANSI/ designer sh Provide met bearing plat) Provide met bearing plat	has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be 565 psi. Dint(s) 1, 3 conside TPI 1 angle to grai buld verify capacity chanical connectio e at joint(s) 3. chanical connectio e capable of withsi uplift at joint 3.	as where ill fit betw e SP No. ers parall in formul y of bear n (by oth n (by oth	a rectangle veen the bott 2 crushing el to grain va a. Building ing surface. ers) of truss ers) of truss	iom lue to					
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maximum Com Tension 1-2=-59/39, 2-3=-16 1-3=-45/90		12) Beveled plat surface with this truss is Internationa R802.10.2 a	te or shim required truss chord at joir designed in accor I Residential Code nd referenced star	nt(s) 1. rdance w sections	ith the 2015 8 R502.11.1 a	0					
Vasd=91m II; Exp B; I and C-C E exposed ;	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS	DL=6.0psf; h=30ft; (velope) exterior zor lever left and right ght exposed;C-C for	Cat. ne	DAD CASE(S)	Standard							ORTH CA	BOLINI,

- Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 3) Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Thursday and the second Manun Inter SEAL 043325 P O' "IIIIIIIIII November 29,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	D4	Monopitch	1	1	T32208162 Job Reference (optional)

Scale = 1:22.4

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

NOTES

1)

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Ps/Pf)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S. Nov. 1.2023 MiTek Industries. Inc. Tue Nov. 28.09:48:57 ID:SqNI1UXq3E6JCIcjLJke9lzcy_J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-11-0 2x4 II 12 3 Г 2x4 II 3 2 9 le 2-0-10 2-0-10 0 4 5 2x4 u 2x4 🛛 3x4 =6-11-0 Plate Offsets (X, Y): [1:0-6-3,0-0-4] Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.00 тс 0.14 Vert(LL) 999 MT20 244/190 n/a n/a 18.7/20.0 Lumber DOL 1.15 BC 0.09 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr WB Horiz(TL) YES 0.04 0.00 1 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP Weight: 25 lb 10.0 FT = 20% 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof 2x4 SP No 2 snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate 2x4 SP No.2 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; 2x4 SP No.2 2x4 SP No.3 Unobstructed slippery surface Roof design snow load has been reduced to account for 4) slope. Structural wood sheathing directly applied or 5) Unbalanced snow loads have been considered for this 6-0-0 oc purlins, except end verticals. design. Rigid ceiling directly applied or 10-0-0 oc Gable studs spaced at 2-0-0 oc. 6) bracing. 7) This truss has been designed for a 10.0 psf bottom 1=6-0-0, 4=6-0-0, 5=6-0-0, 8=6-0-0 (size) chord live load nonconcurrent with any other live loads. Max Horiz 1=54 (LC 15), 8=54 (LC 15) 8) * This truss has been designed for a live load of 20.0psf Max Uplift 1=-10 (LC 12), 5=-35 (LC 16), on the bottom chord in all areas where a rectangle 8=-10 (LC 12) 3-06-00 tall by 2-00-00 wide will fit between the bottom 1=227 (LC 2), 4=29 (LC 22), 5=301 Max Grav chord and any other members. (LC 22), 8=227 (LC 2) All bearings are assumed to be SP No.2 crushing (Ib) - Maximum Compression/Maximum capacity of 565 psi. Tension 10) Provide mechanical connection (by others) of truss to 1-2=-66/45, 2-3=-33/23, 3-4=-26/15 bearing plate capable of withstanding 10 lb uplift at joint 1-5=-25/26, 4-5=-24/26 1, 35 lb uplift at joint 5 and 10 lb uplift at joint 1. and the second s 2-5=-220/121 11) N/A HORTH 12) This truss is designed in accordance with the 2015 Wind: ASCE 7-10; Vult=115mph (3-second gust) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; SEAL Lumber DOL=1.60 plate grip DOL=1.33 043325

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

0 mmm November 29,2023 MANDER DA VIENNE

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	D6	Monopitch	5	1	T32208163 Job Reference (optional)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Tue Nov.28.09:48:58

Page: 1

ID:Tk3I?AzU1o5Q_aCbppNYTszcxyS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-6-4 2x4 II 12 3 Г 2 5 ि 3x4 = 1 3-3-0 3-6-8 1-10-7 -3-8 4 3 2x4 II 3x4 = 0-1-8 5-6 5-4-12 0-1-8 5-3-4 0-1-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.00 тс 0.54 Vert(LL) -0.04 3-4 >999 240 MT20 BC 18.7/20.0 Lumber DOL 1 15 0.34 Vert(CT) -0.09 3-4 >700 180 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 3 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 31 lb 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 7) Bearings are assumed to be: Joint 4 SP No.2 crushing 565 psi.
- 8) Bearing at joint(s) 4, 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4, 3.
- bearing plate capable of withstanding 17 lb uplift at joint 4 and 18 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

The American Ame American Am American Americ NORT Marine Contraction of the Contra SEAL 043325 O mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;
- 3) Roof design snow load has been reduced to account for slope
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

November 29,2023

GRIP

244/190

FT = 20%

- capacity of 565 psi, Joint 3 SP No.3 crushing capacity of
- designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to
- LOAD CASE(S) Standard

Scale = 1:29.7

Loading

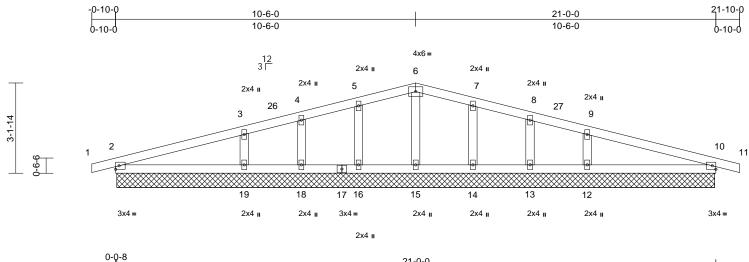
TCDL

BCLL

TCLL (roof)

Snow (Ps/Pf)

BCDL	10.0	
LUMBER		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.3 *Except* 1-4:2x4 SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied	or
	6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
REACTIONS	(size) 3=0-1-8, 4=0-1-8	
	Max Horiz 4=95 (LC 13)	
	Max Uplift 3=-18 (LC 13), 4=-17 (LC 12)	
	Max Grav 3=212 (LC 23), 4=209 (LC 2)	
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=-69/58, 2-3=-160/101, 1-4=-157/95	
BOT CHORD	3-4=-151/119	
WEBS	1-3=-89/127	


NOTES

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- snow); Ps=18.7 psf (roof snow: Lumber DOL=1.15 Plate Unobstructed slippery surface

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	E1	Common Supported Gable	1	1	T32208164 Job Reference (optional)

0-0-8

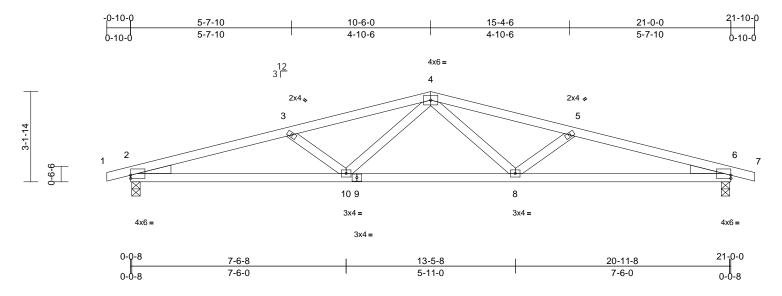
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:58 ID:XealFa5EYQUUAEZMW7I?snyEhjK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-0-0
20-11-8

Scale = 1:40.3

Loading	(psf)	Spacing	2-0-0	CS		0.50	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL Lumber DOL	1.00 1.15	TC BC		0.52 0.40	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
Snow (Ps/Pf) TCDL	18.7/20.0	Rep Stress Incr	1.15 YES	I W		0.40	Horz(CT)			n/a n/a	999 n/a		
BCLL	10.0		IRC2015/TPI2			0.09	Horz(CT)	-0.01	10	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2015/1PI2	J14 IVI8	latrix-MS							Weight: 84 lb	FT = 20%
	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=20-11- 12=20-11 14=20-11 16=20-11 19=20-11 Max Horiz 2=-37 (LC Max Uplift 2=-78 (LC 13=-94 (L 15=-17 (L 20=-78 (L Max Grav 2=128 (L] 13=17 (L1 13=17 (L1 13=17 (L1 13=382 (l)	0, 10=20-11-0, -0, 13=20-11-0, -0, 15=20-11-0, -0, 20=20-11-0, -0, 20=20-11-0 2 17), 20=-37 (LC 17) 2 36), 12=-66 (LC 13), C 13), 16=-20 (LC 14) C 13), 16=-20 (LC 14) C 36) C 36) C 36), 12=558 (LC 2) C 13), 14=266 (LC 24) LC 2), 16=232 (LC 22) C 23), 19=428 (LC 2)	this of 2) Wincy Vasc 2) Wincy Vasc d or II; E: and expo merr Lum 3) Trus only, see or cc 4) TCL DOL , snov 5), Unol , 5) Roof slop , 5) Roof slop , 6) Unb, desig), 7) This load	lesign. : ASCE 7-11 =91mph; TC p B; Enclos C-C Exterior sed ; end ve bers and for ber DOL=1.6 s designed For studs e Standard Inc nsult qualific : ASCE 7-1 =1.15 Plate i); Ps=18.7 ; =1.00); Cate bestructed slip design snov alanced snov n. truss has be of 12.0 psf c	f live loads have 10; Vult=115mp CDL=6.0psf; B(sed; MWFRS (e or (2) zone; cant ertical left and r prces & MWFRS 60 plate grip D 16 or wind loads exposed to wind dustry Gable Er- ied building des 10; Pr=20.0 psf DOL=1.00); Pf psf (roof snow: egory II; Exp B; ippery surface w loads have b een designed for or 2.00 times fil concurrent with	h (3-sec CDL=6. envelope tilever le right exp S for rea OL=1.33 in the p d (norm nd Deta signer as (roof liv f=20.0 p Lumbe ; Fully E en reduc been cor or great at roof le	cond gust) opsf; h=30ft; i) exterior zor ff and right loosed;C-C for ctions shown al to the face ils as applica is per ANSI/TI r DOL=1.15 F xp.; Ct=1.10; ed to account asidered for the er of min roof pad of 20.0 p	Cat. ne r n; bble, PI 1. ber Plate t for his	beau 2, 1 at jc 94 II uplif 13) N/A 14) This Inte R80 LOAD C	ring plat 7 lb upli int 18, 3 o uplift at t at joint t at joint t at joint t at joint t at joint t at joint t at joint t at joint t at joint t at joint	e capa ft at joi 37 lb u it joint 2. desig I Resid and ref Sta	able of withstand nt 15, 20 lb upliff plift at joint 19, 2 13, 66 lb uplift at ned in accordand Jential Code sec erenced standar ndard	tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Con Tension	npression/Maximum	8) Gab	e studs spa	aced at 2-0-0 oc) .					i.	O' A	ON: VIII
TOP CHORD	1-2=0/20, 2-3=-151/ 4-5=-103/560, 5-6=-	84/552, 6-7=-84/552, 112/533, 9-10=-151/	chor 10) * Thi 588, on th 3-06	d live load ne s truss has t e bottom ch 00 tall by 2-	een designed for nonconcurrent w been designed hord in all areas 2-00-00 wide will	vith any for a liv s where	other live loa e load of 20.0 a rectangle	0psf		WITHIN.		SEA 0433	EER. AL
WEBS	16-18=-528/170, 15 14-15=-528/170, 13 12-13=-528/170, 10	-16=-528/170, -14=-528/170,	11) All b capa		other members. assumed to be psi.	SP No.	2 crushing			11.	N. P.	S. SNGIN	EERCA
		- 195/59, 8-13=-12/4									11	LIP J. (D'RECUILI

November 29,2023


Page: 1

TRENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	E2	Common	6	1	T32208165 Job Reference (optional)

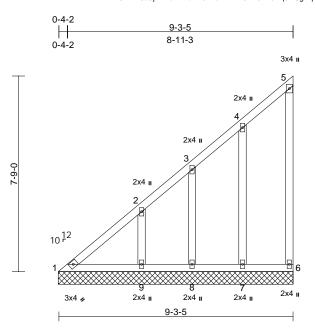
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:59 ID:J?e2dloEfYv6IJahU0JrIDyEhiP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.3

Plate Offsets (X, Y): [2:Edge,0-1-6], [6:Edge,0-1-6]

		[0:Edge,0 1 0]											
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 18.7/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.85 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.32 0.06	(loc) 8-10 8-10 6	l/defl >999 >789 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E exposed ; members	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 3-3-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=-37 (LC Max Uplift 2=-59 (LC Max Grav 2=890 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-2228 4-5=-1954/232, 5-6= 2-10=-251/2115, 8-1 6-8=-254/2115 4-8=-4/488, 5-8=-37- 3-10=-374/138 ed roof live loads have n. CE 7-10; Vult=115mph	S=0-3-8 (17) (12), 6=-59 (LC 13) (2), 6=890 (LC 2) (14), 6=890 (LC 2) (15), 6=890	4) 5) 6) 7) 8) 9) 10) 11) LO	DOL=1.15 P snow); Ps=1: DOL=1.00); ' Unobstructed Roof design slope. Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings : capacity of 5 Provide mec bearing plate 2 and 59 lb u This truss is International	hanical connection e capable of withsta uplift at joint 6. designed in accord Residential Code nd referenced stan	=20.0 p Lumbe Fully E en reductor or great at roof lo other lin or a 10.0 vith any for a liv s where I fit betw SP No. (by oth anding 5 dance w sections	sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accour asidered for the er of min roof bad of 20.0 p ve loads. 0 psf bottom other live load e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss t 9 lb uplift at j ith the 2015 R502.11.1 a	Plate ; nt for his f live sf on ads. Opsf om to			A A A A A A A A A A A A A A A A A A A	ORTH CA ORTH CA ORTH CA SEA 0433	L <u>i</u> E

O "Hummen November 29,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V1	Valley	1	1	T32208166 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:48:59 ID:OKHB5a3jiPIVoxRVufwl8Kzchmt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.6

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.48	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15	BC	0.40	Vert(TL)	n/a	-	n/a	999	101120	244/100
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MS	0.11	110112(12)	0.00	0	n/a	n, a		
BCDL	10.0	0000		Mallix Mo							Weight: 59 lb	FT = 20%
LUMBER			3) TCLL: ASCE	7-10; Pr=20.0 ps	f (roof liv	e load: Lumb	er					
TOP CHORD	2x4 SP No.2			late DOL=1.00); F								
BOT CHORD	2x4 SP No.2			0.1 psf (roof snow			Plate					
WEBS	2x4 SP No.3			Category II; Exp E	B; Fully E	xp.; Ct=1.10;						
OTHERS	2x4 SP No.3			d slippery surface								
BRACING			, 0	snow load has be	en reduc	ed to accoun	t for					
TOP CHORD	Structural wood she		d or slope.	aa aantinusuu hat								
	6-0-0 oc purlins, ex			es continuous bot		d bearing.						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		spaced at 2-0-0 o is been designed) pef bottom						
	bracing.		, chord live lo	ad nonconcurrent			de					
REACTIONS	()	, 6=9-3-10, 7=9-3-10		has been designed								
	8=9-3-10,			n chord in all area			poi					
	Max Horiz 1=218 (LC			y 2-00-00 wide w			om					
	Max Uplift 1=-22 (LC			y other members								
		C 14), 8=-49 (LC 14),	9) All bearings	are assumed to be	e SP No.	2 crushing						
	9=-68 (LC Max Grav 1=164 (LC		capacity of 5	65 psi.		-						
		C 25), 8=128 (LC 25), C 25), 8=128 (LC 25)		hanical connectio								
	9=274 (LC		bearing plate	capable of withs								
FORCES	(lb) - Maximum Com	,		at joint 1, 60 lb u		nt 7, 49 lb up	lift					
1011020	Tension	iprocolori/maximum		l 68 lb uplift at joir		مام (سالله ممينام	~					
TOP CHORD	1-2=-333/315, 2-3=-	253/231. 3-4=-192/1		e or shim required truss chord at joir		de fuil bearing	g					
	4-5=-100/102, 5-6=-		Sunace with	designed in accor		ith the 2015					minin	11111
BOT CHORD	1-9=-117/186, 8-9=-	97/106, 7-8=-97/106		Residential Code			nd				IN'LY CA	Po'll
	6-7=-97/106			nd referenced sta			ina				A	20111
WEBS	4-7=-173/120, 3-8=-	119/89, 2-9=-181/95			indiana / ii					S.	0	Di N'I
NOTES				Otaridara						24		VS. 7 -
1) Wind: ASC	CE 7-10; Vult=115mph	(3-second gust)									:0	K: =
	nph; TCDL=6.0psf; BC		at.						-			
II; Exp B; I	Enclosed; MWFRS (er	nvelope) exterior zon	e								SEA	AL : E
	xterior (2) zone; cantil								=		0433	25 E
	end vertical left and rig										: 0+00	: 5
	and forces & MWFRS									-	<u>.</u>	1.1
	OL=1.60 plate grip DO									いへ	· En	RIAS
	signed for wind loads in									11	SEA 0433	LL B25
	studs exposed to wind									1	KIP	DELIN
see Stand	ard Industry Gable En	u Details as applicab	ie,								11. J. (O'REUTIT

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

"Hummen November 29,2023

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V2	Valley	1	1	T32208167 Job Reference (optional)

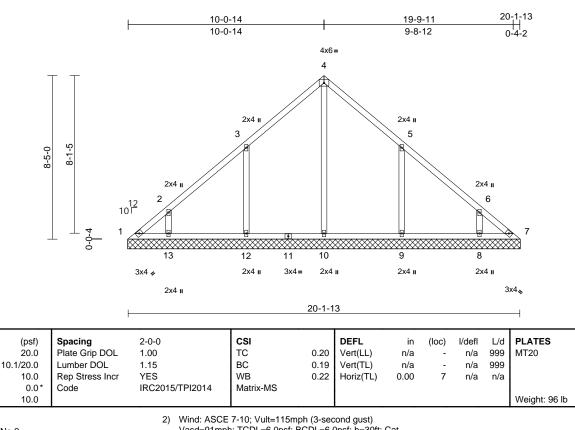
Scale = 1:59.3

TCLL (roof)

TCDL

BCLL

BCDL


Snow (Ps/Pf)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:00 ID:toN_tkH?TxZxyipzyRFzt7zchmb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

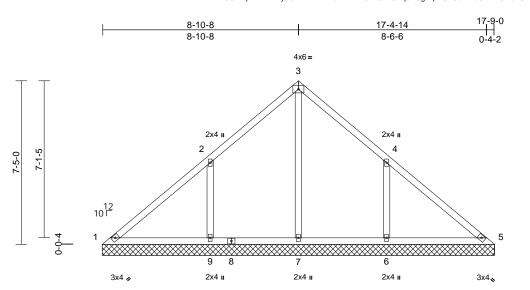
FT = 20%

LUMBER			2)	V
TOP CHORD	2x4 SP N	0.2		۷
BOT CHORD	2x4 SP N	0.2		II
OTHERS	2x4 SP N	0.3		а
BRACING				е
TOP CHORD	Structural	wood sheathing directly applied or		n
	6-0-0 oc p	ourlins.	2)	L
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc	3)	
	bracing.			0
REACTIONS	(size)	1=20-2-6, 7=20-2-6, 8=20-2-6,		S
		9=20-2-6, 10=20-2-6, 12=20-2-6,	4)	0 T
		13=20-2-6	4)	Ľ
		1=-159 (LC 12)		S
	Max Uplift	1=-41 (LC 10), 7=-4 (LC 11), 8=-65		D
		(LC 15), 9=-126 (LC 15), 12=-126		L
		(LC 14), 13=-70 (LC 14)	5)	R
	Max Grav	1=111 (LC 26), 7=90 (LC 28),	-,	s
		8=278 (LC 2), 9=423 (LC 26),	6)	G
		10=390 (LC 28), 12=423 (LC 25),	7)	G
		13=278 (LC 2)	8)	Т
FORCES		imum Compression/Maximum	,	с
	Tension		9)	*
TOP CHORD		131, 2-3=-163/103, 3-4=-154/143,		0
		138, 5-6=-126/63, 6-7=-139/89		3
BOT CHORD		/122, 12-13=-63/122,		С
		3/122, 9-10=-63/122, 8-9=-63/122,	10)	A
	7-8=-63/1			С
WEBS		5/4, 3-12=-282/174, 2-13=-216/124,	11)	
	5-9=-282/	/174, 6-8=-215/122		b
NOTES				1
,		oads have been considered for		a
this desigr	า.			8

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof
- snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
 Snoof design snow load has been reduced to account for
- slope.
- Gable requires continuous bottom chord bearing.
-) Gable studs spaced at 4-0-0 oc.
-) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1, 4 lb uplift at joint 7, 126 lb uplift at joint 12, 70 lb uplift at joint 13, 126 lb uplift at joint 9 and 65 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V3	Valley	1	1	T32208168 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:00 ID:SUDHpXRnAEKyestfmNVFR4zchmN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

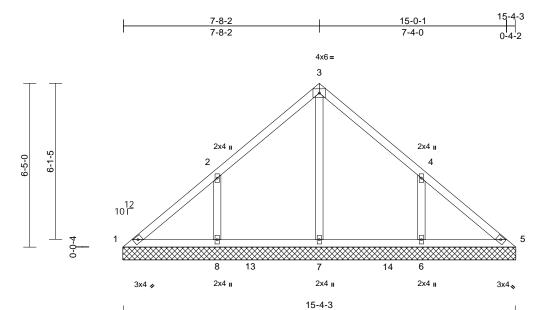
3x4=

17-9-0

Scale = 1:52.3		F				-						
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI	2014 CSI TC BC WB Matrix-MS	0.30 0.20 0.35	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=17-9-10 7=17-9-10 Max Horiz 1=-140 (L Max Uplift 1=-14 (LC 9=-140 (L	0, 5=17-9-10, 6=17-9- 0, 9=17-9-10 C 10) C 10), 6=-138 (LC 15), C 14) C 26), 5=99 (LC 30), C 26), 7=513 (LC 25),	DO snc DO Una 6) Gal 7) Gal 7) Gal 7) Gal 7) Gal 8) Thi chc 9) * Tl on 3-0 chc 10) All cap	LL: ASCE 7-10; Pr=20.0 'L=1.15 Plate DOL=1.00) 'w); Ps=10.1 psf (roof sni L=1.00); Category II; Exp obstructed slippery surface of design snow load has ble requires continuous b ble requires continuous b ble studs spaced at 4-0-0 s truss has been designed ord live load nonconcurred his truss has been designed ord and any other member bearings are assumed to bacity of 565 psi.	Pf=20.0 p ow: Lumber B; Fully E been reduce ottom chor oc. d for a 10.0 t with any ted for a liv eas where will fit betw rs, with BC be SP No.	sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accoun d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2 crushing	Plate t for ds.)psf					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-124/258, 2-3=- 4-5=-99/225 1-9=-172/120, 7-9=- 5-6=-172/120 3-7=-360/0, 2-9=-31	8/191, 3-4=0/191, 172/120, 6-7=-172/12	1, 1 12) Bev sur 20, 13) Thi Inte R80	aring plate capable of with 40 lb uplift at joint 9 and veled plate or shim requir face with truss chord at ju s truss is designed in acc ernational Residential Co 02.10.2 and referenced s CASE(S) Standard	138 lb uplit ed to provi- bint(s) 1, 5. ordance w de sections	t at joint 6. de full bearing ith the 2015 R502.11.1 a					TH CA	
 Unbalanc this desig Wind: AS Vasd=91r II; Exp B; and C-CE exposed ; members Lumber D Truss des 	ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads in studs exposed to wind	(3-second gust) DL=6.0psf; h=30ft; C: ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; DL=1.33 n the plane of the trus	at.						. antitutes .	N. P. S.	SEA 0433	L 225 EER. CALL

Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


O

munn November 29,2023 Manual and

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V4	Valley	1	1	T32208169 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:01 ID:Ir8wHwXAWODy_xv?hL7uDZzchmG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

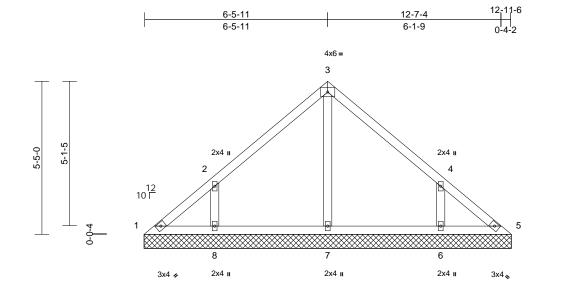
Scale	= 1	45	1

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.22 0.16 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-4-1 7=15-4-1 Max Horiz 1=-121 (L Max Uplift 1=-14 (LC 8=-119 (L Max Grav 1=113 (L	C 10), 6=-117 (LC 15 ∟C 14) C 26), 5=97 (LC 30), C 26), 7=422 (LC 25	ed or 5) 6) 7) 4-13, 8) 9)), 9)	DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe O Roof design slope. Gable requir Gable studs This truss ha chord live lo: * This truss I on the bottor 3-06-00 tall I chord and ar O All bearings capacity of 5	F7-10; Pr=20.0 p late DOL=1.00;; 0.1 psf (roof sno Category II; Exp d slippery surfac snow load has b es continuous bo spaced at 4-0-0 as been designed an onconcurren has been designed no chord in all are by 2-00-00 wide hy other member are assumed to i65 psi. hanical connecti	Pf=20.0 p w: Lumbe B; Fully E e een reduc ottom chor oc. d for a 10. t with any ed for a liv as where will fit betv s, with BC be SP No.	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ced to accour d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott CDL = 10.0ps 2 crushing	Plate at for ads. Opsf om f.					
FORCES	Tension	npression/Maximum		bearing plate	e capable of with	standing 1	4 lb uplift at j						
TOP CHORD	4-5=-112/121	-78/123, 3-4=-62/106	^{i,} 12		e or shim require truss chord at jo		de full bearin	g					
BOT CHORD WEBS	1-8=-89/117, 7-8=-8 5-6=-89/91 3-7=-254/0, 2-8=-27	39/91, 6-7=-89/91, 73/158, 4-6=-272/157		 This truss is International 	designed in according Residential Cod nd referenced st	ordance w e sections	s R502.11.1 a	and				THCA	RO

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V5	Valley	1	1	T32208170 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:01 ID:6oxpKdbJLwrF4iozTvj3wczchmB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-11-6

Scale = 1:40.8

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-0-0, 7=13-0-0, Max Horiz 1=101 (L0 Max Uplift 1=-19 (LC 8=-103 (L Max Grav 1=99 (LC	C 10), 6=-100 (LC 15) .C 14)	d or 5) 6) 7) 8) 9) , 	DOL=1.15 P snow); Ps=11 DOL=1.00); (Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar)) All bearings a capacity of 5	7-10; Pr=20.0 p late DOL=1.00); 0.1 psf (roof sno Category II; Exp d slippery surface snow load has b es continuous bo spaced at 4-0-0 is been designed an chord in all are by 2-00-00 wide in y other member are assumed to I 65 psi.	Pf=20.0 p w: Lumbe B; Fully E een reduc wttom chor oc. I for a 10.1 t with any ed for a liv as where will fit betv s. be SP No.	sf (flat roof r DOL=1.15 F xp.; Ct=1.10; eed to accour d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing	Plate It for Ids. Opsf om					
FORCES	(lb) - Maximum Com Tension 1-2=-125/92, 2-3=-1			bearing plate 1, 103 lb upli	e capable of with ift at joint 8 and 1	standing 1 00 lb upli	9 lb uplift at j ft at joint 6.	oint					
BOT CHORD	4-5=-102/61 1-8=-32/92, 7-8=-32	, ,		surface with	e or shim require truss chord at joi	nt(s) 1, 5.		g					
WEBS	5-6=-32/78	3/150, 4-6=-252/149		International R802.10.2 ar	designed in acco Residential Cod nd referenced sta	e sections	s R502.11.1 a	and				OR CHART	Roit
NOTES	d an of the state do to see		LO	DAD CASE(S)	Standard							Nº GERES	5: 11

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

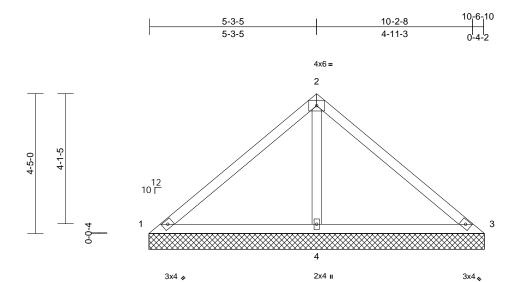
Contraction of the second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SEAL

043325


0

munn November 29,2023 Man Man Man

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V6	Valley	1	1	T32208171 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:02 ID:tLQr?MhKSNr62wPVxasxFlzchm3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

10-6-10

Scale = 1:36.4												1	
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.33 0.30 0.23	Vert(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Max Horiz 1=-82 (LC Max Uplift 1=-45 (LC 4=-66 (LC Max Grav 1=61 (LC (LC 2) (lb) - Maximum Corr Tension 1-2=-83/371, 2-3=-8 1-4=-259/123, 3-4=- 2-4=-645/165 d roof live loads have	applied or 6-0-0 oc , 3=10-7-3, 4=10-7-3 (212) (230), 3=-45 (LC 29), (214) (29), 3=61 (LC 30), 4 (100 mpression/Maximum (3/371) (259/123)	6) 7) 8) 9) :=826 10 11	DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructed Roof design slope. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar 0) All bearings capacity of 5) Provide mec bearing plate 1, 45 lb uplif b) Beveled plat surface with	E 7-10; Pr=20.0 ps late DOL=1.00); F 0.1 ps (roof snow Category II; Exp E d slippery surface snow load has be res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed act on the signed methord in all area by 2-00-00 wide w hy other members are assumed to be 565 psi. chanical connection e capable of withst t at joint 3 and 66 te or shim requirect truss chord at join designed in accor	Pf=20.0 p r: Lumbe 3; Fully E tom choic. for a 10. with any d for a lii. as where ill fit bets. e SP No n (by oth tanding 4 lb uplift a t to proviti t(s) 1, 3. rdance w	sf (flat roof r DOL=1.15 P ixp.; Ct=1.10; red to account rd bearing. 0 psf bottom other live load re load of 20.0 a rectangle ween the botto .2 crushing uers) of truss to 15 lb uplift at jo at joint 4. de full bearing rith the 2015	late t for ds. jpsf om oint					111.
	E 7-10; Vult=115mph ph; TCDL=6.0psf; BC		Cat. LO	R802.10.2 a	nd referenced star Standard	ndard Al	NSI/TPI 1.				. II	NITH CA	OF INTER

- 2) Wind: ASCE 7-10; Vull=115mpn (3-second gdst) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

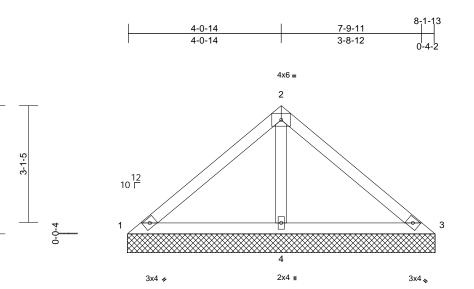
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate link design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

November 29,2023

SEAL

043325


and a manufacture of the

"THILLING WAY

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V7	Valley	1	1	T32208172 Job Reference (optional)

3-5-0

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:02 ID:Eal9duy7H8d?gJ5kECF58xzchlj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-13

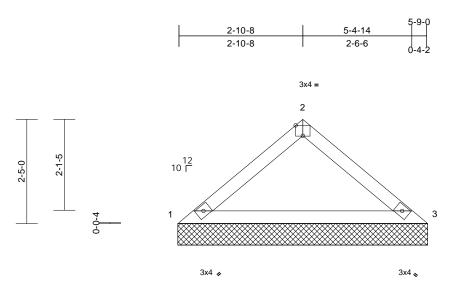
Scale = 1:30.7

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	20.0 P 10.1/20.0 Lu 10.0 R	Spacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.20 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	8-1-13 oc purlins. Rigid ceiling directly ap bracing.	plied or 6-0-0 oc	4) d or 5) 6) 7) 8)	DOL=1.15 Pl snow); Ps=10 DOL=1.00); 0 Unobstructed Roof design slope. Gable require Gable studs	7-10; Pr=20.0 ps late DOL=1.00); F 0.1 psf (roof snow Category II; Exp E d slippery surface snow load has be es continuous bot spaced at 4-0-0 o s been designed	Pf=20.0 p r: Lumber 3; Fully E en reduc tom chor c.	sf (flat roof DOL=1.15 F xp.; Ct=1.10; ed to accour d bearing.	Plate					
REACTIONS	(size) 1=8-2-6, 3=8 Max Horiz 1=62 (LC 11) Max Uplift 1=-21 (LC 30 4=-47 (LC 14) Max Grav 1=61 (LC 29) (LC 2) (lb) - Maximum Compre Tension), 3=-21 (LC 29), 4)), 3=61 (LC 30), 4	10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and an) All bearings a capacity of 5	ad nonconcurrent has been designer n chord in all area by 2-00-00 wide w hy other members are assumed to b	with any d for a liv is where ill fit betw e SP No.	other live loa e load of 20.0 a rectangle veen the both 2 crushing	Opsf om					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	1-2=-62/250, 2-3=-62/2 1-4=-193/102, 3-4=-193 2-4=-442/116 ed roof live loads have bee n.	3/102	12	bearing plate 1, 21 lb uplift Beveled plate surface with This truss is	e capable of withs at joint 3 and 47 e or shim required truss chord at joir designed in accor Residential Code	tanding 2 lb uplift a l to provi it(s) 1, 3. rdance w	1 lb uplift at j t joint 4. de full bearin ith the 2015	oint g					1100

R802.10.2 and referenced standard ANSI/TPI 1.

- this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.33
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V8	Valley	1	1	T32208173 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:02 ID:xDqW9Vtkw_k_LE2OKEdSMSzchlq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-0

Scale = 1:26.7

Plate Offsets (X, Y): [2:0-2-0.Edge]

Unobstructed slippery surface

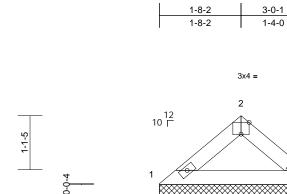
Roof design snow load has been reduced to account for

5)

slope.

Plate Offsets (J	X, Y): [2:0-2-0,Edge]												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 10.1/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.20 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she: 5-9-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-9-10, Max Horiz 1=-43 (LC Max Uplift 1=-3 (LC Max Grav 1=232 (LC (Ib) - Maximum Com Tension 1-2=-330/40, 2-3=-3 1-3=-22/252	applied or 10-0-0 or 3=5-9-10 12) 14), 3=-3 (LC 15) C 2), 3=232 (LC 2) ppression/Maximum	10 11 12 13	Gable studs This truss ha chord live los * This truss h on the bottor 3-06-00 tall h chord and ar) All bearings capacity of 5) Provide mec bearing plate and 3 lb uplii) Beveled plat surface with This truss is International R802.10.2 a	hanical connectior capable of withst t at joint 3. e or shim required truss chord at join designed in accorr Residential Code nd referenced star	c. for a 10. with any d for a liv is where ill fit betv e SP No. n (by oth anding 3 I to provi t(s) 1, 3. dance w sections	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t l b uplift at joi de full bearing ith the 2015 : R502.11.1 a	opsf om int 1 g					
 this design Wind: ASC Vasd=91mm II; Exp B; E and C-C E exposed; members a Lumber DC Truss des only. For s see Standa or consult TCLL: ASC DOL=1.15 snow); Ps= DOL=1.00 	d roof live loads have L E 7-10; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xterior (2) zone; cantil end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO igned for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig CE 7-10; Pr=20.0 psf (Plate DOL=1.00); Pf= =10.1 psf (roof snow: L); Category II; Exp B; f	(3-second gust) DL=6.0psf; h=30ft; C welope) exterior zon ever left and right ght exposed;C-C for for reactions shown DL=1.33 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbe 20.0 psf (flat roof umber DOL=1.15 P	Cat. e ss , ole, er)AD CASE(S)	Standard						And	ORTH CA	L 25 FER OF

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CHESAPEAKE HOMES - PLAN 2343 B w/ 3 CAR
3780767	V9	Valley	1	1	T32208174 Job Reference (optional)

1-5-0

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Tue Nov 28 09:49:03 ID:iVn6GQm52DcGmrsflrzLUZzchlz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-3

2x4 🍫

2x4 💊

Scale = 1:23.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

			-										
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.08	DEFL Vert(LL)	in n/o	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Ps/Pf)	10.1/20.0	Lumber DOL	1.15	BC	0.08	Vert(LL)	n/a n/a	-	n/a n/a	999 999	INIT20	244/190	
TCDL	10.1/20.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	- 3	n/a	999 n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP	0.00		0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2015/1P12014	watrix-wiP							Woight: 10 lb	ET - 20%	
BCDL	10.0										Weight: 10 lb	FT = 20%	
LUMBER			6) Gable re	quires continuous bo	ottom cho	d bearing.							
TOP CHORD	2x4 SP No.2			uds spaced at 4-0-0									
BOT CHORD	2x4 SP No.2			8) This truss has been designed for a 10.0 psf bottom									
BRACING				e load nonconcurren									
TOP CHORD	Structural wood she	athing directly applie		·) · · · · · · · · · · · · · · · · · ·									
	3-4-3 oc purlins.	combined on 10,0,0 or	0.00.00	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
BOT CHORD	bracing.	applied or 10-0-0 or	chord a	chord and any other members.									
REACTIONS	(size) 1=3-4-3, 1	3=3-4-3		10) All bearings are assumed to be SP No.2 crushing									
	Max Horiz 1=-24 (LC			of 565 psi. nechanical connecti	an /hu ath								
	Max Uplift 1=-2 (LC	14), 3=-2 (LC 15)											
	Max Grav 1=134 (L	C 2), 3=134 (LC 2)		bearing plate capable of withstanding 2 lb uplift at joint 1 and 2 lb uplift at joint 3.									
FORCES	(lb) - Maximum Con	pression/Maximum		12) This truss is designed in accordance with the 2015									
	Tension		Internati	International Residential Code sections R502.11.1 and									
TOP CHORD	1-2=-176/22, 2-3=-1	76/22	R802.10	R802.10.2 and referenced standard ANSI/TPI 1.									
BOT CHORD	1-3=-10/131		LOAD CAS	LOAD CASE(S) Standard									
NOTES													
	ed roof live loads have	been considered for	r										
this design		(2 accord suct)											
	CE 7-10; Vult=115mph hph; TCDL=6.0psf; BC		Cat									11.	
	Enclosed; MWFRS (er										111110	in the second se	
	xterior (2) zone; canti									-	TH US	ROLL	
	end vertical left and ri									5	N. A.	S. All	
	and forces & MWFRS									22		N	
Lumber DO	OL=1.60 plate grip DC)L=1.33									187 //	AL. E	
	igned for wind loads i												
	studs exposed to wind								=		SEA	∖L : =	
	 this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (flat roof snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Uneperturbed effect. 												
	or consult qualified building designer as per ANS/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber										20 : 2		
			er						-		N	1 - E	
	Plate DOL=1.00); Pf=		llato						3	- ~	· ·	a: > 3	
snow); Ps=10.1 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10;									EENCR				
	ted slippery surface	· ···· ·······························		1 A DECIN								DECIN	
	in snow load has beer	n reduced to account	t for								Nevember)'n''''	
slope.											in the second se	THUR.	
•											Mayranaha	- 00 0000	

818 Soundside Road Edenton, NC 27932

November 29,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

