

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3769900

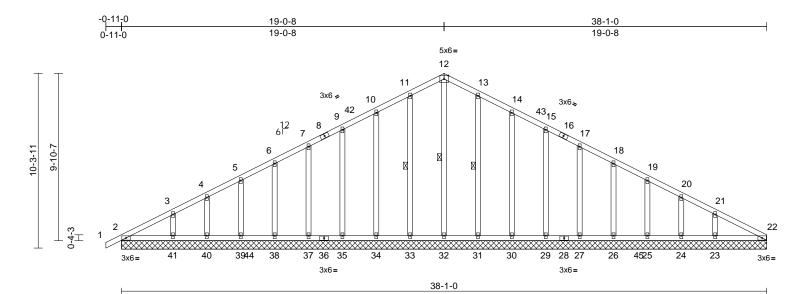
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: I62287187 thru I62287202

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

November 30,2023


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply		
3769900	A01	Common Supported Gable	2	1	Job Reference (optional)	162287187

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:11 ID:qt7n_1dAH22SYOUL4v9chYzCwFL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68

Scale = 1:68												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	DRD 1-2=0/43, 2-3=-1		Vert(CT) Horz(CT) =-127/71,	in n/a n/a 0.01					oof live load: Lumber
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=38-1-0, 24=38-1-0	athing directly applie applied or 10-0-0 oc 12-32, 11-33, 13-31 , 22=38-1-0, 23=38-1 0, 25=38-1-0, 26=38- 0, 29=38-1-0, 30=38	BOT CH(-0, 1-0,	39-40=-10/127, 3 37-38=-10/127, 3 34-35=-10/127, 3 32-33=-10/127, 3 30-31=-10/127, 2	0=-48/162 12-13=-65, 14-15=-50, 7-18=-44/6 0-21=-79/1 0-41=-10/1 38-39=-10, 35-37=-10, 33-34=-10, 31-32=-10, 29-30=-10,	2, 10-11=-58/18 (195, (123, 4, 18-19=-44/4 8, 21-22=-124/ 27, (127, (127, (127, (127, (127, (127,	3, 5 43 6 7 8 9	sno Pla Ct= () Unt des () Thi: load ove () All () Gal	w); Pf=2 te DOL= 1.10 palancec ign. s truss h d of 12.0 rhangs i plates ar plates ar plates studs	23.1 ps (1.15); d snow (as bee () psf or non-co re 2x4 (res co s space	f (flat roof snow Category II; Exp loads have bee en designed for g 2.00 times flat i incurrent with off MT20 unless oth minuous bottom ed at 2-0-0 oc.	herwise indicated. a chord bearing.
	31=38-1-(34=38-1-(38=38-1-(41=38-1-(2=148 (LC Max Uplift 2=-7 (LC 24=-27 (L 24=-27 (L 24=-24 (L 31=-28 (L 34=-37 (L 37=-34 (L	o, 32=38-1-0, 33=38- 0, 35=38-1-0, 37=38- 0, 39=38-1-0, 40=38- 0 C 12) 13), 23=-55 (LC 13), C 13), 25=-36 (LC 13, C 13), 27=-34 (LC 13, C 13), 30=-38 (LC 13, C 13), 33=-31 (LC 12, C 12), 35=-34 (LC 12, C 12), 35=-34 (LC 12, C 12), 38=-34 (LC 13)	1-0, 1-0, 1-0, WEBS 3), 3), 2), 2), NOTES 2), NOTES	27-29=-10/127, 2 25-26=-10/127, 2 23-24=-10/127, 2 12-32=-153/0, 11 10-34=-198/61, 9 6-38=-132/58, 5- 3-41=-185/81, 13 14-30=-203/62, 1 17-27=-133/59, 1 19-25=-138/61, 2 21-23=-199/86	24-25=-10, 22-23=-10, 1-33=-217, 0-35=-145, 39=-137/6 3-31=-219, 15-29=-15, 18-26=-13, 20-24=-10;	(127, (127, (55, (55, 7-37=-133/) (0, 4-40=-114/5) (52, ()/58, 2/58, 3)/49,	1 58, 1,	cho 1) * Tł on † 3-0 cho 2) All I	rd live lo nis truss the botto 6-00 tall ord and a	bad noi has be om cho by 1-0 any oth are as	nconcurrent with een designed for ord in all areas w 00-00 wide will fin er members, with ssumed to be SI	a 10.0 psf bottom h any other live loads. r a live load of 20.0psf where a rectangle t between the bottom th BCDL = 10.0psf. P No.2 crushing
	41=-50 (L Max Grav 2=186 (L0 23=269 (l 25=181 (l 27=209 (l 30=262 (l 32=253 (l 34=259 (l 37=209 (l	C 19), 22=114 (LC 20 LC 1), 24=138 (LC 20 LC 1), 26=210 (LC 6) LC 4), 29=223 (LC 6) LC 6), 31=274 (LC 6) LC 25), 35=273 (LC 5) LC 5), 35=219 (LC 5) LC 4), 38=210 (LC 5) LC 1), 40=144 (LC 19	-7' this c 1), 2) Wind 1), Vasd II; Ex 2), II; Ex canti 1, 5, 3) Trus 2, see S S	lanced roof live loads ha esign. : ASCE 7-10; Vult=120m =95mph; TCDL=6.0psf; p B; Enclosed; MWFRS ever left and right expos grip DOL=1.60 s designed for wind load For studs exposed to w standard Industry Gable nsult qualified building d	nph (3-sec BCDL=6. (envelope sed ; Lumb ds in the p <i>v</i> ind (norm End Deta	cond gust) Dpsf; h=30ft; Ca exterior zone per DOL=1.60 lane of the trus: al to the face), ils as applicable	; 6 9,		Van Hilling		SEA 0363	AL 322
FORCES	(lb) - Maximum Com Tension	,									11. A. (GILD

November 30,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	A01	Common Supported Gable	2	1	I62287187 Job Reference (optional)

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2, 31 lb uplift at joint 33, 37 lb uplift at joint 34, 34 lb uplift at joint 35, 34 lb uplift at joint 37, 34 lb uplift at joint 38, 35 lb uplift at joint 39, 30 lb uplift at joint 40, 50 lb uplift at joint 41, 28 lb uplift at joint 31, 38 lb uplift at joint 30, 34 lb uplift at joint 29, 34 lb uplift at joint 27, 34 lb uplift at joint 26, 36 lb uplift at joint 25, 27 lb uplift at joint 24 and 55 lb uplift at joint 23.
- 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

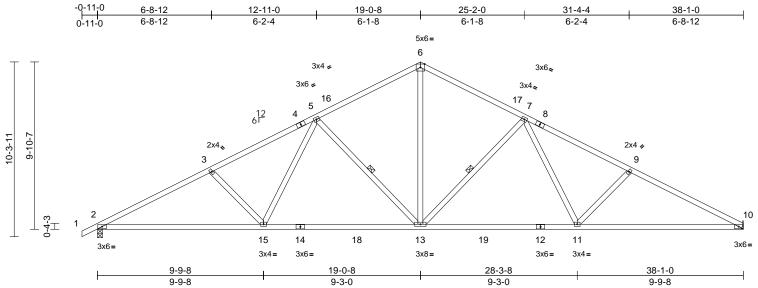
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:11 ID:qt7n_1dAH22SYOUL4v9chYzCwFL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	A02	Common	10	1	I62287188 Job Reference (optional)

19-0-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,


6-8-12

12-11-0

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:13 ID:HIAK1tqfdMFB70WL8t4pv1zCwO7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-2-0 31-4-4 38-1-0 6-2-4 6-8-12 6-1-8

Page: 1

Scale = 1:67.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	2.0E or 2x4 SP DSS		F desigr 5) This ti load o overha	anced snow loads hav uss has been designe i 12.0 psf or 2.00 time: angs non-concurrent w	d for great s flat roof l vith other li	er of min roo oad of 23.1 p ve loads.	-0.52 0.13 this of live osf on	(loc) 13-15 10-11 10	l/defl >999 >877 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
BRACING			This ti	uss has been designe	d for a 10.	0 psf bottom						
TOP CHORD BOT CHORD		athing directly applie applied or 10-0-0 oc	7) * This on the	live load nonconcurrer truss has been design bottom chord in all ar	ied for a live as where	e load of 20. a rectangle	.0psf					
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8.	5-13, 7-13		0 tall by 1-00-00 wide and any other membe								
FORCES TOP CHORD BOT CHORD	Max Horiz 2=148 (L(Max Uplift 2=-102 (L Max Grav 2=1704 (I (lb) - Maximum Com Tension 1-2=0/44, 2-3=-3052 5-6=-1932/156, 6-7= 7-9=-2788/167, 9-11 2-15=-226/2654, 13 11-13=0/2159, 10-1	C 12), 10=-85 (LC 1: _C 1), 10=1631 (LC 1: pression/Maximum 2/179, 3-5=-2766/162 =-1931/155,)=-3084/186 -15=-101/2151, 1=-98/2692	 3) capac 9) Refer 10) Provice bearin joint 2 3, 11) This tri Intern. R802. LOAD CA 	gs are assumed to be ty of 565 psi. to girder(s) for truss to e mechanical connect g plate capable of with and 85 lb uplift at joint uss is designed in acc ational Residential Coo 10.2 and referenced si SE(S) Standard	truss coni ion (by oth standing 1 t 10. cordance w de sections	nections. ers) of truss 02 lb uplift a ith the 2015 \$ R502.11.1	to at					
WEBS	6-13=-40/1267, 3-15 5-13=-835/186, 7-13 7-11=-13/573, 9-11=		558,								TH CA	ROUTE
NOTES 1) Unbalance	ed roof live loads have	been considered for								S.	ESS	12:212-
this desig	n.								4	R	in the second	
Vasd=95n II; Exp B; cantilever plate grip 3) TCLL: AS DOL=1.15 snow); Pf=	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg =23.1 psf (flat roof sno ==1.15); Category II; E	DL=6.0psf; h=30ft; C nvelope) exterior zon ; Lumber DOL=1.60 roof live load: Lumbe =30.0 psf (ground w: Lumber DOL=1.1	e; er						CHILLING.		SEA 0363	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GI Minimum November 30,2023

Job	Truss	Truss Type	Qty	Ply	
3769900	A03	Common	3	1	I62287189 Job Reference (optional)

NOTES

this design.

10-16=-875/255, 4-24=0/331, 10-13=0/362,

3-24=-266/117, 11-13=-305/125, 17-19=-241/0, 4-23=-191/224,

10-14=-182/236

1) Unbalanced roof live loads have been considered for

JOD	'	Truss	Truss Ty	pe		Qiy	Piy				160007400	0
3769900	Δ	A03	Commo	n		3	1	Job Refere	nce (optiona	al)	162287189	Э
Builders FirstSou	urce (Albermarle), A	Albemarle, NC - 28001,			Run: 8.63 S Nov 1	2023 Print: 8	.630 S Nov 1				5:14 Pa	age: 1
					ID:HIAK1tqfdMFB70	WL8t4pv1zC	w07-RfC?Ps	B70Hq3NSgPc	nL8w3ulTXb0	GKWrCDoi7J4zJC	?f	
	-0-11-0	4 9 45 0	14.0	40	2 4 4 7 4 0	0 0 01 1	0	00.4.0		22.4.2	28.4.0	
	0-11-0		<u>11-8</u> -2-9		<u>6-11-7 19-</u> -11-15 2-	<u>-0-8 21-1-</u> 1-1 2-1-	1	<u>28-1-8</u> 6-11-15		<u>33-4-2</u> 5-2-10	4-8-14	+
	0110					3x6=						
					3x6 .	7	3x6 👟					
ТТ					6		. 8					
				3x6 ≠			APR -					
			12 61	2	25		\parallel	26 3x				
			:	3x8 = 5) 3x8 ≈			
- r			4		//		//	4	10			
10-3-11 9-10-7			A	FK.	//		//					
³		2x4	$< \parallel$		//		//	/	$// \parallel \setminus$		2x4 🍫	
		3			. //		//			$\langle \rangle \gg$	11	
					\gg //		//					
	ო ²								∞			12
\perp \perp \overline{z}	°-4- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				20 29	19	30 18		0			
	4x6	6= 24		23 22 2x4 II 4x8=	21 27 4x6=	17 2x4 I I	28 1 2x4			13 4x6=		4x6=
		4.	.0= .	2.74 4.70 =		2x4 II 2x4 II			D= 2X4 II	4x0=		
					1 5²ἤ⁴ ቸ 15-0-9		23-3	x6= -5				
	⊢	<u>6-11-4</u> 6-11-4	<u>9-11-8</u> 3-0-4		<u>1-9-11 19-0-8</u> -10-3 3-11-7		<u>-11-15²³⁻⁰</u>	-7 <u>26-1-8</u>		-1-12 -0-4	<u>38-1-0</u> 6-11-4	—
Scale = 1:69.3		0-11-4	3-0-4	2-0-0 2-	0-2-14	3	-11-7 0-0- 0-2-		2-0-0 3	-0-4	0-11-4	
	X, Y): [2:0-1-4,0	0-0-9], [7:0-3-0,Edge], [11:	0-0-0,0-0-0]	, [12:0-1-4,0-(<u>0-0-7</u> 0-9]							
			0.0.0		001			in (1)	1/-1-61 1./		0010	
Loading TCLL (roof)		0.0 Plate Grip DOL	2-0-0 1.15		TC	0.63 Vert		in (loc) 33 14-16	l/defl L/d >999 240		GRIP 244/190	
Snow (Pf/Pg)	23.1/30	0.0 Lumber DOL	1.15		BC	0.44 Vert	(CT) -0.	46 18	>991 180	D		
TCDL BCLL		0.0 Rep Stress Incr 0.0* Code	YES IRC2015/	/TPI2014	WB Matrix-S	0.78 Horz	z(CT) 0.	08 12	n/a n/a	a		
BCDL		0.0	11(02013/	11 12014	Wath-5					Weight: 255	5 lb FT = 20%	
LUMBER			2)	Wind: ASCE	7-10; Vult=120mph	(3-second c	nust)					
TOP CHORD		2.0E or 2x4 SP DSS or 2x	,	Vasd=95mph	n; TCDL=6.0psf; BCE	DL=6.0psf; I	h=30ft; Cat.					
BOT CHORD	SP SS	2.0E or 2x6 SP DSS *Exc	ent*		closed; MWFRS (env t and right exposed ;							
BOT CHORD	20-18:2x4 SP I			plate grip DC	DL=1.60							
WEBS	2x4 SP No.3 *E	Except* 6-8:2x4 SP No.2	3)		: 7-10; Pr=20.0 psf (r late DOL=1.15); Pq=							
BRACING TOP CHORD	Structural woo	od sheathing directly applie	d or	snow); Pf=23	3.1 psf (flat roof snow	: Lumber D	OL=1.15					
	3-3-14 oc purli			Plate DOL=1 Ct=1.10	.15); Category II; Ex	p B; Partial	ly Exp.;					
BOT CHORD	bracing. Exce	lirectly applied or 10-0-0 oc	4)	Unbalanced	snow loads have bee	en consider	ed for this					
	6-0-0 oc bracir	ng: 18-20	5)	design. This truss ha	is been designed for	areater of r	nin roof live					
REACTIONS	(size) 2=0- Max Horiz 2=14)-3-8, 12= Mechanical 49 (LC 12)	-7	load of 12.0	psf or 2.00 times flat	roof load of	f 23.1 psf on					
	Max Uplift 2=-5	53 (LC 12), 12=-36 (LC 13)			on-concurrent with ot 2x4 MT20 unless ot							
		786 (LC 1), 12=1713 (LC	\ /	This truss ha	is been designed for	a 10.0 psf l	oottom					
FORCES	(lb) - Maximum Tension	n Compression/Maximum			ad nonconcurrent wit has been designed fo							
TOP CHORD			8)	I DIS ITUSS I								
		=-3391/70, 3-4=-3171/60,	8)	on the botton	n chord in all areas w	where a rect	tangle					
	4-6=-2644/34,	=-3391/70, 3-4=-3171/60, 6-7=-65/107, 7-8=-65/113 3, 10-11=-3211/65,	,	on the botton 3-06-00 tall b	n chord in all areas w by 1-00-00 wide will fi	vhere a rect it between t	tangle the bottom			1.1.2		
	4-6=-2644/34, 8-10=-2647/33 11-12=-3445/7	6-7=-65/107, 7-8=-65/113 3, 10-11=-3211/65, 78	,	on the bottom 3-06-00 tall b chord and an Bearings are	n chord in all areas w by 1-00-00 wide will fin by other members, wi assumed to be: Join	where a rect it between t ith BCDL = itt 2 SP 240	tangle the bottom 10.0psf.					
BOT CHORD	4-6=-2644/34, 8-10=-2647/33 11-12=-3445/7 2-24=-148/296	6-7=-65/107, 7-8=-65/113 3, 10-11=-3211/65, 78 67, 23-24=-75/2619,	9)	on the bottom 3-06-00 tall b chord and an Bearings are DSS crushing	n chord in all areas w by 1-00-00 wide will fin by other members, with assumed to be: Join g capacity of 660 psi	where a rect it between t ith BCDL = nt 2 SP 240	tangle the bottom 10.0psf. 0F 2.0E or			WRTH C	CAR	5
BOT CHORD	4-6=-2644/34, 8-10=-2647/33 11-12=-3445/7 2-24=-148/296 21-23=-75/261 16-17=0/2066,	6-7=-65/107, 7-8=-65/113 3, 10-11=-3211/65, 78 67, 23-24=-75/2619, 19, 17-21=0/2066, , 14-16=0/2637, 13-14=0/2	9)	on the bottom 3-06-00 tall b chord and an Bearings are DSS crushing Refer to girde	n chord in all areas w by 1-00-00 wide will fin by other members, wi assumed to be: Join	where a rect it between t ith BCDL = nt 2 SP 240 s connection	tangle the bottom 10.0psf. 0F 2.0E or ns.		1	UNTH C	CAR LIA	
BOT CHORD	4-6=-2644/34, 8-10=-2647/33 11-12=-3445/7 2-24=-148/296 21-23=-75/261 16-17=0/2066, 12-13=-23/303	6-7=-65/107, 7-8=-65/113 3, 10-11=-3211/65, 78 67, 23-24=-75/2619, 19, 17-21=0/2066,	9)	on the bottom 3-06-00 tall b chord and an Bearings are DSS crushing Refer to girda Provide mech bearing plate	n chord in all areas w by 1-00-00 wide will fi by other members, wi assumed to be: Joir g capacity of 660 psi er(s) for truss to truss	vhere a rect it between t ith BCDL = nt 2 SP 240 s connection by others) o	tangle the bottom 10.0psf. 0F 2.0E or ns. f truss to		G	NUMERIA C		

12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	A04	Common	3	1	I62287190 Job Reference (optional)

10-3-11 9-10-7

Loading

TCDL

BCLL

BCDL

LUMBER

WFBS

BRACING

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

REACTIONS (size)

6-0-0 oc bracing: 19-21

Max Horiz 2=142 (LC 12)

Tension

2=0-3-8, 12=0-3-8

Max Uplift 2=-53 (LC 12), 12=-53 (LC 13)

Max Grav 2=1781 (LC 1), 12=1781 (LC 1)

(Ib) - Maximum Compression/Maximum

1-2=0/51, 2-3=-3381/70, 3-4=-3161/60

8-10=-2633/33, 10-11=-3161/61,

2-25=-141/2958, 24-25=-68/2611,

22-24=-68/2611, 18-22=0/2055,

4-24=-188/232, 10-15=-188/232

Unbalanced roof live loads have been considered for

11-12=-3381/70, 12-13=0/51

4-6=-2633/33, 6-7=-64/108, 7-8=-65/108,

17-18=0/2055, 15-17=0/2611, 14-15=0/2611,

17-19=0/797, 6-8=-2122/134, 4-22=-856/253,

4-25=0/329, 3-25=-266/117, 10-17=-856/253,

10-14=0/329, 11-14=-266/117, 18-20=-241/0,

12-14=0/2958, 20-21=-9/7, 19-20=-9/7

21-22=0/797, 6-21=0/866, 8-19=0/866,

TCLL (roof)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Nov.30 08:26:14

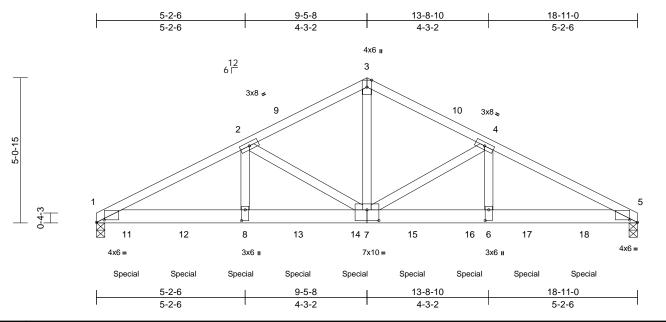
Page: 1 ID:SWZSPiKZvFxP508woO7bPNzCw9H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 4-8-15 38-1-0 39-0-0 9-11-8 16-11-7 19-0-8 21-1-9 28-1-8 33-4-2 5-2-10 0-11-0 4-8-15 5 - 2 - 96-11-15 2-1-1 2-1-1 6-11-15 4-8-14 3x6= 7 3x6 🞜 3x6 6 8 3x6 🞜 12 61 26 3x6. 27 9 F 3x8 🞜 3x8 👟 4 10 2x4 2x4 3 11 0-4-3 ⊤ 20 31 30 71 19 25 24 23 22 28 18 29 17 16 15 14 4x6= 4x6= 4x6= 2x4 II 4x8= 4x6= 2x4 II 2x4= 4x8= 2x4 II 4x6= 2x4 II 4x6 =15²144 23-3-5 15-0-9 <u>22-11-15²³⁻⁰⁻⁷26-1-8</u> 3-11-7 0-0-7 2-10-3 11-11-8 14-9-11 6-11-4 9-11-8 19-0-8 28-1-8 31-1-12 38-1-0 ++ 6-11-4 3-0-4 2-0-0 2-10-3 3-11-7 2-0-0 3-0-4 6-11-4 0-2-14 0-2-14 Scale = 1:69.5 Plate Offsets (X, Y): [7:0-3-0,Edge], [11:0-0-0,0-0-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) -0.33 22-24 >999 240 MT20 244/190 Snow (Pf/Pg) 23.1/30.0 Lumber DOL 1.15 BC 0.44 Vert(CT) -0.45 21 >999 180 Rep Stress Incr WB Horz(CT) 10.0 YES 0.77 0.08 12 n/a n/a 0.0 IRC2015/TPI2014 Matrix-S Code Weight: 257 lb 10.0 FT = 20% 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. TOP CHORD 2x4 SP 2400F 2.0E or 2x4 SP DSS or 2x4 II; Exp B; Enclosed; MWFRS (envelope) exterior zone; SP SS cantilever left and right exposed ; Lumber DOL=1.60 BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP DSS *Except* 21-19:2x4 SP No.2 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2x4 SP No.3 3) DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow): Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 TOP CHORD Structural wood sheathing directly applied or Plate DOL=1.15); Category II; Exp B; Partially Exp.; 3-4-9 oc purlins. Ct=1.10 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP 2400F 2.0E or DSS 9) crushing capacity of 660 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2 and 53 lb uplift at joint 12.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

0-11-0

12

Ì


13

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	B01G	Common Girder	1	3	I62287191 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:15 ID:IF_?P4Q8uImFP3xY7Te09yzCw07-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

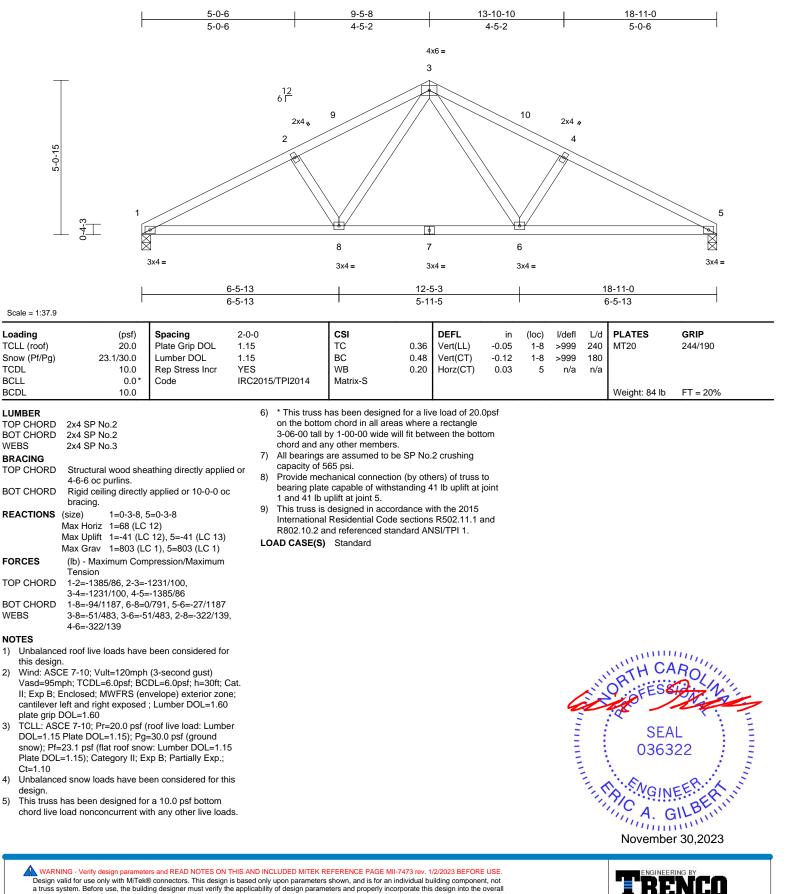
Plate Offsets (X, Y): [1:0-3-4,0-1-1], [5:0-3-4,0-1-1], [6:0-4-8,0-1-8], [7:0-5-0,0-4-8], [8:0-4-8,0-1-8]

			,-	27 E - 7 -									-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.13	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.24	7-8	>940	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.67	Horz(CT)	0.06	5	n/a	n/a		
BCLL	0.0*	Code	IRC20 ²	5/TPI2014	Matrix-S								
BCDL	10.0											Weight: 308 lb	FT = 20%
LUMBER			4		7-10; Vult=120n				,		`	alanced): Lumber	Increase=1.15, Plate
TOP CHORD					h; TCDL=6.0psf;					crease="			
BOT CHORD					closed; MWFRS				U	niform Lo	,	,	
WEBS	2x4 SP No.3 *Excep	t* 7-3:2x4 SP No.2		plate grip D0	ft and right expos	sea ; Lumi	ber DOL=1.60)	0			3-5=-66, 1-5=-20	
BRACING	.		. 5		E 7-10; Pr=20.0 p	sf (roof liv	e load: Lumb	er	C			()) 12 1611 (P)
TOP CHORD	Structural wood she 4-8-13 oc purlins.	athing directly applie	ed or 9		late DOL=1.15);							(B), 11=-1612 (B 14=-1611 (B), 15), 12=-1611 (В), 5=-1611 (В), 16=-1611
BOT CHORD		applied or 10-0-0 of	с		3.1 psf (flat roof s			5				(B), 18=-1611 (B	· /·
	bracing.			Plate DOL= ² Ct=1.10	1.15); Category I	I; Exp B; F	Partially Exp.;						
REACTIONS			6		snow loads have	e been coi	nsidered for t	nis					
	Max Horiz 1=67 (LC	,		design.									
	Max Uplift 1=-495 (L Max Grav 1=8351 (L				as been designed								
FORCES	(lb) - Maximum Com		,		ad nonconcurren								
FUNCES	Tension	pression/maximum	8		has been designe m chord in all are			Jpst					
TOP CHORD		8=-9623/595.			by 1-00-00 wide			nm					
	3-4=-9623/595, 4-5=				ny other member		veen the bott	5111					
BOT CHORD	1-8=-757/12493, 6-8	8=-757/12493,	9		are assumed to		0F 2.0E or D	SS					
	5-6=-688/12442			crushing cap	acity of 660 psi.								
WEBS	2-8=-182/4075, 2-7=		1		hanical connecti								
	3-7=-467/8250, 4-7=	-4564/350,			e capable of with		195 lb uplift at					MILLIN	UIII.
	4-6=-179/4023		4		60 lb uplift at joir						0	WAH CA	ROUL
NOTES	to be connected to ge		1		designed in acco Residential Cod			nd			- 5	R	a Litte
	s to be connected toge Is connected with 10d				nd referenced sta			ind		1	5.	2 the	Da an
	4 - 1 row at 0-9-0 oc.	0.131 x3 / Halls as			r other connectio						2 A	.04	
	ords connected with 1	0d (0.148"x3") nails			ficient to support			612		1		·Q`	K :
	k6 - 3 rows staggered a		uo	Ib down and	96 lb up at 1-0-	12, 1611 I	b down and 9	7 lb		-		SEA	1 1 2
	ds connected with 10d		5		2, 1611 lb down a					=	:	SLA	• –
follows: 2>	4 - 1 row at 0-9-0 oc.				n and 97 lb up at			and				0363	22 : =
	are considered equally				9-0-12, 1611 lb d					-	6		d - 3
	oted as front (F) or ba		DAD		1 lb down and 9						1	·	- 1 - S
	section. Ply to ply conr				n and 97 lb up at 7 lb up at 17-0-1			•			2.0	S. SNGINI	EFT
	o distribute only loads nerwise indicated.	noted as (F) or (B),			tion of such conr			5			1	ALC: GIN	E. E. M. N
	ed roof live loads have	been considered fo	r	responsibility						THE WAY		A G	ILBUT
this design				OAD CASE(S)	•							in the contraction of the contra	in the second se
the design			-	0,000(0)	etandara							November	. 20 2022

818 Soundside Road Edenton, NC 27932

November 30,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	
3769900	B02	Common	1	1	I62287192 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:15 ID:51n8ua_6zRTAqf9IY_RklfzCvyp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

08:26:15 Page: 1

818 Soundside Road

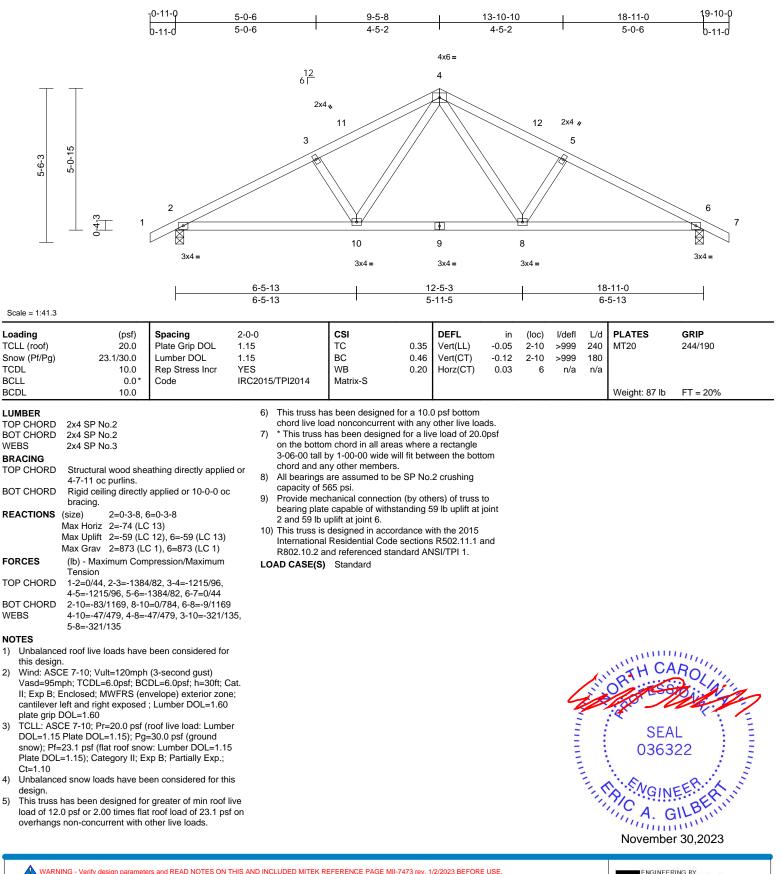
Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	B03	Common	1	1	I62287193 Job Reference (optional)

1)

2)


3)

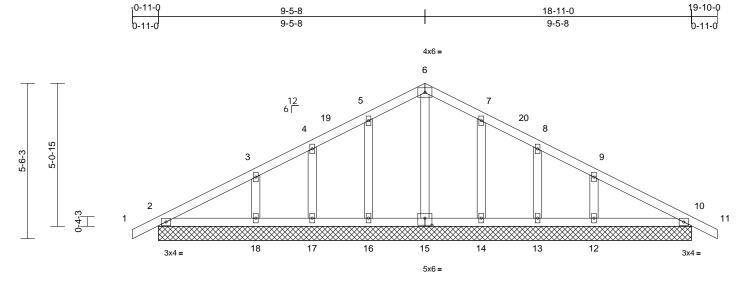
4)

5)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Nov.30.08:26:15 ID:bIC3UUgMhfRgTm7yYcQnITzCvvL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply		
3769900	B04	Common Supported Gable	1	1	Job Reference (optional)	l62287194

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:16 ID:YDRXAQWHC9GksWTPfJgCaEzCvuF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

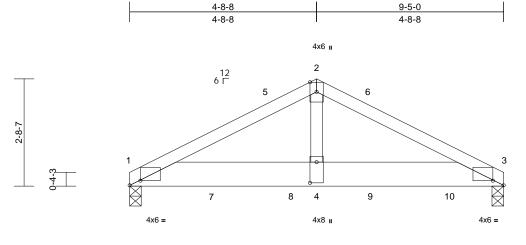
18-1	1-0
------	-----

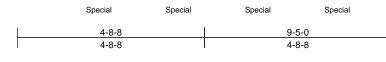
Scale = 1:40.9

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

												1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015/T	PI2014	Matrix-S								
BCDL	10.0											Weight: 92 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=18-11- 12=18-11 16=18-11 18=18-11 Max Horiz 2=-7(LC Max Uplift 2=-7 (LC 12=-56 (L 14=-37 (L	athing directly applied applied or 10-0-0 oc 0, 10=18-11-0, -0, 13=18-11-0, -0, 17=18-11-0, -0 13), 10=-14 (LC 13), C 13), 13=-27 (LC 13 C 13), 18=-38 (LC 12 C 12), 18=-56 (LC 12	1) L t 2) V 2) V 3) C 3) C 3) C 3) C 4) T 5) L 5) L 5) L 5) L 5) L 5) L 5) L 5) L	Jinbalanced this design. Wind: ASCE Vasd=95mpt I; Exp B; Enic cantilever lef olate grip DC Truss design Druss design provention Ct_1:5 PT Ct_2: ASCE DOL=1.15 PT Ct_2: ASCE DOL=1.15 PT Ct_2: ASCE DOL=1 Ct_2: ASCE DOL=1 Ct_2: ASCE DOL=1 Ct_2: ASCE DOL=1 Ct_2: ASCE DOL=1 Ct_2: ASCE DIST	roof live loads hav 7-10; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (it t and right expose DL=1.60 ned for wind loads ds exposed to wird a Industry Gable E alified building de 7-10; Pr=20.0 psi ate DOL=1.15); P 8.1 psf (flat roof sn .15); Category II; snow loads have I s been designed f psf or 2.00 times f	ch (3-sec ICDL=6. ICDL	cond gust) Opsf; h=30ft; C a) exterior zon ber DOL=1.60 lane of the tru: al to the face) ils as applicab s per ANSI/TP te load: Lumber sof (ground ber DOL=1.1! artially Exp.; asidered for th pad of 23.1 ps	Cat. le; ss l, ole, ole, ole, ole 1. er 5 live	surf 15) This Inte	ace with truss is rnationa 2.10.2 a	n truss s desig Il Resi and rei	shim required to p chord at joint(s) gned in accordan dential Code sec ferenced standar	provide full bearing 2. ce with the 2015 tions R502.11.1 and
FORCES TOP CHORD BOT CHORD WEBS NOTES	12=288 (I 14=239 (I 16=239 (I 18=238 (I (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-92/6 4-5=-41/85, 5-6=-57 7-8=-41/60, 8-9=-53 10-11=0/43 2-18=-2/70, 17-18=- 14-16=-2/70, 13-14= 10-12=-2/70 6-15=-111/0, 5-16=-	C 1), 13=133 (LC 20, C 20), 15=217 (LC 2 C 29), 17=133 (LC 1 C 1) pression/Maximum 4, 3-4=-57/65, /105, 6-7=-57/99, /34, 9-10=-69/43, 2/70, 16-17=-2/70,), 7) 4 5), 8) (9), 9) (10) 1 11) * 11) * 12) 4 12) 4 12) 4 13) F	All plates are Gable require Gable studs This truss ha chord live loat This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mecl bearing plate 2, 38 lb uplift 2, 38 lb uplift	on-concurrent with 2x4 MT20 unless as continuous bott spaced at 2-0-0 or s been designed ad nonconcurrent has been designed n chord in all area by 1-00-00 wide wi yo other members, are assumed to be 65 psi. hanical connection capable of withst at joint 16, 27 lb or 18, 37 lb uplift at j ft at joint 12 and 1	s otherwi tom chor c. for a 10.0 with any d for a liv s where ill fit betv , with BC e SP No. n (by oth anding 7 uplift at ju oint 14, 2	se indicated. d bearing. D psf bottom other live loac e load of 20.0 a rectangle veen the botto DL = 10.0psf. 2 crushing ers) of truss to ' lb uplift at joi 27 lb uplift at joi	ipsf om o nt		Mannun	22	SEA 0363	EER. K

November 30,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
3769900	C01G	Common Girder	1	2	l62287195 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:16 ID:aGLwiccE9VOZyjTQ5NI?Q?zCvqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Plate Offsets (X, Y): [1:0-3-4,0-1-7], [3:0-3-4,0-1-7], [4:0-6-4,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.38 0.40 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 5-0-6 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or 3=0-3-8 : 17) C 12), 3=-134 (LC 1	; 6) 3) 7)	Vasd=95mpl II; Exp B; En cantilever lef plate grip DC TCLL: ASCE DOL=1.15 P snow); Pf=23 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha	7-10; Vult=120n ;; TCDL=6.0psf; closed; MWFRS t and right expos 0L=1.60 7-10; Pr=20.0 p ate DOL=1.15); 8.1 psf (flat roof s .15); Category II snow loads have s been designed d nonconcurren	BCDL=6. (envelope sed ; Lumb sf (roof liv Pg=30.0 p snow: Lum ; Exp B; F e been con t for a 10.	Dpsf; h=30ft; e) exterior zo per DOL=1.6 e load: Luml psf (ground ber DOL=1. artially Exp.; sidered for t	ne; 0 per 15 ; ;		Dincentra Vert: 7= 10=-16	-1611	0	
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-5407/200, 2-3= 1-4=-149/4812, 3-4= 2-4=-95/4386	pression/Maximum 5405/200		* This truss h on the bottor 3-06-00 tall b chord and ar All bearings	as been designed n chord in all are by 1-00-00 wide by other member are assumed to acity of 660 psi.	ed for a liv as where will fit betw s.	e load of 20. a rectangle veen the both	0psf tom					
 (0.131"x3") Top chords oc. Bottom cho staggered i Web conne 2) All loads an except if no CASE(S) s provided to unless other 	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-7-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or base considered equally oted as front (F) or base erwise indicated. ad roof live loads have base	s: 2x4 - 1 row at 0-9- ows: 2x8 - 4 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC nections have been noted as (F) or (B),	0 11 12 AD	 Provide mec bearing plate joint 1 and 1: This truss is International R802.10.2 ai Hanger(s) or provided suff Ib down and up at 4-0-12 and 1693 Ib chord. The o (s) is the respondence. 	hanical connecti capable of with 34 lb uplift at joir designed in accor Residential Cod dn referenced st other connectio icient to support 97 lb up at 2-0- , and 1693 lb 0- down and 48 lb u design/selection consibility of other	standing 1 It 3. Ordance w e sections andard AN n device(s concentra (12, 1693 I wn and 48 up at 8-0- of such co	48 Ib uplift a ith the 2015 is R502.11.1 is ISI/TPI 1.) shall be ated load(s) o down and - 8 Ib up at 6-1 12 on bottom nnnection dev	t 1611 48 lb)-12, 1 vice				SEA 0363	• •

Vert: 1-2=-66, 2-3=-66, 1-3=-20

- CASE(S) se Ply to ply o provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Uniform Loads (lb/ft)

G

November 30,2023

11111111

Job	Truss	Truss Type	Qty	Ply	
3769900	C02	Common	1	1	I62287196 Job Reference (optional)

Loading

TCDL

BCLL

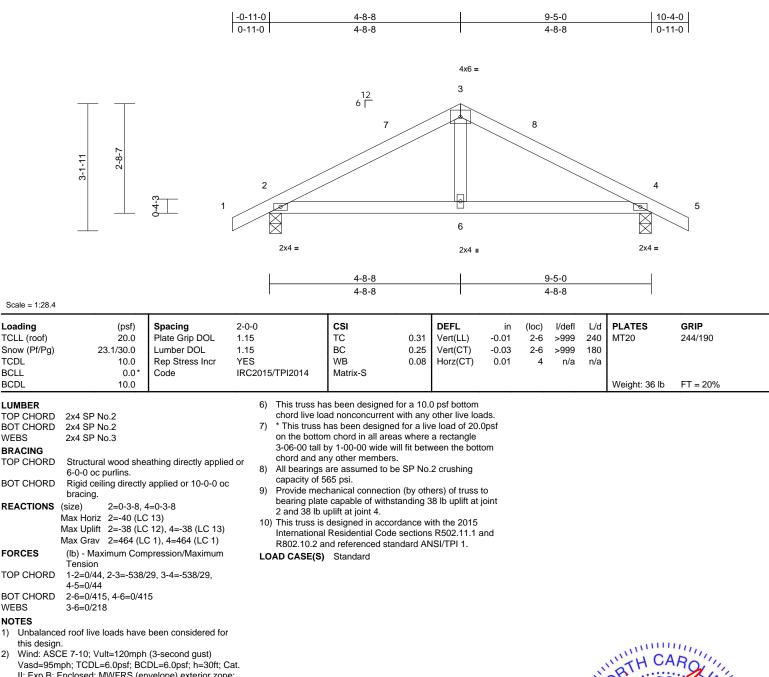
BCDL

WFBS

BRACING

FORCES

WEBS


NOTES 1)

2)

LUMBER

TCLL (roof)

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Thu Nov.30 08:26:16 ID:V?YIUZVtZMMDApTbGpGpreynDku-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=30.0 psf (ground snow); Pf=23.1 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

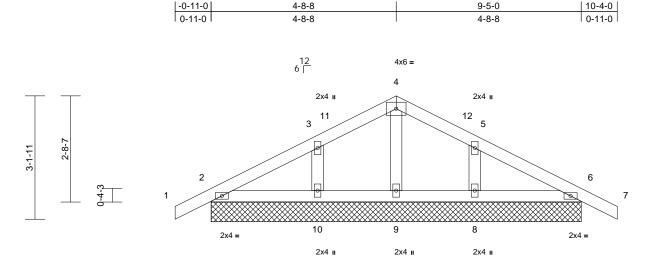
- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.

0 SEAL 036322 G (1111111) November 30,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply		
3769900	C03	Common Supported Gable	1	1	I6. Job Reference (optional)	2287197

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:17 ID:tdGaA?hdVfHZInVm?LNeCUzCvq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-4-0

9-5-0

Scale = 1:29.3	Scale	=	1:29.3	
----------------	-------	---	--------	--

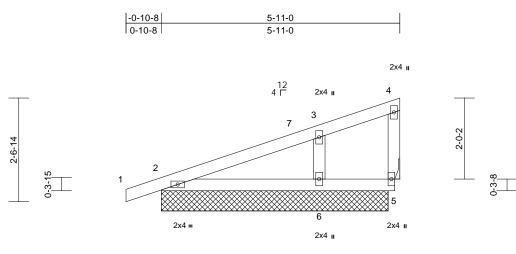
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.11 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=9-5-0, 9=9-5-0,	eathing directly applie y applied or 10-0-0 or 6=9-5-0, 8=9-5-0, 10=9-5-0	6)	DOL=1.15 P snow); Pf=23 Plate DOL=7 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir	5 7-10; Pr=20.0 late DOL=1.15 3.1 psf (flat roo 1.15); Category snow loads ha as been design psf or 2.00 time on-concurrent es continuous spaced at 2-0-); Pg=30.0 p f snow: Lum II; Exp B; P ve been cor ed for greate es flat roof k with other liv bottom chor	osf (ground aber DOL=1. ² Partially Exp.; hsidered for t er of min root bad of 23.1 p ve loads.	15 his ¹ live					
	Max Grav 2=173 (L	C 12), 6=-25 (LC 13), C 13), 10=-46 (LC 12) 10 5=242	This truss ha chord live loa) * This truss l on the bottor 3-06-00 tall l	as been design ad nonconcurre nas been desig m chord in all a by 1-00-00 wide	ed for a 10.0 ent with any ned for a liv reas where e will fit betw	other live loa e load of 20. a rectangle	Opsf					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	11) All bearings	ny other memb are assumed to		2 crushing						
TOP CHORD BOT CHORD WEBS NOTES	1-2=0/43, 2-3=-55/4 4-5=-50/49, 5-6=-50	0/33, 6-7=0/43 38, 8-9=0/38, 6-8=0/3 33/76, 5-8=-183/75	38 13	bearing plate 2, 25 lb uplif uplift at joint) This truss is	hanical connect e capable of wit t at joint 6, 46 l	hstanding 1 b uplift at joi cordance w	8 lb uplift at nt 10 and 45 ith the 2015	oint Ib				TH CA	ROUT

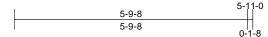
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	M01	Monopitch Supported Gable	1	1	I62287198 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:17 ID:1ZARwv53FHCj3gTTjGjiRRzCvXZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.6

						· · · · · · · · · · · · · · · · · · ·						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	2-6	>999	240	MT20	244/190
Snow (Pf/Pg)	23.1/30.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	2-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P								
BCDL	10.0				-				_		Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 5-11-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc 5=5-7-8, 6=5-7-8	load of overhan 6) Gable s 7) This true chord lin 8) * This true chord lin 8) * This true on the b 3-06-00 chord an 9) Bearing	s has been designed 2.0 psf or 2.00 times gs non-concurrent wi uds spaced at 2-0-0 s has been designed e load nonconcurrent iss has been designed ottom chord in all are tall by 1-00-00 wide w d any other members are assumed to be: of 565 nei	flat roof I th other li oc. I for a 10. t with any ed for a liv as where will fit betv s.	oad of 23.1 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott	sf on ads. Opsf om					
	Max Uplift 2=-31 (LC	,	17 ' '	of 565 psi. nechanical connectio	on (by oth	ers) of truss	to					
	(LC 12) Max Grav 2=204 (LC	C 1), 5=27 (LC 19), 6		blate capable of withs blift at joint 5 and 47 l			joint					
	(LC 19)		11) This true	s is designed in acco	ordance w	ith the 2015						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		onal Residential Cod			and					
TOP CHORD	1-2=0/28, 2-3=-56/4	9, 3-4=-38/3, 4-5=-24	A/C	.2 and referenced sta (S) Standard	andard Al	NSI/TPI 1.						
BOT CHORD WEBS	2-6=0/0, 5-6=0/0 3-6=-271/96											
NOTES	0 0- 21 1/00											
 Wind: ASC Vasd=95m II; Exp B; E cantilever I plate grip I Truss des only. For s see Standa or consult TCLL: ASC DOL=1.15 snow); Pf= Plate DOL: Ct=1.10 	E 7-10; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60 igned for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig 2E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 23.1 psf (flat roof snov =1.15); Category II; Ex-	DL=6.0psf; h=30ft; C welope) exterior zon ; Lumber DOL=1.60 h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe =30.0 psf (ground w: Lumber DOL=1.1! xp B; Partially Exp.;	e; ss ,)le, , 1 1. er 5								SEA 0363	L 22 EER K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

November 30,2023


Job	Truss	Truss Type	Qty	Ply		
3769900	M02	Monopitch	4	1	I62287199 Job Reference (optional))

5-11-0 5-11-0

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

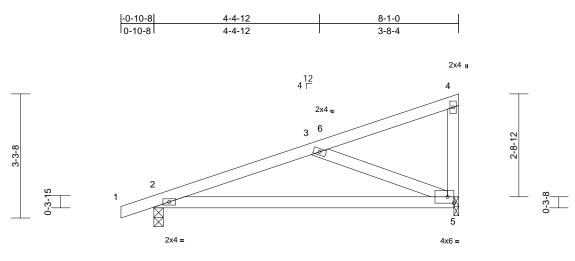
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:17 ID:H5o7WQpi7jmCGu3?Esoms4zCvWd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

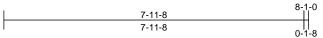
Scale = 1:27.7

Plate Offsets (X, Y): [2:0-0-6,Edge]

	, , ,										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TF	PI2014 CSI TC BC WB Matrix-R	0.48 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95m II; Exp B; E cantilever I plate grip I 2) TCLL: ASC DOL=1.15 snow); PI= Plate DOL Ct=1.10 3) Unbalance design. 4) This truss I load of 12. overhangs 5) This truss I	2x4 SP No.2 Structural wood she 5-11-0 cc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0,4 Max Horiz 2=76 (LC Max Uplift 2=-49 (LC Max Grav 2=321 (LC (Ib) - Maximum Com Tension 1-2=0/29, 2-3=-217/ 2-4=-21/150 CE 7-10; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	applied or 10-0-0 or 4=0-1-8 8) 2 8), 4=-35 (LC 12) C 19), 4=259 (LC 19) pression/Maximum 0, 3-4=-172/60 (3-second gust) EDL=6.0psf; h=30ft; C velope) exterior zon ; Lumber DOL=1.60 (roof live load: Lumber =30.0 psf (ground w: Lumber DOL=1.1 xp B; Partially Exp.; even considered for th r greater of min roof t roof load of 23.1 ps other live loads. r a 10.0 psf bottom	cat. live cat. live fon live	This truss has been de in the bottom chord in a 06-00 tall by 1-00-00 v nord and any other me labarings are assume apacity of 565 psi. earing at joint(s) 4 con sing ANSI/TPI 1 angle esigner should verify co- rovide mechanical con earing plate at joint(s) 4 rovide mechanical con ear	Ill areas where vide will fit betw mbers. d to be SP No siders parallel to grain formul apacity of bear nection (by oth 4. nection (by oth withstanding 4 4. accordance w Code sections	a rectangle veen the bot 2 crushing to grain value a. Building ing surface. ers) of truss ers) of truss 9 lb uplift at ith the 2015 5 R502.11.1	to to joint			2 A A A A A A A A A A A A A A A A A A A	SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


GI minim November 30,2023

Job	Truss	Truss Type	Qty	Ply	
3769900	M03	Monopitch	3	1	I62287200 Job Reference (optional)

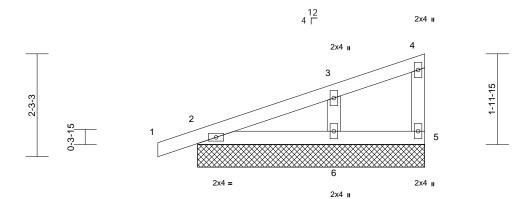
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:17 ID:qQ4IheUiJJU_fhtH63IMnTzCvTB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.6

Loading TCLL (roof) Snow (Pf/Pg) 23 TCDL BCLL BCDL	(psf) 20.0 3.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-P	0.24 0.84 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.45 0.01	(loc) 2-5 2-5 5	l/defl >420 >210 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
BOT CHORD 6-0-0 oc p Rigid ceili bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension	o.2 o.3 o.2 wood shea ourlins. ng directly 2=0-3-0, 5 2=100 (LC 2=-54 (LC 2=418 (LC imum Com 2-3=-523/ 36 458 171 It=120mph 6.0psf; BC IWFRS (en it exposed =20.0 psf ((=1.15); Pg= at roof snov egory II; E> ds have be esigned for 0 times flat	 28) 29, 5=-49 (LC 12) 19), 5=373 (LC 19) pression/Maximum 106, 3-4=-57/29, (3-second gust) DL=6.0psf; h=30ft; C twelope) exterior zone; tumber DOL=1.60 roof live load: Lumbe a0.0 psf (ground w: Lumber DOL=1.15 cp B; Partially Exp.; then considered for thi roof load of 23.1 psi ther live loads. a 10.0 psf bottom 	7) d or 8) 9) 10) 11) LOA at. 2; r s vve on	on the bottom 3-06-00 tall b chord and an All bearings a capacity of 51 Bearing at joi using ANSI/T designer sho Provide mect bearing plate Provide mect bearing plate 2 and 49 lb u This truss is a International	nt(s) 5 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 5. nanical connection capable of withsta plift at joint 5. designed in accord Residential Code s ad referenced stand	where I fit betw SP No. Parallel t formula of beari (by oth nding 5 ance w sections	a rectangle veen the botto 2 crushing o grain value a. Building ng surface. ers) of truss to 4 lb uplift at jo ith the 2015 R502.11.1 ar	m D D D D				SEA 0363	22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


November 30,2023

Job	Truss	Truss Type	Qty	Ply		
3769900	M04	Monopitch Supported Gable	3	1	Job Reference (optional)	162287201

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:18 ID:7m0x92Z5gTM??mvd11N?ZyzCvT4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale	= 1:25.4	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.11 0.07 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
	5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-0-0, § Max Horiz 2=66 (LC Max Uplift 2=-31 (LC (LC 12) Max Grav 2=174 (LC (LC 19)	applied or 10-0-0 oc 5=5-0-0, 6=5-0-0 8) 8), 5=-8 (LC 8), 6=-3 C 1), 5=52 (LC 19), 6	load of 12.0 overhangs i 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-6-00 tall chord and a 10) All bearings capacity of 3-6 11) Provide me bearing plat 5, 31 lb upli 12) This truss is	chanical connection e capable of withst ft at joint 2 and 36 designed in accor	ilat roof kin tom other list tom chor c. for a 10.0 with any d for a liv is where e SP No. n (by oth tanding 8 b uplift a dance w	bad of 23.1 ps ve loads. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to b lb uplift at joi t foint 6. ith the 2015	ds. psf m nt					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/28, 2-3=-47/3 2-6=0/0, 5-6=0/0 3-6=-204/74		R802.10.2 a	I Residential Code and referenced star Standard			nd					
 Wind: ASC Vasd=95m II; Exp B; E cantilever I plate grip I plate grip I Truss des only. For s see Standa or consult TCLL: ASC DOL=1.15 snow); Pf= Plate DOL: Ct=1.10 	E 7-10; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed OOL=1.60 igned for wind loads ir studs exposed to wind ard Industry Gable En qualified building desig. CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg: e3.1 psf (flat roof snov =1.15); Category II; E: ed snow loads have be	DL=6.0psf; h=30ft; C welope) exterior zone ; Lumber DOL=1.60 n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe =30.0 psf (ground w: Lumber DOL=1.15 kp B; Partially Exp.;	e; ss le, l 1. r						CN IIIIII		SEA ORTH CA ORTH CA ORTH CA ORTH CA ORTH CA ORTH CA ORTH CA	L 22 EERER HUU

November 30,2023

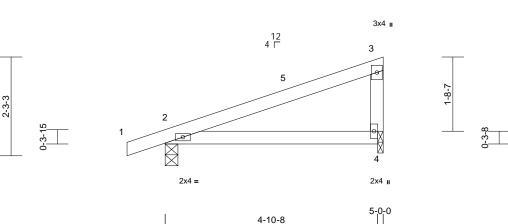
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
3769900	M05	Monopitch	8	1	I62287202 Job Reference (optional)

5-0-0

5-0-0

-0-10-8


0-10-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Thu Nov 30 08:26:18 ID:nLGvFyvHrN0tzEdCDdOpE3zCvSd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 23.1/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.31 BC 0.18 WB 0.00 Matrix-R		in -0.01 -0.03 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	5-0-0 oc purlins.	8) C 8), 4=-29 (LC 12) C 19), 4=210 (LC 19) npression/Maximum	d or d or d or d or d or d or d or d or	bint(s) 4 considers parallel TPI 1 angle to grain formu- buld verify capacity of bea- chanical connection (by ot e at joint(s) 4. chanical connection (by ot e capable of withstanding uplift at joint 4. designed in accordance to Residential Code sectior nd referenced standard A	e a rectangle ween the bott 0.2 crushing to grain value la. Building ring surface. hers) of truss 48 lb uplift at with the 2015 is R502.11.1 a	to joint					
NOTES	2-4=-10/118		LOAD CASE(S)	Standard							
Vasd=95m II; Exp B; E cantilever lu plate grip D 2) TCLL: ASC DOL=1.15 snow); Pf=:/ Plate DOL= Ct=1.10	E 7-10; Vult=120mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed 00L=1.60 E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg: 23.1 psf (flat roof snoi =1.15); Category II; E: d snow loads have be	DL=6.0psf; h=30ft; C hvelope) exterior zon ; Lumber DOL=1.60 (roof live load: Lumbe =30.0 psf (ground w: Lumber DOL=1.15 xp B; Partially Exp.;	e; 97					4		OR FESE	Contraction of the second seco

- design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 23.1 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

THE COMPANY annun GI November 30,2023

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

