

- TOP CHORD 2-17=-720/279, 3-17=-637/279, 3-4=-605/316, 4-5=-65/251, 5-18=-23/271, 6-18=-19/317, 6-19=-1118/543, 7-19=-1125/519, 7-8=-1229/499, 8-9=-1106/335, 9-20=-1153/299, 10-20=-1214/296
- BOT CHORD 2-21=-158/546, 16-21=-158/546, 15-16=-158/546, 14-15=-158/546, 12-24=-163/982, 10-24=-163/982
- WEBS 4-16=0/335, 4-14=-797/280, 6-14=-984/132, 6-12=-320/1357, 8-12=-603/374

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 39-0-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=104, 10=134.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 18-11-8, Exterior(2) 18-11-8 to 23-0-15, Interior(1) 23-0-15 to 37-7-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 4x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=103.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

J1120 4813 JOA DOMON July Control Back State Description of the state stat		e South	Lot 38 Woodbridge South	Ply	Qty	Туре	Truss Truss	Job
Conside, to: Provide Register in the case of the second s			1	1	2	ION	A03A COMM	J1123-6813
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16:22 2023 Page 1	(optional) 2021 MiTek Industries, Inc. Fri Dec 811:1	Job Reference (optiona Print: 8.430 s May 12 2021 Mit	ay 12 2021 Pr	Run: 8.430 s M		28309, Johnnie Baggett	Comtech, Inc., Fayetteville, NC 2
$ \begin{pmatrix} 0 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110 \\ 9 \\ 110$	E7dH5eqPyB32d	5NP7wY6FdH4oIDUs4IG1?dSIQO6I 37-7-8	3dwnCxyStrD-ww05NP7w	ne3CQdqy3 28-0-2	ID:JQb1igK2	18-11-8	9-10-14	-0-11 _r 0
$ \begin{array}{c} 56 = & 56 = & 56 \\ 600 \overline{12} & 600$		9-7-6		9-0-10		9-0-10	9-10-14	0-11-0
6.00 [17 4.00 [17	Scale = 1:74.6				5x8 =			
$ \frac{48}{2} + \frac{48}{2}$						6.00 12		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		4x4 = 13 5 10 4x4 = 4x4 =	4x8 = 8 2x4 9 V2 W1	4x8 = 7 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W4 W3 0 17 3x10 W5	4x8 = 4x8 = 5 12 11 4 10 W2 W2	2x4 3 3	10-4-0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ANNE 11				P2		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-5- -5-8 -5-1	B4					AW1 B1	4-10-4
4x8 = 4x4 = 4x12 = 4x	` Ó	6x6	¹³ 12		14	16 ¹⁵ 4.4 - 4.4 -	=	o⊙ ⊠ 5x5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4x8 = 4x4 =		4x8 =	4x4 = 4x4 = 4x4 = 4x8		
4x12 = 					4 =	4x4 =		
Bits Bits <th< td=""><td></td><td></td><td></td><td></td><td></td><td>4x12 =</td><td>4</td><td></td></th<>						4x12 =	4	
Bit Citiz ID:11:0 JO:10:0		27 7 9		20 0 2		10 11 0	0 10 14	
Plate Offsets (X,Y) [11:03-36.00-09], [16:03-36,0:2-0] LOADING (psf) TCLL SPACING- Plate Grip DOL 1.15 1.15 TC 0.74 Vert(L) -0.29 216 >999 240 MT20 244/190 BCLL 0.0* Rep Stress Incr NO WB 0.40 Horz(CT) 0.09 11 n/a n/a BCDL 10.0 Code IRC2015/TP12014 Matrix-S Wind(L) 0.16 2-16 >999 240 LUMBER- TOP CHORD 2x6 SP No.1 Expension BRACING- TOP CHORD 2x6 SP No.1 TOP CHORD 2x6 SP No.1 BRACING- (Switched from sheeted: Spacing > 2-0-0). WEBS 2x4 SP No.2 BOT CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.2 Switched from sheeted: Spacing > 2-0-0). Switched from sheeted: Spacing		9-7-6		9-0-10		9-0-10	9-10-14 9-10-14	+
LOADING (psf) TCLL SPACING- 2:3-0 TCLL 2:3-0 Plate Grip DOL 1:15 1:5 TC 0.74 TC DEFL Vert(Ll) in (loc) l/deft Vert(Cl) L/d PLATES GRIP TCDL 10.0 Lumber DOL 1:15 TC 0.74 Vert(Cl) -0.29 2:16 >999 360 MT20 244/190 BCLL 0.0* Rep Stress Incr NO WB 0.40 Horz(CT) 0.09 11 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.16 2:16 >999 240 Weight: 285 lb FT = 20% LUMBER Code IRC2015/TPI2014 Matrix-S BRACINC- UNCLD 2:0-0 oc putlins (3:4-9 max.) (Switched from sheeted: Spacing > 2:0-0). Weight: 28: lb FT = 20% WEBS 2x4 SP No.2 SNo.2 p5:3-11 BOT CHORD 2:0-0 oc putlins (3:4-9 max.) (Switched from sheeted: Spacing > 2:0-0). Switched from sheeted: Spacing > 2:0-0).							0-3-6,0-0-9], [16:0-3-8,0-2-0]	Plate Offsets (X,Y) [11:
BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.16 2-16 >999 240 Weight: 285 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.1 BRACING- COP CHORD 2-0-0 oc purlins (3-4-9 max.) (Switched from sheeted: Spacing > 2-0-0). WEBS 2x4 SP No.2 BOT CHORD Co-0 oc purlins (3-4-9 max.) Switched from sheeted: Spacing > 2-0-0). Switched from sheeted: Spacing > 2-0-0. Switched from sheeted: Spacing > 2-0-0). Switched from sheeted: Spacing > 2-0-0). Switched from sheeted: Spacing > 2-0-0. <td>90</td> <td>PLATES GRIP MT20 244/19</td> <td>I/defl L/d >999 360 >999 240 n/a n/a</td> <td>in (loc) 29 2-16 42 2-16 09 11</td> <td>DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.</td> <td>CSI. TC 0.74 BC 0.69 WB 0.40</td> <td>SPACING-2-3-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNO</td> <td>LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *</td>	90	PLATES GRIP MT20 244/19	I/defl L/d >999 360 >999 240 n/a n/a	in (loc) 29 2-16 42 2-16 09 11	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	CSI. TC 0.74 BC 0.69 WB 0.40	SPACING-2-3-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNO	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *
LUMBER- DO C CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 BRACING- TOP CHORD 2x6 SP No.1 Set 2x4 SP No.2 Bracing 1 Set 2x4 SP No.2 Bracing 1 Set 2x4 SP No.2 Bracing 1 Set 2x4 SP No.2 - p 5-3-11 REACTONS Intermediation 2 Max Horz 2=144(LC 9) Max Uplif2=-115(LC 12), 11=-100(LC 13) Max Grav 2=1964(LC 2), 11=1924(LC 2) Set 2x4 SP No.2 Set 2x4 SP No.2 FORCESS (b) Set CHOR 2-18-3543/567, 3-18-3426/608, 3-48-3429/731, 4-19=-3322/740, 5-19=-3312/760, 5-68-981/90, 6-78-1018/93, 7-20-3093/774, 8-20-2-8116/755, 8-98-342/2600, 9-02-3161/593, 10-11=-3337/553 Set Set 2x-200/2377, 12-24-207/2376, 13-24-207/2376, 12-13-207/2376, 12-23-206/2384, 12-23-209/2377, 14-24-207/2376, 13-24-207/2376, 12-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-207/2376, 13-24-2	- 20%	Weight: 285 lb FT =	>999 240	16 2-16	Wind(LL) 0.	Matrix-S	Code IRC2015/TPI2014	BCDL 10.0
REACTIONS. (lb/size) 2=1748/0-3-8 (min. 0-2-5), 11=1686/Mechanical Max Horz 2=144(LC 9) Max Uplift2=-115(LC 12), 11=-100(LC 13) Max Grav 2=1964(LC 2), 11=1924(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-18=-3543/567, 3-18=-3426/608, 3-4=-3429/731, 4-19=-3322/740, 5-19=-3312/760, 5-6=-981/90, 6-7=-1018/93, 7-20=-3093/774, 8-20=-3116/755, 8-9=-3211/746, 9-10=-3161/593, 10-11=-3337/553 BOT CHORD 2-21=-369/3056, 21-22=-366/3062, 16-22=-366/3062, 15-16=-207/2376, 15-23=-206/2381, 14-23=-209/2377, 14-24=-207/2376, 13-24=-207/2376, 12-13=-207/2376, 12-25=-343/2828 WEBS 14-17=0/735, 7-12=-253/958, 9-12=-580/348, 3-16=-677/336, 5-17=-1535/546, 7-17=-1535/546, 5-16=-249/1217, 6-17=0/768		max.) ł: Spacing > 2-0-0). plied or 10-0-0 oc bracing.	oc purlins (3-4-9 max.) hed from sheeted: Spac ceiling directly applied o ce at Jt(s): 6, 17	2-0-0 o (Switch Rigid ce 1 Brace	BRACING- TOP CHORD BOT CHORD JOINTS		.1 .1 .2 SP No.2 -p 5-3-11	LUMBER- TOP CHORD 2x6 SP No BOT CHORD 2x6 SP No WEBS 2x4 SP No WEDGE Left: 2x4 SP No.2 SLIDER Right 2x4 S
Max Horz 2=144(LC 9) Max Uplift2=-115(LC 12), 11=-100(LC 13) Max Grav 2=1964(LC 2), 11=1924(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-18=-3543/567, 3-18=-3426/608, 3-4=-3429/731, 4-19=-3322/740, 5-19=-3312/760, 5-6=-981/90, 6-7=-1018/93, 7-20=-3093/774, 8-20=-3116/755, 8-9=-3211/746, 9-10=-3161/593, 10-11=-3337/555, BOT CHORD 2-21=-369/3056, 21-22=-367/3062, 16-22=-366/3062, 15-16=-207/2376, 15-23=-206/2381, 14-23=-209/2377, 14-24=-207/2376, 13-24=-207/2376, 12-13=-207/2376, 12-25=-343/2828, 11-25=-343/2828 WEBS 14-17=0/735, 7-12=-253/958, 9-12=-580/348, 3-16=-677/336, 5-17=-1535/546, 7-17=-1535/546, 5-16=-249/1217, 6-17=0/768						686/Mechanical	2=1748/0-3-8 (min. 0-2-5), 11=16	REACTIONS. (lb/size)
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-18=-3543/567, 3-18=-3426/608, 3-4=-3429/731, 4-19=-3322/740, 5-19=-3312/760, 5-6=-981/90, 6-7=-1018/93, 7-20=-3093/774, 8-20=-3116/755, 8-9=-3211/746, 9-10=-3161/593, 10-11=-3337/553 BOT CHORD 2-21=-369/3056, 21-22=-367/3062, 16-22=-366/3062, 15-16=-207/2376, 15-23=-206/2381, 14-23=-209/2377, 14-24=-207/2376, 13-24=-207/2376, 12-13=-207/2376, 12-25=-343/2828 WEBS 14-17=0/735, 7-12=-253/958, 9-12=-580/348, 3-16=-677/336, 5-17=-1535/546, 7-17=-1535/546, 5-16=-249/1217, 6-17=0/768							2=144(LC 9) 2=-115(LC 12), 11=-100(LC 13) 2=1964(LC 2), 11=1924(LC 2)	Max Horz 2 Max Uplift2 Max Grav2
9-10=-3161/593, 10-11=-3337/553 BOT CHORD 2-21=-369/3056, 21-22=-367/3062, 16-22=-366/3062, 15-16=-207/2376, 15-23=-206/2381, 14-23=-209/2377, 14-24=-207/2376, 13-24=-207/2376, 12-13=-207/2376, 12-25=-343/2828, 11-25=-343/2828 WEBS 14-17=0/735, 7-12=-253/958, 9-12=-580/348, 3-16=-677/336, 5-17=-1535/546, 7-17=-1535/546, 5-16=-249/1217, 6-17=0/768					ı. 19=-3312/760, 211/746,) or less except when sh 29/731, 4-19=-3322/740 74, 8-20=-3116/755, 8-9	mp./Max. Ten All forces 250 (lb) 43/567, 3-18=-3426/608, 3-4=-34 /90, 6-7=-1018/93, 7-20=-3093/77	FORCES. (lb) - Max. Cor TOP CHORD 2-18=-35 5-6=-981,
WEBS 14-17=0/735, 7-12=-253/958, 9-12=-580/348, 3-16=-677/336, 5-17=-1535/546, 7-17=-1535/546, 5-16=-249/1217, 6-17=0/768	9-10=-3161/593, 10-11=-3337/553 BOT CHORD 2-21=-369/3056, 21-22=-367/3062, 16-22=-366/3062, 15-16=-207/2376, 15-23=-206/2381, 14-23=-209/2377, 14-24=-207/2376, 13-24=-207/2376, 12-13=-207/2376, 12-25=-343/2828, 11-25=-343/2828							
					535/546,	48, 3-16=-677/336, 5-17 768	735, 7-12=-253/958, 9-12=-580/3 35/546, 5-16=-249/1217, 6-17=0/	WEBS 14-17=0/ 7-17=-15
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-4-5, Interior(1) 23-4-5 to 37-7-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 2=115. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced 		ipe) and ; for de will fit lb) enced	MWFRS (envelope) and 37-7-8 zone;C-C for -0 tall by 2-0-0 wide will (s) 11 except (jt=lb) 12.10.2 and referenced	Enclosed; I) 23-4-5 to : loads. tangle 3-6-0 plift at joint(1 and R802	it; Cat. II; Exp C; 23-4-5, Interior(1) IOL=1.60 th any other live reas where a rec tanding 100 lb up ections R502.11.	s design. 6.0psf; BCDL=6.0psf; h 11-8, Exterior(2) 18-11-6 mber DOL=1.60 plate gi d live load nonconcurrer on the bottom chord in a BCDL = 10.0psf. earing plate capable of w national Residential Coo	ads have been considered for this =130mph Vasd=103mph; TCDL= o 3-7-11, Interior(1) 3-7-11 to 18- WWFRS for reactions shown; Lui signed for a 10.0 psf bottom chorn lesigned for a live load of 30.0psf ord and any other members, with uss to truss connections. nnection (by others) of truss to be in accordance with the 2015 Intern	 NOTES- 1) Unbalanced roof live lo 2) Wind: ASCE 7-10; Vult C-C Exterior(2) -0-9-2 t members and forces & 3) This truss has been de 4) * This truss has been de between the bottom chi 5) Refer to girder(s) for tru 6) Provide mechanical con 2=115. 7) This truss is designed if

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y)	[2:0-5-14,Edge], [12:0-5-14,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.55 WB 0.33 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.25 16-18 >999 360 Vert(CT) -0.33 16-18 >999 240 Horz(CT) 0.08 12 n/a n/a Wind(LL) 0.12 18 >999 240	PLATES GRIP MT20 244/190 Weight: 278 lb FT = 20%

BRACING-TOP CHORD

JOINTS

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -p 5-5-10, Right 2x4 SP No.2 -p 5-5-10

Structural wood sheathing directly applied or 4-5-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Brace at Jt(s): 19

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (Ib/size) 2=1562/0-3-8 (min. 0-2-2), 12=1583/0-3-8 (min. 0-2-2) Max Horz 2=-134(LC 8) Max Uplift2=-101(LC 12), 12=-106(LC 13) Max Grav 2=1788(LC 2), 12=1806(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-20=-3029/476, 3-20=-2930/476, 3-4=-2872/512, 4-5=-2924/641, 5-6=-2872/665, 6-7=-971/88, 7-8=-972/88, 8-9=-2869/655, 9-10=-2921/631, 10-11=-2869/505, 11-21=-2966/471, 12-21=-3027/468 BOT CHORD 2-22=-294/2614, 18-22=-294/2614, 17-18=-185/2165, 17-23=-185/2165, 16-23=-185/2165, 16-24=-185/2165, 15-24=-185/2165, 14-15=-185/2165, 14-25=-292/2567, 12-25=-292/2567
- WEBS 8-14=-221/898, 10-14=-558/315, 4-18=-561/315, 6-18=-221/902, 16-19=0/722, 7-19=0/749,
- 6-19=-1347/478, 8-19=-1347/478

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 18-11-8, Exterior(2) 18-11-8 to 23-0-15, Interior(1) 23-0-15 to 39-0-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=101, 12=106.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 11 except 14=-121(LC 12), 10=-117(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-7 to 3-10-0, Exterior(2) 3-10-0 to 5-10-0, Corner(3) 5-10-0 to 10-2-13, Exterior(2) 10-2-13 to 12-5-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=121, 10=117.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South
J1123-6813	B02-GR	COMMON GIRDER	1	3	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Johnnie Baggett			n: 8.430 s May :JQb1igK2ne3	12 2021 Pri CQdqy3dv	nt: 8.430 s May 12 2021 MiTek Industries, Inc. Fri Dec 8 11:16:23 2023 Page 2 vnCxyStrD-O6aTal8YJQNUuDNUmCNJIUZBUr7u7Y0HsxqCMsyB32c

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20 Concentrated Loads (lb) Vert: 3=-1493(B) 5=-1484(B) 6=-1484(B) 7=-1663(B) 8=-1663(B) 9=-1484(B)

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=136, 5=195.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 7-6-8, Exterior(2) 7-6-8 to 11-11-5, Interior(1) 11-11-5 to 16-0-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 7, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

L			16-8-0		
Plate Offsets (X,Y)	[7:0-1-8,Edge], [16:0-3-0,Edge]		16-8-0		·
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.71 WB 0.47 Matrix-S	DEFL. ir Vert(LL) -0.20 Vert(CT) -0.27 Horz(CT) 0.05	(loc) l/defl L/d 16-17 >997 480 16-17 >724 360 12 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 91 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 22=899/0-3-8 (min. 0-1-8), 12=893/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1833/0, 3-4=-3019/0, 4-5=-3019/0, 5-6=-3644/0, 6-7=-3644/0, 7-8=-3099/0, 8-9=-1861/0, 9-10=-1861/0

BOT CHORD 21-22=0/1076, 20-21=0/2545, 19-20=0/2545, 18-19=0/3409, 17-18=0/3408, 16-17=0/3644, 15-16=0/3644, 14-15=0/2621, 13-14=0/2622, 12-13=0/1109

WEBS 2-22=-1374/0, 2-21=0/985, 3-21=-927/0, 3-19=0/605, 10-12=-1389/0, 10-13=0/979, 8-13=-991/0, 8-15=0/605, 7-15=-853/0, 7-16=-95/331, 5-19=-498/0, 5-17=0/550

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

<u> </u>					20-2-12 3-8-12	2	3-9-8 -6-12
Plate Offsets (X,Y)	[7:0-1-8,Edge], [25:0-3-0,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.52 BC 0.61 WB 0.56 Matrix-S	DEFL. ir Vert(LL) -0.16 Vert(CT) -0.22 Horz(CT) 0.03	n (loc) l/defl 6 26-28 >999 2 26-28 >905 3 20 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 131 I	GRIP 244/190 b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood end verticals. Rigid ceiling di	d sheathing dire	ctly applied or 6- 6-0-0 oc bracing	0-0 oc purlins, except j.
REACTIONS. (Ib/siz Max U Max 0	te) 16=82/Mechanical, 30=760/0-3-8 Jplift16=-185(LC 3) Grav16=290(LC 4), 30=769(LC 3), 20=	(min. 0-1-8), 20=1741/0 1741(LC 1)	-3-0 (min. 0-1-8)				

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 15-16=-292/183, 2-3=-1508/0, 3-4=-2396/0, 4-5=-2396/0, 5-6=-2504/0, 6-7=-2504/0,

7-8=-1669/0, 8-9=-1669/0, 10-11=0/2111, 11-12=0/2111, 12-13=-146/1105, 13-14=-367/766 BOT CHORD 29-30=0/909, 28-29=0/2076, 27-28=0/2563, 26-27=0/2560, 25-26=0/2504, 24-25=0/2504, 23-24=0/1051, 22-23=0/1052, 21-22=-842/0, 20-21=-842/0, 19-20=-1502/0, 18-19=-766/367, 17-18=-424/377 4 64 /0 0 00 0/270 0 00 740/0 0 00 0/400 40 00 4500/0 WEDO

WEBS	13-18=0/280, 2-30=-1161/0, 2-29=0/779, 3-29=-740/0, 3-28=0/408, 10-20=-1592/0,
	10-22=0/1180, 9-22=-1150/0, 9-24=0/796, 7-24=-1099/0, 7-25=0/453, 12-20=-1049/0,
	12-19=0/671, 13-19=-609/0, 14-18=-430/0, 14-17=-283/349, 15-17=-254/259

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=185.
 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South
J1123-6813	F03	FLOOR	3	1	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	8309, Johnnie Baggett	Run	8.430 s May D:JQb1igK2	12 2021 Prir ne3CQdqy	nt: 8.430 s May 12 2021 MiTek Industries, Inc. Fri Dec 8 11:16:26 2023 Page 1 /3dwnCxyStrD-phFcDmAQcLm3lh53SKx0v6Bjy38vKwrjYv3szAyB32Z
1-3-0		2-3-4	1-8-0		3-0 2-5-0

Scale = 1:44.2

17-2-4 17-2-4 Diete Offecte /X V) 14-Edge 0.4.91 [7:0.4.9 Edge] [40:0.4.9 Edge] [20:0.4.9 Edge]						26-10-12 9-8-8	I
	[1.Luge,0-1-0], [7.0-1-0,Luge], [14.0-	1-0,Lugej, [20.0-1-0,Lug	ej, [20.0-3-0,Luge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.59 BC 0.59 WB 0.42 Matrix-S	DEFL. in Vert(LL) -0.17 Vert(CT) -0.23 Horz(CT) 0.04	(loc) l/defl 27-28 >999 27-28 >878 17 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood end verticals. Rigid ceiling dir 6-0-0 oc bracin	d sheathing c rectly applied g: 20-21,19-2	lirectly applied or 6-0- l or 10-0-0 oc bracing 20,18-19.	-0 oc purlins, except

- REACTIONS. (lb/size) 31=696/Mechanical, 21=1322/0-3-8 (min. 0-1-8), 17=325/Mechanical Max Grav 31=706(LC 10), 21=1322(LC 1), 17=395(LC 4)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-1449/0, 3-4=-2485/0, 4-5=-2485/0, 5-6=-2806/0, 6-7=-2806/0, 7-8=-2250/0,
- 8-9=-1182/0, 9-10=0/1057, 10-11=0/1057, 11-12=0/1057, 12-13=-797/230, 13-14=-797/230, 14-15=-675/43

BOT CHORD	30-31=0/872, 29-30=0/2051, 28-29=0/2051, 27-28=0/2730, 26-27=0/2806, 25-26=0/2806,
	24-25=0/2806, 23-24=0/1822, 22-23=0/1823, 21-22=0/528, 20-21=-555/405, 19-20=-230/797,
	18-19=-230/797, 17-18=0/483
WEBS	2-31=-1094/0, 2-30=0/752, 3-30=-784/0, 3-28=0/541, 5-28=-323/0, 5-27=-119/336,
	0.04 4440/0 0.00 0/000 0.00 004/0 0.04 0/570 7.04 047/0 7.00 04/000

9-21=-1448/0, 9-22=0/883, 8-22=-864/0, 8-24=0/576, 7-24=-817/0, 7-26=-21/322, 12-21=-859/0, 12-20=0/714, 15-17=-606/0, 15-18=-94/251, 13-20=-327/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South
J1123-6813	F04	FLOOR	3	1	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	28309, Johnnie Baggett	Rur ID:	8.430 s May Qb1igK2ne3	12 2021 Prir CQdqy3dv	nt: 8.430 s May 12 2021 MiTek Industries, Inc. Fri Dec 8 11:16:27 2023 Page 1 vnCxyStrD-Hup_Q6B3NfuwNrgF?1SFSKkuWTU_3N3snZoPVdyB32Y
1-3-0		2-3-4	1-8-0		3-0 2-5-0

Scale = 1:44.2

 	17-2-4				<u></u>		
Plate Offsets (X,Y)	[1:Edge,0-1-8], [7:0-1-8,Edge], [14:0-1	-8,Edge], [20:0-1-8,Edg	e], [26:0-3-0,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.60 WB 0.42 Matrix-S	DEFL. in Vert(LL) -0.17 Vert(CT) -0.23 Horz(CT) 0.04	(loc) l/defl L/d 27 >999 480 27 >888 360 17 n/a n/a	PLATES MT20 Weight: 142 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 20-21,19-	lirectly applied or 6-0 l or 10-0-0 oc bracing 20,18-19.	-0 oc purlins, except J, Except:	

- REACTIONS. (lb/size) 31=694/Mechanical, 21=1328/0-3-8 (min. 0-1-8), 17=322/Mechanical Max Grav 31=704(LC 10), 21=1328(LC 1), 17=394(LC 4)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-1456/0, 3-4=-2361/0, 4-5=-2361/0, 5-6=-2767/0, 6-7=-2767/0, 7-8=-2226/0,
- 8-9=-1155/0, 9-10=0/1086, 10-11=0/1086, 11-12=0/1086, 12-13=-792/248, 13-14=-792/248, 14-15=-673/52

BOT CHORD	30-31=0/876, 29-30=0/2005, 28-29=0/2631, 27-28=0/2629, 26-27=0/2767, 25-26=0/2767,
	24-25=0/2767, 23-24=0/1798, 22-23=0/1799, 21-22=0/497, 20-21=-581/398, 19-20=-248/792,
	18-19=-248/792, 17-18=0/482
WEBS	2-31=-1099/0, 2-30=0/755, 3-30=-714/0, 3-29=0/455, 5-29=-344/0, 5-27=-53/378,

9-21=-1451/0, 9-22=0/887, 8-22=-868/0, 8-24=0/576, 7-24=-808/0, 7-26=-23/320, 12-21=-866/0, 12-20=0/725, 15-17=-605/0, 14-18=-152/250, 13-20=-332/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply Lot	38 Woodbridge South	
J1123-6813	F05	FLOOR	3	1	b Reference (option	al)
Comtech, Inc., Fay	vetteville, NC 28309, Johnnie Baggett		Run: 8.430 s May ID:JQb1igK2n	12 2021 Print: 8. e3CQdqy3dwn	430 s May 12 2021 Mi CxyStrD-I4NMdSCh	Tek Industries, Inc. Fri Dec 8 11:16:28 2023 Page 1 17y0n??FRZIzU?XG4ZsrQonM00DYy13yB32X
1-3-0		2-3-4	↓ <u>1-8</u>	<u>3-0 1-8-0</u>) <u>2</u> -	-5-0
						Scale = 1:44.2
3x10	3x10	4x6	3x6 FP=			
	8-5-0	3-6×04 =		3x10	3x10	3x10
	2 3 4 5	67 8 9 T2		13	14 15	
1-2-0				3 43	B2	
1 101				Ř		
31 = 3x6 = 100	30 29 3x4 = 3x6 =	3x4 = 1.5x3 3x4	= 3x6 =	23 3x10 =	22 3x6 =	21 20 19 1.5x3 3x4 = 3x6 =
		3x6 FP=				
		17-2-4				26-10-12
Plate Offsets (X Y) [1:Edge 0-1-8] [2:0-3-0 Ed	17-2-4 17-2-4 [de] [3:0-3-0 Edge] [5:0-3-0 Edge]	ae] [6:0-4-8 Edge] [8:0-1	-8 Edge] [10:	0-3-0 Edge] [12:0	9-8-8 3-3-0 Edge] [14:0-2-8 Edge] [16:0-1-8
	,Edge], [17:0-3-0,Edge], [2	2:0-1-8,Edge], [28:0-1-8,Edge]	gej, [0.0 + 0,⊏ugej, [0.0 †	o,Eugej, [10.		
LOADING (psf) SPACING- 1	-7-3 CSI .	DEFL. ir	n (loc) l/de	efl L/d	PLATES GRIP
TCDL 40.0	Lumber DOL	1.00 IC 0.52 1.00 BC 0.52	Vert(CT) -0.10	5 28 >99 0 28 >99	9 480	MT20 244/190
BCLL 0.0 BCDL 5.0	Code IRC2015/TPI2	YES WB 0.61 2014 Matrix-S	Horz(CT) 0.03	3 23 n/	/a n/a	Weight: 195 lb FT = 20%F, 11%E
LUMBER-			BRACING-			
TOP CHORD BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat)		TOP CHORD	Structural w end vertical	vood sheathing dir ls.	ectly applied or 6-0-0 oc purlins, except
WEBS	2x4 SP No.3(flat)		BOT CHORD	Rigid ceiling	g directly applied o	or 6-0-0 oc bracing.
REACTIONS.	(lb/size) 31=624/Mechanical, 19	e=197/Mechanical, 23=1522/0-3	3-8 (min. 0-1-8)			
	Max Grav 31=632(LC 3), 19=346	(LC 4), 23=1522(LC 1)				
FORCES. (lb)	- Max. Comp./Max. Ten All forc	es 250 (lb) or less except wher	n shown.			
TOP CHORD	2-3=-1384/0, 3-4=-2261/0, 4-5= 8-9=-1620/0, 9-10=-1609/0, 12-	-2261/0, 5-6=-2402/0, 6-7=-240 13=0/2117, 13-14=0/2117, 14-1	2/0, 7-8=-2413/0, 5=-611/863, 15-16=-611/8	363,		
BOT CHORD	16-17=-557/444 30-31=0/848, 29-30=0/1891, 28	-29=0/2316,27-28=0/2402,26-	27=0/2402 25-26=0/2402)		
	24-25=0/945, 23-24=-775/0, 22-	23=-1573/0, 21-22=-863/611, 2	20-21=-863/611,	-,		
WEBS	2-31=-1019/0, 2-30=0/665, 3-30	=-628/0, 3-29=0/452, 5-28=-12	6/335, 12-23=-1543/0,			
	12-24=0/1019, 10-24=-970/0, 10 16-20=-66/511, 14-23=-979/0, 1	0-25=0/833, 8-25=-967/0, 17-19 4-22=0/1284, 15-22=-682/0, 13	9=-560/111, 17-20=-435/11 8-23=-359/0	13,		
NOTES-						
 Unbalanced All plates are 	l floor live loads have been consid e 6x6 MT20 unless otherwise indi	ered for this design. cated.				
3) Plates check	ked for a plus or minus 1 degree r	otation about its center.				
5) Provide med	chanical connection (by others) of	truss to bearing plate capable (of withstanding 100 lb uplif	ft at joint(s) 19). 2 and referenced	
standard AN	ISI/TPI 1.		Coue sections R502.11.1 8			
 Recommended be attached 	d 2x6 strongbacks, on edge, spac to walls at their outer ends or rest	ed at 10-0-0 oc and fastened to trained by other means.	o each truss with 3-10d (0.	.131" X 3") na	uls. Strongbacks f	to
8) CAUTION, [Do not erect truss backwards.					

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South
J1123-6813	F06	Floor	4	1	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	8309, Johnnie Baggett	Run: 8. ID:J0	430 s May 1 Qb1igK2ne	2 2021 Prir 3CQdqy3	ts 8.430 s May 12 2021 MiTek Industries, Inc. Fri Dec 8 11:16:28 2023 Page 1 dwnCxyStrD-I4NMdSCh7y0n??FRZIzU?XG3NskKoqC00DYy13yB32X
0-1-8					
H ├ <u>1-8-0</u> <u>1-3-0</u>	4	2-1-12	1-8-	0 1	-8-0 2-5-0 Scale = 1:45.2

Plate Offsets (X,Y)	17-5 17-5 [7:0-1-8,Edge], [14:0-1-8,Edge], [20:0-	<u> </u>					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.59 BC 0.98 WB 0.43 Matrix-S	DEFL. ir Vert(LL) -0.22 Vert(CT) -0.31 Horz(CT) 0.04	n (loc) l/defl L/d 2 26-27 >931 480 1 26-27 >678 360 4 17 n/a n/a	PLATES GRI MT20 244, Weight: 142 lb FT	P /190 ⁻ = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc d or 2-2-0 oc bracing.	purlins, except	
REACTIONS. (Ib/size) 30=704/0-3-8 (min. 0-1-8), 21=1337/0-3-8 (min. 0-1-8), 17=323/Mechanical Max Grav 30=714(LC 10), 21=1337(LC 1), 17=394(LC 4)							

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1666/0, 3-4=-2669/0, 4-5=-2669/0, 5-6=-2760/0, 6-7=-2760/0, 7-8=-2231/0,

8-9=-1211/0, 9-10=-1211/0, 10-11=0/1075, 11-12=0/1075, 12-13=-794/239, 13-14=-794/239, 14-15=-674/47

BOT CHORD	29-30=0/1117, 28-29=0/2254, 27-28=0/2254, 26-27=0/2833, 25-26=0/2758, 24-25=0/2760,
	23-24=0/1830, 22-23=0/1830, 21-22=0/541, 20-21=-569/401, 19-20=-239/794,
	18-19=-239/794, 17-18=0/482
WEBS	2-30=-1289/0, 2-29=0/715, 3-29=-764/0, 3-27=0/518, 10-21=-1483/0, 10-22=0/902,
	8-22=-842/0, 8-24=0/560, 7-24=-757/0, 7-25=-16/262, 5-27=-272/0, 5-26=-300/248,
	12-21=-865/0, 12-20=0/720, 13-20=-329/0, 15-17=-605/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

				14-1-8			
Plate C	Offsets (X,Y)	[5:0-1-8,Edge], [13:0-1-8,Edge]					
LOADI TCLL TCDL BCLL BCDL	NG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.53 BC 0.81 WB 0.37 Matrix-S	DEFL. ir Vert(LL) -0.16 Vert(CT) -0.22 Horz(CT) 0.03	n (loc) I/defl L/d 5 11-12 >999 480 2 11-12 >771 360 3 9 n/a n/a	PLATES MT20	GRIP 244/190 FT = 20%F, 11%E
LUMBE TOP C BOT C WEBS	E R- HORD 2x4 SF HORD 2x4 SF 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applier	directly applied or 6-0-	-0 oc purlins, except

14-1-8

REACTIONS. (Ib/size) 15=753/0-3-8 (min. 0-1-8), 9=760/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1502/0, 3-4=-2460/0, 4-5=-2460/0, 5-6=-2299/0, 6-7=-1493/0

BOT CHORD 14-15=0/934, 13-14=0/2063, 12-13=0/2460, 11-12=0/2460, 10-11=0/2068, 9-10=0/891

2-15=-1169/0, 2-14=0/740, 3-14=-730/0, 3-13=0/689, 4-13=-290/0, 7-9=-1137/0, 7-10=0/784, 6-10=-748/0, 6-11=0/381, WEBS 5-11=-416/20

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

<u>13-10-0</u> 13-10-0									
Plate Offsets (X,Y) [1:Edge,0-1-8], [5:0-1-8,Edge], [13:0-1-8,Edge]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.74 WB 0.36 Matrix-S	DEFL. ir Vert(LL) -0.14 Vert(CT) -0.18 Horz(CT) 0.03	n (loc) l/defl L/d 11-12 >999 480 311-12 >887 360 3 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 69 lb FT = 20%F, 11%E				
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly appli	g directly applied or 6-0-0 oc purlins, except ed or 10-0-0 oc bracing.				

REACTIONS. (lb/size) 15=744/Mechanical, 9=744/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1464/0, 3-4=-2364/0, 4-5=-2364/0, 5-6=-2220/0, 6-7=-1454/0

BOT CHORD 14-15=0/913, 13-14=0/2005, 12-13=0/2364, 11-12=0/2364, 10-11=0/2009, 9-10=0/870

WEBS 2-15=-1146/0, 2-14=0/717, 3-14=-704/0, 3-13=0/633, 4-13=-258/0, 7-9=-1111/0, 7-10=0/760, 6-10=-723/0, 6-11=0/354,

5-11=-381/34

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

		<u>11-10-4</u> 11-10-4					<u>13-6-8</u> 1-8-4	<u> </u>
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [9:Edg	je,0-1-8], [13:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.51 BC 0.65 WB 0.32 Matrix-S	DEFL. in Vert(LL) -0.13 Vert(CT) -0.17 Horz(CT) 0.02	i (loc) l/defl 13-14 >999 13-14 >830 2 9 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%F	-, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc pend verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.								except
REACTIONS. (Ib/siz Max U Max C	e) 9=-132/Mechanical, 15=616/Mech Jplift9=-328(LC 8) Grav 9=172(LC 7), 15=617(LC 3), 10=1	nanical, 10=978/0-3-8 (m 108(LC 8)	nin. 0-1-8)					
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 8-9=-171/328, 2-3=-1171/0, 3-4=-1573/0, 4-5=-1573/0, 5-6=-987/0, 6-7=-163/581, 7-8=-163/582 BOT CHORD 14-15=0/752, 13-14=0/1521, 12-13=0/1573, 11-12=0/1573, 10-11=0/556 WEBS 2-15=-944/0, 2-14=0/545, 3-14=-455/0, 6-10=-970/0, 6-11=0/662, 5-11=-752/0, 8-10=-699/196								
NOTES- 1) Unbalanced floor I 2) All plates are 3x4 I 3) Plates checked for	ve loads have been considered for th MT20 unless otherwise indicated.	s design.						

ates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=328.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
8) CAUTION, Do not erect truss backwards.

10-2-0 10-3-8 11-7-8 10-2-0 0-1-8 1-4-0 Plate Offsets (X,Y) [1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1-8,Edge], [7:0-1-8,Edge] 0-1-8 1-4-0								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.49 WB 0.21 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	PLATES G MT20 24 Weight: 61 lb	RIP 44/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 9-10.	lirectly applied or 6-0-0 l or 10-0-0 oc bracing,) oc purlins, except Except:		

REACTIONS. (lb/size) 14=390/Mechanical, 9=955/0-3-8 (min. 0-1-8) Max Grav 14=395(LC 3), 9=955(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-676/0, 3-4=-824/0, 4-5=-463/145, 5-6=0/473, 6-7=0/473

BOT CHORD

2-14=-600/0, 2-13=0/824, 11-12=0/824, 10-11=0/824, 9-10=-298/137 2-14=-600/0, 2-13=0/257, 5-9=-709/0, 5-10=0/434, 4-10=-510/0, 7-9=-611/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Magnitude of user added load(s) on this truss have been applied uniformly across all gravity load cases with no adjustments.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-8, 1-7=-80 Concentrated Loads (lb)

Vert: 7=-350

				1000						
				10-3-8		1				
Plate	Plate Offsets (X,Y) [1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1-8,Edge]									
LOAD TCLL TCDL BCLL BCDL	ING (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.24 BC 0.41 WB 0.20 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 8-9 >999 480 9 >999 360 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 52 lb FT = 20%F, 11%E				
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.					

10-3-8

REACTIONS. (lb/size) 12=552/Mechanical, 7=546/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-994/0, 3-4=-1310/0, 4-5=-994/0

BOT CHORD 11-12=0/664, 10-11=0/1310, 9-10=0/1310, 8-9=0/1310, 7-8=0/663

WEBS 2-12=-833/0, 2-11=0/429, 3-11=-443/0, 5-7=-830/0, 5-8=0/430, 4-8=-444/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	C	ty	Ply	Lot 38 Woodb	idge South		
J1123-6813	FKW1	Floor Supported Gable	1		1	Ioh Referen	ce (ontional)		
Comtech, Inc., Fayetteville,	NC 28309, Johnnie Baggett		Run: 8.430	s May 1	2 2021 Pr 3CQdav3	int: 8.430 s May	22 (Optional) 12 2021 MiTek Ind 13 VGUEZQtOL 9	dustries, Inc. Fri [sS_0EtWBcAu	Dec 8 11:16:31 2023 Page 4 52H9SiBmdeOvB32
0- <mark>1</mark> -8			1210 401	igi izilot		annengen z e		00_02.000, 00,	0 ₁ 18
									Scale = 1:26
				3x6	FP =				
1 2	3 4	5 6 T1	7 8	9	10	11	12 T2	13	14 15
	ST1 ST1 B1		ST1 ST		ST1	ST1	ST1	ST1	
30 29	28 27 2	6 25 24	23 22		21	20	19	18	17 16
3x4 =	Зх6	FP=							3x4 =
			<u>16-8-0</u> 16-8-0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 PCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES) CSI.) TC 0.06 BC 0.01 WB 0.03 Matrix P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl L/d n/a 999 n/a 999 n/a n/a	F	PLATES MT20	GRIP 244/190

				-
1.10	MR	E	R.	

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-8-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	C	Qty	Ply	Lot 38 Woodbrid	ge South			
J1123-6813	FKW2	Floor Supported Gable	1		1	Job Reference	(optional)			
Comtech, Inc., Fayetteville,	NC 28309, Johnnie Baggett	1	Run: 8.430 ID:JQb1	s May 1 igK2ne3	2 2021 Prii CQdqy30	nt: 8.430 s May 12 dwnCxyStrD-9f3	2021 MiTek Ir /GUEZQtOI	ndustries, Inc. Fri I LsS_0EtWBcAu	Dec 8 11:16:31 j_4_4?H9SiBr	2023 Page 1 ndeOyB32U
0-11-8				-		,				0-1-8
									S	icale = 1:44.2
1 2	3 4 5 6	7 8 9 10	3x6 F	P= 14	15	16 17	18	19 20	21 2	2 23
				511	9 10 10					
	$\begin{array}{c c} B1 \\ \hline B1 \\ \hline X \\ \hline X$									
46 45	44 43 42 41	40 39 38 37 36	35 34	33	32	31 30	29	28 27	26 25	524
3x4 =		3x6 FP=								3x4 =
 			27-2-4							
			DEEL	in	(loo)				CDID	
TCLL 40.0	Plate Grip DOL 1.0	0 TC 0.06	Vert(LL)	n/a	(100)	n/a 999		MT20	244/190	
BCLL 0.0	Rep Stress Incr YE	S WB 0.03	Horz(CT)	n/a 0.00	- 24	n/a 999 n/a n/a				

_	BCDL

LUMBER-

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

5.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Weight: 113 lb FT = 20%F, 11%E

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 27-2-4.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 46, 24, 45, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25

Matrix-R

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South		
J1123-6813	FKW3	Floor Supported Gable	1	1	Job Reference (optional)		
Comtech, Inc., Fayetteville, No	C 28309, Johnnie Baggett		Run: 8.430 s May 1	2 2021 Prin	It: 8.430 s May 12 2021 MiTek In	dustries, Inc. Fri Dec	3 11:16:31 2023 Page 1
			ID:JQD IIgKznes	iCQaqy3a		_SS_UEIWBCAUJ?4_	/ (H95IBINDeOyB320
							0 _[-1] 8
							Scale = 1:16.5
224							
3x4	0	4	F	0	7	0	0
1	2 3	4	5 Г1	6	1	8	9
[•	•	•	•	•	•	
	H H					H	19
ର w1	STI STI	ST1	STI	ST1	ST1	ST1	
4		Ţ.,		Ĭ.		Į.į	BL1
	- • •	•	B1 ●	•	•	•	

18	17 16	15	14	13	12	11	10
a ()							
3x4							3x4 ≡

			10-3-8 10-3-8				
Plate Offsets (X,Y)-	- [1:Edge,0-1-8], [18:Edge,0-1-8]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) a - a - 0 10	l/defl L/d n/a 999 n/a 999 n/a n/d	d PLATES 9 MT20 9 Weight: 45 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 3 BOT CHORD 2x4 3	SP No.1(flat) SP No.1(flat) SP No.2(flat)		BRACING- TOP CHORD	Structo end ve	ural wood she erticals.	eathing directly applied or 6-	0-0 oc purlins, except

WEBS 2x4 SP No.3(flat) 2x4 SP No.3(flat) OTHERS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

All plates are 1.5x3 MT20 unless otherwise indicated.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South		
J1123-6813	FKW4	Floor Supported Gable	1	1	Job Reference (optional)		
Comtech, Inc., Fayetteville, NC 2	28309, Johnnie Baggett		Run: 8.430 s May 1 ID:JQb1igK2ne3C	2 2021 Prin Qdqy3dw	t: 8.430 s May 12 2021 MiTek Industries, I hCxyStrD-drctTqFBBBWCTcZDoa10	nc. Fri Dec 81 29NRukUKJkk	1:16:32 2023 Page 1 (PbwqWAAqyB32T
							0 _[1] 8
							Scale = 1:17.8
3x4						:	3x4
1	2	3 4 	5	6	7	8 9)
	•	•	•	•	•	•	
		ПП	Π				+
	ST1	\$T1 \$T1	ST1	\$T	1 \$T1	\$T1	BL1 2-
	* * * * * * * * * * *			× × × ×	× × × × × × × × × × × × ×		
			XXXXXXXX	\times		XXXXXX	\times
18	17	16 15	14	13	12	11 1	0
3x4						3	$3x4 \equiv$

├ ───			10-0-0		
Plate Offsets (X,Y)	[1:Edge,0-1-8], [18:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. ir Vert(LL) n/ź Vert(CT) n/ź Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 b 10 n/a n/a	PLATES MT20 GRIP 244/190 Weight: 45 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	 No.1(flat) No.1(flat) No.3(flat) No.3(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. All bearings 10-0-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

All plates are 1.5x3 MT20 unless otherwise indicated.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type		0	Qty	Ply	Lot 38 Wood	bridge South			
J1123-6813	FKW5	Floor Supported Gab	ble	1		1	lob Doferr	non (antianal)			
Comtech, Inc., Fayetteville, I	NC 28309, Johnnie Baggett			Run: 8.43)s May 1 K2ne3C	2 2021 Pri Odav3dw	nt: 8.430 s Ma	y 12 2021 MiTek	Industries, Inc. Fri	Dec 8 11:16:32 2	2023 Page 1
0 ₁ 18				10.000 Hg	TTZ NO OO	Quqyoun					0 ₁₁ 8
										S	cale = 1.22.2
											0010 - 1.22.2
1 2	3	4 5		6 	7		8	9	10	11	12
25 🗌	<u>•</u>)				•	<u> </u>	<u> </u>		
A BLA ST	1 ST1	ST1 S	T1	ST1	ST1		ST1	ST1	ST1	ST1	
	•			- B1							
	××××××××××××××××××××××××××××××××××××××	\times		<u>XXXXXXX</u> 19	<u><xxx< u=""> 18</xxx<></u>	XXX	$\times \times \times \times \times$	$\times \times $	$\times \times $	(XXXXX)	
3x4 =		21 20		10	10			10	10		10
				14-1-8							
	SBACING			DEEL		(100)		/d			
TCLL 40.0	Plate Grip DOL	1.00 TC	0.06	Vert(LL)	in n/a	(IOC) -	n/a 99	99	MT20	244/190	
TCDL 10.0	Lumber DOL	1.00 BC	0.01	Vert(CT)	n/a	-	n/a 99	99			

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

13

end verticals.

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 60 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

FT = 20%F, 11%E

All bearings 14-1-8.

2x4 SP No.3(flat)

NOTES-

BCLL

BCDL

LUMBER-

OTHERS

REACTIONS.

0.0

5.0

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

Rep Stress Incr

Code IRC2015/TPI2014

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

YES

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WB 0.03

Matrix-R

REACTIONS. All bearings 6-0-0.

(lb) - Max Horz 2=75(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8 Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 5-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 6=229/Mechanical, 2=292/0-3-0 (min. 0-1-8) Max Horz 2=76(LC 8) Max Uplift6=-98(LC 8), 2=-114(LC 8)

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 6-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=114.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Lot 38 Woodbridge South
J1123-6813	M03	Roof Special	1	2	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Johnnie Baggett			430 s May Qb1igK2ne	2 2021 Prin 3CQdqy30	t: 8.430 s May 12 2021 MITek Industries, Inc. Fri Dec 8 11:16:34 2023 Page 2 JwnCxyStrD-aEkduVGSjomwjwjbw?4uEoW9gHycCe4uO8?HFjyB32R

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 9=-330

 I) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1. Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 2-7=-20, 6-9=-30, 5-6=-20 Concentrated Loads (lb) Vert: 9=-330

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=184, 8=168.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Scale = 1:19.7

Plate Offsets (X,Y)-- [2:0-4-6.0-0-9]

	[2.0-4-0,0-0-3]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.02 WB 0.03 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) -0.00	n (loc) l/defl L/d) 1 n/r 120) 1 n/r 120) 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 43 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S SLIDER Left 2	P No.1 P No.1 P No.2 P No.2 x4 SP No.2 -p 1-6-11		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie MiTek recommends that be installed during truss of Installation guide	directly applied or 6-0-0 oc purlins, except ed or 10-0-0 oc bracing. Stabilizers and required cross bracing erection, in accordance with Stabilizer

REACTIONS. All bearings 10-0-0.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-0 to 3-5-13, Exterior(2) 3-5-13 to 9-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2, 10, 11, 12, 13.
 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

⁽lb) - Max Horz 2=87(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 9, 2, 10, 11, 12, 13 Max Grav All reactions 250 lb or less at joint(s) 9, 2, 10, 11, 12, 13

Installation guide.

REACTIONS. (lb/size) 8=398/Mechanical, 2=447/0-3-0 (min. 0-1-8) Max Horz 2=62(LC 12) Max Uplift8=-157(LC 8), 2=-177(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-800/772, 3-10=-760/775, 4-10=-739/779

BOT CHORD 2-9=-819/738. 8-9=-819/738

WEBS 4-8=-709/778, 4-9=-255/203

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 10-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=157, 2=177.

6) This runs is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 8-4-7, Exterior(2) 8-4-7 to 12-9-3, Interior(1) 12-9-3 to 16-2-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Oxhkurantee to the heat the back of the bac

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=113, 6=112.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WEBS 2-8=-284/198, 4-6=-284/198

NOTES-

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-10-7, Exterior(2) 6-10-7 to 11-3-3, Interior(1) 11-3-3 to 13-2-14 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift1=-24(LC 12), 3=-32(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 5-4-7, Exterior(2) 5-4-7 to 9-9-3, Interior(1) 9-9-3 to 10-2-14 zone; C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and

C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (lb/size) 1=82/4-7-11 (min. 0-1-8), 3=82/4-7-11 (min. 0-1-8), 4=137/4-7-11 (min. 0-1-4) Max Horz 1=-30(LC 8) Max Uplift1=-13(LC 12), 3=-16(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and

C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and

C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3x4 =

3x4 ||

<u>0-2-4</u> 0-2-4			6-4-12 6-2-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.26 BC 0.11 WB 0.00 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	n (loc) l/defl L/d - n/a 999 a - n/a 999 0 1 n/a n/a	PLATES GRIP MT20 244/190 Weight: 17 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applied	directly applied or 6-4-12 oc purlins, except d or 10-0-0 oc bracing.
				MiTek recommends that S be installed during truss e Installation guide.	Stabilizers and required cross bracing rection, in accordance with Stabilizer

1=230/6-2-8 (min. 0-1-8), 3=164/6-2-8 (min. 0-1-8), 4=-30/6-2-8 (min. 0-1-8) REACTIONS. (lb/size) Max Horz 4=24(LC 8) Max Uplift3=-26(LC 8), 4=-59(LC 3)

Max Grav 1=245(LC 3), 3=164(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

5) Non Standard bearing condition. Review required.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.